
ar
X

iv
:1

91
0.

12
35

5v
2 

 [
m

at
h-

ph
] 

 1
6 

M
ay

 2
02

4

The k-adjacency operators and adjacency Jacobi matrix

on distance-regular graphs
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Abstract

We deal in this work with a class of graphs, namely, the class of distance-
regular graphs, in which on the basis of k-adjacency operators, the ad-
jacency operator A of a distance-regular graph is identified as a Jacobi
matrix. To get so, the set of the k-adjacency operators is recognized
as a canonical basis in a certain Hilbert space, where the spectrum of
the Jacobi matrix coincides with the support of the measure of A. The
obtained identification permits a deeper spectral analysis of the graph.
The finite-dimensional case is addressed by means of the extension the-
ory of nondensely defined, symmetric linear operators.
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1. Introduction

The graph theory is closely related to the spectral theory of linear operators in Hilbert
spaces, by recognizing the set of vertices of a graph G, as the canonical basis of a Hilbert
space H. The adjacency matrix of G acts as a linear operator in H and its spectrum allows
analyzing the behavior of the graph. It is interesting to mention that it was not until the
early eighties that the spectral theory of finite graphs was extended to the infinite case [17,24]
and nowadays, there are numerous topics with applications related with spectral theory of
infinite graphs (see for example [11, 14, 18]). Thereby, and as a motivation for the complex
network theory [13, 22], we tackle the spectral analysis of infinite graphs. We also handle
the finite-dimensional case throughout extension theory of nondensely defined, symmetric
linear operators; this is due to the fact that the selfadjoint extensions that we study here
and the adjacency operator, have the same spectral distribution (q.v. Remark 4.1). This
viewpoint sheds some new light on the extension theory of finite graphs, and it is related to
the solution of the classical truncated moment problem [9, Sec. 10]. It is worth noting that
the densely defined condition of a linear operator in a Hilbert space can be relaxed, even
when the Hilbert space is finite-dimensional, by using the theory of linear relations [3,10] (or
multivalued linear operators [8]).

The concept of distance-regular graphs was introduced by N. Biggs in his seminal work [6],
by realizing that these graphs held combinatorial symmetries and linear algebraic properties.
For an amenable and solid analysis in spectral theory, we address the notion of a distance-
regular graph with respect to k-adjacency operators in a Hilbert space (q.v. Definition 3.1).
Basically, the k-adjacency operator of a graph maps every vertex v into the sum of vertices
which are at distance k from v. Particularly, a k-adjacency operator turns out an adjacency
operator of another graph in the same Hilbert space. Besides, on distance-regular graphs,
the k-adjacency operators obey a recurrence relation (see Theorem 3.4), which allows these
operators to be a basis in a certain Hilbert space and to get the identification of the adjacency
operator with a Jacobi matrix. The advantage of using this identification and the theory of
Jacobi operators [23] lies in the fact that we will develop an exhaustive spectral analysis of a
distance-regular graph. We emphasize that this identification has been addressed in several
works (see for example [6,18]). This paper contains relatively new results and our viewpoint
throws some new light on the theories of distance-regular graphs and k-adjacency operators,
which are the basis of this article.

Let us summarize this paper as follows. We briefly discuss in Section 2 some standard
facts on graphs, and we restrict our attention to bipartite graphs. Besides, we look more
closely at the k-adjacency operators and we lay out some practical concepts and results
related to these operators. Also, we present in Theorem 2.10 a characterization of bipartite
graphs. We see in Section 3 the regularity of every k-adjacency operator, and we introduce
a notion of cyclicity (q.v. Definition 3.2). Moreover, we give the notion of distance-regular
graphs in terms of the k-adjacency operators. Theorem 3.4 shows that all the k-adjacency
operators are bounded, selfadjoint, regular, isoscyclical and obey a recurrence relation, which
permits that the adjacency operator is identified as a Jacobi matrix in certain Hilbert space,
in the sense that the support of the spectrum of the adjacency operator coincides with the
spectrum of Jacobi operator (q.v. Theorem 3.13 and Remark 3.14). Section 4 is devoted to
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distance-regular graphs with finite diameter, and we address in this section the problem of
finding the support of the spectrum of the adjacency operator, throughout extension theory
for nondensely defined symmetric operators. Theorem 4.7 allows determining the Jacobi
operator that corresponds with the adjacency operator, and Corollary 4.8 exhibits the so-
called Biggs’ formula, which provides the multiplicity of every eigenvalue of the adjacency
operator. Finally, we present in Section 5 two standard examples to clarify the exposition of
this work.

2. Bigraphs and the k-adjacency operators

In this note any graph is assumed to be countable, undirected, unweighted, simple (without
loops or multiple edges) and connected (any pair of vertices is linked by edges), with a set of
vertices

V := {δi}i∈N . (2.1)

Here N0 := N ∪ {0} and ∂(δi, δj) represents the distance between two vertices δi, δj , i.e., the
minimal number of edges that join δi and δj .

Definition 2.1. We say that two vertices δi, δj are k-adjacent, denoted by δi ∼
k

δj , k ∈ N0,
whenever ∂(δi, δj) = k. We simply say in the case k = 1 that δi, δj are adjacent (or neighbors)
and we write δi ∼ δj .

The following subsets form a partition of V , with respect to δ1.

{δi ∈ V : ∂(δi, δ1) = 2k}k∈N0
; {δi ∈ V : ∂(δi, δ1) = 2k + 1}k∈N0

. (2.2)

Definition 2.2. A graph is called bipartite (or bigraph for short) if no two vertices belonging
to the same subset of (2.2) are adjacent (e.g., see Fig. 1).

Proposition 2.3. A graph is bipartite if and only if it has no cycles of odd length.

Proof. An odd cycle contains three vertices δi, δj , δl, which satisfy δi ∼ δj and both are n-
adjacent to δl, for some n ∈ N. This implies that both δi, δj belong to the same subspace of
(2.2). Therefore, a bigraph has no cycles of odd length.

On the other hand, if the graph is not bipartite, then one of (2.2) contains two adjacent
vertices δi, δj , both k-adjacent to δ1, for some k ∈ N. Hence, any closed path which contains
δ1, δi, δj , also contains an odd cycle.

From now on, any graph is also assumed to be locally finite, i.e., each of its vertices has
a finite number of neighbors. In Fig. 1, the grid graph is locally finite, but the infinite star
graph is not.

For a given graph with set of vertices (2.1), we consider the Hilbert space H := l2(V ) of
square-summable sequences with canonical basis V and inner product 〈·, ·〉, being antilinear
in the first argument.
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Figure 1: Infinite star graph and grid graph are bipartite.

For k ∈ N0, let Ãk be the linear operator acting on V by

Ãkδi =
∑

δj ∼
k

δi

δj , (2.3)

which is well-defined, since we work on locally finite graphs. Some authors refer to (2.3) as
the k-distance matrix [6, 18].

It is well-known that a linear operator T in H is densely defined if its domain is dense in
H. Besides, T is symmetric if

〈f, Tf〉 ∈ R , for all f ∈ dom T .

Moreover, it is selfadjoint if T = T ∗, where T ∗ is the adjoint of T .

Proposition 2.4. Every Ãk is symmetric and densely defined in H.

Proof. The proof is straightforward once we note that 〈δi, Ãkδj〉 = 〈Ãkδi, δj〉, for any pair of
vertices δi, δj ∈ V , and since span V is dense in H.

Definition 2.5. For k ∈ N0, the closure of Ãk is called the k-adjacency operator and denoted
by Ak.

Every Ak is a densely defined, closed and symmetric linear operator. Also, A0 is the
identity operator I and A1 (which we only write A for this operator) is the adjacency operator.
Besides, if the diameter of the graph

d := sup {∂(δi, δj) : δi, δj ∈ V } < ∞ , (2.4)

then Ak = 0, for all k > d.

Remark 2.6. We point out that the number ‖Akδi‖2, with k ∈ N0, represents how many
k-adjacent vertices δi has.
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Definition 2.7. A graph is called uniformly locally finite, with bound m < ∞, if

‖Aδi‖2 ≤ m , for all δi ∈ V .

Remark 2.8. The property to be uniformly locally finite characterizes the bounded condition
of the adjacency operator. Namely, A is bounded if and only if its graph (not necessarily
connected) is uniformly locally finite with bound m. In this case, ‖A‖ ≤ m [17, Th. 3.2].

The below result uses the fact that if a closed densely defined operator in H is bounded,
then it belongs to B(H) (the class of bounded operators defined on the whole space).

Proposition 2.9. On uniformly locally finite graphs, Ak belongs to B(H) and, hence, it is
selfadjoint, for every k ∈ N0.

Proof. The case k = 0 is simple, and from Remark 2.8 A is bounded. So, for k ≥ 2 and
δi fixed, one has that Akδi is the sum of vertices connected to δi, by a walk of k-steps. In
particular, the sum of vertices k-adjacent to δi. Then,

‖Akδi‖2 ≤ ‖Akδi‖
2 ≤ ‖A‖2k , for all δi ∈ V . (2.5)

We conclude the proof using Remark (2.8), bearing in mind that Ak is the adjacency operator
of another graph, which due to (2.5) is uniformly locally finite.

It is a well-known fact that the spectrum σ(T ) of a selfadjoint operator T is a real subset
and is the complement in C of the regular set

ρ(T ) :=
{

ζ ∈ C : (T − ζI)−1 ∈ B(H)
}

.

Moreover, σ(T ) = σd(T ) ∪ σc(T ), where

σp(T ) := {ζ ∈ R : ker(T − ζI) 6= {0}} (point spectrum)

σc(T ) :=
{

ζ ∈ R : ran (T − ζI) 6= ran (T − ζI)
}

(continuous spectrum)

Let us decompose the Hilbert space into H = U ⊕ V, where

U := span {δi ∈ V : ∂(δi, δ1) = 2k}k∈N0
;

V := span {δi ∈ V : ∂(δi, δ1) = 2k + 1}k∈N0
,

which are the closure of the linear envelope of the sets given in (2.2).

Theorem 2.10. On uniformly locally finite graphs, the following are equivalent:

(i) The graph is bipartite.

(ii) For every f, g ∈ U (or equivalently f, g ∈ V),

〈AAkf, Akg〉 = 0 , for all k ∈ N0 . (2.6)
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(iii) The adjacency operator holds

AU ⊂ V ; AV ⊂ U . (2.7)

(iv) If ζ ∈ σ(A) then so does −ζ, viz. σ(A) is symmetric about zero.

Proof. (i)⇒(ii) Since every Ak is bounded, it is sufficient to prove (2.6) on V . For every
δi, δj ∈ U , one has that Akδi and Akδj belong to the same subspace, either U or V. Therefore,
inasmuch as U and V do not contain adjacent vertices, one yields 〈AAkδi, Akδj〉 = 0.

(ii)⇒(iii) Let δi ∈ U . If Aδi /∈ V then there exists δj ∈ U such that δj ∼ δi, which implies
that δj , δi are both 2k-adjacent to δ1, for some k ∈ N. Thus,

〈AA2kδ1, A2kδ1〉 =
∑

δt,δs ∼
2k

δ1

〈Aδt, δs〉 ≥ 2 ,

a contradiction with (2.6), since δ1 ∈ U . Hence, Aδi ∈ V and due to A is bounded, AU ⊂ V.
The proof of AV ⊂ U follows the same above lines.

(iii)⇒(iv) Since A ∈ B(H) and by (2.7), for any f1+f2 ∈ ker(A−ζI), with f1 ∈ U , f2 ∈ V,
one has that Af1 = ζf2 and Af2 = ζf1, which by a simple computation f1 −f2 ∈ ker(A+ ζI),
viz. ker(A − ζI) and ker(A + ζI) are in one-to-one correspondence. Using the last reasoning,
we now proceed by contraposition. If −ζ ∈ ρ(A), i.e., (A + ζI)−1 ∈ B(H), then (A − ζI)−1

is a linear operator, which is closed, in view of A is closed. So, for every h1 + h2 ∈ H, with
h1 ∈ U , h2 ∈ V, there exist g1 ∈ U , g2 ∈ V, such that

A(g1 − g2) + ζ(g1 − g2) = −h1 + h2 .

Then, by (2.7), one has Ag1 − ζg2 = h2 and Ag2 − ζg1 = h1, whereby h1 + h2 belongs to
dom (A − ζI)−1. Hence, (A − ζI)−1 ∈ B(H), i.e., ζ ∈ ρ(A).

(iv)⇒(i) Since A is selfadjoint, we may consider its spectral measure EA and

µA,δi
(B) = 〈δi, EA(B)δi〉 , (δi ∈ V )

which denotes a probability measure defined on the σ-algebra of Borel subsets of R. Besides,
this measure is symmetric since σ(A) is symmetric. In this fashion, for each odd m ∈ N,

〈δi, Amδi〉 =
∫

xmdµA,δi
= 0 ,

wherefrom it follows that there are no closed paths of odd length, in particular, cycles of odd
length. Hence, the graph is bipartite as a consequence of Proposition 2.3.

Remark 2.11. On uniformly locally finite bigraphs, the property (2.7) implies that the
adjacency operator is decomposed into A = B ⊕ B∗, where

B = A↾U
: U → V .

5



3. Distance-regular graphs and the adjacency Jacobi operator

Let us introduce some concepts before working on distance-regular graphs, which will be
useful in the sequel.

Definition 3.1. For k ∈ N0, we say that Ak is regular, with degree deg Ak ∈ N0, if

‖Akδi‖2 = deg Ak , for all δi ∈ V ,

viz. all the vertices have the same number deg Ak of k-adjacent vertices.

A vertex δi it said to have a k-isoscycle, if there exist two adjacent vertices such that they
are both k-adjacent to δi. In such a case, δi belongs to an odd closed path of diameter equal
k. Moreover, the number of k-isoscycles of δi is determined by 〈AAkδi, Akδi〉/2 ∈ N0.

Definition 3.2. For k ∈ N0, we call Ak isoscyclical, with isoscycle isosc Ak ∈ N0, if

1

2
〈AAkδi, Akδi〉 = isosc Ak , for all δi ∈ V ,

viz. every vertex has the same number isosc Ak of k-isoscycles vertices.

It is worth pointing out that not all the operators Ak are necessarily regular or isoscyclical,
if one is.

Definition 3.3. A graph is called distance-regular if there exists a sequence {(an, bn)}n∈N ⊂
N2, such that for any pair of k-adjacent vertices δi, δj, with k ∈ N0, the following holds

〈Ak−1δi, Aδj〉 = ak ,

〈Ak+1δi, Aδj〉 = bk+1 .
(3.1)

The sequence {(an, bn)}n∈N is known as the intersection of the graph.

Theorem 3.4. A distance-regular graph with intersection {(an, bn)}n∈N, is uniformly locally
finite and its k-adjacency operators are bounded and selfadjoint, for all k ∈ N0. Moreover,
these operators hold the following difference equation:

AAk = ak+1Ak+1 + αkAk + bkAk−1 , with A−1 = 0, (3.2)

where αk = deg A − (ak + bk+1) and α0 = 0. Furthermore, for k > 0, every Ak is regular and
isoscyclical, with

deg Ak =
k
∏

n=1

bn

an

and isosc Ak =
αk

2

k
∏

n=1

bn

an

. (3.3)

Proof. The first part of the statement is straightforward by Proposition 2.9, once we note
by virtue of (3.1) that A is regular, with deg A = b1. To prove (3.2), we regard two vertices
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δi ∼r δj , with r ∈ N0. If | r − k |> 1 then 〈AAkδi, δj〉 = 〈Akδi, Aδj〉 = 0, which can be nonzero
whenever r ∈ {k + 1, k, k − 1}. So, at a suitable r, taking into account (3.1),

〈Akδi, Aδj〉 = ak+1〈Ak+1δi, δj〉 + αk〈Akδi, δj〉 + bk〈Ak−1δi, δj〉 , (3.4)

whence if r = k, then

αk = 〈Akδi, Aδj〉
= 〈Aδj , Aδj〉 − 〈Ak−1δi, Aδj〉 − 〈Ak+1δi, Aδj〉
= deg A − (ak + bk+1) .

Hence, (3.4) implies (3.2), since every Ak is continuous. Now, for k ∈ N and δi ∈ V , it follows
by (3.2) that

〈Akδi, Akδi〉 =
1

ak

〈AAk−1δi, Akδi〉

=
1

ak

〈Ak−1δi, AAkδi〉 =
bk

ak

〈Ak−1δi, Ak−1δi〉 ,

which recursively implies ‖Akδi‖2 =
∏k

n=1 bn/an. Also, (3.2) produces

isosc Ak =
1

2
〈AAkδi, Akδi〉 =

1

2
αk〈Akδi, Akδi〉 ,

whence one infers (3.3).

From now on, any graph is assumed to be distance-regular, which means that the k-
adjacency operators are bounded, selfadjoint, regular and isoscyclical, for all k ∈ N0.

Remark 3.5. Theorem 3.4 claims that every Ak is a polynomial at A, of degree k ∈ N0.
Indeed, A0 = A0, A1 = A and by (3.2),

Ak =
1

ak

(

AAk−1 + (ak−1 + bk − deg A) Ak−1 − bk−1Ak−2

)

, k ≥ 2 . (3.5)

Besides, the intersection sequence is bounded. Actually, (3.3) implies αk ≥ 0 and conse-
quently deg A ≥ ak + bk+1, for all k ∈ N. Hence, {an}n∈N, {bn}n∈N are bounded as well as
{(an, bn)}n∈N.

Proposition 3.6. The k-adjacency operator (seen as a polynomial at A) holds

Ak(deg A) = deg Ak , for all k ∈ N0 . (3.6)

Proof. We will proceed by induction on k. Clearly, A0(deg A) = deg A0 and A1(deg A) =
deg A1. Then, we may suppose that (3.6) holds for k − 1. Note that (3.3) implies deg Ak =
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bk deg Ak−1/ak. In this fashion by (3.5),

Ak(deg A) =
1

ak

(

(deg A) deg Ak−1 + (ak−1 + bk − deg A) deg Ak−1

− bk−1 deg Ak−2

)

=
1

ak

(bk deg Ak−1) ,

which yields (3.6).

For a set of vertices W ⊂ V , let ∂W denote the set of edges incident with exactly one
vertex of W .

Definition 3.7. The isoperimetric constant of a graph is inf | ∂W |/| W |, where the infimum
is taken over all nonempty finite subsets of vertices.

The following assertion relies on the fact that, when the adjacency operator A is regular,
the isoperimetric constant is equal to zero if and only if the norm of A satisfies ‖A‖ = deg A [5,
Th. 2.1 and Cor. 3.3].

Corollary 3.8. The norm of every k-adjacency operator holds

‖Ak‖ ≤ deg Ak , k ∈ N0 . (3.7)

Moreover, the isoperimetric constant is zero if and only if the equality in (3.7) holds, for all
k ∈ N0 .

Proof. The first part readily follows from Remark (2.8), inasmuch as, by Theorem 3.4, every
Ak is regular and corresponds to an adjacency operator of another graph in the same space,
which clearly is uniformly locally finite with bound deg Ak.

Now, if the isoperimetric constant is equal to zero, then deg A ∈ σ(A). So, the spectral
mapping theorem and Proposition 3.6 claim that deg Ak ∈ σ(Ak), which implies the equality
in (3.7). The converse is straightforward.

For simplicity of notation in the sequel, we write

Ak :=
1√

deg Ak

Ak , (k ∈ N0) (3.8)

which is a polynomial at A of degree k (v.s. Remark 3.5).

Proposition 3.9. If {(an, bn)}n∈N is the intersection sequence of the graph, then the following
recursive equation holds:

AAk =
√

ak+1bk+1Ak+1 + αkAk +
√

akbkAk−1 , k ∈ N0 , (3.9)

where A−1 = 0 and αk = deg A − (ak + bk+1), with α0 = 0.
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Proof. It follows from (3.2) that

AAk =
1√

deg Ak

(ak+1Ak+1 + αkAk + bkAk−1)

= ak+1

√

deg Ak+1

deg Ak

Ak+1 + αkAk + bk

√

deg Ak−1

deg Ak

Ak−1 ,

whence one obtains (3.9), since (3.3) implies ak deg Ak = bk deg Ak−1.

Consider the probability measure defined on the σ-algebra of Borel subsets of R, given by

µA(B) := 〈v, EA(B)v〉 , (3.10)

where EA is the spectral measure of A and v is a fixed vertex.

Remark 3.10. For k ∈ N0, it is a simple matter to verify from the recursive relation (3.9)
that Ak =

∑k
t=0 βk,tAt, with βk,t ∈ C. Thus, for any δi ∈ V ,

〈δi, Akδi〉 =
k
∑

t=0

βk,t〈δi,Atδi〉 = βk,0 . (3.11)

Then, one has by (3.10) and (3.11) that

〈δi, Akδi〉 = βk,0 = 〈v, Akv〉 =
∫

xkdµA ,

viz. the spectral distribution of A in a vertex, does not depend on v ∈ V .

In what follows, we will work in the Hilbert space (K, 〈·, ·〉µA
), where

K = {f(A) : f ∈ L2(R, µA)} ,

which is isomorphic to L2(R, µA) (cf. [20, sect. 13.4] and [21, Sect. 5.3]). Thus, it follows
because of Remark 3.10 that

〈f, g〉µA
= 〈f(A)v, g(A)v〉 , for all f, g ∈ K . (3.12)

Remark 3.11. The family {Ak}k∈N0 is an orthonormal basis for (K, 〈·, ·〉µA
). Indeed,

〈Ai,Aj〉µA
=

1
√

deg Ai deg Aj

〈Aix, Ajx〉 = δij , i, j ∈ N0 ,

where δij is the Kronecker delta.

Definition 3.12. The multiplication operator J in K is defined by

J : dom J → K
f(A) 7→ Af(A) ,

(3.13)
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where dom J = {f ∈ K : f(A), Af(A) ∈ K}.

Theorem 3.13. The multiplication operator J is bounded and selfadjoint, with

‖J‖µA
≤ deg A . (3.14)

Moreover, its matrix representation is a Jacobi matrix given by

















0
√

a1b1 0 0 . . .√
a1b1 α1

√
a2b2 0 . . .

0
√

a2b2 α2

√
a3b3 . . .

0 0
√

a3b3 α3 . . .
. . . . . . . . . . . . . . .

















, (3.15)

where {(an, bn)}n∈N is the intersection of the graph and

αn = deg A − (an + bn+1) , n ∈ N .

Proof. Since A is selfadjoint, it follows that J is symmetric. Moreover, inasmuch as A is
bounded in H and in view of (3.12),

‖Af(A)‖µA
= ‖Af(A)v‖ ≤ ‖A‖ ‖f(A)‖µA

< ∞ , f ∈ K , (3.16)

which implies dom J = K. Besides, from (3.7) and (3.16), one yields (3.14). So, we deduce
that J is selfadjoint and the family of complex polynomials at A is dense in K (cf. [1, Sec. 2]).
Moreover, inasmuch as {Ak}k∈N0 is an orthonormal basis for K (v.s. Remark 3.11), the
recursive relation (3.9) implies (3.15). This completes the proof.

Remark 3.14. Since the family of complex polynomials at A is dense in K, one gets

span {JnA0}n∈N0
= K ,

viz. A0 is a cycle vector and J is simple (see [2, Sec. 69]). Besides, the spectrum of J is not
purely discrete (cf. [21, Prop. 5.12]) and is determined by

σ(J) = supp µA . (3.17)

Moreover, every eigenvalue λ of J is of multiplicity one, which coincides with µA({λ}) 6= 0 [7,
Sec. 4.7] (also [21, Sec. 5.4]). From Corollary 3.8 and (3.17), one has that ‖J‖µA

= deg A if
and only the isoperimetric constant of the graph is equal to zero. Since {(an, bn)}n∈N ⊂ N2,
it follows that limn→∞

√
anbn ≥ 1, whence one deduces that J is not a compact operator

(cf. [2, Sec. 28]).

Corollary 3.15. The spectrum of J is symmetric about zero if and only if

bn+1 = deg A − an , for all n ∈ N . (3.18)
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In such a case, J has the following matrix representation















0
√

a1 deg A 0 . . .√
a1 deg A 0

√

a2(deg A − a1) . . .

0
√

a2(deg A − a1) 0 . . .

. . . . . . . . . . . .















. (3.19)

Proof. We infer from (3.17), items (ii),(iv) of Theorem 2.10 and the right-hand side of (3.3)
that σ(J) is symmetric about zero if and only isosc An = 0, for all n ∈ N, which is true if
and only if 0 = αn = deg A − (an + bn+1), i.e., (3.18). The representation (3.19) follows after
replacing (3.18) in (3.15).

4. Distance-regular graphs with finite diameter

We work in this section with a distance-regular graph with finite diameter d ∈ N (v.s. (2.4)).
In this instance, its intersection sequence is {(ak, bk)}d

k=1, since Ak = 0, for all k > d. Let
K := Cd[A] denote the family of complex polynomials at A of degree ≤ d, endowed with the
inner product 〈·, ·〉µA

given in (3.12). Thus, {Ak}d
k=0 is an orthonormal basis for K, with Ak

as in (3.8) (see Remark 3.11).
In what follows, we shall tackle the problem of finding supp µA by means of extension

theory for nondensely defined symmetric operators. So, we consider the symmetric operator
J with domain K ⊖ {Ad} and matrix representation





















0
√

a1b1 0 . . . 0 0 ∗√
a1b1 α1

√
a2b2 . . . 0 0 ∗

. . . . . . . . . . . . . . . . . .
0 0 0 . . . αd−2

√
ad−1bd−1 ∗

0 0 0 . . .
√

ad−1bd−1 αd−1 ∗
0 0 0 . . . 0

√
adbd ∗





















, (4.1)

where αn = deg A − (an + bn+1), for n = 1, . . . , d − 1. All the selfadjoint extensions of J are
characterized by

Jτ :=

















0
√

a1b1 0 . . . 0 0√
a1b1 α1

√
a2b2 . . . 0 0

. . . . . . . . . . . . . . . . . .
0 0 0 . . . αd−1

√
adbd

0 0 0 . . .
√

adbd τ

















, τ ∈ R (4.2)

which are adapted from [12, Thm. 2.4] (cf. [19, Sec. 5]).

Remark 4.1. It is of interest to point out that in [12,19] show another selfadjoint extension
J∞ of J which is not an operator. However, for a feasible analysis, we only work with the

11



extensions (4.2), which satisfy

Jτ f = J0 + τ〈Ad, f〉µA
Ad , f ∈ K

viz. Jτ is a one-rank perturbation of J0. Consequently, for j, k = 0, . . . , d,

∫

xj+kdµJτ
= 〈I, J j+k

τ I〉µA
= 〈J j

τ I, Jk
τ I〉µA

= 〈J jI, JkI〉µA
= 〈Aj, Ak〉µA

=
∫

xj+kdµA ,
(4.3)

i.e., the spectral distributions of Jτ and A coincide, for all τ ∈ R.

Now, let λ ∈ R and

ϕ(A) =
d
∑

k=0

ϕkAk ∈ K , (ϕk ∈ C) (4.4)

such that Jτ ϕ = λϕ. Then,

λϕ0 −
√

a1b1ϕ1 = 0 ,

−
√

akbkϕk + (λ − αk−1)ϕk−1 −
√

ak−1bk−1ϕk−2 = 0 , (2 ≤ k ≤ d)

(λ − τ)ϕd −
√

adbdϕd−1 = 0 .

(4.5)

Clearly for k = 1, . . . , d, the number ϕk is determined uniquely from ϕ0 and is a polynomial
of degree k − 1 at λ. Thereby,

dim ker(Jτ − λI) ≤ 1 . (4.6)

We use the above reasoning to define the following.

Definition 4.2. The first-kind polynomials associated to Jτ are defined by

P0(x) := 1 ,

P1(x) := x/
√

a1b1 ,

Pk(x) :=
(x − αk−1)Pk−1(x) − √

ak−1bk−1Pk−2(x)√
akbk

, (2 ≤ k ≤ d)

P
(τ)
d+1(x) := (x − τ)Pd(x) −

√

adbdPd−1(x) .

(4.7)

The polynomials (4.7) have real coefficients. Besides, {Pk}d
k=0 is the same for any Jτ ,

since Jτ is a one-rank perturbation of J0.

Theorem 4.3. For τ ∈ R, the spectrum of the selfadjoint extension Jτ is

σ(Jτ ) =
{

λ(τ) ∈ R : P
(τ)
d+1(λ(τ)) = 0

}

.

12



Moreover, every eigenvalue λ(τ) ∈ σ(Jτ ) is of multiplicity one and its corresponding eigen-
function (up to normalization) is

ϕλ(τ)(A) =
d
∑

k=0

Pk(λ(τ))Ak . (4.8)

Proof. The first part of proof is straightforward by remarking that {Pk(λ)}d
k=0 holds (4.5)

if and only if P
(τ)
d+1(λ) = 0. The multiplicity of every eigenvalue follows from (4.6). The

corresponding eigenvector (4.8) is directly from (4.4).

Remark 4.4. For i = 0, . . . , d, the Christoffel-Darboux kernel is

Ki(x, y) :=
i
∑

j=0

Pj(x)Pj(y) , (4.9)

which satisfies (cf. [15])

Kk(x, y) =
√

ak+1bk+1
Pk(y)Pk+1(x) − Pk(x)Pk+1(y)

x − y
, (4.10)

for k = 0, . . . , d − 1. Moreover, it holds the following property

Kd(x, x) = Pd(x)
(

P
(τ)
d+1(x)

)′ − (Pd(x))′ P
(τ)
d+1(x) . (4.11)

Indeed, one simply computes from (4.10) that

Kd(x, y) = Pd(x)Pd(y) +
√

adbd

Pd−1(y)Pd(x) − Pd−1(x)Pd(y)

x − y

= Pd(y)
P

(τ)
d+1(x)

x − y
− Pd(x)

P
(τ)
d+1(y)

x − y
,

wherefrom letting x tends to y, one yields (4.11).

Corollary 4.5. The spectra of the selfadjoint extensions Jτ have no intersection and are
pairwise interlaced.

Proof. For τ ∈ R, one has from Theorem 4.3 that the eigenvalues of Jτ are the roots of P
(τ)
d+1,

which are real and different from each other. So for η 6= τ , if λ is a root of P
(τ)
d+1, then

P
(η)
d+1(λ) = P

(η)
d+1(λ) − P

(τ)
d+1(λ) = (τ − η)Pd(λ) . (4.12)

Besides, in view of (4.11),

Pd(λ)(P
(τ)
d+1)

′(λ) = Kd(λ, λ) > 0 , (4.13)

which by (4.12) P
(η)
d+1(λ) 6= 0, viz. Jτ and Jη have no common eigenvalues.
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Now, if α < β are two consecutive eigenvalues of Jτ , then one has that sgn (P
(τ)
n+1)

′(α) 6=
sgn (P

(τ)
n+1)

′(β) and (4.13) yields sgn Pd(α) 6= sgn Pd(β). Thus, (4.12) implies sgn P
(η)
d+1(α) 6=

sgn P
(η)
d+1(β), which provide that Jη has an eigenvalue in (α, β). To conclude, if Jη has two

consecutive eigenvalues γ1 < γ2 within (α, β), then one infers using the same above rea-
soning that Jτ has an eigenvalue in (γ1, γ2). This contradicts our assumption that α, β are
consecutive.

The above reasoning shows that there is a one-to-one correspondence, except at one point
without considering the selfadjoint extension J∞ of (4.1) (q.v. Remark 4.1), between the
interval of two consecutive eigenvalues α < β of Jτ0 and the set {λJτ

∈ σ(Jτ ) ∩ (α, β)}τ0 6=τ∈R.
Roughly speaking, Fig. 2 represents this behavior.

(
α

)
β

λJτ

· ·

·

Figure 2: Eigenvalues of Jτ .

For τ ∈ R, one has on the basis of (4.3) that µJτ
is a probability measure. Besides, it

follows from Theorem 4.3 that

µJτ
(x) =

∑

λ∈σ(Jτ )

1

‖ϕλ(A)‖2
µA

1λ(x) =
∑

λ∈σ(Jτ )

1

Kd(λ, λ)
1λ(x) . (4.14)

In the following, we will determine the support of the measure of A.

Lemma 4.6. For k = 0, . . . , d, the k-th first-kind polynomial satisfies

Pk(A) = Ak .

Proof. The proof carries out by induction over k. It is clear that P0(A) = A0 and P1(A) = A1,
since a1 = 1 and b1 = deg A. So, we may suppose that Pj(A) = Aj , for j = 0, . . . , k − 1.
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Thus by (4.7),

Pk(A) =
(A − αk−1I)Pk−1(A) − √

ak−1bk−1Pk−2(A)√
akbk

=
1√
akbk

(

AAk−1 − αk−1Ak−1 −
√

ak−1bk−1Ak−2

)

,

whence from Proposition 3.9, the assertion follows.

The spectrum σ(A) has d + 1 distinct eigenvalues, since the diameter of the distance-
regular graph is d [18, Sec. 6.3]. So, the degree of the minimal polynomial of A is d + 1.

Theorem 4.7. The support of µA is the spectrum of the extension Jdeg A−ad
.

Proof. We only need to show that A and Jdeg A−ad
have the same minimal polynomial. Note

from (3.1) that bk = 0, since Ak = 0, for all k > d. Thus, by virtue of Proposition 3.9,

AAd = (deg A − ad)Ad +
√

adbdAd−1 . (4.15)

Moreover, Theorem 4.3 asserts that P
(deg A−ad)
d+1 is the minimal polynomial of Jdeg A−ad

. In this
fashion, from Lemma 4.6 and in view of (4.15), one computes

P
(deg A−ad)
d+1 (A) = (A − (deg A − ad)I)Pd(A) −

√

adbdPd−1(A)

= AAd − (deg A − ad)Ad −
√

adbdAd−1 = 0 ,

which completes the proof.

We conclude this section with the following result, which is known as Biggs’ formula, and
it was first shown in [6, Th. 21.4].

Corollary 4.8. Let {λi}d
i=0 be the distinct eigenvalues of A, with respectively multiplicities

{m(λi)}d
i=0 and n ∈ N the number of vertices of the graph. Then,

m(λi) =
n

Kd(λi, λi)
, 0 ≤ i ≤ d

where Kd is the Christoffel-Darboux kernel (4.9).

Proof. Note that A is an n × n matrix and µA(x) = n−1∑d
i=0 m(λi)1λi

(x), since it is a
probability measure. Hence, it follows from (4.14) and Theorem 4.7 that

m(λi)

n
= µA(λi) = µJdeg A−ad

(λi) =
1

Kd(λi, λi)
, (0 ≤ i ≤ d)

as required.
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5. Examples

5.1. Regular trees

For a fix number n ≥ 2, let Tn denote a tree in which each vertex has exactly n neighbors,
viz. its adjacency operator A is n-regular (e.g., see Fig. 3). The graph Tn is distance-regular

Figure 3: T2 and T3.

with intersection sequence

{(1, n), (1, n − 1), (1, n − 1), . . . } .

Thus, from Theorem 3.4, every k-adjacency operator is regular and isoscyclical, with

deg Ak = n(n − 1)k−1 and isosc Ak = 0 . (k ≥ 1)

Besides, the Jacobi adjacency operator (3.15) of Tn is

JTn
=

















0
√

n 0 0 . . .√
n 0

√
n − 1 0 . . .

0
√

n − 1 0
√

n − 1 . . .
0 0

√
n − 1 0 . . .

. . . . . . . . . . . . . . .

















,

with spectral distribution (equivalent to the spectral distribution of A)

dµA(x) =
n
√

4(n − 1) − x2

2π(n2 − x2)
dx , | x |≤ 2

√
n − 1 . (5.1)

Clearly, (5.1) is symmetric about zero, i.e., Tn is bipartite. Moreover, the norm of ‖JTn
‖µA

is 2
√

n − 1 (v.s. Remark 3.14 and Corollary 3.15).
The spectral distribution (5.1) was proven by Mckay [16] (cf. [18, Sec. 6.5]). Besides, in [4]

shows the distribution of all the k-adjacency operators of Tn.
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5.2. Complete graphs

For a solid analysis, let us regard a fixed number n ≥ 2 and denote by Kn the graph with n
vertices in which any pair of vertices are adjacent to each other (e.g., see Fig. 4). The graph

Figure 4: K3, K4 and K6.

Kn is distance-regular with diameter equal to one and intersection sequence {(1, n − 1)}. In
view of Theorem 3.4, the adjacency operator A of Kn follows

deg A = n − 1 and isosc A =
(n − 2)(n − 1)

2
,

e.g., any vertex of K6 has five neighbors and ten isoscycles.
The operator (4.1) and its selfadjoint extensions (4.2), in the Hilbert space K = span {I,A1},

are given by

J =

(

0 ∗√
n − 1 ∗

)

; Jτ =

(

0
√

n − 1√
n − 1 τ

)

, (τ ∈ R)

respectively. The eigenvalues of σ(Jτ ) = {λ
(τ)
+ , λ

(τ)
− } are characterized by

λ
(τ)
+ =

τ

2
+

1

2

√

τ 2 + 4(n − 1) ; λ
(τ)
− =

τ

2
− 1

2

√

τ 2 + 4(n − 1) , (5.2)

with eigenfunctions (up to normalization) ϕ
λ

(τ)
±

(A) = I +(n−1)−1λ
(τ)
± A. Besides, the spectral

measures (4.14) are

µJτ
(x) =

1

1 + λ+
1λ+(x) +

1

1 + λ−

1λ−
(x) , (5.3)

which have the same distribution equal to the distribution of µA (v.s. (4.3)).
Now, on the basis of Theorem 4.7, the support of µA is (e.g., see Fig. 5)

σ(Jn−2) = {−1, n − 1} .
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K3 K4 K6

Figure 5: Eigenvalues (5.2) vs. Jn−2.

In this fashion, (5.2) and (5.3) yield

µA(x) =
n − 1

n
1−1(x) +

1

n
1n−1(x) .

The above account clarifies that the eigenvalues of A are −1 and n − 1 with multiplicities
n − 1 and 1, respectively (v.s. Corollary 4.8).
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Mexicana” and postdoctoral fellowship 136135 “Estructura de los estados estacionarios de
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