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2Grupo de Superconductividad y Nanotecnoloǵıa, Depto. de
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Abstract

A density matrix describes the statistical state of a quantum system.
It is a powerful formalism to represent both the quantum and classi-
cal uncertainty of quantum systems and to express different statistical
operations such as measurement, system combination and expecta-
tions as linear algebra operations. This paper explores how density
matrices can be used as a building block for machine learning mod-
els exploiting their ability to straightforwardly combine linear algebra
and probability. One of the main results of the paper is to show that
density matrices coupled with random Fourier features could approxi-
mate arbitrary probability distributions over Rn. Based on this finding
the paper builds different models for density estimation, classification
and regression. These models are differentiable, so it is possible to
integrate them with other differentiable components, such as deep learn-
ing architectures and to learn their parameters using gradient-based
optimization. In addition, the paper presents optimization-less training
strategies based on estimation and model averaging. The models are
evaluated in benchmark tasks and the results are reported and discussed.
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1 Introduction

The formalism of density operators and density matrices was developed by von
Neumann as a foundation of quantum statistical mechanics (Von Neumann,
1927). From the point of view of machine learning, density matrices have an
interesting feature: the fact that they combine linear algebra and probability,
two of the pillars of machine learning, in a very particular but powerful way.

The main question addressed by this work is how density matrices can
be used in machine learning models. One of the main approaches to machine
learning is to address the problem of learning as one of estimating a probabil-
ity distribution from data: joint probabilities P (x, y) in generative supervised
models or conditional probabilities P (y|x) in discriminative models.

The central idea of this work is to use density matrices to represent these
probability distributions tackling the important question of how to encode
arbitrary probability density functions in Rn into density matrices.

The quantum probabilistic formalism of von Neumann is based on linear
algebra, in contrast with classical probability which is based on set theory. In
the quantum formalism the sample space corresponds to a Hilbert space H
and the event space to a set of linear operators in H, the density operators
(Wilce, 2021).

The quantum formalism generalizes classical probability. A density matrix
in an n-dimensional Hilbert space can be seen as a catalog of categorical dis-
tributions on the finite set {1 . . . n}. A direct application of this fact is not
very useful as we want to efficiently model continuous probability distributions
in Rn. One of the main results of this paper is to show that it is possible to
model arbitrary probability distributions in Rn using density matrices of finite
dimension in conjunction with random Fourier features (Rahimi and Recht,
2007). In particular the paper presents a method for non-parametric density
estimation that combines density matrices and random Fourier features to effi-
ciently learn a probability density function from data and to efficiently predict
the density of new samples.

The fact that the probability density function is represented in matrix form
and that the density of a sample is calculated by linear algebra operations
makes it easy to implement the model in GPU-accelerated machine learning
frameworks. This also facilitates using density matrices as a building block
for classification and regression models, which can be trained using gradient-
based optimization and can be easily integrated with conventional deep neural
networks. The paper presents examples of these models and shows how they
can be trained using gradient-based optimization as well as optimization-less
learning based on estimation.

The paper is organized as follows: Section 2 covers the background on kernel
density estimation, random features, and density matrices; Section 5 presents
four different methods for density estimation, classification and regression;
Section 6 discusses some relevant works; Section 7 presents the experimental
evaluation; finally, Section 8 discusses the conclusions of the work.
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2 Background and preliminaries

2.1 Kernel density estimation

Kernel Density Estimation (KDE) (Rosenblatt, 1956; Parzen, 1962), also
known as Parzen-Rossenblat window method, is a non-parametric density
estimation method. This method does not make any particular assumption
about the underlying probability density function. Given an iid set of samples
X = {x1, . . . , xN}, the smooth Parzen’s window estimate has the form

f̂λ(x) =
1

NMλ

N∑
i=1

kλ(x, xi), (1)

where kλ(·) is a kernel function, λ is the smoothing bandwidth parameter
of the estimate andMλ is a normalizing constant. A small λ-parameter implies
a small grade of smoothing.

Rosenblatt (1956) and Parzen (1962) showed that eq. (1) is an unbiased
estimator of the pdf f . If kγ is the Gaussian kernel, eq. (1) takes the form

f̂γ(x) =
1

NMγ

N∑
i=1

e−γ∥xi−x∥2

, (2)

where Mγ = (π/γ)
d
2 .

KDE has several applications: to estimate the underlying probability den-
sity function, to estimate confidence intervals and confidence bands (Efron,
1992; Chernozhukov et al, 2014), to find local modes for geometric feature
estimation (Chazal et al, 2017; Chen et al, 2016), to estimate ridge of the den-
sity function (Genovese et al, 2014), to build cluster trees (Balakrishnan et al,
2013), to estimate the cumulative distribution function (Nadaraya, 1964), to
estimate receiver operating characteristic (ROC) curves (McNeil and Hanley,
1984), among others.

One of the main drawbacks of KDE is that it is a memory-based method,
i.e. it requires the whole training set to do a prediction, which is linear on the
training set size. This drawback is typically alleviated by methods that use
data structures that support efficient nearest-neighbor queries. This approach
still requires to store the whole training dataset.

2.2 Random features

Random Fourier features (RFF) (Rahimi and Recht, 2007) is a method that
builds an embedding ϕrff : Rd → RD given a shift-invariant kernel k : Rd ×
Rd → R such that ∀x, y ∈ Rd, k(x, y) ≈ ⟨ϕrff(x), ϕrff(y)⟩ = ϕTrff(x)ϕrff(y). One
of the main applications of RFF is to speedup kernel methods, being data
independence one of its advantages.

The RFF method is based on the Bochner’s theorem. In layman’s terms,
Bochner’s theorem shows that a shift invariant positive-definite kernel k(·)
is the Fourier transform of a probability measure p(w). Rahimi and Recht
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(2007) use this result to approximate the kernel function by designing a sample
procedure that estimates the integral of the Fourier transform. The first step
is to draw D iid samples {w1, . . . wD} from p and D iid samples {b1, . . . bD}
from a uniform distribution in [0, 2π]. Then, define:

ϕrff : Rd → RD

x 7→
√

2

D
(cos

(
wT

1 x+ b1), . . . , cos
(
wT

Dx+ bD
))
.

(3)

Rahimi and Recht (2007) showed that the expected value of ϕTrff(x)ϕrff(y)
uniformly converges to k(x, y):

Theorem 1 (Rahimi and Recht, 2007) Let M be a compact subset of Rd with a
diameter diam(M). Then for the mapping ϕrff defined above, we have

Pr

[
sup

x,y∈M
|ϕT

rff(x)ϕrff(y)− k(x, y)| ≥ ϵ

]
≤

28
(
σpdiam(M)

ϵ

)2

exp

(
− Dϵ2

4(d+ 2)

)
, (4)

where, σ2
p is the second momentum of the Fourier transform of k. In particular,

for the Gaussian kernel σ2
p = 2dγ, where γ is the spread parameter (see Eq. 2).

Different approaches to compute random features for kernel approximation
have been proposed based on different strategies: Monte Carlo sampling (Le
et al, 2013; Yu et al, 2016), quasi-Monte-Carlo sampling (Avron et al, 2016;
Shen et al, 2017), and quadrature rules (Dao et al, 2017).

RFF may be used to formulate a non-memory based version of KDE. For
the Gaussian kernel we have:

f̂γ(x) =
1

NMγ

N∑
i=1

kγ(xi, x)

≈ 1

NMγ

N∑
i=1

⟨ϕrff(xi), ϕrff(x)⟩

=
1

Mγ

〈
1

N

N∑
i=1

ϕrff(xi), ϕrff(x)

〉
=

1

Mγ
⟨Φtrain, ϕrff(x)⟩

=
1

Mγ
ΦT

trainϕrff(x) (5)
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Φtrain in eq. (5) can be efficiently calculated during training time, since
is just an average of the RFF embeddings of the training samples. The time
complexity of prediction, eq. (5), is constant on the size of the training dataset.
The price of this efficiency improvement is a loss in precision, since we are
using an approximation of the Gaussian kernel.

3 Density estimation with density matrices

The Gaussian kernel satisfy ∀x, y ∈ Rd, kγ(x, y) > 0, however the RFF esti-
mation may be negative. To alleviate this we could estimate the square of the
kernel and use the fact that kγ(x, y) = k2γ/2(x, y). In this case we have:

f̂γ(x) =
1

NMγ

N∑
i=1

kγ(xi, x)

=
1

NMγ

N∑
i=1

k2γ/2(xi, x)

≈ 1

NMγ

N∑
i=1

⟨ϕrff(xi), ϕrff(x)⟩2

=
1

NMγ

N∑
i=1

⟨ϕrff(x), ϕrff(xi)⟩⟨ϕrff(xi), ϕrff(x)⟩

=
1

NMγ

N∑
i=1

ϕTrff(x)ϕrff(xi)ϕ
T
rff(xi)ϕrff(x)

=
1

Mγ
ϕTrff(x)

(
1

N

N∑
i=1

ϕrff(xi)ϕ
T
rff(xi)

)
ϕrff(x)

=
1

Mγ
ϕTrff(x)ρtrainϕrff(x) =: f̂ρtrain

(x) (6)

In eq. (6) it is important to take into account that the parameters of the
RFF embedding, ϕrff , are sampled using a parameter γ/2 for the Gaussian
kernel.

The following proposition shows that f̂ρtrain , as defined in eq. (6), uniformly

converges to the Gaussian kernel Parzen’s estimator f̂γ (eq. (2)).

Proposition 2 Let M be a compact subset of Rd with a diameter diam(M), let
X = {xi}i=1...N ⊂ M a set of iid samples, then f̂ρtrain (eq. (6)) and f̂γ satisfy:

Pr

[
sup
x∈M

|f̂ρtrain(x)− f̂γ(x)| ≥ ϵ

]
≤
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28
(√

2dγdiam(M)

3Mγϵ

)2

exp

(
−D(3Mγϵ)

2

4(d+ 2)

)
(7)

Proof (see Apendix A) □

The Parzen’s estimator is an unbiased estimator of the true density function
from which the samples were generated and Proposition 2 shows that f̂ρtrain

(x)
can approximate this estimator.

A further improvement to the f̂ρtrain
(x) estimator is to normalize the RFF

embedding as follows:

∣∣ϕ̄rff(x)〉 = ϕrff(x)

∥ϕrff(x)∥
(8)

Here we use the Dirac notation to emphasize the fact that ϕ̄rff is a
quantum feature map. This has the effect that the estimation kγ(x, x) =〈
ϕ̄rff(x)

∣∣ϕ̄rff(x)〉 = 1 will be exact and ∀x, y ∈ Rd,
〈
ϕ̄rff(x)

∣∣ϕ̄rff(y)〉 ≤ 1.
During the training phase ρtrain is estimated as the average of the cross

product of the normalized RFF embeddings of the training samples:

ρtrain =
1

N

N∑
i=1

∣∣ϕ̄rff(xi)〉 〈ϕ̄rff(xi)∣∣ (9)

The time complexity of calculating ρtrain is O(D2N), i.e. linear on the size
of the training dataset. One advantage over conventional KDE is that we do not
need to store the whole training dataset, but a more compact representation.

During the prediction phase the density of a new sample is calculated as:

f̂ρtrain(x) =
1

Mγ

〈
ϕ̄rff(x)

∣∣ ρtrain ∣∣ϕ̄rff(x)〉 (10)

The f̂ρtrain
estimator has an important advantage over the Parzen’s estima-

tor, its computational complexity. The time to calculate the Parzen’s estimator
(eq. (2)) is O(dN) while the time to estimate the density based on the density
matrix ρtrain (eq. (10)) is O(D2), which is constant on the size of the training
dataset.

The ρtrain matrix in eq. (9) is a well known mathematical object in quantum
mechanics, a density matrix, and eq. (10) is an instance of the Born rule which
calculates the probability that a measurement of a quantum system produces a
particular result. This connection and the basic ideas behind density matrices
are discussed in the next section.
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4 Density matrices

This section introduces some basic mathematical concepts that are part of the
mathematical framework that supports quantum mechanics and discusses their
connection with the ideas introduced in the previous subsection. The contents
of this section are not necessary for understanding the rest of the paper and
are included to better explain the connection of the ideas presented in this
paper with the quantum mechanics mathematical framework.

The state of a quantum system is represented by a vector ψ ∈ H, where H
is the Hilbert space of the possible states of the system. Usually1 H = Cd.

As an example, consider a system that could be in two possible states, e.g.
the spin of an electron that could be up (↑) or down (↓) with respect to some
axis z. The state of this system is, in general, represented by a regular column
vector |ψ⟩ = (α, β), with |α|2 + |β|2 = 1. This state represents a system that
is in a superposition of the two basis states |ψ⟩ = α ↑ +β ↓. The outcome of a
measurement of this system, along the z axis, is determined by the Born rule:
the spin is up with probability |α|2 and down with probability |β|2. Notice that
α and β could be negative or complex numbers, but the Born rule guarantees
that we get valid probabilities.

The normalized RFF mapping (eq. (8)) can be seen as a function that
maps a sample to the state of a quantum system. In quantum machine learning
literature, there are different approaches to encode data in quantum states
(Schuld, 2018). The use of RFF as a data quantum encoding strategy was first
proposed by (González et al, 2020; González et al, 2021).

The probabilities that arise from the superposition of states in the pre-
vious example is a manifestation of the uncertainty that is inherent to the
nature of quantum physical systems. We call this kind of uncertainty quantum
uncertainty. Other kind of uncertainty comes, for instance, from errors in the
measurement or state-preparation processes, we call this uncertainty classical
uncertainty. A density matrix is a formalism that allows us to represent both
types of uncertainty. To illustrate it, let’s go back to our previous example.
The density matrix representing the state ψ is:

ρ = |ψ⟩ ⟨ψ| =
[
|α|2 αβ∗

βα∗ |β|2
]
, (11)

As a concrete example, consider ⟨ψ1| =
(

1√
2
,− 1√

2

)
the corresponding density

matrix is:

ρ1 = |ψ1⟩ ⟨ψ1| =
[

1
2 − 1

2
− 1

2
1
2

]
, (12)

which represents a superposition state where we have a 1
2 probability of mea-

suring any of the two states. Notice that the probabilities for each state are
in the diagonal of the density matrix. ρ1 is a rank-1 density matrix, and this

1In this paper we use H = Rd, but most of the methods and results can be extended to the
complex case.
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means that it represents a pure state. A mixed state, i.e. a state with classical
uncertainty, is represented by a density matrix with the form:

ρ =

N∑
i=1

pi |ψi⟩ ⟨ψi| , (13)

where pi > 0 ∈ R,
∑N

i=1 pi = 1, and {ψi}i=1...N are the states of a an ensemble
of N quantum systems, where each system has an associated probability pi.
The matrix ρtrain in eq. (9) is in fact a density matrix that represents the
state of an ensemble of quantum systems where each system corresponds to
a training data sample. The probability is the same for all the N elements of
the ensemble, 1

N .
As a concrete example of a mixed state consider two pure states ψ2 = (1, 0)

and ψ′
2 = (0, 1), and consider a system that is prepared in state ψ2 with

probability 1
2 and in state ψ′

2 with probability 1
2 as well. The state of this

system is represented by the following density matrix:

ρ2 =
1

2
|ψ2⟩ ⟨ψ2|+

1

2
|ψ′

2⟩ ⟨ψ′
2| =

[
1
2 0
0 1

2

]
, (14)

At first sight, states ρ1 and ρ2 may be seen as representing the same quan-
tum system, one where the probability of measuring an up state (or down
state) in the z axis is 1

2 . However they are different systems, ρ1 represents a
system with only quantum uncertainty, while ρ2 corresponds a system with
classical uncertainty. To better observe the differences of the two systems we
have to perform a measurement along a particular axis. To do so, we use the
following version of the Born rule for density matrices:

P (φ|ρ) = Tr(ρ |φ⟩ ⟨φ|) = ⟨φ| ρ |φ⟩ (15)

which calculates the probability of measuring the state φ in a system in state

ρ. If we set φ =
(

1√
2
,− 1√

2

)
we get P (φ|ρ1) = 1 and P (φ|ρ2) = 1

2 , showing

that in fact both systems are different.

5 Methods

5.1 Density matrix kernel density estimation (DMKDE)

In this subsection we present a model for non-parametric density estimation
based on the ideas discussed in subsection 3. The model receives an input
x ∈ Rd, represents it using a RFF quantum feature map (eq. (3)) and estimates
the density of it using eq. (10). The model can be trained by averaging the
density matrices corresponding to the training samples or by using stochastic
gradient descent. The second approach requires a re-parametrization of the
model that we discuss next.
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The main parameter of the model is ρtrain, which is a Hermitian matrix.
To ensure this property, we can represent it using a factorization as follows:

ρtrain = V TΛV, (16)

where V ∈ Rr×D, Λ ∈ Rr×r is a diagonal matrix and r < D is the reduced rank
of the factorization. With this new representation, eq. (10) can be re-expressed
as:

f̂ρtrain
(x) =

1

Mγ
∥Λ 1

2V ϕ̄rff(x)∥2. (17)

This reduces the time to calculate the density of a new sample to O(Dr).

x

RFF

Normalization

Quantum
Measurement

f̂ρ(x)

ϕrff(x)

ϕ̄rff(x)

Fig. 1 Density matrix kernel density estimation (DMKDE).

The model is depicted in Fig. 1 and its function is governed by the following
equations:

z := ϕrff(x) = cos(Wrffx+ brff), (18a)

z′ :=
z

∥z∥
, (18b)

ỹ :=
1

Mγ
∥Λ 1

2V z′∥2 (18c)

The hyperparameters of the model are the dimension of the RFF represen-
tation D, the spread parameter γ of the Gaussian kernel and the rank r of the
density matrix factorization. The parameters are the weights and biases of the
RFF, Wrff ∈ RD×d and brff ∈ Rd (corresponding to the wi and bi parameters
in Eq. 3), and the components of the factorization, V ∈ Rr×D and λ ∈ Rr, the
vector with the elements in the diagonal of Λ.

The training process of the model is as follows:
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1. Input. A sample set X = {xi}i=1...N with xi ∈ Rd, parameters γ ∈ R+,
D ∈ N

2. Calculate Wrff = [w1 . . . wD] and brff = [b1 . . . bD] using the random Fourier
features method described in Section 2.2 for approximating a Gaussian
kernel with parameters γ/2 and D.

3. Apply ϕ̄rff (eq. (8)):
zi = ϕ̄rff(xi). (19)

4. Estimate ρtrain:

ρtrain =
1

N

N∑
i=1

ziz
T
i , (20)

5. Make a spectral decomposition of rank r of ρtrain:

ρtrain = V TΛV.

Notice that this training procedure does not require any kind of iterative
optimization. The training samples are only used once and the time complexity
of the algorithm is linear on the number of training samples. The complexity
of step 4 is O(D2N) and of step 5 is O(D3).

Since the operations defined in eq. (18) are differentiable, it is possible to
use gradient-descent to minimize an appropriate loss function. For instance,
we can minimize the negative log-likelihood:

L = −
K∑
i=1

log(ỹ) (21)

In contrast with the learning procedure based on density matrix estimation,
using SGD does not guarantee that we will approximate the real density func-
tion. If we train all the parameters, maximizing the likelihood becomes an
ill-posed problem because of singularities (a Gaussian with arbitrary small
variance centered in one training point) (Bishop, 2006). Keeping fixed the RFF
parameters and optimizing the parameters of the density matrix, V and λ has
shown a good experimental performance. The version of the model trained
with gradient descent is called DMKDE-SGD.

Something interesting to notice is that the process described by eqs. (19)
and (20) generalizes density estimation for variables with a categorical dis-
tribution, i.e. x ∈ {1, . . . ,K}. To see this, we replace ϕ̄rff in eq. (19) by the
well-known one-hot-encoding feature map:

ϕohe : D → RK

i 7→ Ei,
(22)
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where Ei is the unit vector with a 1 in position i and 0 in the other positions.
It is not difficult to see that in this case

ρii = Pr(x = i) =
|{xj |j ∈ {1, . . . , N}, xj = i}|

N
. (23)

5.2 Density matrix kernel density classification
(DMKDC)

The extension of kernel density estimation to classification is called kernel den-
sity classification (Hastie et al, 2009). The posterior probability is calculated
as

P̂r(Y = j|X = x) =
πj f̂j(x)∑K

k=1 πkf̂k(x)
, (24)

where πj and f̂j are respectively the class prior and the density estimator of
class j.

Quantum
Measurement

ỹ1 = f̂1(x)

. . .

. . .

Quantum
Measurement

ỹk = f̂k(x)

Normalization

ϕ̄rff(x)

RFF

x

Class normalization

ỹ′1 ỹ′k

ϕrff(x)

Fig. 2 Density matrix kernel density classification (DMKDC).

We follow this approach to define a classification model that uses the den-
sity estimation strategy based on RFF and density matrices described in the
previous section. The input to the model is a vector x ∈ Rd. The model is
depicted in Fig. 2 and defined by the following equations:

z := ϕrff(x) = cos(Wrffx+ brff), (25a)
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z′ :=
z

∥z∥
, (25b)

ỹi := ∥Λ
1
2
i Viz

′∥2 ∀i = 1 . . .K, (25c)

ỹ′i :=
πiỹi∑K
j=i ỹj

∀i = 1 . . .K, (25d)

The hyperparameters of the model are the dimension of the RFF represen-
tationD, the spread parameter γ of the Gaussian kernel, the class priors πi and
the rank r of the density matrix factorization. The parameters are the weights
and biases of the RFF, Wrff ∈ RD×d and brff ∈ Rd, and the components of the
factorization, Vi ∈ Rr×D and λi ∈ R for i = 1 . . .K.

The model can be trained using two different strategies: one, using DMKDE
to estimate the density matrices of each class; two, use stochastic gradient
descent over the parameters to minimize an appropriate loss function.

The training process based on density matrix estimation is as follows:

1. Use the RFF method to calculate Wrff and brff .
2. For each class i:
(a) Estimate πi as the relative frequency of the class i in the dataset.
(b) Estimate ρi using eq. (20) and the training samples from class i.
(c) Find a factorization of rank r of ρi:

ρi = V T
i ΛVi.

Notice that this training procedure does not require any kind of iterative
optimization. The training samples are only used once and the time complexity
of the algorithm is linear on the number of training samples. The complexity
of step 2(b) is O(D2N) and of 2(c) is O(D3).

Since the operations defined in eqs. (25a) to (25d) are differentiable, it is
possible to use gradient-descent to minimize an appropriate loss function. For
instance, we can use categorical cross entropy:

L =

K∑
i=1

yi log(ỹ
′
i) (26)

where y = (y1, . . . , yK) corresponds to the one-hot-encoding of the real label
of the sample x. The version of the model trained with gradient descent is
called DMKDC-SGD.

An advantage of this approach is that the model can be jointly trained with
other differentiable architecture such as a deep learning feature extractor.

5.3 Quantum measurement classification (QMC)

In DMKDC we assume a categorical distribution for the output variable. If
we want a more general probability distribution we need to define a more
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general classification model. The idea is to model the joint probability of inputs
and outputs using a density matrix. This density matrix represents the state
of a bipartite system whose representation space is HX ⊗ HY where HX is
the representation space of the inputs, HY is the representation space of the
outputs and ⊗ is the tensor product. A prediction is made by performing a
measurement with an operator specifically prepared from a new input sample.

x

Quantum
Feature Map

Measurement
Operator

Quantum
Measurement

Partial Trace

ρY

ϕX (x)

π(x)

ρ

Fig. 3 Quantum measurement classification (QMC).

This model is based on the one described by González et al (2020) and is
depicted in Figure 3 and works as follows:

• Input encoding. The input x ∈ Rd is encoded using a feature map ϕX

z := ϕX (x). (27)

• Measurement operator. The effect of this measurement operator is to col-
lapse, using a projector to z, the part HX of the bipartite system while
keeping the HY part unmodified. This is done by defining the following
operator:

π := zzT ⊗ IdHY , (28)

where IdHY is the identity operator in HY .
• Apply the measurement operator to the training density matrix:

ρ :=
πρtrainπ

Tr[πρtrainπ]
, (29)
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• Calculate the partial trace of ρ with respect to X to obtain a density matrix
that encodes the prediction:

ρY := TrX [ρ]. (30)

The parameter of the model, without taking into account the parameters of
the feature maps, is the ρtrain ∈ RDXDY×DXDY density matrix, where DX and
DY are the dimensions of HX and HY respectively. As discussed in Section 5.1,
the density matrix ρtrain can be factorized as:

ρtrain = V TΛV (31)

where V ∈ Rr×DXDY , Λ ∈ Rr×r is a diagonal matrix and r < DXDY is the
reduced rank of the factorization. This factorization not only helps to reduce
the space necessary to store the parameters, but learning V and Λ, instead of
ρtrain, helps to guarantee that ρtrain is a valid density matrix.

As in Subsection 5.2, we described two different approaches to train the
system: one based on estimation of the ρtrain and one based on learning ρtrain
using gradient descent. QMC can be also trained using these two strategies.

In the estimation strategy, given a training data set {(xi, yi)}i=1...N the
training density matrix is calculated by:

ρtrain =
1

N

N∑
i=1

(ϕX (xi)⊗ ϕY(yi)) (ϕX (xi)⊗ ϕY(yi))
T
. (32)

The computational cost is O(ND2
XD

2
Y).

For the gradient-descent-based strategy (QMC-SGD) we can minimize the
following loss function:

L =

DY∑
i=1

yi log(ρYii), (33)

where ρYii is the i-th diagonal element of ρY .
As in DMKDC-SGD, this model can be combined with a deep learning

architecture and the parameters can be jointly learned using gradient descent.
QMC can be used with different feature maps for inputs and outputs. For

instance, if ϕX = ϕrff (eq. (3)) and ϕY = ϕohe (eq. (22)), QMC corresponds to
DMKDC. However, in this case DMKDC is preferred because of its reduced
computational cost.

5.4 Quantum measurement regression (QMR)

In this section we show how to use QMC to perform regression. For this we
will use a feature map that allows us to encode continuous values. The feature
map is defined with the help of D equally distributed landmarks in the [0, 1]
interval2:

2Without loss of generality the continuous variable to be encoded is restricted to the [0, 1]
interval.
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αi =
i− 1

D − 1
for i = 1 . . . D. (34)

The following function (which is equivalent to a softmax) defines a set of
unimodal probability density functions centered at each landmark:

pi(x) =

(
exp
(
−β∥x− αi∥2

)∑m
j=1 exp(−β∥x− αj∥2)

)
i=1...D

, (35)

where β controls the shape of the density functions.
The feature map is defined as:

ϕsm : [0, 1] → RD

x 7→ (
√
p1(x), . . . ,

√
pD(x)).

(36)

This feature map is used in QMC as the feature map of the output variable
(ϕY). To calculate the prediction for a new sample x we apply the process
described in Subsection 5.3 to obtain ρY . Then the prediction is given by:

ŷ = EρY [αi] =

D∑
i=1

ρYiiαi. (37)

Note that this framework also allows to easily compute confidence intervals
for the prediction. The model can be trained using the strategies discussed in
Subsection 5.3. For gradient-based optimization we use a mean squared error
loss function:

L =

D∑
i=1

(y − ŷ)2 + α

D∑
i=1

ρYii(ŷ − αi)
2 (38)

where the second term correspond to the variance of the prediction and α
controls the trade-off between error and variance.

6 Related Work

The ability of density matrices to represent probability distributions has been
used in previous works. The early work by Wolf (2006) uses the density matrix
formalism to perform spectral clustering, and shows that this formalism not
only is able to predict cluster labels for the objects being classified, but also
provides the probability that the object belongs to each of the clusters. Simi-
larly, Tiwari and Melucci (2019) proposed a quantum-inspired binary classifier
using density matrices, where samples are encoded into pure quantum states.
In a similar fashion, Sergioli et al (2018) proposed a quantum nearest mean
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classifier based on the trace distance between the quantum state of a sample,
and a quantum centroid that is a mixed state of the pure quantum states of all
samples belonging to a single class. Another class of proposals directly com-
bine these quantum ideas with customary machine learning techniques, such
as frameworks for multi-modal learning for sentiment analysis (Li et al, 2021;
Li et al, 2020; Zhang et al, 2018).

Since its inception, random features have been used to improve the perfor-
mance of several kernel methods: kernel ridge regression (Avron et al, 2017),
support vector machines (SVM) (Sun et al, 2018), and nonlinear component
analysis (Xie et al, 2015). Besides, random features have been used in conjunc-
tion with deep learning architectures in different works (Arora et al, 2019; Ji
and Telgarsky, 2019; Li et al, 2019).

The combination of RFF and density matrices was initially proposed
by González et al (2020). In that work, RFF are used as a quantum feature
map, among others, and the QMC method (Subsection 5.3) was presented.
In González et al (2020) the coherent state kernel showed better performance
than the Gaussian kernel. It is important to notice that the coherent state ker-
nel was calculated exactly while the Gaussian kernel was approximated using
RFF. It is possible to apply RFF to approximate the coherent state kernel and
use it as the quantum feature map in the models presented in this paper. The
emphasis of González et al (2020) is to show that quantum measurement can
be used to do supervised learning. In contrast, the present paper addresses
a wider problem with several new contributions: a new method for density
estimation based on density matrices and RFF, the proof of the connection
between this method and kernel density estimation, and new differentiable
models for density estimation, classification and regression.

The present work can be seen as a type of quantum machine learning
(QML), which is generally referred as the field in the intersection of quantum
computing and machine learning (Schuld et al, 2015; Schuld, 2018). In partic-
ular, the methods in this paper are in the subcategory of QML called quantum
inspired classical machine learning, where theory and methods from quantum
physics are borrowed and adapted to machine learning methods intended to
run in classical computers. Works in this category include: quantum-inspired
recommendation systems (Tang, 2019a), quantum-inspired kernel-based clas-
sification methods (Tiwari et al, 2020; González et al, 2020), conversational
sentiment analysis based on density matrix-like convolutional neural net-
works (Zhang et al, 2019), dequantised principal component analysis (Tang,
2019b), among others.

Being a memory-based strategy, KDE suffers from large-scale, high dimen-
sional data. Due to this issue, fast approximate evaluation of non-parametric
density estimation is an active research topic. Different approaches are pro-
posed in the literature: higher-order divide-and-conquer method (Gray and
Moore, 2003), separation of near and far-field (pruning) (March et al, 2015),
and hashing based estimators (HBE) (Charikar and Siminelakis, 2017). Even
though the purpose of the present work was not to design methods for fast
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approximation of KDE, the use of RFF to speed KDE seems to be a promis-
ing research direction. Comparing DMKDE against fast KDE approximation
methods is part of our future work.

7 Experimental Evaluation

In this section we perform some experiments to evaluate the performance of the
proposed methods in different benchmark tasks. The experiments are organized
in three subsections: density estimation evaluation, classification evaluation
and ordinal regression evaluation. The source code of the methods and the
scripts of the experiments are available at https://drive.google.com/drive/
folders/16pHMLjIvr6v1zY6cMvo11EqMAMqjn3Xa as Jupyter notebooks.

7.1 Density estimation evaluation

The goal of these experiments is to evaluate the efficacy and efficiency of
DMKDE to approximate a pdf. We compare it against conventional Gaussian
KDE.

7.1.1 Data sets and experimental setup

We used three datasets:

• 1-D synthetic. The first synthetic dataset corresponds to a mixture of uni-
variate Gaussians as shown in Figure 4. The mixture weights are 0.3 and 0.7
respectively and the parameters are (µ1 = 0, σ = 1) and (µ1 = 5, σ = 1). We
generated 10,000 samples for training and use as test dataset 1,000 samples
equally spaced in the interval [−5, 10].

• 2-D synthetic. This dataset corresponds to three spirals as depicted in Figure
6.The training and test datasets have 10,0000 and 1,000 points respectively,
all of them generated with the same stochastic procedure.

• MNIST dataset. We used PCA to reduce the original 784 dimension to 40.
The resulting vectors were scaled to [0, 1]. We used stratified sampling to
choose 10,000 and 1,000 samples for training and testing respectively.

We performed two types of experiments over the three datasets. In the first,
we wanted to evaluate the accuracy of DMKDE. In the second, we evaluated
the time to predict the density on the test set.

In the first experiment, DMKDE was run with different number of RFF to
see how the dimension of the RFF representation affected the accuracy of the
estimation. For the 1-D dataset, both the DMKDE prediction and the KDE
prediction were compared against the true pdf using root mean squared error
(RMSE). For the 2-D dataset the RMSE between the DMKDE prediction and
the KDE prediction was evaluated. In the case of MNIST, and because of the
small values for the density, we calculated the RMSE between the log density
predicted by DMKDE and KDE. The number of eigencomponents (r) was
chosen by sorting the eigenvalues in descending order and plotting them to look

https://drive.google.com/drive/folders/16pHMLjIvr6v1zY6cMvo11EqMAMqjn3Xa
https://drive.google.com/drive/folders/16pHMLjIvr6v1zY6cMvo11EqMAMqjn3Xa
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Fig. 4 1-D synthetic dataset. The gray zone is the area of the true density. The estimated
pdf by DMKDE (γ = 2) and KDE (γ = 4) is shown.

for the curve elbow. For the 1-D and 2-D datasets, the γ value was chosen to
get a good approximation of the data density, this was visually verified. For the
MNIST dataset, the γ value was chosen by looking at a histogram of pairwise
distances of the data. The value of the parameters were: (γ = 16, r = 30) for
the 1-D dataset, (γ = 256, r = 100) for the 2-D dataset, (γ = 1, r = 150) for
the MNIST dataset.

For the second experiment, we measured the time taken to predict 1,000
test samples for both KDE and DMKDE using different number of train
samples. KDE was implemented in Python using liner algebra operations accel-
erated by numpy. At least for the experiments reported, our implementation
was faster than other KDE implementations available such as the one pro-
vided by scikit learn (https://scikit-learn.org/stable/modules/density.html),
which is probably optimized for other use cases. DMKDE was implemented in
Python using Tensorflow. The main reason for using Tensorflow was its ability
to automatically calculate the gradient of computational graphs. KDE could
not benefit from this feature, on the contrary, its performance could be hurt
by Tensorflow’s larger memory footprint. Another advantage of Tensorflow is
its ability to generate code optimized for a GPU, so both methods were run
on a 2.20 GHz dual-core Intel(R) Xeon(R) CPU without a GPU to avoid any
unfair advantage.

7.1.2 Results and discussion

Figure 5 shows how the accuracy of DMKDE increases with an increasing
number of RFF. For each configuration 30 experiments were run and the blue
solid line represents the mean RMSE of the experiments and the blue region
represents the 95% confidence interval. In all the three datasets, 210 RFF

https://scikit-learn.org/stable/modules/density.html
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achieved a low RMSE. The variance also decreases when the number of RFF
is increased.
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Fig. 5 Accuracy of the density estimation of DMKDE for different number of RFF for the
1-D dataset (top left), 2-D dataset (top right) and MNIST dataset (bottom). For the 1-D
dataset both KDE and DMKDE are compared against the true density. For the two other
datasets the difference between KDE and DMKDE is calculated. In all the cases the RMSE
is calculated. The blue shaded zone represents the 95% confidence interval.

Figure 6 shows the 2-D spirals dataset (left) and the density estimation of
both KDE (center) and DMKDE (right). The density calculated by DMKDE
is very close to the one calculated with KDE.

Figure 7 shows a comparison of the log density predicted by KDE and
DMKDE. Both models were applied to test samples and samples generated
randomly from a uniform distribution. As expected points are clustered around
the diagonal. The DMKDE log density of test samples (left) seems to be more
accurately predicted than the one of random samples. The reason is that the
density of random samples is smaller than the density of test samples and the
difference is amplified by the logarithm.
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Fig. 6 2-D spirals dataset (top left) and the density estimation of both KDE (top right)
and DMKDE (bottom).

Figure 8 shows the time of both methods for different sizes of the train-
ing dataset. The prediction time of KDE depends on the size of the training
dataset, while the time of DMKDE does not depend on it. The advantage of
DMKDE in terms of computation time is clear for training datasets above 104

data samples.

7.2 Classification evaluation

In this set of experiments, we evaluated DMKDC over different well known
benchmark classification datasets.

7.2.1 Data sets and experimental setup

Six benchmark data sets were used. The details of these datasets are shown
in Table 1. In the case of Gisette and Cifar, we applied a principal compo-
nent analysis algorithm using 400 principal components in order to reduce the
dimension. DMKDC was trained using the estimation strategy (DMKDC) and
an ADAM stochastic gradient descent strategy (DMKDC-SGD). As baseline
we compared against a linear support vector machine (SVM) trained using the
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Fig. 7 Scatter-plots comparing the log density predicted by KDE and DMKDE: test sam-
ples (top left), uniformly random generated samples (top right), both test and random
samples (bottom).

Table 1 Data sets used for classification evaluation.

Data set Attributes Classes Train-Test

Letters 16 26 14000-6000
Usps 256 10 7291-2007
Forest 54 3 70-30
Mnist 784 10 60000-10000
Gisette 5000 2 4200-1800
Cifar 3072 10 60000-10000

same RFF as DMKDC. The SVM was trained using the LinearSVC model
from scikit-learn, which is based in an efficient C implementation tailored to
linear SVMs. In the case of MNIST and Cifar, we additionally built a union
of a LeNet architecture (LeCun et al, 1989), as a feature extraction block,
and DMKDC-SGD as the classifier layer. The LeNet block is composed of two
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Fig. 8 Evaluation of the prediction time of DMKDE and KDE: 1-D dataset (top left), 2-D
dataset (top right) and MNIST dataset (bottom). .

convolutional layers, one flatten layer and one dense layer. The first convolu-
tional layer has 20 filters, kernel size of 5, same as padding, and ReLu as the
activation function. The second convolutional layer has 50 filters, kernel size
of 5, same as padding, and ReLu as the activation function. The dense layer
has 84 units and ReLU as the activation function. The dense layer is finally
connected to DMKDC. We report results for the combined model (LeNet
DMKDC-SGD) and the LeNet model with a softmax output layer (LeNet). To
make the comparison with baseline models fair, in all the cases the RFF layer
of DMKDC-SGD is frozen, so its weights are not modified by the stochastic
gradient descent learning process.

For each data set, we made a hyper parameter search using a five-fold cross-
validation with 25 randomly generated configurations. The number of RFF was
set to 1000 for all the methods. For each dataset we calculated the inter-sample
median distance µ and defined an interval around γ = 1

2σ2 . The C parameter
of the SVM was explored in an exponential scale from 2−5 to 210. For the
ADAM optimizer in DMKDC-SGD with and without LeNet we choose the
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Table 2 Specifications of the data sets used for ordinal regression evaluation. Train and
Test indicate the number of samples, which is the same for all the twenty partitions.

Data set Attributes Train Test

Diabetes 2 30 13
Pyrimidines 27 50 24
Triazines 60 100 86
Wisconsin 32 130 64
Machine CPU 6 150 59
Auto MPG 7 200 192
Boston Housing 13 300 206
Stock Domain 9 600 350
Abalone 8 1000 3177

learning rate in the interval (0, 0.001]. The number of eigen-components of the
factorization was chosen from {0.1, 0.2, 0.5, 1} where each number represents a
percentage of the RFF. After finding the best hyper-parameter configuration
using cross validation, 10 different experiments were performed with different
random initialization. The mean and the standard deviation of the accuracy
is reported.

7.2.2 Results and discussion

Table 3 shows the results of the classification experiments. DMKDC is a
shallow method that uses RFF, so a SVM using the same RFF is fair and
strong baseline. In all the cases, except one, DMKDC-SGD outperforms the
SVM, which shows that it is a very competitive shallow classification method.
DMKDC trained using estimation shows less competitive results, but they are
still remarkable taking into account that this is an optimization-less training
strategy that only passes once over the training dataset. For MNIST and Cifar
the use of a deep learning feature extractor is mandatory to obtain competi-
tive results. The results show that DMKDC-SGD can be integrated with deep
neural network architectures to obtain competitive results.

The improvement on classification performance of DMKC-SGD comes at
the cost of increased training time. The training of DMKDC is very efficient
since it corresponds to do an average of the training density matrices. Linear
SVM training is also very efficient. In contrast, DMKDC-SGD requires an
iterative training process that has to be tuned to get it to converge to a good
local optimum, as is the case for current deep learning models.

7.3 Ordinal regression evaluation

Many multi-class classification problems can be seen as ordinal regression prob-
lems. That is, problems where labels not only indicate class membership, but
also an order. Ordinal regression problems are halfway between a classification
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problem and a regression problem, and given the discrete probability distri-
bution representation used in QMR, ordinal regression seems to be a suitable
problem to test it.

7.3.1 Data sets and experimental setup

Nine standard benchmark data sets for ordinal regression were used. The
details of each data set are reported in Table 2. These data sets are orig-
inally used in metric regression tasks. To convert the task into an ordinal
regression one, the target values were discretized by taking five intervals
of equal length over the target range. For each set, 20 different train and
test partitions are made. These partitions are the same used by Chu and
Ghahramani (2005) and several posterior works, and are publicly available
at http://www.gatsby.ucl.ac.uk/∼chuwei/ordinalregression.html. The models
were evaluated using the mean absolute error (MAE), which is a popular and
widely used measure in ordinal regression (Gutiérrez et al, 2016; Garg and
Manwani, 2020).

QMR was trained using the estimation strategy (QMR) and an ADAM
stochastic gradient descent strategy (QMR-SGD). For each data set, and for
each one of the 20 partitions, we made a hyper parameter search using a five-
fold cross-validation procedure. The search was done generating 25 different
random configuration. The range for γ was computed in the same way as
for the classification experiments, β ∈ (0, 25), the number of RFF randomly
chosen between the number of attributes and 1024, and the number of eigen-
components of the factorization was chosen from {0.1, 0.2, 0.5, 1} where each
number represents a percentage of the RFF. For the ADAM optimizer in QMR-
SGD we choose the learning rate in the interval (0, 0.001] and α ∈ (0, 1). The
RFF layer was always set to trainable, and the criteria for selecting the best
parameter configuration was the MAE performance.

7.3.2 Results and discussion

For each data set, the means and standard deviations of the test MAE for
the 20 partitions are reported in Table 4, together with the results of previous
state-of-the-art works on ordinal regression: Gaussian Processes (GP) and sup-
port vector machines (SVM) (Chu and Ghahramani, 2005), Neural Network
Rank (NNRank) (Cheng et al, 2008), Ordinal Extreme Learning Machines
(ORELM) (Deng et al, 2010) and Ordinal Regression Neural Network (ORNN)
(Fernandez-Navarro et al, 2014).

QMR-SGD shows a very competitive performance. It outperforms the base-
line methods in six out of the nine data sets. The training strategy based
on estimation, QMR, did not performed as well. This evidences that for this
problem a fine tuning of the representation is required and it is successfully
accomplished by the gradient descent optimization.

http://www.gatsby.ucl.ac.uk/~chuwei/ordinalregression.html
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8 Conclusions

The mathematical framework underlying quantum mechanics is a powerful for-
malism that harmoniously combine linear algebra and probability in the form
of density matrices. This paper has shown how to use these density matrices as
a building block for designing different machine learning models. The main con-
tribution of this work is to show a novel perspective to learning that combines
two very different and seemingly unrelated tools, random features and density
matrices. The, somehow surprising, connection of this combination with kernel
density estimation provides a new way of representing and learning probability
density functions from data. The experimental results showed some evidence
that this building block can be used to build competitive models for some par-
ticular tasks. However, the full potential of this new perspective is still to be
explored. Examples of directions of future inquire include using complex val-
ued density matrices, exploring the role of entanglement and exploiting the
battery of practical and theoretical tools provided by quantum information
theory.
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Appendix A Proofs

Proposition 3 Let M be a compact subset of Rd with a diameter diam(M), let
X = {xi}i=1...N ⊂ M a set of iid samples, then f̂ρtrain (eq. (6)) and f̂γ satisfy:

Pr

[
sup
x∈M

|f̂ρtrain(x)− f̂γ(x)| ≥ ϵ

]
≤

28
(√

2dγdiam(M)

3Mγϵ

)2

exp

(
−D(3Mγϵ)

2

4(d+ 2)

)
(A1)

Proof

f̂ρtrain(x) =
1

Mγ
ϕT
rff(x)ρtrainϕrff(x)

=
1

Mγ
ϕT
rff(x)

(
1

N

N∑
i=1

ϕrff(xi)ϕ
T
rff(xi)

)
ϕrff(x)

=
1

MγN

N∑
i=1

ϕT
rff(x)ϕrff(xi)ϕ

T
rff(xi)ϕrff(x)

=
1

MγN

N∑
i=1

(ϕT
rff(x)ϕrff(xi))

2 (A2)

Remembering that in eq. (6) we used a spread parameter of γ
2 to calculate the

parameters of ϕrff and because of Theorem 1 we know that

Pr

[
sup

x,y∈M
|ϕT

rff(x)ϕrff(y)− e−
γ
2 ∥x−y∥2

| ≥ ϵ

]
≤

28
(√

dγdiam(M)

ϵ

)2

exp

(
− Dϵ2

4(d+ 2)

)
= B

By construction |ϕT
rff(x)ϕrff(y) + e−

γ
2 ∥x−y∥2

| ≤ 3, then |(ϕT
rff(x)ϕrff(y))

2 −
e−γ∥x−y∥2

| = |(ϕT
rff(x)ϕrff(y) − e−

γ
2 ∥x−y∥2

)(ϕT
rff(x)ϕrff(y) + e−

γ
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)| ≤
3|(ϕT
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)|. Then

Pr
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|(ϕT

rff(x)ϕrff(y))
2 − e−γ∥x−y∥2

| ≥ 3ϵ

]
≤ B (A3)

Combining Equations eq. (A2) and eq. (A3) we get:

Pr
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sup
x∈M

|f̂ρ(x)− f̂γ(x)| ≥ 3Mγϵ

]
≤ B

Making a variable change we get:
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(A4)
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