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Abstract

We introduce a new type of examples of bounded degree acyclic
Borel graphs and study their combinatorial properties in the context
of descriptive combinatorics, using a generalization of the determinacy
method of Marks [Mar16]. The motivation for the construction comes
from the adaptation of this method to the LOCAL model of distributed
computing [BCG+21]. Our approach unifies the previous results in the
area, as well as produces new ones. In particular, strengthening the
main result of [TV21], we show that for ∆ > 2 it is impossible to
give a simple characterization of acyclic ∆-regular Borel graphs with
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Borel chromatic number at most ∆: such graphs form a Σ
1
2-complete

set. This implies a strong failure of Brooks’-like theorems in the Borel
context.

1 Introduction

Descriptive combinatorics is an area concerned with the investigation of
combinatorial problems on infinite graphs that satisfy additional regular-
ity properties (see, e.g., [Pik21, KM20] for surveys of the most important
results). In recent years, the study of such problems revealed a deep connec-
tion to other areas of mathematics and computer science. The most relevant
to our study are the connections with the so-called LOCAL model from the
area of distributed computing. There are several recent results that use dis-
tributed computing techniques in order to get results either in descriptive
combinatorics [Ber23, Ber21, BCG+21, Ele18, GR21a], or in the theory of
random processes [HSW17, GR21b].

The starting point of our work was the investigation of the opposite di-
rection. Namely, our aim was to adapt the celebrated determinacy technique
of Marks [Mar16] to the LOCAL model of distributed computing. In order
to perform the adaptation (which is indeed possible, see our conference pa-
per [BCG+21]1), we had to circumvent several technical hurdles that, rather
surprisingly, lead to the main objects that we study in this paper, homo-
morphism graphs (defined in Section 3). We refer the reader to [BCG+21]
for a detailed discussion of the concepts and their connections to the LOCAL

model.
Before we state our results, we recall several basic notions and facts. A

graph G on a set X is a symmetric subset of X2 \ {(x, x) : x ∈ X}. We will
refer to X as the vertex set of G, in symbols V (G), and to G as the edge set.
If n ∈ {1, 2, . . . ,ℵ0}, a (proper) n-coloring of G is a mapping c : V (G) → n

such that (x, y) ∈ G =⇒ c(x) 6= c(y). The chromatic number of G, χ(G)
is the minimal n for which an n-coloring exists. If G and H are graphs, a
homomorphism from G to H is a mapping c : V (G) → V (H) that preserves
edges. Note that χ(G) ≤ n if and only if G admits a homomorphism to the
complete graph on n vertices, Kn. We denote by ∆(G) the supremum of

1The connection between the current paper and the conference paper [BCG+21] is
the following. The latter paper builds a theory of local problems on trees from several
perspectives and aims to a broader audience. The original version of this paper should
have been a journal version of some results from [BCG+21] aiming to people working in
descriptive combinatorics. In the end, we added several new applications of our method
that cannot be found in [BCG+21].
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the vertex degrees of G. In what follows, we will only consider graphs with
degrees bounded by a finite number, unless explicitly stated otherwise. A
graph is called ∆-regular if every vertex has degree ∆. It is easy to see that
χ(G) ≤ ∆(G) + 1. Moreover, Brooks’ theorem states that this inequality
is sharp only in trivial situations: if ∆(G) > 2, it happens if and only if G
contains a complete graph on ∆(G)+1 vertices, and if ∆(G) = 2, it happens
if and only if G contains an odd cycle.

We say that G is a Borel graph if V (G) is a standard Borel space, see
[Kec95], and the set of edges of G is a Borel subset of V (G)×V (G) endowed
with the product Borel structure. The Borel chromatic number, χB(G),
of G is defined as the minimal n for which a Borel n-coloring exists, here
we endow n with the trivial Borel structure. Similar concepts are studied
when we relax the notion of Borel measurable to merely measurable with
respect to some probability measure, or Baire measurable with respect to
some compatible Polish topology.

It has been shown by Kechris-Solecki-Todorčević [KST99] that χB(G) ≤
∆(G)+1, and it was a long standing open problem, whether Brooks’ theorem
has a literal extension to the Borel context, at least in the case ∆(G) > 2.
For example, it has been proved by Conley-Marks-Tucker-Drob [CMTD16]
that in the measurable or Baire measurable setting the answer is affirmative.
Eventually, this problem has been solved by Marks [Mar16], who showed the
existence of ∆-regular acyclic Borel graphs with Borel chromatic number
∆+1. Remarkably, this result relies on Martin’s Borel determinacy theorem,
one of the cornerstones of modern descriptive set theory.

Results

First let us give a high-level overview of our new method for constructing
Borel graphs (for the precise definition of the notions discussed below see
Section 3). Fix a ∆ > 2. To a given Borel graph H we will associate a ∆-
regular acyclic Borel graph Hom

ac(T∆,H). Roughly speaking, the vertex
set of the graph will be a collection of pairs (x, h), where x ∈ V (H) and h

is a homomorphism from the ∆-regular infinite rooted tree T∆ to H that
maps the root to x, and (x, h) is adjacent to (x′, h′) if h′ is obtained from h

by moving the root to a neighbouring vertex.
The main idea is that the we can use the combinatorial properties of

H to control the properties of Hom
ac(T∆,H). Most importantly, we will

argue that from a Borel ∆-coloring c of Hom
ac(T∆,H) we can construct

a ∆-coloring of H: to each x we associate games analogous to the ones
developed by Marks, in order to select one of the sets {h : c(x, h) = i} for
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i ≤ ∆ (in some sense, we select the largest), and color x with the appropriate
i. As this selection will be based on the existence of winning strategies, the
coloring of H will not be Borel. However, it will still be in a class that has
all the usual regularity properties (see Section 2 for the definition of this
class and the corresponding chromatic number, χa∆1

1
). Thus we will be able

to prove the following.

Theorem 1.1. Let H be a locally countable Borel graph. Then we have

χa∆1
1
(H) > ∆ ⇒ χB(Hom

ac(T∆,H)) > ∆.

In particular, χa∆1
1
(H) > ∆ holds if the Ramsey measurable (if V (H) =

[N]N), Baire measurable, or µ measurable chromatic number of H is > ∆.

Next we list the applications. In each instance we use a version of
Theorem 1.1 for a carefully chosen target graph H. These graphs come from
well-studied contexts of descriptive combinatorics, namely, Ramsey property
and Baire category.

a) Complexity result. We apply homomorphism graphs in connection to
projective complexity and Brooks’ theorem. One might conjecture that the
right generalization of Brooks’ theorem to the Borel context is that Marks’
examples serve as the analogues of the complete graph, i.e., whenever G

is a Borel graph with χB(G) = ∆(G) + 1, then G must contain a Borel
homomorphic copy of the corresponding example of Marks. Note that in
the case ∆(G) = 2 this is the situation, as there is a Borel analogue of odd
cycles that admits a homomorphism into each Borel graph G with χB(G) > 2
(see [CMSV21]).

In [TV21] it has been shown that it is impossible to give a simple char-
acterization of acyclic Borel graphs with Borel chromatic number ≤ 3. The
construction there was based on a Ramsey theoretic statement, the Galvin-
Prikry theorem [GP73]. An important weakness of that proof is that it uses
graphs of finite but unbounded degrees. Using the homomorphism graph
combined with the method developed in [TV21] and Marks technique, we
obtain the analogous result for bounded degree graphs.

Theorem 1.2. For each ∆ > 2 the family of ∆-regular acyclic Borel graphs
with Borel chromatic number ≤ ∆ has no simple characterization, namely,
it is Σ1

2-complete.

From this we deduce a strong negative answer to the conjecture described
above.
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Corollary 1.3. Brooks’ theorem has no analogue for Borel graphs in the
following sense. Let ∆ > 2. There is no countable family {Hi}i∈I of Borel
graphs such that for any Borel graph G with ∆(G) ≤ ∆ we have χB(G) > ∆
if and only if for some i ∈ I the graph G contains a Borel homomorphic
copy of Hi.

b) Chromatic number and hyperfiniteness. Recall that a Borel graph
G is called hyperfinite, if it is the increasing union of Borel graphs with finite
connected components. In [CJM+20] the authors examine the connection
between hyperfiniteness and notions of Borel combinatorics, such as Borel
chromatic number and the Lovász Local Lemma. Roughly speaking, they
show that hyperfiniteness has no effect on Borel combinatorics, for example,
they establish the following.

Theorem 1.4 ([CJM+20]). There exists a hyperfinite ∆-regular acyclic
Borel graph with Borel chromatic number ∆+ 1.

Using homomorphism graphs, we provide a new, short and more stream-
lined proof of this result. In particular, the conclusion about the chromatic
number follows from our general result about Hom

e (a version of Hom
ac),

while to get hyperfiniteness we can basically choose any acyclic hyperfinite
graph as a target graph. To get both properties at once, we simply pick a
variant of the graph G0 (see [KST99, Section 6]) as our target graph.

c) Graph homomorphism. We also consider a slightly more general
context: homomorphisms to finite graphs. Clearly, the ∆-regular examples
constructed by Marks do not admit a Borel homomorphism to finite graphs
of chromatic number at most ∆, as this would imply that their Borel chro-
matic number is ≤ ∆. No other examples of such graphs were known. We
show the following.

Theorem 1.5. For every ∆ > 2 and every ℓ ≤ 2∆ − 2 there are a finite
graph H and a ∆-regular acyclic Borel graph G such that χ(H) = ℓ and G
does not admit Borel homomorphism to H. The graph G can be chosen to
be hyperfinite.

This theorem is a step towards the better understanding of Problem 8.12
from [KM20].

Remark 1.6. The upper bound 2∆− 2 on the chromatic number is implied
by the combinatorial condition almost ∆-colorable, see Definition 4.6, that
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is utilized in the generalization of Marks’ determinacy technique. It is an in-
teresting open problem to determine exactly to what graphs the determinacy
argument may be applied.
Recently Csóka and the last author showed that there is no factor of iid

homomorphism from the ∆-regular tree to finite graphs of arbitrarily large
chromatic number using the theory of entropy inequalities. This, of course,
implies the same result in the Borel setting. Observe, however, that there
is a factor of iid homomorphism from the ∆-regular tree to examples con-
structed in this paper as the universal graph H∆ that is almost ∆-colorable,
see Section 5.3 and Fig. 2, contains the complete graph on ∆ vertices. This
shows that the difference between factor of iid and Borel chromatic numbers
extends non-trivially to the question about graph homomorphism. The exact
relationship between the existence of factor of iid and Borel homomorphisms
is wide open.

Roadmap. The paper is structured as follows. In Section 2 we collect the
most important definitions and theorems that are going to be used. Then,
in Section 3 we establish the basic properties of homomorphism graphs and
their various modifications. Section 4 contains Marks’ technique’s adap-
tation to our context, while in Section 5 we prove our main results. We
conclude the paper with a couple of remarks in Section 6.

2 Preliminaries

For standard facts and notations of descriptive set theory not explained here
we refer the reader to [Kec95] (see also [Mos09]).

Given a graph G, we refer to maps V (G) → S and G → S as vertex
(S)-labelings and edge (S)-labelings, respectively. An edge labeling is called
an edge coloring, if incident edges have different labels. Let F be a family of
subsets of V (G), and n ∈ {1, 2, . . . ,ℵ0}. An F measurable n-coloring is an
n-coloring c of G such that c−1(i) ∈ F for each i < n. Using this notion, we
define the F measurable chromatic number of G, χF (G) to be the minimal
n for which such a coloring exists.

We denote by [S]N the collection of infinite subsets of the set S, and
by S<N the family of finite sequences of elements of S. Points of the space
[N]N will be identified with their increasing enumeration, making [N]N a Gδ

subset of NN, and hence the product topology of NN gives rise to a Polish
topology on [N]N.

Define the shift-graph (on [N]N), GS , by letting x and y be adjacent if
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y = x \ minx or x = y \ min y. The shift-graph has a close connection to
the notion of so called Ramsey property: for s ⊂ N finite and A ∈ [N]N with
max s < minA let [s,A] = {B ∈ [N]N : s ⊂ B,A ⊇ B \ s}. A set S ⊆ [N]N

is called Ramsey if for each set of the form [s,A] there exists B ∈ [A]N such
that [s,B]∩S = ∅ or [s,B] ⊆ S (see, e.g., [KST99, Kho12, Tod10] for results
on the shift-graph and Ramsey measurability). The following follows from
the definition.

Theorem 2.1. The graph GS has no Ramsey measurable finite coloring.

Note that the Galvin-Prikry theorem asserts that Borel sets are Ramsey
measurable. However, adapting Marks’ technique to our setting will require
the usage of families of sets that are much larger than the collection of Borel
sets.

If T ⊆ N<N is a nonempty pruned tree, and A ⊆ NN, G(T,A) will denote
the two-player infinite game on N with legal positions in T and payoff set A.
We will call the first player Alice and the second Bob, Alice wins the game
if the resulting element is in A. Note that the Borel Determinacy Theorem
[Mar75] states that one of the players has a winning strategy in G(T,A),
whenever A is Borel.

Recall that a subset of A a Polish space X is in the class a∆1
1 if there is

some Borel set B ⊂ X × NN such that

A = {x : Alice has a winning strategy in G(N<N, Bx)},

see [Mos09].
By modifying the payoff sets, it is easy to see the following (see, [Kec95,

p138]).

Lemma 2.2. Let X be a Polish space and B ⊆ X×NN be Borel and x 7→ Tx

be a Borel map such that Tx is a pruned subtree of N
<N. Then the set

{x ∈ X : Alice has a winning strategy in G(Tx, Bx)}

is a∆1
1.

The class a∆1
1 enjoys a number of regularity properties.

Proposition 2.3. Let X be a Polish space. a∆1
1 sets

1. form a σ-algebra,

2. have the Baire property w.r.t. any compatible Polish topology,
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3. are measurable w.r.t. any Borel probability measure,

4. in the case X = [N]N have the Ramsey property.

Before proving this statement we need to fix an encoding of Borel sets.
Let BC(X) be a set of Borel codes and sets A(X) and C(X) with the
properties summarized below:

Proposition 2.4. (see [Mos09, 3.H])

• BC(X) ∈ Π
1
1(N

N), A(X) ∈ Σ
1
1(N

N ×X), C(X) ∈ Π
1
1(N

N ×X),

• for c ∈ BC(X) and x ∈ X we have (c, x) ∈ A(X) ⇐⇒ (c, x) ∈ C(X),

• if P is a Polish space and B ∈ ∆
1
1(P ×X) then there exists a Borel

map f : P → NN so that ran(f) ⊂ BC(X) and for every p ∈ P we
have A(X)f(p) = Bp.

Moreover, in the case X = (NN)k the sets BC(X), A(X), and C(X) can
be described by Π1

1, Σ
1
1, and Π1

1 formulas, respectively.

Now we can prove Proposition 2.3.

Proof of Proposition 2.3. The first statement is a consequence of [Mos09,
Lemma 6D.1] and not very hard too verify.

In order to see the rest, we rely on results of Feng-Magidor-Woodin
[FMW92]. Recall that a subset S of NN is universally Baire if for every
topological space Y that has a basis consisting of regular open sets and
every continuous f : Y → NN the set f−1(S) has the Baire property.

It is not hard to check the following properties of universally Baire sets
(see [FMW92, Theorem 2.2] and the discussion on p212).

Claim 2.5. Assume that S ⊆ NN is universally Baire, X is a Polish space
and ϕ : X → NN be an injection.

1. S has the Baire property w.r.t. any compatible Polish topology, is
measurable w.r.t. any Borel probability measure and, in case S ⊆ [N]N,
S has the Ramsey property.

2. If X ⊆ NN and ϕ is continuous then ϕ−1(S) is universally Baire.

3. If ϕ is Borel then ϕ−1(S) has the Baire property w.r.t. any compatible
Polish topology, is measurable w.r.t. any Borel probability measure.

7



Now we consider a set which encompasses all the a∆1
1 sets, and show

that it is universally Baire. To ease the notation set BC := BC(NN × NN),
C := C(NN×NN) and A := A(NN×NN). Note that we have BC ∈ Π

1
1(N

N),
A ∈ Σ

1
1(N

N × (NN ×NN)), C ∈ Π
1
1(N

N × (NN ×NN)). Consider first the set

WS = {(x, c) : x ∈ N
N, c ∈ BC,

Alice has a winning strategy in G(N<N, (Cc)x)}.

Claim 2.6. WS is universally Baire.

Proof. By the characterization result of Feng-Magidor-Woodin, a set Z ⊆
NN is universally Baire if and only if there exist a cardinal λ and trees
T, T ∗ ⊆ N<N × λ<N such that Z = projNN([T ]) and NN \ Z = projNN([T ∗])
and for every forcing notion P we have that

P  N
N = projNN([T ]) ⊔ projNN([T ∗]).

We show this condition for WS. Note that S is a winning strategy for
Alice in G(N<N, (Cc)x) if and only if S is a strategy for Alice such that
∀y (y 6∈ [S] ∨ y ∈ (Cc)x). Using the last sentence of Proposition 2.4 this
yields that WS can be described by a Σ1

2 formula. Moreover, as Ac = Cc

whenever c ∈ BC, and Cc is Borel, by the Borel determinacy theorem Alice
has a winning strategy in G(N<N, (Cc)x) if and only if Bob has no winning
strategy. That is, for every S strategy for Bob we have ∃y (y ∈ [S] ∧ y ∈
(Ac)x). This yields a description of NN\WS using a Σ1

2 formula. By [Mos09,
2D.3] there are trees T, T ∗ ⊆ N<N × ω<N

1 (together with formulas defining
them) such that WS = projNN([T ]) and NN \WS = projNN([T ∗]) holds in
every model of ZFC, showing that the desired property holds.

Claim 2.7. Let S be a a∆1
1 subset of a Polish space X. Then there is

a Borel injection ϕ and some c ∈ NN such that S = ϕ−1(WSc), where
WSc = {x ∈ NN : (x, c) ∈ WS}. If X is zero dimensional then there is even
a homeomorphism with such a property.

Proof. Let B be a Borel set in X × NN such that

S = {x ∈ X : Alice has a winning strategy in G(N<N, Bx)}.

Since X is Polish, there exists a Borel injection ϕ : X → NN. Moreover, if
X is zero-dimensional, then ϕ can be chosen to be a homeomorphism. Now
let (s, r) ∈ B′ ⇐⇒ (ϕ−1(s), r) ∈ B. Then B′ is Borel, and there is some
c ∈ BC with Cc = B′. Then, by definition we have S = ϕ−1(WSc).

8



Now let first S be a a∆1
1 subset of an arbitrary Polish space X. By the

claim above, there exist a Borel injection ϕ and a c with ϕ−1(WSc). Using
Claim 2.5 S has properties (2) and (3).

Finally, if X = [N]N then ϕ can be taken to be a homeomorphism. Then
S is universally Baire and hence Ramsey measurable by Claim 2.5.

Remark 2.8. In the original version of this paper we introduced the family
of weakly provably ∆1

2 sets, which contains a∆
1
1 sets, in order to be able to

handle definability issues. Subsequently Kastner and Lyons pointed out that
these results also follow from the theorems of Feng-Magidor-Woodin.
In an upcoming work Kastner and Lyons will prove the required regularity

properties of the class a∆1
1 with a more streamlined, purely game theoretic

argument, based on the one given in Kechris [Kec78].
Finally, all the regularity properties of a∆1

1 sets follow from projective
determinacy.

3 The homomorphism graph

In this section we define the main objects of our study, homomorphism
graphs, and establish a couple of their properties.

Let Γ be a countable group and S ⊆ Γ be a generating set. Assume that
Γ y X is an action of Γ on the set X. As there is no danger of confusion we
always denote the action with the symbol ·. The Schreier graph Sch(Γ, S,X)
of such an action is a graph on the set X such that x 6= x′ are adjacent iff
for some γ ∈ S ∪ S−1 we have that γ · x = x′.

Probably the most important example of a Schreier graph is the (right)
Cayley graph, Cay(Γ, S) that comes from the right multiplication action of
Γ on itself. That is, g, h ∈ Γ form an edge in Cay(Γ, S) if there is σ ∈ S

such that g · σ = h. Another example is the graph of the left-shift action of
Γ on the space 2Γ: recall that the left-shift action is defined by

γ · x(δ) = x(γ−1 · δ)

for γ ∈ Γ and x ∈ 2Γ. Observe that the Schreier graph of this actions is a
Borel graph, when we endow the space 2Γ with the product topology.

Our examples will come from a generalization of this graph. First note
that if we replace 2 by any other standard Borel space X, the space XΓ still
admits a Borel product structure with respect to which the Schreier graph
of the left-shift action defined as above, is a Borel graph. The main idea is to
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start with a Borel graph H and restrict the corresponding Schreier graph on
V (H)Γ to an appropriate subset on which the elements h ∈ V (H)Γ are graph
homomorphisms from Cay(Γ, S) to H. This allows us to control certain
properties (such as chromatic number or hyperfiniteness) of the resulting
graph by the properties of H. More precisely:

Definition 3.1. Let H be a Borel graph and Γ be a countable group with a
generating set S. Let Hom(Γ, S,H) be the restriction of Sch(Γ, S, V (H)Γ)
to the set

{h ∈ V (H)Γ : h is a graph homomorphism from Cay(Γ, S) to V (H)}.

We will refer to H as the target graph, and we will denote the map
h 7→ h(1) by Root (note that the vertices of Cay(Γ, S) are labeled by the
elements of Γ). It is clear from the definition that Hom(Γ, S,H) is a Borel
graph with degrees at most |S ∪S−1| and that Root is a Borel map. We can
immediately make the following observation.

Proposition 3.2. The map Root is a Borel homomorphism fromHom(Γ, S,H)
to H.
In particular, χB(Hom(Γ, S,H)) ≤ χB(H) and the action of 1 6= γ ∈ S

on Hom(Γ, S,H) has no fixed-points.

Proof. Let h ∈ Hom(Γ, S,H) and 1 6= γ ∈ S ∪ S−1. Note that as γ−1

and 1 are adjacent in Cay(Γ, S) it follows that Root(γ · h) = h(γ−1) and
Root(h) = h(1) are adjacent in H as h is a homomorphism. Consequently,
the map Root is a Borel homomorphism from Hom(Γ, S,H) to H and h 6=
γ · h as there are no loops in H.

The ∆-regular tree T∆. In this paper we only consider the case of the
group

Z
∗∆
2 = 〈α1, . . . , α∆|α

2
1 = · · · = α2

∆ = 1〉

together with the generating set S∆ = {α1, . . . , α∆}. Since Cay(Z∗∆
2 , S∆) is

isomorphic to the ∆-regular infinite tree, T∆, we use Hom(T∆,H) to denote
the graph Hom(Z∗∆

2 , S∆,H). Note also that we consider Cay(Z∗∆
2 , S∆) and

T∆ equipped with a ∆-edge coloring. As suggested above, an equivalent
description of the vertex set of Hom(T∆,H) is that it is the set of pairs (x, h)
where h is a homomorphism from the tree T∆ to H and x is a distinguished
vertex of T∆, a root. Then we have that (x, h) and (y, g) form an (α-)edge if
and only if h = g and (x, y) is an (α-)edge in T∆. This is because (a) there is
a one-to-one correspondence between a homomorphism from Cay(Z∗∆

2 , S∆)
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to H and the pairs (x, h), and (b) the shift action Z∗∆
2 y Hom(Z∗∆

2 , S∆,H)
corresponds to changing the root for a fixed homomorphism h from T∆ to
H.

Recall that an action Γ y X is free if for each 1 6= γ ∈ Γ and x ∈ X we
have γ · x 6= x. The free part, denoted by Free(X), is the set {x : ∀1 6= γ ∈

Γ γ · x 6= x}. Note that the left-shift action of Z∗∆
2 on, say, NZ∗∆

2 is not free,
in particular, the corresponding Schreier-graph has cycles. To remedy this,
Marks used a restriction of the graph to the free part, showing that for each
∆ > 2 this graph has Borel chromatic number ∆+1. Analogously, we have
the following.

Definition 3.3. Let Hom
ac(T∆,H) = Hom(T∆,H) ↾ Free(V (H)Z

∗∆
2 ), that

is, the restriction of the graph Hom(T∆,H) to the free part of the Z∗∆
2

action.

In our first application we will use this remedy to get acyclic graphs. Note
that for each edge in Hom

ac(T∆,H) there is a unique generator α ∈ S∆ that
induces it. In particular, the graph Hom

ac(T∆,H) admits a canonical Borel
edge ∆-coloring. The following is straightforward.

Proposition 3.4. LetH be a locally countable Borel graph. IfHom
ac(T∆,H)

is nonempty, then it is ∆-regular and acylic.

However, utilizing the homomorphism graph together with an appropri-
ate target graph, we will be able to completely avoid the non-free part, in an
automatic manner. This way we will be able to guarantee the hyperfinite-
ness of the homomorphism graph as well. Recall that T∆ = Cay(Z∗∆

2 , S∆)
comes with a ∆-edge coloring by the elements of S∆. Let us consider the a
subgraph of the homomorphism graph that arises by requiring h to preserve
this information.

Definition 3.5. Assume that the graph H is equipped with a Borel edge
S∆-labeling. Let Hom

e(T∆,H) be the restriction of Hom(T∆,H) to the set

{h ∈ V (Hom(T∆,H)) : h preserves the edge labels}.

Clearly, Hom
e(T∆,H) is also a Borel graph. Note that in the following

statement the labeling of the edges of the target graph H is typically not a
coloring.

Proposition 3.6. Assume that H is an acyclic graph equipped with a Borel
edge S∆-labeling and Hom

e(T∆,H) is nonempty. Then

11



1. Hom
e(T∆,H) is acyclic,

2. If H is hyperfinite, then so is Hom
e(T∆,H),

3. Hom
e(T∆,H) is ∆-regular.

Proof. Observe that if h is a homomorphism from a tree to an acyclic graph
that is not injective, then there must be adjacent pairs of vertices (x, y) and
(y, z) with x 6= z and h(z) = h(x). Thus, if h ∈ Hom

e(T∆,H) is edge label
preserving then it must be injective, as incident edges have different labels
in T∆. Therefore, the map Root is injective on each connected component
of Hom

e(T∆,H), yielding (1).
To see (2), let (Hn)n∈N be a witness to the hyperfiniteness of H. Let H′

n

be the pullback of Hn by the map Root. Since Root is injective on every
connected component, the graphs H′

n also have finite components and their
union is Hom

e(T∆,H).
For (3) just notice that using the injectivity of Root again, it follows that

{γ · h}γ∈{1}∪S∆
has cardinality ∆+ 1.

4 Variations on Marks’ technique

Now we are ready to adapt Marks’ technique [Mar16] to homomorphism
graphs. Let us denote by χa∆1

1
(H) the a∆1

1-chromatic number of H (see

Section 2).

Theorem 1.1. Let H be a locally countable Borel graph. Then

χa∆1
1
(H) > ∆ =⇒ χB(Hom

ac(T∆,H)) > ∆.

The games we will define naturally yield elements h ∈ Hom(T∆,H)
rather than Hom

ac(T∆,H). In order to deal with the cyclic part of the
graph, we will show slightly more, using the same strategy as Marks. Let
V ⊆ V (Hom(T∆,H)), an anti-game labeling of V is a map c : V → ∆ such
that there are no i ∈ ∆ and distinct vertices h, h′ ∈ V with c(h) = c(h′) = i

and αi · h = h′. Observe that every ∆-coloring is automatically anti-game
labeling.

Remark 4.1. One can define analogously anti-game labelings for graphs
with edges labeled by ∆. Note that in the case when the graph is ∆-regular
and the labeling is an edge ∆-coloring, the existence of an anti-game label-
ing is equivalent with solving the well known edge grabbing problem (that
is, every vertex picks one adjacent edge but no edge can be picked from both

12



sides, see [BBE+20]) or sinkless orientation problem. Observe that the sink-
less orientation problem, and hence the existence of anti-game labeling, can
be easily solved on graphs with cycles. This observation is crucially utilized
in both Marks’ and this paper, see Lemma 4.2.

Lemma 4.2. There exists a Borel anti-game labeling c : V (Hom(T∆,H)) \
V (Hom

ac(T∆,H)) → ∆.

Proof. Let us use the notation C = V (Hom(T∆,H)) \ V (Hom
ac(T∆,H)).

By definition, the Z∗∆
2 action on every connected component Hom(T∆,H) ↾

C is not free. Using [KM04, Lemma 7.3] we can find a Borel maximal
family F ⊆ C<N of pairwise disjoint finite sequences each of length at least
2 such that for each (hi)i<k ∈ F there is a sequence (αni

)i<k ∈ Sk
∆ such that

αni
6= αni+1, αni

·hi = hi+1 for i < k−1, and αn0 6= αnk−1
, αnk−1

·hk−1 = h0.
(Note that it is possible that k = 2 in which case there are two distinct
generators αn0 6= αn1 such that αn0 · h0 = αn1 · h0 = h1.)

Now label an element h ∈ C by ni if h = hi for some (hi)i<k ∈ F .
Otherwise, let c(h) be the minimal i such that αi · h has strictly smaller
distance to F than h with respect to the graph distance in Hom(T∆,H). It
is easy to check that c is an anti-game labeling.

Proof of Theorem 1.1. We show that there is no Borel anti-game labeling
c : V (Hom(T∆,H)) → ∆. Once we have that the proof of Theorem 1.1 is
finished as follows. Suppose that d is a Borel ∆-coloring of Hom

ac(T∆,H).
As observed above, every ∆-coloring is also anti-game labeling. Conse-
quently, the union of d and the anti-game labeling produced in Lemma 4.2
is a Borel anti-game labeling of V (Hom(T∆,H)), contradiction.

Assume towards contradiction that c : V (Hom(T∆,H)) → ∆ is a Borel
anti-game labeling. Without loss of generality we may assume that H has no
isolated points. This ensures that the games below can be always continued.

We define a family of two-player games G(x, i) parametrized by elements
x ∈ V (H) and i ∈ ∆. In a run of the game G(x, i) players Alice and Bob
alternate and build a homomorphism h from T∆ to H, i.e., an element of
Hom(T∆,H) ⊂ V (H)Z

∗∆
2 , with the property that Root(h) = x.

In the k-th round, first Alice labels vertices of distance k from the 1
on the side of the αi edge. After that, Bob labels all remaining vertices of
distance k, etc (see Fig. 1). In other words, Alice labels the elements of Z∗∆

2

corresponding to reduced words of length k starting with αi then Bob labels
the rest of the reduced words of length k.

Note that once the parameters of the game are fixed the definition of the
game is analoguous to the one defined by Marks [Mar16]. There is, however,

13



x
αi

1st

2nd

Alice labels

Bob labels

Figure 1: The game G(x, i)

one important difference. The allowed moves are vertices of the target graph
H restricted by its edge relation. Observe that the original construction of
Marks can be interpreted in our setting by taking H to be the the complete
graph on N.

The winning condition is defined as follows:

Alice wins the game G(x, i) iff c(h) 6= i.

Lemma 4.3. 1. For any x ∈ V (H) and i ∈ ∆ one of the players has a
winning strategy in the game G(x, i).

2. The set {(x, i) : Alice has a winning strategy in G(x, i)} is a∆1
1.

Proof. We encode the games G(x, i) in a way that allows the use of Borel
determinacy theorem and Lemma 2.2.

Let us denote by EH the connected component equivalence relation of H.
Observe that as T∆ is connected, the range of any element h ∈ Hom(T∆,H)
is contained in a single EH class. By the Feldman-Moore theorem, there
is a countable collection of Borel functions fi : V (H) → V (H) such that
EH =

⋃

j∈N graph(f±1
j ). Therefore, the games G(x, i) above can be iden-

tified by games played on N, namely, labeling a vertex in T∆ by a ver-
tex y ∈ V (H) corresponds to playing the minimal natural number j with
fj(x) = y. Since the functions (fj)j∈N are Borel, this correspondence is
Borel as well. Moreover, the rule that h must be homomorphism determines
a pruned subtree of legal positions Tx,i ⊂ N<N and the map (x, i) 7→ Tx,i is
Borel. This yields that there exists a Borel set B ⊆ V (H) × ∆ × NN such
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that

Alice has a strategy in G(x, i) ⇐⇒ Alice has a winning strategy in G(Tx,i, Bx,i).

Now, the first claim follows from the Borel determinacy theorem, while the
second follows from Lemma 2.2.

Claim 4.4. For every x ∈ X there is an i ∈ ∆ such that Bob wins G(x, i).

Proof. Suppose not. Then we can combine strategies of Alice for each i in
the natural way to build a homomorphism that is not in the domain of c

(see, e.g., [Mar] or [Mar16]).

Now we can finish the proof of Theorem 1.1. Define d : V (H) → ∆ by

d(x) = i ⇐⇒ i is minimal such that Bob has a winning strategy in G(x, i).
(1)

Since a∆1
1 sets form an algebra, d is a∆1

1 measurable and by Claim 4.4 it is
everywhere defined. By our assumptions on H there are x 6= x′ adjacent with
d(x) = d(x′) = i. Now, we can play the two winning strategies corresponding
to games G(x, i) and G(x′, i) of Bob against each other, as if the first move
of Alice was x′ (resp. x). This yields distinct homomorphisms h, h′ with
αi · h = h′ and c(h) = c(h′) = i, contradicting that c is an anti-game
labeling.

4.1 Generalizations

Edge labeled graphs. As mentioned above, a novel feature of our ap-
proach is that requiring the homomorphisms to be edge label preserving and
ensuring that H is acyclic, we can get rid of the investigation of the cyclic
part (see Proposition 3.6). In order to achieve this, we have to assume
slightly more about the chromatic properties of the target graph.

Assume that H is equipped with an edge S-labeling. The edge-labeled
chromatic number, elχ(H) of H is the minimal n, for which there exists
a map c : V (H) → n so that for each i ∈ n the set c−1(i) doesn’t span
edges with every possible label. In other words, elχ(H) > n if and only if
no matter how we assign n many colors to the vertices of H, there will be
a color class containing edges with every label. We define µ measurable,
Baire measurable, etc. versions of the edge-labeled chromatic number in the
natural way.
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Theorem 4.5. Let H be a locally countable Borel graph with a Borel S∆-
edge labeling, such that for every vertex x and every label α there is an
α-labeled edge incident to x. Then

elχa∆1
1
(H) > ∆ =⇒ χB(Hom

e(T∆,H)) > ∆.

Proof. The proof is similar to the proof of Theorem 1.1, but with taking
the edge colors into consideration. Let us indicate the required modifica-
tions. We define G(x, i) as above, with the extra assumption that play-
ers must build a homomorphism that respects edge labels, i.e., an element
h ∈ Hom

e(T∆,H). The condition on the edge-labeling ensures that the
players can continue the game respecting the rules at every given finite step.

The analogue of Claim 4.4 clearly holds in this case, and we can define
d as in (1). Finally, elχa∆1

1
(H) > ∆ guarantees the existence of i ∈ ∆ and

x, x′ ∈ V (H) such that d(x) = d(x′) = i and that the edge between x and
x′ has label αi, which in turn allows us to use the winning strategies of Bob
in G(x, i) and G(x′, i) against each other, as above.

Graph homomorphism. In what follows, we will consider a slightly more
general context, namely, instead of the question of the existence of Borel
colorings, we will investigate the existence of Borel homomorphisms to a
given finite graph H. The following notion is going to be our key technical
tool.

Definition 4.6 (Almost ∆-colorable). Let ∆ > 2 and H be a finite graph.
We say that H is almost ∆-colorable if there are sets R0, R1 ⊆ V (H) such
that H restricted to V (H) \ Ri has chromatic number at most (∆ − 1) for
i ∈ {0, 1}, and there is no edge between vertices of R0 and R1.

Note that if χ(H) ≤ ∆, then H is almost ∆-colorable. Indeed, if
A1, . . . , A∆ are independent sets that cover V (H), we can set R0 = R1 =
A1. The basic properties of almost ∆-colorable graphs are summarized in
Section 5.3. In particular, we show that every almost ∆-colorable graph has
chromatic number at most 2∆ − 2, a bound that appears in Theorem 1.5.

Theorem 4.7. Let H be a locally countable Borel graph and assume that
H is a finite graph that is almost ∆-colorable. Assume that H is equipped
with a Borel S∆-edge labeling, with the property that for every vertex v and
every edge label αi ∈ S∆ there exists and edge from v with label αi. Then

elχa∆1
1
(H) > 2∆·2|V (H)|

=⇒ Hom
e(T∆,H) has no Borel homomorphism to H.
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Proof. Assume for contradiction that such a Borel homomorphism c exists.
We will need a further modification of Marks’ games. Let R ⊆ V (H). For
x ∈ V (H) define the game G(x, i,R) as in the proof of Theorem 4.5, with
the winning condition modified to

Alice wins the game G(x, i,R) iff c(h) 6∈ R.

Observe that playing the strategies of Alice against each other as in Claim 4.4
we can establish the following.

Claim 4.8. For every x ∈ V (H) and every sequence (Ri)i∈∆ with
⋃

iRi =
V (H) there is some i such that Alice has no winning strategy in G(x, i,Ri).

Now let N be the powerset of the set {(i, R) : i ∈ ∆, R ⊆ V (H)}. Of

course, |N | = 2∆·2|V (H)|
. Define a mapping d : V (H) → N by

(i, R) ∈ d(x) ⇐⇒ Alice has a winning strategy in G(x, i,R).

Using Lemma 2.2 as in the proof of Lemma 4.3, the map d is a∆1
1-measurable.

By our assumption on H, there is a subset C on which d is constant and C

spans an edge with each label.

Lemma 4.9. Let i ∈ ∆ and R0, R1 ⊆ V (H) be sets such that there is no edge
between points of R0 and R1 in G. Then for every x ∈ C Bob has no winning
strategy in at least one of G(x, i,R0) and G(x, i,R1). In particular, if R is
independent in G then Bob cannot have a winning strategy in G(x, i,R).

Proof. If there exists an x ∈ C for which G(x, i,R0) and G(x, i,R1) can be
won by Bob, then, as d is constant on C, this is the case for every x ∈ C. So
we could find x0, x1 ∈ C connected with an αi labeled edge so that Bob has
winning strategies in G(x0, i, R0) and G(x1, i, R1). Then we can play the two
winning strategies of Bob against each other as in the proof of Theorem 1.1.
This would yield elements h0, h1 in Hom

e(T∆,H) that form an αi-edge with
c(hi) ∈ Ri, contradicting our assumption on c and Ri.

To finish the proof of the theorem, fix the sets R0, R1 from Definition 4.6,
and take an arbitrary x ∈ C. By Lemma 4.9, we get that for one of them, say
R0, Alice has a winning strategy G(x, α0, R0). Let A1, . . . , A∆−1 be indepen-
dent sets as in Definition 4.6, i.e., with the property that R0∪

⋃

iAi = V (G).
Using Lemma 4.9 again, we obtain that Alice has a winning strategy in
G(x, αi, Ai) for each i ∈ ∆. This contradicts Claim 4.8.
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5 Applications

In this section we apply the theorems proven before to establish our main
results. We will choose a target graph using two prominent notions from
descriptive set theory: category and Ramsey property.

5.1 Complexity of the coloring problem

First we will utilize the shift-graph GS on [N]N to establish the complexity re-
sults. Let us mention that it would be ideal to use the main result of [TV21]
(i.e., that deciding the Borel chromatic number of graphs is complicated) di-
rectly and apply the Hom

ac(T∆, ·) map together with Theorem 1.1 to show
that this already holds for acyclic bounded degree graphs. Unfortunately,
since the mentioned theorem requires large a∆1

1-measurable chromatic num-
ber, this does not seem to be possible (the graphs constructed in [TV21] only
have large Borel chromatic numbers, at least a priori). Instead, we will rely
on the uniformization technique from [TV21]. Roughly speaking, the tech-
nique enables us to prove that in certain situations deciding the existence
of, say, Borel colorings is Σ

1
2-hard, whenever we are allowed to put graphs

“next to each other”.
Let X,Y be uncountable Polish spaces, Γ be a class of Borel sets and

Φ : Γ(X) → Π
1
1(Y ) be a map. Define FΦ ⊂ Γ(X) by A ∈ FΦ ⇐⇒ Φ(A) 6=

∅ and let the uniform family, UΦ, be defined as follows: for B ∈ Γ(NN ×X)
let

Φ̄(B) = {(s, y) ∈ N
N × Y : y ∈ Φ(Bs)},

and
B ∈ UΦ ⇐⇒ Φ̄(B) has a full Borel uniformization

(that is, it contains the graph of a Borel function NN → Y ).
Let ∆ be a family of subsets of Polish spaces. Recall that a subset A

of a Polish space X is ∆-hard, if for every Y Polish and B ∈ ∆(Y ) there
exists a continuous map f : Y → X with f−1(A) = B. A set is ∆-complete
if it is ∆-hard and in ∆. A family F of subsets of a Polish space X is
said to be ∆-hard on Γ, if there exists a set B ∈ Γ(NN × X) so that the
set {s ∈ NN : Bs ∈ F} is ∆-hard. The next definition captures the central
technical condition.

Definition 5.1. The family FΦ is said to be nicely Σ
1
1-hard on Γ if for

every A ∈ Σ
1
1(N

N) there exist sets B ∈ Γ(NN ×X) and D ∈ Σ
1
1(N

N × Y ) so
that D ⊂ Φ̄(B) and for all s ∈ NN we have

s ∈ A ⇐⇒ Ds 6= ∅ ⇐⇒ Φ(Bs) 6= ∅ ( ⇐⇒ Bs ∈ FΦ).
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A map Φ : Γ(X) → Π
1
1(Y ) is called Π

1
1 on Γ if for every Polish space P

and A ∈ Γ(P × X) we have {(s, y) ∈ P × Y : y ∈ Φ(As)} ∈ Π
1
1. Now we

have the following theorem.

Theorem 5.2 ([TV21], Theorem 1.6). Let X,Y be uncountable Polish
spaces, Γ be a class of subsets of Polish spaces which is closed under contin-
uous preimages, finite unions and intersections and Π

0
1 ∪Σ

0
1 ⊂ Γ. Suppose

that Φ : Γ(X) → Π
1
1(Y ) is Π1

1 on Γ and that FΦ is nicely Σ
1
1-hard on Γ.

Then the family UΦ is Σ1
2-hard on Γ.

Let us identify infinite subsets of N with their increasing enumeration.
If x, y ∈ [N]N let us use the notation y ≤∞ x in the case the set {n : y(n) ≤
x(n)} is infinite and y ≤∗ x if it is co-finite. Set D = {(x, y) : y ≤∞ x}. It
follows form the fact that GS restricted to sets of the form Dx has a Borel
3-coloring that the graphs Hom

ac(T∆,GS ↾ Dx) admit a Borel 3-coloring,
uniformly in x:

Lemma 5.3. There exists a Borel function fdom : [N]N → NN so that
for each x ∈ [N]N we have fdom(x) = 〈c0, . . . , c∆−1〉 with ci ∈ BC([N]N),
A([N]N)ci are Hom

ac(T∆,GS)-independent subsets of V (Hom
ac(T∆,GS))

for every i < ∆ and

V (Hom
ac(T∆,GS ↾ Dx)) =

∆−1
⋃

i=0

A([N]N)ci .

Proof. Note that it suffices to construct a Borel map c : [N]N×Hom
ac(T∆,GS) →

∆ that is a coloring of the graph Hom
ac(T∆,GS ↾ Dx) for each x: indeed,

we can use Proposition 2.4 for (Bi)x = {(x, h) : c(x, h) = i} to obtain Borel
maps fi : [N]

N → NN so that for every x ∈ [N]N we have A([N]N)fi(x) = Bi

and let fdom(x) = 〈f0(x), . . . , f∆−1(x)〉.
It has been established in [TV21, Lemma 4.5] (see also [DPT15]) that

there exists a Borel map c′ : D → 3 such that for each x it is a 3-coloring
of the graph GS ↾ Dx. As the map Root : Hom

ac(T∆,GS) → GS is a
Borel homomorphism by Proposition 3.2, it follows that the map c(x, h) :=
c′(x,Root(h)) is the desired ∆-coloring (in fact, 3-coloring).

Let H be the graph on NN × V (Hom
ac(T∆,GS)) defined by making

(x, h), (x′, h′) adjacent if x = x′ and h is adjacent to h′ in Hom
ac(T∆,GS).

Fixing a Polish topology on V (Hom
ac(T∆,GS)) that is compatible with the

Borel structure, we might assume that V (H) is a Polish space.
Putting together results proved in the previous sections, we get the fol-

lowing corollary.
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Corollary 5.4. The Borel chromatic number of Hom
ac(T∆,GS) is ∆+ 1.

Proof. This follows from Proposition 2.3, Theorem 2.1, and Theorem 1.1.

Now we are ready to prove the following.

Proposition 5.5. There exists a Borel set C ⊆ NN×NN×V (Hom
ac(T∆,GS))

so that the set {s : χB(H ↾ Cs) ≤ ∆} is Σ1
2-hard.

Proof. We check the applicability of Theorem 5.2, with X = V (Hom
ac(T∆,GS)),

Y = NN, Γ = ∆
1
1 and

Φ(A) = {c : (∀x, y ∈ A)
(

c = 〈c0, . . . , c∆−1〉, ci ∈ BC(X), x ∈
⋃

i

C(X)ci

and (x, y) ∈ Hom
ac(T∆,GS) ⇒ (∀i)

(

¬(x, y ∈ A(X)ci)
)

)

},

in other words, Φ(A) contains the Borel codes of the Borel ∆-colorings
of Hom

ac(T∆,GS) ↾ A. Let A ⊆ NN be analytic and take a closed set
F ⊂ NN × [N]N so that proj0(F ) = A. Let

B′ = {(s, y) : (∀x ≤∗ y)(x 6∈ Fs)}.

Lemma 5.6. 1. B′ ∈ Π
0
2.

2. Φ is Π1
1 on ∆

1
1.

3. For any Borel set C we have C ∈ UΦ if and only if χB(H ↾ C) ≤ ∆.

Proof. The first statement has been proved in the stated form in [TV21,
Lemma 4.6]. The second statements also follow from the straightforward
modification of the argument presented in [TV21, Lemma 4.6]: in fact, Φ is
Π

1
1 on ∆

1
1 if Hom

ac(T∆,GS) is replaced with any Borel graph, and the last
statement works for every Borel graph on a product space, where edges only
go between points in the same vertical section, in particular, for H.

Now define

B = {(s, h) : h ∈ Hom
ac(T∆,GS ↾ B′

s)},

and
D = {(s, c) : s ∈ A and (∃x ∈ Fs)(fdom(x) = c)},

where fdom is the function from Lemma 5.3.
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We will show that B and D witness that FΦ is nicely Σ
1
1-hard. The set

B is Borel by (1) of the lemma above, while by its definition D is analytic.
Suppose that s ∈ A. Then for each x′ ∈ Fs we have

B′
s = {y : (∀x ≤∗ y)(x 6∈ Fs)} ⊂ {y : y ≤∞ x′} = Dx′ .

Thus, by Lemma 5.3 Bs ∈ FΦ and Ds 6= ∅. Moreover, if c ∈ Ds then
for some x ∈ Fs we have fdom(x) = c with c = 〈c0, . . . , c∆−1〉, again
by Lemma 5.3 we have Bs ⊆

⋃∆−1
i=0 A([N]N)ci and the sets A([N]N)ci are

Hom
ac(T∆,GS)-independent, thus, Ds ⊆ Φ(Bs). Conversely, if s 6∈ A then

Fs = Ds = ∅ and B′
s = [N]N. Then Bs = Hom

ac(T∆,GS), which set does
not admit a Borel ∆-coloring by Corollary 5.4. Consequently, Φ(Bs) = ∅.

So, Theorem 5.2 is applicable and it yields a Borel set C ⊆ NN×NN×[N]N

so that {s : Cs ∈ UΦ} is Σ
1
2-hard. This implies the desired conclusion by

(3) of the Lemma above.

We can prove Theorem 1.2. Let us restate the theorem, describing pre-
cisely what we mean by “form a Σ

1
2-complete set”.

Theorem 1.2. Let X be an uncountable Polish space and ∆ > 2. The set

S = {c ∈ BC(X2) : C(X2)c is a ∆-regular acyclic Borel graph with Borel chromatic number ≤ ∆}

is Σ1
2-complete.
In particular, Brooks’ theorem has no analogue for Borel graphs in the

following sense: there is no countable family {Hi}i∈I of Borel graphs such
that for any Borel graph G with ∆(G) ≤ ∆ we have χB(G) > ∆ if and only
if for some i ∈ I the graph G contains a Borel homomorphic copy of Hi.

Proof of Theorem 1.2. First, note that using the fact that the codes of Borel
functions between Polish spaces form a Π

1
1 set, it is straightforward to show

that S is a Σ
1
2 set (see e.g., [TV21, Proof of Theorem 1.3]). Similarly, one

can check that if there was a collection {Hi : i ∈ I} as above, then this
would yield that the set S is Π

1
2. Thus, in order to show both parts of the

theorem it suffices to prove that S is Σ
1
2-hard.

Second, by [Sab12], it follows that if we replace continuous functions
with Borel ones in the definition of Σ1

2-hard sets we get the same class. As
uncountable Polish spaces are Borel isomorphic, it is enough to show that
S is Σ

1
2-hard for some X.

Take the graph H and the set C from Proposition 5.5. Note that the
graph Hom

ac(T∆,GS) is acyclic and has degrees ≤ ∆ by its construction.
Therefore, the same holds for H ↾ Cs for each s. Using that the sets Di =

21



{(s, x, h) : the degree of (x, h) in H ↾ Cs is i} are Borel, it is straightforward
to modify H so that we obtain a Borel graph H∆ on a Polish space of the form
X = NN×Y such that for each s the graph H∆ ↾ {s}×Y is ∆-regular, acyclic
and that the set {s : χB(H∆ ↾ {s} × Y )) ≤ ∆} = {s : χB(H ↾ Cs) ≤ ∆}
(indeed, to vertices in Di we can attach ∆− i-many disjoint infinite rooted
trees that are ∆-regular except for the root, which has degree ∆ − 1, in a
Borel way). The third part of Proposition 2.4 gives a Borel reduction from
the former set to S. Since the latter set is Σ

1
2-hard, this yields the desired

result by using [Sab12] as above.

5.2 Hyperfiniteness

In this section we use Baire category arguments to obtain a new proof of
Theorem 1.4.

Theorem 1.4. There exists a hyperfinite ∆-regular acyclic Borel graph with
Borel chromatic number ∆+ 1.

We will utilize a version of the graph G0 constructed in [KST99]. For
s ∈ 2<N define

Gs = {(s⌢(0)⌢c, s⌢(1)⌢c) : c ∈ 2N}

on 2N. Fix some collection (sn)n∈N ⊆ 2<N such that |sn| = n, i.e., sn ∈ 2n,
for every n ∈ N, together with a function e : N → ∆ such that (sn)e(n)=i ⊆

2<N is dense in 2<N for every i ∈ ∆. Set G0 =
⋃

n∈NGsn . Label an edge αi

if it is in the graph
⋃

e(n)=i Gsn . Finally, write H for the restriction of G0

to those vertices x such that every vertex in the connected component of x
is adjacent to at least one edge of each label. Standard arguments yield the
following claim.

Claim 5.7. 1. H is acyclic and locally countable.

2. H is defined on a comeager subset of 2N.

3. The Baire measurable edge-labeled chromatic number of H is infinite
(in fact, uncountable).

4. H is hyperfinite.

Proof. The fact the H is locally countable is clear from its definition, while
acyclicity follows from the assumption that |sn| = n. To see the second part,
note that the set {x ∈ 2N : ∀i ∈ ∆ ∃n (e(n) = i ∧ sn ❁ x)} is open and
dense in 2N. Now, H is the restriction of G0 to a set that is an intersection
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of the image of this set under countably many homeomorphisms of the form
s⌢n (i)⌢c 7→ s⌢n (1− i)⌢c, hence its vertex set is comeager.

The proof of the third part is identical to the proof of [KST99, Propo-
sition 6.2]. We include the argument for completeness. Assume that c :
2N → ℵ0 is a Baire measurable coloring and j ∈ ∆ is arbitrary. Then,
for some i, the set c−1(i) is non-meager. Since c−1(i) is Baire-measurable,
there is some neighborhood Nt such that Nt \ c

−1(i) is comeager. In turn,
there is some n with e(n) = j and Nsn \ c−1(i) comeager. Since the map
sn

⌢ (i)⌢ r 7→ sn
⌢ (1− i)⌢ r is category preserving from Nsn to Nsn , there

will be some x, y ∈ c−1(i)∩Nsn , with (x, y) ∈ Gsn , in other words, the edge
(x, y) is labeled j.

Finally, the hyperfiniteness of H follows from the fact that EH ⊂ E0

(see, e.g., [JKL02, Proposition 1.3]).

Proof of Theorem 1.4. By Claim 5.7 and Proposition 3.6 the graph Hom
e(T∆,H)

is hyperfinite, ∆-regular and acyclic. By Theorem 4.5 and Proposition 2.3
its Borel chromatic number is ∆+ 1.

Note that the above theorem also implies Theorem 1.6 in [CJM+20],
namely, that there is no Borel version of the Lovász Local Lemma (LLL)
even on hyperfinite graphs and if the probability of a bad event is polyno-
mial in the degree of the dependency graph (for related results and precise
definitions see [CGA+16] and [Ber23]). In order to see this, observe that the
sinkless orientation problem from [BFH+16] can be thought of as an instance
of the LLL as follows: Each edge corresponds to a random binary variable
representing its orientation. At each node the bad event has probability
2−∆: all incident edges are oriented towards it. It remains to observe that a
Borel solution to the sinkless orientation problem implies easily a Borel so-
lution to the edge grabbing problem which in turn, by Remark 4.1, implies
the existence of a Borel anti-game labeling. However, it follows from the
proof of Theorem 4.5 that Hom

e(T∆,H) does not admit a Borel anti-game
labeling.

5.3 Graph homomorphisms

In this section we prove Theorem 1.5 that we restate here for the convenience
of the reader.

Theorem 1.5. For every ∆ > 2 and every ℓ ≤ 2∆ − 2 there are a finite
graph H and a ∆-regular acyclic Borel graph G such that χ(H) = ℓ and G

23



†

P = K2 ×K2
V0 = K2

V1 = K2

H3 :

Figure 2: The maximal graph that is almost ∆-colorable for ∆ = 3.

does not admit Borel homomorphism to H. The graph G can be chosen to
be hyperfinite.

We remark that the first proof of the theorem (without the conclusion
about hyperfiniteness) relied on a construction from the random graph the-
ory, see [BCG+21] for motivation and connection to the LOCAL model. We
sketch the construction here for completeness. Fix k ∈ N, large enough
depending on ∆, and consider k∆ pairings on a set n sampled indepen-
dently uniformly at random. In other words, we have a k∆-regular graph
and there is a canonical edge ∆-labeling such that each vertex is adjacent
to exactly k edges of each color. Now taking a local-global limit of such
graphs as n → ∞ produces with probability 1 an acyclic graphing with
large edge-labeled chromatic number as needed, see [Bol81, HLS14].

Before we prove Theorem 1.5, we discuss graphs that are almost ∆-
colorable.

Almost ∆-colorable graphs. As we have seen, in Section 4.1, being al-
most ∆-colorable is (formally) a weaker condition than having chromatic
number at most ∆, but still allows us to use a version of Marks’ technique.
Similarly to the way the complete graph on ∆-many vertices, K∆, is max-
imal among graphs of chromatic number ≤ ∆, we show that there exists
a maximal graph (under homomorphisms) that is almost ∆-colorable. It
turns out that the chromatic number of the maximal graph is 2∆ − 2.

Let us describe the maximal examples of graphs that are almost ∆-
colorable for ∆ > 2. Recall that the (categorical) product G×H of graphs
G,H is the graph on V (G) × V (H), such that ((g, h), (g′ , h′)) ∈ E(G ×H)
if and only if (g, g′) ∈ E(G) and (h, h′) ∈ E(H).

Write P for the product K∆−1×K∆−1. Let V0 and V1 be vertex disjoint
copies of K∆−1. We think of vertices in Vi and P as having labels from [∆−1]
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and [∆ − 1] × [∆ − 1], respectively. The graph H∆ is the disjoint union of
V0, V1, P and an extra vertex † that is connected by an edge to every vertex
in P , and additionally, if v is a vertex in V0 with label i ∈ [∆− 1], then we
connect it by an edge with (i′, j) ∈ P for every i′ 6= i and j ∈ [∆ − 1], and
if v is a vertex in V1 with label j ∈ ∆ − 1, then we connect it by an edge
with (i, j′) ∈ P for every j′ 6= j and i ∈ [∆ − 1]. The graph H3 is depicted
in Fig. 2.

Proposition 5.8. 1. H∆ is almost ∆-colorable.

2. χ(H∆) = 2∆− 2.

3. A graph G is almost ∆ colorable if and only if it admits a homomor-
phism to H∆.

Proof. (1) Set R0 = V (V0) ∪ {†} and R1 = V (V1) ∪ {†}. By the definition
there are no edges between R0 and R1. Consider now, e.g., V (H∆) \ R0.
Let Aj consist of all elements in P that have second coordinate equal to j

together with the vertex in V1 that has the label j. By the definition, the
set Ai is independent and

⋃

i∈[∆−1]Ai covers H∆ \R0, and similarly for R1.
(2) First we show that χ(H∆) ≤ 2∆ − 2. Observe that there is no edge

between R0 \ R1 and R0 ∩ R1, as there is no edge between R0 and R1. It
follows that the chromatic number of the induced subgraph of H∆ to R0 is
∆ − 1. The desired 2∆ − 2 coloring of H∆ is then defined as the disjoint
union of the ∆− 1-colorings of R0 and V (H) \R0.

Next we show that χ(H∆) ≥ 2∆ − 2. Towards a contradiction, assume
that c is a coloring of H∆ with < 2∆ − 2-many colors. It follows that
|c(V (P ))| ≤ 2∆− 4, and also ∆− 1 ≤ |c(V (P ))|.

First we claim that there are no indices i, j ∈ [∆ − 1] (even with i = j)
such that c(i, r) 6= c(i, s) and c(r, j) 6= c(s, j) for every s 6= r: indeed,
otherwise, by the definition of P we had c(i, r) 6= c(s, j) for every r, s unless
(i, r) = (s, j), which would the upper bound on the size of c(V (P )).

Therefore, without loss of generality, we may assume that for every i ∈
[∆−1] there is a color αi and two indices ji 6= j′i such that c(i, ji) = c(i, j′i) =
αi. It follows form the definition of P and ji 6= j′i that αi 6= αi′ whenever
i 6= i′.

Moreover, note that any vertex in V1 is connected to at least one of the
vertices (i, ji) and (i, j′i), hence none of the colors {αi}i∈[∆−1] can appear on
V1. Consequently, since V1 is isomorphic to K∆−1 we need to use at least
∆− 1 additional colors, a contradiction.
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(3) First note that if G admits a homomorphism into H∆, then the
pullback of the sets R0, R1 and Ai for i ∈ [∆−1] witnesses that G is almost
∆-colorable.

Conversely, let G be almost ∆-colorable. Fix the corresponding sets
R0, R1 together with (∆ − 1)-colorings c0, c1 of their complements. We
construct a homomorphism Θ from G to H∆. Let

Θ(v) =























† if v ∈ R0 ∩R1,

c0(v) if v ∈ R1 \R0,

c1(v) if v ∈ R0 \R1,

(c0(v), c1(v)) if v 6∈ R0 ∪R1.

Observe that R = R0 ∩ R1 is an independent set such that there is no
edge between R and R0 ∪ R1. Using this observation, one easily checks
case-by-case that Θ is indeed a homomorphism.

Remark 5.9. It can be shown that for ∆ = 3 both the Chvátal and Grötsch
graphs are almost ∆-colorable.

Proof of Theorem 1.5. Note that it is enough to show the existence of such
H and G with χ(H) = 2∆ − 2. Indeed, since erasing a vertex decreases
the chromatic number by at most 1, we can produce subgraphs of H with
chromatic number exactly ℓ for each ℓ ≤ 2∆ − 2.

By Proposition 5.8, the graph H∆ is almost ∆-colorable and has chro-
matic number 2∆−2. Then it is easy to see that taking the target graph H as
in Claim 5.7 gives the conclusion by Proposition 3.6 and Theorem 4.7.

Remark 5.10. Interestingly, recent results connected to counterexamples
to Hedetniemi’s conjecture yield Theorem 1.5 asymptotically, as ∆ → ∞.
Recall that Hedetniemi’s conjecture is the statement that if G,H are finite
graphs then χ(G × H) = min{χ(G), χ(H)}. This conjecture has been re-
cently disproven by Shitov [Shi19], and strong counterexamples have been
constructed later (see, [TZ19, Zhu21]). We claim that these imply for ε > 0
the existence of finite graphs H with χ(H) ≥ (2 − ε)∆ to which ∆-regular
Borel forests cannot have, in general, a Borel homomorphism, for every large
enough ∆. Indeed, if a ∆-regular Borel forest admitted a Borel homomor-
phism to each finite graph of chromatic number at least (2 − ε)∆, it would
have such a homomorphism to their product as well. Thus, we would obtain
that the chromatic number of the product of any graphs of chromatic number
(2−ε)∆ is at least ∆+1. This contradicts Zhu’s result [Zhu21], which states
that the chromatic number of the product of graphs with chromatic number
n can drop to ≈ n

2 .
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6 Remarks and further directions

Since the construction of homomorphism graphs is rather flexible, we expect
that this method will find further applications. A direction that we do not
take in this paper is to investigate homomorphism graphs corresponding to
countable groups other than Z∗∆

2 . Another possible direction could be to
understand the connection of our method with hyperfiniteness.

While Theorem 1.2 is optimal in the Borel context, one might hope that
there is a positive answer in the case of graphs arising as compact, free
subshifts of 2Z

∗∆
2 .

Question 6.1. Is there a characterization of Borel graphs with Borel chro-
matic number ≤ ∆ that are compact, free subshifts of the left-shift action of
Z∗∆
2 on 2Z

∗∆
2 ?

A way to answer this question on the negative would be to extend the
machinery developed in [STD16] or [Ber21], so that the produced equivariant
maps preserve the Borel chromatic number, their range is compact, and then
apply Theorem 1.2; however, this seems to require a significant amount of
new ideas.

Let us point out that Theorem 1.1 has a particularly nice form, if we
assume Projective Determinacy or replace the Axiom of Choice with the
Axiom of Determinacy (see, e.g., [CK11] for related results).

Theorem 6.2. Let ∆ > 2.

• (PD) Let H be a locally countable Borel graph. Then

χpr(H) > ∆ ⇐⇒ χpr(Hom
ac(T∆,H)) > ∆,

where χpr stands for the projective chromatic number of H.

• (AD+DCℵ0) Let H be a locally countable graph on a Polish space. Then

χ(H) > ∆ ⇐⇒ χ(Hom
ac(T∆,H)) > ∆.
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