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We construct a gauge B − L model with D4 × Z4 × Z2 symmetry that can explain the

quark and lepton mass hierarchies and their mixings with the realistic CP phases via the

type-I seesaw mechanism. Six quark mases, three quark mixing angles and CP phase in

the quark sector can get the central values and Yukawa couplings in the quark sector are

diluted a range of three orders of magnitude difference by the perturbation theory at the first

order. For neutrino sector, the smallness of neutrino mass is achieved by the Type-I seesaw

mechanism. Both inverted and normal neutrino mass hierarchies are in consistent with the

experimental data. The prediction for the sum of neutrino masses for normal and inverted

hierarchies, the effective neutrino masses and the Dirac CP phase are well consistent with

all the recent limits.

PACS numbers: 11.30.Hv; 12.15.Ff; 12.60.Cn; 12.60.Fr; 14.60 Pq; 14.60.St

I. INTRODUCTION

The mass hierarchy problem is one of the most exciting issues in particle physics that require the

extension of the Standard Model (SM). Some of the experimental data related to flavour problem

including the origin of the quark mass hierarchy [1]mu ≪ mc ≪ mt and md ≪ ms ≪ mb, the

hierarchy of charged lepton mass me ≪ mµ ≪ mτ and the origin of the tiny of three quark mixing

angles as well as the neutrino mass spectrum and mixings.

Because of mentioned issues, various SM extensions have been implemented such as symmetry

extensions with scalars and/or fermion fields. The B − L model [2–8] is appreciated because the

simplest way is to add three right-handed neutrinos for generating neutrino masses. Although this

model solves many interesting problems such as dark matter [3], the muon anomalous magnetic

moment [4, 8], leptogenesis [5, 6] and gravitational wave radiation [7], it cannot provide a satisfactory

explanation for fermion masses and mixing observables. Non-Abelian discrete symmetries have seem

to be the most powerful tool for reproducing the observed mass and mixing patterns of leptona
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and quarks (see, for example, Ref. [9]). D4 symmetry received much attention because it can

provide a predictive depiction of the mentioned patterns [10–23], however, those previous works are

essentially different from our current study for the following basic points:

(1) Ref. [16] based on symmetries1 GBL × D4 × Z4 in which, for the quark sector, up to four

SU(2)L doublets and three singlets are introduced, and the obtained quark mixing matrix,

whose "13", "23", "31" and "32" entries are zero, is not natural because in fact all the

elements of the quark mixing matrix are non-zero [1].

(2) Ref. [17] based on symmetries2 GSM ×D4 × Z2 in which the realistic quark mixing pattern

has not been considered and the quark mass hierarchy is not satisfied.

(3) Ref. [18] based on symmetriesG331×U(1)L×D4 in which five SU(3)L triplets are used, and

the 1 − 2 mixing of the ordinary quarks is obtained if the D4 symmetry is violated with 1′

symmetry instead of 1 as usual.

(4) Ref. [19] based on symmetries G331×U(1)L×D4 in which the realistic quark mixing matrix

is achievedsatisfied, however, the quark mass hierarchy is not satisfied.

(5) In Ref. [20], the obtained quark mixing matrix, whose "13", "23", "31" and "32" entries are

zero, is not natural because in fact all the elements of the quark mixing matrix are non-zero

[1], and the quark mass hierarchy is not satisfied.

(6) In Ref. [21], the obtained quark mixing matrix, whose "13", "23", "31" and "32" entries are

zero, is not natural because in fact all the elements of the quark mixing matrix are non-zero

[1], and the quark mass hierarchy is not satisfied.

(7) Ref. [22] based on symmetries G331 × D4 × Z4 × Z
(1)
3 × Z

(2)
3 × Z16 in which two SU(3)L

triplets and six SU(3)L singlets are used.

(8) In Ref. [23], the quark mass hierarchy is a bit unnatural since the Yukawa couplings spread

over the region from O(10−3) to O(1) (three orders of magnitude difference).

Hence, it would be desirable to propose another D4 flavor model which can overcome the mentioned

limitations of previous studies, especially the quark mass hierarchy, the tiny of quark mixing angles,

the neutrino mass spectrum and mixing pattern.

1 GBL = SU(3)C × SU(2)L × U(1)Y × U(1)B−L is the gauge symmetry of B − L model.
2 GSM = SU(3)C × SU(2)L × U(1)Y is the SM gauge symmetry.
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In this study, we propose another D4 model, which differs from those of Refs. [13, 16], by

additionally introducing one doublet (H ′) put in 1′ under D4 [13] and using one singlet instead of

one doublet in the quark sector [16]. The properties under D4 of the right handed charged lepton

(l1R) and of the right handed neutrino (ν1R), and the properties under Z4 of right-hand leptons

l1R, lαR, ν1R, ναR and singlet scalars χ, φ, ϕ in our present work are completely different from those

of Ref. [13, 16]. As a consequence, the charged-leptons, neutrinos and quarks mass hierarchies can

be naturally achieved.

The rest of this work is layout as follows. We present the model description in section II. Sections

III and IV are devoted to the quark and lepton masses and mixings, respectively. Section V is for

the numerical analysis. We make some conclusions in Sec. VI.

II. THE MODEL

The total symmetry of the model is Γ = SU(2)L × U(1)Y × U(1)B−L × D4 × Z4 × Z2 where

lepton, quark and scalar fields, underD4 and Z4, are essentially different from those of Refs. [13, 16].

Namely, in this study, the first families of the left handed quark, right handed up-and down quarks

are assigned in 1+−; the two other families of quarks are assigned in 2. To explain the hierarchies

of quark masses, one SU(2)L doublet H ′ with B−L = 0 put in 1−+ under D4 together with three

flavons ρ, φ and ϕ with B−L = 0 respectively put in 2 and 1+− under D4 are additional introduced,

i.e., the considered model contains two SU(2)L doublets3. The particle and scalar contents of the

model is shown in Table I.

Table I. Particle and scalar contents of the model (α = 2, 3).

Fields Q1L QαL u1R uαR d1R dαR ψ1L ψαL l1R lαR ν1R ναR H H ′ ρ ϕ φ χ

U(1)B−L
1
3

1
3

1
3

1
3

1
3

1
3 −1 −1 −1 −1 −1 −1 0 0 0 0 0 2

D4 1+− 2 1+− 2 1+− 2 1−+ 2 1−+ 2 1−+ 2 1+− 1−+ 2 1+− 1−− 1+−

Z4 1 i −1 −i −1 −i 1 i −1 −i i i −1 −1 −i 1 −1 −1

Z2 − + − + − + + + + + − − + + − + − +

With the given particle content, Q̄1Lu1R transforms as (2, 12 , 0,1++,−1) can couple to (H̃ϕ)1++ ;

QαLuαR ∼ (2, 12 , 0,1+− + 1−+ + 1++ + 1−−, 1) can, respectively, couple to H̃, H̃ ′, (H̃ϕ)1++ and

(H̃ ′ϕ)1−− ; Q1LuαR ∼ (2, 12 , 0,2, i) can couple to (H̃ρ)2 and (H̃ ′ρ)2; and QαLu1R ∼ (2, 12 , 0,2,−i)

3 see, for instance [24, 25], for a review of the two-Higgs-doublet model (2HDM).
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can couple to (H̃ρ∗)2 and (H̃ ′ρ∗)2 to form invariant terms that generate up-quark mass matrix.

The situation is similar to the down quark sector. The Yukawa terms in the quark and lepton

sectors are:

−LqY =
xu1
Λ
(Q1Lu1R)1++(H̃ϕ)1++ + xu2(QαLuαR)1+−H̃ + xu3(QαLuαR)1−+H̃

′

+
yu1
Λ
(QαLuαR)1++(H̃ϕ)1++ +

yu2
Λ
(QαLuαR)1−−(H̃

′ϕ)1−− +
zu1
Λ
(Q1LuαR)2(H̃ρ)2

+
zu2
Λ
(QαLu1R)2(H̃ρ

∗)2 +
zu3
Λ
(Q1LuαR)2(H̃

′ρ)2 +
zu4
Λ
(QαLu1R)2(H̃

′ρ∗)2

+
xd1
Λ
(Q1Ld1R)1++(Hϕ)1++ + xd2(QαLdαR)1+−H + xd3(QαLdαR)1−+H

′

+
yd1
Λ
(QαLdαR)1++(Hϕ)1++ +

yd2
Λ
(QαLdαR)1−−(H

′ϕ)1−− +
zd1
Λ
(Q1LdαR)2(Hρ)2

+
zd2
Λ
(QαLd1R)2(Hρ

∗)2 +
zd3
Λ
(Q1LdαR)2(H

′ρ)2 +
zd4
Λ
(QαLd1R)2(H

′ρ∗)2 +H.c, (1)

−LYlep =
h1
Λ
(ψ1Ll1R)1++(Hϕ)1++ + h2(ψαLlαR)1+−H + h3(ψαLlαR)1−+H

′

+
h4
Λ
(ψαLlαR)1++(Hϕ)1++ +

h5
Λ

(
ψαLlαR

)
1−−

(H ′ϕ)1−−

+
x1
Λ

(
ψ̄1LναR

)
2

(
H̃ρ∗

)
2
+
x2
Λ

(
ψ̄1LναR

)
2

(
H̃ ′ρ∗

)
2

+
x3
Λ

(
ψ̄αLναR

)
1−+

(
H̃φ
)
1−+

+
x4
Λ

(
ψ̄αLναR

)
1+−

(
H̃ ′φ

)
1+−

+
y1
2Λ

(ν̄c1Rν1R)1++

(
ϕχ)1++ + y2(ν̄

c
αRναR)1+−χ+

y3
2Λ

(ν̄cαRναR)1++(ϕχ)1++ +H.c, (2)

where xu,d1,2,3, y
u,d
1,2 and zu,d1,2,3,4 are the Yukawa-like couplings in the quark sector, h1,2,3,4,5;x1,2,3,4 and

y1,2,3 are the Yukawa-like couplings in the lepton sector and Λ is the cut-off scale of the theory.

It is worthy to note that additional discrete symmetries D4, Z4 and Z2 play crucial roles

in forbidding undesired terms to get the expected quark and lepton mass matrices which are

listed in Table IV. For instance, in the absence of Z2, there will be additional invariant terms

(ψ1LlαR)2(Hρ)2, (ψ1LlαR)2(H
′ρ)2, (ψαLl1R)2(Hρ)2 and (ψαLl1R)2(H

′ρ)2 which contribute to the

entries "12", "13", "21" and "31" of the charged lepton matrix. As a result, we cannot obtain the

mass of charged leptons as expected since the charged lepton matrix cannot be diagonalized.

The vacuum expectation value (VEV) of the scalar fields get the form:

⟨H⟩ = (0 v)T , ⟨H ′⟩ = (0 v′)T , ⟨φ⟩ = vφ, ⟨ϕ⟩ = vϕ,

⟨ρ⟩ = (⟨ρ1⟩, ⟨ρ1⟩) ≡ (vρ, vρ) , ⟨χ⟩ = vχ. (3)

In fact, the electroweak symmetry breaking scale is of order about one hundred GeV, v2 + v′2 =

(174GeV)2. Furthermore, in the 2HDM, the limits of the parameter tβ = v′

v are given by [26]

tβ = v′

v ∈ [1.0.10.0] or [27] tβ = v′

v ∈ [1.0.3.0]. For the purpose of determining the scale of Yukawa
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couplings, we consider the case of tβ = 1.424, i.e.,

v = 100GeV, v′ = 142.40GeV. (4)

In addition, in order to satisfy the quark mass hierarchy, the VEV of singlets and the cut-off scale

are assumed to be as follows

vρ = 5× 1011GeV, vϕ = 1011GeV, Λ ≃ 1013GeV. (5)

The models with more than one SU(2)L scalar doublet as in this work, the Flavor Changing Neutral

Current (FCNC) processes such as b→ sγ exist in the Higgs sector. However, they are suppressed

by non-Abelian discrete symmetries [28, 29]. To make such process below the current experimental

limits, some restrictions on the model parameters such as the Yukawa couplings and large masses

for non SM scalars need to be imposed. The considered model contains many free parameters which

allows us freedom to assume that the remaining scalars are sufficiently heavy to fullfil the current

experimental limits. Furthermore, the first two lines of Eq. (2) imply that the off-diagonal Yukawa

couplings in the charged-lepton sector are proportional to vϕ
Λ ∼ 10−2. Therefore, the lepton flavor

violation (LFV) processes, such as lj → liγ, are suppressed by the tiny factor vϕ
Λ

1
m2
H

associated with

the mentioned small Yukawa couplings and the large mass scale of the heavy scalars mH [30–33].

A detailed study of FCNC and LFV processes are beyond the scope of this work.

III. QUARK MASS AND MIXING

Using the Clebsch-Gordan coefficients of D4 symmetry [34], from Eq. (1), when the scalar fields

get the VEVs as, Eq. (3), the up-and down-quark mass matrices take the following forms:

Mq =M (0)
q + δMq (q = u, d), (6)

where

M (0)
q =


a1q 0 0

0 a2q + a3q 0

0 0 a2q − a3q

 , δMq =


0 c1q + c3q c1q − c3q

c2q + c4q 0 b1q + b2q

c2q − c4q b1q − b2q 0

 , (7)

with

a1q = xq1v
vφ
Λ
, a2q = xq2v, a3q = xq3v

′, b1q = yq1v
vϕ
Λ
, b2q = yq2v

′ vϕ
Λ
,

c1q = zq1v
vρ
Λ
, c2q = zq2v

vρ
Λ
, c3q = zq3v

′ vρ
Λ
, c4q = zq4v

′ vρ
Λ

(q = u, d). (8)
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Expressions (6)−(8) show that, besides two doublets H and H ′, one singlet φ contributes to M (0)
q

while δMq is due to the contribution of two singlets ρ and ϕ. Without the contributions of ρ

and ϕ, δMq will be vanished and the quark mass matrices Mq in Eq. (6) reduce to the diagonal

matrices M (0)
q , i.e., the corresponding quark mixing matrix VCKM = I3×3 which was ruled out by

the recent data. The realistic quark mixing angles are very small [1] which implies that the quark

mixing matrix is very close to the identity matrix; thus, the second term δMq in Eq.(7) can be

considered as the perturbed parameter for generating the quark mixing pattern. As a consequence,

the realistic quark mixing pattern can be achieved at the first order of perturbation theory. Indeed,

at the first order of perturbed theory, the matrices δMq contribute to the eigenvectors but they

have no contribution to the eigenvalues of the quark mass matrices Mq. The quark masses are

determined as

mu = a1u, mc = a2u + a3u, mt = a2u − a3u,

md = a1d, ms = a2d + a3d, mb = a2d − a3d, (9)

and the corresponding perturbed quark mixing matrices are:

UuL = UuR =


1 c1u+c3u

mc−mu
c1u−c3u
mt−mu

c4u+c2u
mu−mc 1 b2u+b1u

mt−mc
c4u−c2u
mt−mu

b2u−b1u
mt−mc 1

 , UdL = UdR =


1 c1d+c3d

ms−mb
c1d−c3d
mb−md

c4d+c2d
md−ms 1 b2d+b1d

mb−ms
c4d−c2d
mb−md

b2d−b1d
mb−ms 1

 , (10)

with b1,2q and c1,2,3,4q (q = u, d) are given in Eq. (8). For simplicity, we consider tha case of

y1q = y2q = yq (q = u, d), z3d = z1d = zd, i.e.,

b2d = b1d = bd, b2u = b1u = bu, c3d = c1d. (11)

The quark mixing matrix, VCKM = V u
L V

d†
L , owns the following entries:

V 11
CKM = 1 +

2c∗1d(c1u + c3u)

(mu −mc)(md −ms)
,

V 12
CKM =

2b∗d(c1u − c3u)

(mb −ms)(mt −mu)
+
c1u + c3u
mc −mu

+
c∗2d + c∗4d
md −ms

,

V 13
CKM =

c1u − c3u
mt −mu

+
c∗4d − c∗2d
mb −md

, V 21
CKM =

c2u + c4u
mu −mc

+
2c∗1d

ms −md
,

V 22
CKM = 1 +

4b∗dbu
(mb −ms)(mt −mc)

+
(c2u + c4u)(c

∗
2d + c∗4d)

(mu −mc)(md −ms)
, (12)

V 23
CKM =

2bu
mt −mc

+
(c2u + c4u)(c

∗
2d − c∗4d)

(mb −md)(mc −mu)
, V 31

CKM =
c4u − c2u
mt −mu

,

V 32
CKM =

2b∗d
mb −ms

+
(c2u − c4u)(c

∗
2d + c∗4d)

(md −ms)(mu −mt)
, V 33

CKM = 1 +
(c2u − c4u)(c

∗
2d − c∗4d)

(mb −md)(mt −mu)
.
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Comparing the model results on the quark masses and quark mixing matrix in Eqs. (9) and (12)

with their corresponding experimental constraints on Vexp
ij as shown in Tab. II (the second column),

we get the explicit expressions of a1u,d, a2u,d, a3u,d, bu,d, c1u,d, c2u,d, c3u and c4u,d as functions of quark

masses and quark mixing matrix elements as presented in Eqs. (B1) and (B2) of Appendix B.

Expressions (8), (11), (B1) and (B2) imply that the model parameters a1u,d, a2u,d, a3u,d, bu,d, c1u,d,

c2u,d, c3u and c4u,d depend on the observed parameters in the quark sector, including quark masses

mu,mc,mt,md,ms,mb and quark mixing matrix elements V exp
ij (i, j = 1, 2, 3), that have been

determined accurately [1]. At the best-fit points of mentioned parameters4 given in Refs.[1], we

obtain a prediction for the quark mixing matrix and the model’s parameters in the quark sector as

shown in Table II and Eq. (13), respectively.

Table II. The best-fit points for quark parameters taken from Ref.[1] and the model prediction.

Observable Best-fit point [1] The model prediction Percent error (%)

mu[MeV] 2.16 2.16 0

mc[GeV] 1.27 1.27 0

mt[GeV] 172.69 172.69 0

md[MeV] 4.67 4.67 0

ms[MeV] 93.4 93.4 0

mb[GeV] 4.18 4.18 0

V 11
CKM 0.974352 0.974352 0

V 12
CKM 0.224998 0.224998 0

V 13
CKM 0.0015275− 0.003359i 0.0015275− 0.003359i 0

V 21
CKM −0.224865− 0.000136871i −0.224865− 0.000136871i 0

V 22
CKM 0.973492 0.973492 0

V 23
CKM 0.0418197 0.0418197 0

V 31
CKM 0.00792247− 0.00327i 0.00792247− 0.00327i 0

V 32
CKM −0.0410911− 0.000755113i −0.0410911− 0.000755113i 0

V 33
CKM 0.999118 0.999118 0

4 The best-fit points in Table II correspond to the Wolfenstain parameters[1]: λ = 0.2250, A = 0.826, ρ̄ = 0.159

and η̄ = 0.348 which correspond to the mixing angles sin θq12 = 0.22500, sin θq13 = 0.00369, sin θq23 = 0.04182 and

δqCP = 1.444.
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a1u = 2.160× 10−3GeV, a2u = 86.980GeV, a3u = −85.710GeV,

bu = (2.308 + 0.5413i)GeV, c1u = 8.414 + 3.028iGeV,

c2u = (−0.614 + 0.211i)GeV, c3u = (−8.269− 3.170i)GeV,

c4u = (0.754− 0.353i)GeV, a1d = 4.670× 10−3GeV, a2d = 2.140GeV,

a3d = −2.040GeV, bd = (−8.658 + 0.262i)10−2GeV,

c1d = (−5.080 + 4.973i)10−3GeV, c2d = (0.193− 0.077i)GeV,

c4d = (−0.204 + 0.087i)GeV. (13)

The Jarlskog invariant in the quark sector, JqCP = Im
[
VusVcbV

∗
csV

∗
ub

]
, is calculated from Eq. (12)

with the model result in Table II (the third column) as JqCP = 3.08 × 10−5, which coincides with

that of Ref. [1].

Next, comparing Eqs. (8) and (13) with the aid of Eqs. (4)-(5), ones obtain:

|x1u| = 2.16× 10−3, |x2u| = 0.87, |x3u| = 0.60, |y1u| = 2.37,

|y2u| = 1.67, |z1u| = 1.79, |z2u| = 0.13, |z3u| = 1.24, |z4u| = 0.12,

|x1d| = 4.67× 10−3, |x2d| = 2.14× 10−2, |x3d| = 1.43× 10−2,

|y1d| = 8.66× 10−2, |y2d| = 6.08× 10−2, |z1d| = 1.42× 10−3,

|z2d| = 4.16× 10−2, |z3d| = 10−2, |z4d| = 3.11× 10−2, (14)

which differ by about three orders of magnitude.

IV. LEPTON MASSES AND MIXINGS

Using the Clebsch-Gordan coefficients of D4[34], from Eq. (2), when the scalar fields get the

VEVs, Eq. (3), we find charged leptons (Ml) and neutrino (Dirac and right-handed Majorana)

mass matrices (MD,MR) as follows

Ml =


a1 0 0

0 a2 + a3 a4 + a5

0 a4 − a5 a2 − a3

 , MD =


0 −aD + bD aD + bD

0 cD + dD 0

0 0 −cD + dD

 , MR =


aR 0 0

0 bR cR

0 cR bR

 , (15)
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where

a1 =
(vϕ
Λ

)
vh1, a2 = h2v, a3 = h3v

′, a4 =
(vϕ
Λ

)
vh4, a5 =

(vϕ
Λ

)
v′h5. (16)

aD =
(vρ
Λ

)
x1v, bD =

(vρ
Λ

)
x2v

′, cD =
(vφ
Λ

)
x3v, dD =

(vφ
Λ

)
x4v

′,

aR =
y1
Λ
vχvϕ, bR = y2vχ, cR =

y3
Λ
vχvϕ. (17)

• Charged-lepton sector: For simplicity, we consider the case of arg h3 = (arg h2 + π) and arg h5 =

arg h4, i.e, arg a3 = (arg a2 + π) and arg a5 = arg a4. Yukawa couplings hi (i = 1÷ 5) are complex

in general, therefore the matrix Ml is complex and its eigenvalues are complex. Let us first define

a Hermitian matrix m2
l =MlM

†
l , given by

m2
l = MlM

+
l =


A0 0 0

0 B0 D0.e
−iθ

0 D0.e
iθ C0

 , (18)

where5

A0 = |a1|2, B0 =
(
|a2| − |a3|

)2
+
(
|a4|+ |a5|

)2
, C0 =

(
|a2|+ |a3|

)2
+
(
|a4| − |a5|

)2
,

D0 = 2
(
|a2||a4|+ |a3||a5|

)
cα, G0 = −2

(
|a3||a4|+ |a2||a5|

)
sα, D0 =

√
D2

0 +G2
0, (19)

θ = arccos

(
D0

D0

)
, α = arg a2 − arg a4. (20)

The matrix m2
l in Eq. (18) is diagonalised by two mixing matrices Vl(L,R) with V +

lLm
2
l VlR =

diag(m2
e,m

2
µ,m

2
τ ), where

m2
e = A0, m

2
µ,τ =

1

2

(
B0 + C0 ∓

√
(B0 − C0)2 + 4D2

0

)
, (21)

VlL = VlR =


1 0 0

0 cψ −sψ.e−iθ

0 sψ.e
iθ cψ

 , (22)

where

sψ =
1

√
2
√
1− B0−C0

B0−C0+
√

(B0−C0)2+4D2
0

. (23)

Equations (19)-(21) and (23) yield the following relations:

|a1| = me, |a2| =
|a4|D0sα + |a5|cαG0(

|a4|2 − |a5|2
)
s2α

, |a3| =
|a4|cαG0 + |a5|D0sα
(|a5|2 − |a4|2)s2α

,

|a4| =
a+ b

2
, |a5| =

a− b

2
, (24)

5 In this work, the following notations are used: sψ = sinψ, cψ = cosψ, sθ = sin θ, cθ = cos θ, tα = tanα, tθ =

tan θ, sδ = sin δCP , sij = sin θij , cij = cos θij and tij = tan θij (ij = 12, 13, 23).
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where

a =

√√
(B0C0 − x0 + y0)2 − 4B0C0y0 +B0C0 − x0 + y0

2C0
,

b =

√√
(B0C0 − x0 + y0)2 − 4B0C0y0 +B0C0 + x0 − y0

2B0
, (25)

x0 =

(
cαG0 +D0sα

)2
s22α

, y0 =

(
cαG0 −D0sα

)2
s22α

, (26)

B0 =
(
m2
µ −m2

τ

)
s2ψ +m2

τ , C0 =
(
m2
µ −m2

τ

)
s2ψ +m2

µ,

D0 =
(
m2
τ −m2

µ

)
cθsψcψ, G0 =

(
m2
µ −m2

τ

)
sθsψcψ. (27)

Expressions (16) and (24)-(27) imply that h1 depends onme,Λ, vϕ and v; h2 depends on v,mµ,mτ , ψ, θ

and α; h3 depends on v′,mµ,mτ , ψ, θ and α; and h4 and h5 depend on v,Λ, vϕ,mµ,mτ , ψ, θ and α.

As will see in Sec. V, with the observed charged leptons me,µ,τ [1] and the cut-off scale, the VEV

scales of scalar fields in Eqs (4) and (5), there exist possible ranges of the model parameters such

that the Yukawa couplings in the charged lepton sector, hi (i = 1 ÷ 5), differ by about two orders

of magnitude, i.e., the charged lepton mass hierarchy is satisfied.

• Neutrino sector: The effective neutrino mass matrix arise from type-I seesaw mechanism

Mν = −MDM
−1
R MT

D, obtained from Eq. (15), as follows:

Mν =


A −B1 −B2

−B1 C1 C3

−B2 C3 C2

 , (28)

where

A =
2b2D

bR + cR
+

2a2D
bR − cR

, B1 =
(cD + dD)

[
aD(bR + cR)− bD(bR − cR)

]
b2R − c2R

,

B2 =
(cD − dD)

[
aD(bR + cR) + bD(bR − cR)

]
b2R − c2R

, C1 =
bR(cD + dD)

2

b2R − c2R
,

C2 =
bR(cD − dD)

2

b2R − c2R
, C3 =

cR
(
c2D − d2D

)
b2R − c2R

. (29)

The mass matrix Mν in Eq.(28) owns three eigenvalues and the corresponding mixing matrix as
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follows:

λ1 = 0, λ2 =
C2 − 2B2n1 +An21 + n2(2C3 − 2B1n1 + C1n2)

n21 + n22 + 1
,

λ3 =
C2 − 2B2t1 +At21 + t2(2C3 − 2B1t1 + C1t2)

t21 + t22 + 1
, (30)

R =


k1√

1+k21(1+k
2
2)

n1√
n2
1+n

2
2+1

t1√
t21+t

2
2+1

k1k2√
1+k21(1+k

2
2)

n2√
n2
1+n

2
2+1

t2√
t21+t

2
2+1

1√
1+k21(1+k

2
2)

1√
n2
1+n

2
2+1

1√
t21+t

2
2+1

 , (31)

where new parameters k1,2, n1,2 and t1,2, own explicit expressions in Appendix C, satisfy the fol-

lowing relations

k1(n1 + k2n2) + 1 = 0, k1(t1 + k2t2) + 1 = 0, n1t1 + n2t2 + 1 = 0, (32)

C2 −B2(k1 + n1) + C3(k1k2 + n2) + k1
[
An1 + C1k2n2 −B1(k2n1 + n2)

]
= 0, (33)

C2 −B2(k1 + t1) + C3(k1k2 + t2) + k1
[
At1 + C1k2t2 −B1(k2t1 + t2)

]
= 0, (34)

C2 + C3n2 +An1t1 −B1n2t1 −B2(n1 + t1) + (C3 −B1n1 + C1n2)t2 = 0, (35)

C2 + k1
[
2C3k2 − 2B2 + k1(A− 2B1k2 + C1k

2
2)
]
= 0. (36)

Depending on the sign of ∆m2
31, the neutrino mass spectrum can be normal or inverted hierarchy

[1]. In the considered model, 0 = m1 ≡ λ1 < m2 ≡ λ2 < m3 ≡ λ3 for NH and 0 = m3 ≡ λ1 <

m1 ≡ λ2 < m2 ≡ λ3 for IH. Since the lightest neutrino mass is equal to zero, other neutrino masses

and their sum are given by m1 = 0, m2 =
√

∆m2
21, m3 =

√
∆m2

31 for NH,

m1 =
√
−∆m2

31, m2 =
√
∆m2

21 −∆m2
31, m3 = 0 for IH.

(37)

∑
mν =


√
∆m2

21 +
√
∆m2

31 for NH,√
∆m2

21 −∆m2
31 +

√
−∆m2

31 for IH.
(38)

The neutrino mass matrix Mν in Eq. (28) is diagonalized as

UTνMνUν =




0 0 0

0 m2 0

0 0 m3

 , Uν =


k1√

1+k21(1+k
2
2)

n1√
n2
1+n

2
2+1

t1√
t21+t

2
2+1

k1k2√
1+k21(1+k

2
2)

n2√
n2
1+n

2
2+1

t2√
t21+t

2
2+1

1√
1+k21(1+k

2
2)

1√
n2
1+n

2
2+1

1√
t21+t

2
2+1

 for NH,


m1 0 0

0 m2 0

0 0 0

 , Uν =


n1√

n2
1+n

2
2+1

t1√
t21+t

2
2+1

k1√
1+k21(1+k

2
2)

n2√
n2
1+n

2
2+1

t2√
t21+t

2
2+1

k1k2√
1+k21(1+k

2
2)

1√
n2
1+n

2
2+1

1√
t21+t

2
2+1

1√
1+k21(1+k

2
2)

 for IH,

(39)
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where λ2, λ3, k1,2, n1,2 and t1,2 are given in Appendix C.

Expressions (30) and (32)-(36) yield:
k1 =

n1t1+n2
2+1

t1(n2
1+n

2
2)+n1

, k2 =
n2(t1−n1)
n1t1+n2

2+1
, t2 = −n1t1+1

n2
for NH,

n2 =
1−k1n1
k1k2

, t1 =
k1(n1−k1k22)−1

k1[k1(1+k22)n1−1]
, t2 =

k2(k1+n1)
−1+k1(1+k22)n1

for IH,
(40)

A = −C2 −B2(k1 + n1) + C1k1k2n2 + C3(k1k2 + n2)−B1k1(k2n1 + n2)

k1n1
(NH and IH), (41)

B1 =
C3 + C1k1k2

k1
+

(C2 −B2k1 + C3k1k2)(n1 − t1)

(n1t2 − n2t1)k1
(NH and IH), (42)

B2 =
C2

k1
+ C3k2 (NH and IH), (43)

C1 =
C3(k1 − n1) +

(C2−B2n1+C3n2)(k1−t1)
t2−k2t1 + (C2−B2k1+C3k1k2)(n1−t1)n1

n2t1−n1t2

k1(k2n1 − n2)
(NH and IH), (44)

C2 =


√

∆m2
21

1+n2
1+n

2
2
+

√
∆m2

31n
2
2

(1+n1t1)2+n2
2(1+t

2
1)

for NH,

k21

(
k22

(√
−∆m2

31−
√

∆m2
21−∆m2

31

)
1+2k1n1+k21

[
n2
1+k

2
2(1+n

2
1)
] +

(1+k22)
√

∆m2
21−∆m2

31

1+k21(1+k
2
2)

)
for IH,

(45)

C3 =


√

∆m2
21n2

1+n2
1+n

2
2
−

√
∆m2

31(1+n1t1)n2

(1+n1t1)2+n2
2(1+t

2
1)

for NH,

k1k2

((√
∆m2

21−∆m2
31−

√
−∆m2

31

)
(k1n1+1)

1+2k1n1+k21

[
n2
1+k

2
2(1+n

2
1)
] −

√
∆m2

21−∆m2
31

1+k21(1+k
2
2)

)
for IH.

(46)

The corresponding leptonic mixing matrix is

U = U†
LUν =




k1√

(k22+1)k21+1

n1√
n2
1+n

2
2+1

t1√
t21+t

2
2+1

cψk1k2+e
−iθsψ√

(k22+1)k21+1

e−iθ(cψeiθn2+sψ)√
n2
1+n

2
2+1

e−iθ(sψ+eiθcψt2)√
t21+t

2
2+1

cψ−eiθk1k2sψ√
(k22+1)k21+1

cψ−eiθn2sψ√
n2
1+n

2
2+1

cψ−eiθsψt2√
t21+t

2
2+1

 for NH,


n1√

n2
1+n

2
2+1

t1√
t21+t

2
2+1

k1√
(k22+1)k21+1

e−iθ(cψeiθn2+sψ)√
n2
1+n

2
2+1

e−iθ(sψ+eiθcψt2)√
t21+t

2
2+1

cψk1k2+e
−iθsψ√

(k22+1)k21+1

cψ−eiθn2sψ√
n2
1+n

2
2+1

cψ−eiθsψt2√
t21+t

2
2+1

cψ−eiθk1k2sψ√
(k22+1)k21+1

 for IH.

(47)

The lepton mixing matrix UPMNS, in the standard parametrization, take the form:

UMPNS =


c13c12 s12c13 s13e

−iδ

−c23s12 − eiδc12s13s23 c12c23 − eiδs12s13s23 c13s23

s12s23 − eiδc12c23s13 −c12s23 − eiδc23s12s13 c13c23




1 0 0

0 eiη1 0

0 0 eiη2

, (48)

where sij = sin θij and cij = cos θij with θ13, θ12 and θ23 are the reactor, solar and atmospheric

mixing angles, respectively; δCP is the Dirac CP violation phase and η1,2 are the two Majorana CP
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violating phases. Comparing the entries "12" and "13" of two mixing matrices in (47) and (48) we

get:

η1 = 0, η2 = δ (both NH and IH). (49)

The lepton mixing angles, obtained from Eqs. (47) and (48), are:

s213 = |Ue3|2 =


t21

t21+t
2
2+1

for NH,
k21

1+k21

(
1+k22

) for IH,
(50)

s212 =
|Ue2|2

1− |Ue3|2
=


n2
1(t21+t22+1)

(t22+1)(n2
1+n

2
2+1)

for NH,
[1+k21(1+k22)]t21

(1+k21k
2
2)(1+t

2
1+t

2
2)

for IH,
(51)

s223 =
|Uµ3|2

1− |Ue3|2
=


c2ψt

2
2+s2ψcθt2+s

2
ψ

t22+1
for NH,

c2ψk
2
1k

2
2+s

2
ψ+k1k2s2ψcθ

1+k21k
2
2

for IH,
(52)

The Jarlskog invariant in the active sector, determined from Eq. (47), takes the form [1, 35]

J
(l)
CP =

n1t1(t2 − n2)sψcψsθ(
n21 + n22 + 1

) (
1 + t21 + t22

) (NH and IH). (53)

Comparing J (l)
CP in Eq. (53) and that of the standard parametrization, J (l)

CP = c12c
2
13c23s12s13s23sδ,

we obtain:

sδ =
n1t1(t2 − n2)sψcψsθ(

n21 + n22 + 1
) (

1 + t21 + t22
)
c12c213c23s12s13s23

(NH and IH). (54)

The effective neutrino masses [36], obtained from Eqs. (37), (39) and (47), possess the following

forms:

⟨mee⟩ =

∣∣∣∣∣
3∑
i=1

U2
eimi

∣∣∣∣∣ =


√
∆m2

21n
2
1

1+n2
1+n

2
2
+

√
∆m2

31t
2
1

1+t21+t
2
2

for NH,
√

−∆m2
31n

2
1

1+n2
1+n

2
2

+

√
∆m2

21−∆m2
31t

2
1

1+t21+t
2
2

for IH,
(55)

mβ =

√√√√ 3∑
i=1

|Uei|2m2
i =


√

∆m2
21n

2
1

1+n2
1+n

2
2
+

∆m2
31t

2
1

1+t21+t
2
2

for NH,√
(∆m2

21−∆m2
31)t21

1+t21+t
2
2

− ∆m2
31n

2
1

1+n2
1+n

2
2

for IH,
(56)

From Eqs. (50)-(52), we can express n1,2, t1 and sδ in terms of two constrained parameters cθ, sψ

and five observable parameters ∆m2
21,∆m

2
31, s212, s223, s213 and as follows:

• For NH:

n1 =
s212c

4
13t

2
1√(

c213t
2
1 − s213

)
s212c

2
12c

4
13t

2
1 − s212s

2
13c

2
13t1

, n2 =
(1 + n1t1)s13√
c213t

2
1 − s213

, (57)

t1 = t13

√√√√√s2ψ(s
2
23 − c2ψ) + c2ψ(c

2
23 + c2θs

2
ψ) + 2

√
c2θc

2
ψs

2
ψ(s

2
23c

2
23 − s2ψc

2
ψs

2
θ)(

c2ψ − s223
)2 . (58)
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• For IH:

k1 = −t13

√√√√√√s2ψ(s
2
23 − c2ψ) + c2ψ(c

2
23 + c2θs

2
ψ)− 2

√
c2θc

2
ψs

2
ψ(s

2
23c

2
23 − s2ψc

2
ψs

2
θ)(

c2ψ − s223

)2 , (59)

k2 =

√
k21c

2
13 − s213

k1s13
, n1 =

s12c12c
2
13

√
k21
(
k21c

2
13 − s213

)
− k1c

2
12s

2
13c

2
13

s413 + s212c
2
13

(
s213 − k21

) . (60)

Expressions (40)-(46) and (54)-(60) show that the model parameters sδ, k1,2, n1,2 and t1,2 de-

pend on two constrained parameters cθ, sψ and three observable parameters s212, s223, s213 while

A,B1,2, C1,2,3, ⟨mee⟩ and mβ depend on two constrained parameters cθ, sψ and five observable pa-

rameters ∆m2
21,∆m

2
31, s212, s223, s213.

V. NUMERICAL ANALYSIS

• For the charged lepton sector, using the values of Λ, the observed values of the charged lepton

masses [1], me = 0.51099MeV,mµ = 105.65837MeV,mτ = 1776.86MeV and the VEV of scalar

fields in Eqs. (4) and (5), with the help of Eqs. (16) and (24)-(27), we get |h1| ≃ 10−2, and h2,3,4,5

are still depend on three parameters α, θ and ψ. In the case of sα = −0.95 (α = 288.2◦), the

Yukawa-like couplings h2,3,4,5 depend on two parameters θ and ψ which are plotted in Figs. 1 and

2.
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103 |ℎ3| 
Figure 1. 103|h2| (left panel) and 103|h3| (right panel) versus cθ and sψ with cθ ∈ (0.29, 0.31) and sψ ∈

(0.25, 0.65).
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Figure 2. |h4| (left panel) and |h5| (right panel) versus cθ and sψ with cθ ∈ (0.29, 0.31) and sψ ∈ (0.25, 0.65).

Figures 1 and 2 imply

|h2| ≃ |h3| ∼ 10−2, |h4| ≃ |h5| ∼ 10−1, (61)

which implies that the Yukawa couplings in the charged lepton sector differ from each other by one

order of magnitude for a natural explanation to the charged lepton mass hierarchy.

• For neutrino sector. Equation (37) shows that neutrino masses (m2,3 for NH and m1,2 for IH)

depend on two experimental parameters ∆m2
31 and ∆m2

21 which have been measured with high

accuracy. In the case of ∆m2
21 and ∆m2

31 lie in 3σ range [37], i.e., ∆m2
21 ∈ (69.40, 81.40)meV2 and

∆m2
31 ∈ (2.47, 3.63)103 meV2, we get the allowed regions form1,2,3,m1 = 0, m2 ∈ (8.33, 9.02)meV,

m3 = (49.70, 51.30)meV for NH, and m1 ∈ (48.70, 50.30)meV, m2 = (49.4, 51.0)meV, m3 = 0 for

IH. The sum of neutrino masses are predicted to be

∑
mν (meV) ∈

 (58.25, 60.25) for NH,

(98.50, 101.0) for IH,
(62)

which are in consistent with the limits [38]
∑
mν < 0.15 eV (NH) and

∑
mν < 0.17 eV (IH),∑

mν < 0.14 eV [39],
∑
mν < 0.152 eV [40] (minimal ΛCDM+

∑
mν),

∑
mν < 0.118 eV (high-l

polarization),
∑
mν < 0.101 eV (NPDDE model),

∑
mν < 0.093 eV (NPDDE+r model) and the

most aggressive bound is
∑
mν < 0.078eV (NPDDE+r with the R16 prior) [40, 41],

∑
mν < 0.183

eV for IH [42],
∑
mν < 0.13 eV (the base dataset) and

∑
mν < 0.11 eV (pol dataset) [43],∑

mν < 0.19 eV [44].
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In order to determine the possible ranges of the parameters k1,2, n1,2, t1,2 and get predictive

values for the Dirac CP viloation phase δ, we use the observables ∆m2
21, ∆m2

31, sin
2 θ12, sin2 θ23

and sin2 θ13, whose experimental values given in Table III, as input parameters.

Table III. The global analysis of neutrino oscillation data [37]

Best− fit point (3σ range) (NH) Best− fit point (3σ range) (IH)

∆m2
21

[
meV2

]
75.0 (69.4 → 81.4) 75.0 (69.4 → 81.4)

|∆m2
31| [meV2]
103 2.55 (2.47 → 2.63) 2.45 (2.37 → 2.53)

sin2 θ12 0.318 (0.271 → 0.369) 0.318 (0.271 → 0.369)

sin2 θ23 0.574 (0.434 → 0.610) 0.578 (0.433 → 0.608)

sin2 θ13
10−2 2.200 (2.00 → 2.405) 2.225 (2.018 → 2.424)

δCP /π 1.08 (0.71 → 1.99) 1.58 (1.11 → 1.96)

At the best-fit values of the lepton mixing angles[37], sin2 θ12 = 0.318 and sin2 θ13 = 2.200×10−2

for NH while sin2 θ12 = 0.318 and sin2 θ13 = 2.225 × 10−2 for IH, sδ, k1,2, n1,2 and t1,2 depend on

two parameters cθ and sψ. The Dirac CP violating phase δ (more precisely, sδ) as a function of two

parameters cθ and sψ, with cθ ∈ (0.29, 0.31) and sψ ∈ (0.25, 0.65) for both IH and NH, is plotted

in Fig. 3, which implies that

sδ ∈ (−0.95, −0.50), i.e., δ◦ ∈ (288.20, 330.00) (NH and IH). (63)

          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑠δ 

 

Figure 3. sδ versus cθ and sψ with cθ ∈ (0.29, 0.31) and sψ ∈ (0.25, 0.65) for both NH and IH.
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The dependence of k1,2, n1,2 and t1,2 on two parameters cθ and sψ, with cθ ∈ (0.29, 0.31) and

sψ ∈ (0.25, 0.65) for both IH and NH, are respectively plotted in Figs. 4,5, 6,7, 8 and 9.
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𝑘1 

 

Figure 4. k1 versus cθ and sψ with cθ ∈ (0.29, 0.31) and sψ ∈ (0.25, 0.65) for NH (left panel) and IH (right

panel).
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Figure 5. k2 versus cθ and sψ with cθ ∈ (0.29, 0.31) and sψ ∈ (0.25, 0.65) for NH (left panel) and IH (right

panel).
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Figure 6. n1 versus cθ and sψ with cθ ∈ (0.29, 0.31) and sψ ∈ (0.25, 0.65) for NH (left panel) and IH (right

panel).
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Figure 7. n2 versus cθ and sψ with cθ ∈ (0.29, 0.31) and sψ ∈ (0.25, 0.65) for NH (left panel) and IH (right

panel).

These figures imply:

k1 ∈

 (−1.54,−1.42) for NH,

(−0.215,−0.170) for IH,
k2 ∈

 (−0.25, 0.10) for NH,

(−4.60,−3.20) for IH,
(64)

n1 ∈

 (0.70, 0.875) for NH,

(−4.50,−2.75) for IH,
n2 ∈

 (0.20, 0.80) for NH,

(−3.00,−1.60) for IH,
(65)

t1 ∈

 (0.30, 1.00) for NH,

(0.90, 1.20) for IH,
t2 ∈

 (−5.00,−1.50) for NH,

(−1.50,−0.90) for IH.
(66)
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Figure 8. t1 versus cθ and sψ with cθ ∈ (0.29, 0.31) and sψ ∈ (0.25, 0.65) for NH (left panel) and IH (right

panel).
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Figure 9. t2 versus cθ and sψ with cθ ∈ (0.29, 0.31) and sψ ∈ (0.25, 0.65) for NH (left panel) and IH (right

panel).

Similarly, to determine the possible ranges of the parameters A,B1,2, C1,2,3, ⟨mee⟩ and mβ we

fix sin2 θ12, sin2 θ23 and sin2 θ13 at their best-fit points [37] and cθ = 0.30 (θ = 72.54◦) and

sψ = 0.40 (ψ = 23.58◦) for both IH and NH, and ∆m2
21 and ∆m2

31 take the values in their 3

σ ranges [37], ∆m2
21 ∈ (69.4, 81.4)meV2 and ∆m2

31 ∈ (2.47, 2.63)103meV2 (NH) while ∆m2
31 ∈

(−2.53,−2.37)103meV2 (IH). The dependence of A,B1,2, C1,2,3, ⟨mee⟩ and mβ on two parameters

∆m2
21 and ∆m2

31 are presented in Figs. 10, 11,12, 13,14, 15, 16 and 17, respectively.
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Figure 10. A (meV) versus ∆m2
21 and ∆m2

31 with ∆m2
21 ∈ (69.4, 81.4)meV2 and ∆m2

31 ∈

(2.47, 2.63)103 meV2 for NH (left panel) and ∆m2
31 ∈ (−2.53,−2.37)103 meV2 for IH (right panel).
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Figure 11. B1 (meV) versus ∆m2
21 and ∆m2

31 with ∆m2
21 ∈ (69.4, 81.4)meV2 and ∆m2

31 ∈

(2.47, 2.63)103 meV2 for NH (left panel) and ∆m2
31 ∈ (−2.53,−2.37)103 meV2 for IH (right panel).
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Figure 12. B2 (meV) versus ∆m2
21 and ∆m2

31 with ∆m2
21 ∈ (69.4, 81.4)meV2 and ∆m2

31 ∈

(2.47, 2.63)103 meV2 for NH (left panel) and ∆m2
31 ∈ (−2.53,−2.37)103 meV2 for IH (right panel).
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Figure 13. C1 (meV) versus ∆m2
21 and ∆m2

31 with ∆m2
21 ∈ (69.4, 81.4)meV2 and ∆m2

31 ∈

(2.47, 2.63)103 meV2 for NH (left panel) and ∆m2
31 ∈ (−2.53,−2.37)103 meV2 for IH (right panel).

Figures 10 and 15 imply that:

A ∈

 (3.700, 3.925)meV for NH,

(48.00, 49.40)meV for IH,
B1 ∈

 (3.90, 4.25)meV for NH,

(−4.775,−4.60)meV for IH,
(67)

B2 ∈

 (−7.15,−6.80)meV for NH,

(−5.75,−5.575)meV for IH,
C1 ∈

 (38.40, 39.60)meV for NH,

(27.40, 28.20)meV for IH.
(68)

C2 ∈

 (16.00, 16.60)meV for NH,

(23.00, 23.70)meV for IH,
C3 ∈

 (−19.00,−18.20)meV for NH,

(−24.70,−24.00)meV for IH.
(69)
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Figure 14. C2 (meV) versus ∆m2
21 and ∆m2

31 with ∆m2
21 ∈ (69.4, 81.4)meV2 and ∆m2

31 ∈

(2.47, 2.63)103 meV2 for NH (left panel) and ∆m2
31 ∈ (−2.53,−2.37)103 meV2 for IH (right panel).
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Figure 15. C3 (meV) versus ∆m2
21 and ∆m2

31 with ∆m2
21 ∈ (69.4, 81.4)meV2 and ∆m2

31 ∈

(2.47, 2.63)103 meV2 for NH (left panel) and ∆m2
31 ∈ (−2.53,−2.37)103 meV2 for IH (right panel).

Figures 16 and 17 show the predictive regions of the effective neutrino-masses:

⟨mee⟩ ∈

 (3.700, 3.925)meV for NH,

(48.00, 49.40)meV for IH,
mβ ∈

 (8.75, 9.10)meV for NH,

(48.40, 49.80)meV for IH,
(70)

which are below the upper limits for ⟨mee⟩ from KamLAND-Zen [45] ⟨mee⟩ < 61÷165meV, GERDA

[46] ⟨mee⟩ < 104 ÷ 228meV and CUORE [47] ⟨mee⟩ < 75 ÷ 350meV, and the constraints for mβ

with 8.5meV < mβ < 1.1 eV for NH and 48meV < mβ < 1.1 eV for IH [1], mβ ∈ (8.90÷ 12.60) eV

[48], and mβ < 0.8 eV [49].
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Figure 16. ⟨mee⟩ (meV) versus ∆m2
21 and ∆m2

31 with ∆m2
21 ∈ (69.4, 81.4)meV2 and ∆m2

31 ∈

(2.47, 2.63)103 meV2 for NH (left panel) and ∆m2
31 ∈ (−2.53,−2.37)103 meV2 for IH (right panel).
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Figure 17. mβ (meV) versus ∆m2
21 and ∆m2

31 with ∆m2
21 ∈ (69.4, 81.4)meV2 and ∆m2

31 ∈

(2.47, 2.63)103 meV2 for NH (left panel) and ∆m2
31 ∈ (−2.53,−2.37)103 meV2 for IH (right panel).

VI. CONCLUSIONS

We have constructed a gauge B − L model with D4 × Z4 × Z2 symmetry that can explain

the quark and lepton mass hierarchies and their mixing patterns with the realistic CP phases

via the type-I seesaw mechanism. Six quark mases, three quark mixing angles and CP phase in

the quark sector can get the central values and Yukawa couplings in the quark sector are diluted

a range of three orders of magnitude difference by the perturbation theory at the first order.

For neutrino sector, the smallness of neutrino mass is achieved by the Type-I seesaw mechanism.
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Both inverted and normal neutrino mass hierarchies are in consistent with the experimental data.

The prediction for the sum of neutrino masses is 58.25meV ≤
∑
mν ≤ 60.25 meV for normal

hierarchy and 98.50meV ≤
∑
mν ≤ 101.00 meV for inverted hierarchy which are well consistent

with all the recent limits. In addition, the Dirac CP phase is predicted to be 288.20 ≤ δ(◦) ≤

330.00 within the 3σ range of experimental constraint. The effective neutrino masses are predicted

to be 3.700meV ≤ ⟨mee⟩ ≤ 3.925 meV, 8.75meV ≤ mβ ≤ 9.10meV for normal hierarchy and

48.00meV ≤ ⟨mee⟩ ≤ 49.40 meV and 48.40meV ≤ mβ ≤ 49.80meV for inverted hierarchy which

are in consistence with the recent constraints.
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Appendix A: Forbidden terms under the model’s symmetries

Table IV. Yukawa terms forbidden by the model’s symmetries

Yukawa terms Forbidden by

(ψαLlαR)1+−H̃, (ψαLlαR)1−+
H̃ ′; (ψ1LναR)2(Hρ

∗)2, (ψ1LναR)2(H
′ρ∗)2;

U(1)Y

(ψαLναR)1−+
(H̃φ)1−+

, (ψαLναR)1+−(H̃
′φ)1+− ; (Q1Lu1R)1++

(Hϕ)1++
,

(QαLuαR)1++(Hϕ)1++ , (QαLuαR)1+−H, (QαLuαR)1−+H
′, (QαLuαR)1−−(H

′ϕ)1−− ;

(Q1LuαR)2(Hρ)2, (Q1LuαR)2(H
′ρ)2, (QαLu1R)2(Hρ

∗)2, (QαLu1R)2(H
′ρ∗)2,

(Q1Ld1R)1++
(H̃ϕ)1++

, (QαLdαR)1++
(H̃ϕ)1++

, (QαLdαR)1+−H̃, (QαLdαR)1−+
H̃ ′,

(QαLdαR)1−−(H̃
′ϕ)1−− ; (Q1LdαR)2(H̃ρ)2, (Q1LdαR)2(H̃ ′ρ)2,

(QαLd1R)2(H̃ρ
∗)2, (QαLd1R)2(H̃ ′ρ∗)2

(νC1Rν1R)1++
(ϕχ∗)1++

, (νC1Rν1R)1++
(ρ2)1++

, (νC1Rν1R)1++
(ρ∗2)1++

;

U(1)B−L(νCαRναR)1++(ϕχ
∗)1++ , (ν

C
αRναR)1++(ρ

2)1++ , (ν
C
αRναR)1++(ρ

∗2)1++ ;

(νCαRναR)1+−χ
∗; (ψ1Lψ

C
1L)1++

H̃2, (ψ1Lψ
C
1L)1++

H̃ ′2.

(ψ1Ll1R)1++H, (ψ1Ll1R)1++H
′, (ψ1Ll1R)1++(H

′ϕ)1−− ; (ψ1Lν1R)1+−(Hρ
∗)2,

D4

(ψ1Lν1R)1+−(H
′ρ∗)2; (ψαLν1R)2(H̃φ)1−+

, (ψαLν1R)2(H̃
′φ)1+− ; (ν

C
1Rν1R)1++

χ;

(νC1RναR)2χ, (ν
C
1RναR)2(ϕχ)1++

; (Q1Lu1R)1++
H̃, (Q1Lu1R)1++

H̃ ′,

(Q1Lu1R)1++
(H̃ ′ϕ)1−− , (QαLuαR)1++

H̃, (QαLuαR)1++
H̃ ′, (QαLuαR)1++

(H̃ ′ϕ)1−− ,

(Q1Ld1R)1++H, (Q1Ld1R)1++H
′, (Q1Ld1R)1++(H

′ϕ)1−− ,

(QαLdαR)1++
H, (QαLdαR)1++

H ′, (QαLdαR)1++
(H ′ϕ)1−−

(ψ1LναR)2(H̃ρ)2, (ψ1LναR)2(H̃
′ρ)2, (ψαLν1R)2(H̃ρ)2, (ψαLν1R)2(H̃ρ

∗)2,

Z4

(ψαLν1R)2(H̃
′ρ)2, (ψαLν1R)2(H̃

′ρ∗)2, (Q1LuαR)2(Hρ
∗)2, (Q1LuαR)2(H

′ρ∗)2,

(QαLu1R)2(Hρ)2, (QαLu1R)2(H
′ρ)2; (Q1LdαR)2(H̃ρ

∗)2, (Q1LdαR)2(H̃ ′ρ∗)2,

(QαLd1R)2(H̃ρ)2, (QαLd1R)2(H̃ ′ρ)2

(ψ1LlαR)2(Hρ)2, (ψ1LlαR)2(H
′ρ)2, (ψαLl1R)2(Hρ

∗)2, (ψαLl1R)2(H
′ρ∗)2 Z2
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Appendix B: The explicit expressions of a1u,d, a2u,d, a3u,d, bu,d, c1u,d, c2u,d, c3u and c4u,d

as functions of quark masses and quark mixing matrix elements

The explicit expressions of a1u,d, a2u,d, a3u,d, bu,d, c1u,d, c2u,d, c3u and c4u,d are:

a1u = mu, a2u =
mc +mt

2
, a3u =

mc −mt

2
,

a1d = md, a2d =
ms +mb

2
, a3d =

ms −mb

2
,

c1u = −c3u +
(md −ms)(mc −mu)

(
1−Vexp

11

)
2c∗1d

,

c2u =
(mu −mc)(md −ms)

c∗2d + c∗4d

[
4b∗dbu

(mb −ms)(mc −mt)
+

c4u(c
∗
2d + c∗4d)

(mc −mu)(md −ms)
+ Vexp

22 − 1

]
,

c3u =
mu −mt

2

[
(Vexp

11 − 1)(mc −mu)(md −ms)

2c∗1d(mt −mu)
+
c∗2d − c∗4d
mb −md

+Vexp
13

]
,

2c4u =
4b∗dbu(mc −mu)(ms −md)

(c∗2d + c∗4d)(mb −ms)(mc −mt)
− Vexp

33 (mb −md)(mt −mu)

c∗2d − c∗4d

+
(mb −md)(mt −mu)

c∗2d − c∗4d
+

Vexp
22 (mu −mc)(md −ms)

c∗2d + c∗4d
+

(mc −mu)(md −ms)

c∗2d + c∗4d
, (B1)

bu =
(mb −ms)(mc −mt)

{
(c∗2d + c∗4d)

[
2c∗1d + (md −ms)V

exp
21

]
+ (md −ms)

2
(
1−Vexp

22

)}
4b∗d(md −ms)2

,

b∗d =
(mb −md)(mb −ms)

{
(1−Vexp

11 )(md −ms)
2 + 2c∗1d

[
c∗2d + c∗4d + (ms −md)V

exp
12

]}
4c∗1d(md −ms)

[
c∗4d − c∗2d +Vexp

13 (md −mb)
] ,

c∗2d =
c∗4dV

exp
31 +

(
Vexp

33 − 1
)
(md −mb)

Vexp
31

, c∗4d =
{
2c∗1d(md −ms)

[
mbFq +mdGq +msHq

]
+(md −ms)

3Tq + 4c∗21d(V
exp
33 − 1)

[
Vexp

13 (mb −md) + Vexp
12 (md −ms)

]}
/
{
4c∗1dV

exp
31

[
2c∗1dV

exp
13

+(md −ms)(V
exp
13 Vexp

21 −Vexp
23 )

]}
,

c∗1d =
(ms −md)

√
K1q + (ms −md)P1q +Vexp

13 (md −ms)
[
(Vexp

22 − 1)Vexp
31 −Vexp

21 Vexp
32

]
4Vexp

13 Vexp
32 − 4Vexp

12 Vexp
33

,

where

Fq = (Vexp
33 − 1)(Vexp

13 Vexp
21 −Vexp

23 ), Gq = Vexp
33

[
Vexp

11 +
(
Vexp

12 −Vexp
13

)
Vexp

21 −Vexp
22 +Vexp

23

]
+Vexp

22 −Vexp
23 −Vexp

11 −Vexp
12 (Vexp

21 +Vexp
23 Vexp

31 ) + Vexp
13 [Vexp

21 + (Vexp
22 − 1)Vexp

31 ],

Hq =
(
Vexp

11 +Vexp
22

)
(1−Vexp

33 ) + Vexp
12 (Vexp

21 −Vexp
21 Vexp

33 +Vexp
23 Vexp

31 ) + Vexp
13 Vexp

31 (1−Vexp
22 ),

Tq = (1−Vexp
11 )

[
Vexp

21 (1−Vexp
33 ) + Vexp

23 Vexp
31

]
, (B2)

K1q =
[(
Vexp

11 +Vexp
12 Vexp

21

)
Vexp

33 −Vexp
12 Vexp

23 Vexp
31 −Vexp

13 Vexp
21 Vexp

32 +
(
Vexp

22 − 1
)
Vexp

13 Vexp
31

−Vexp
22 Vexp

33 +Vexp
23 Vexp

32

]2
+ 4
(
Vexp

11 − 1
)(
Vexp

13 Vexp
32 −Vexp

12 Vexp
33

)(
Vexp

21 Vexp
33 −Vexp

23 Vexp
31

)
,

P1q = (Vexp
22 −Vexp

11 −Vexp
12 Vexp

21 )Vexp
33 + (Vexp

12 Vexp
31 −Vexp

32 )Vexp
23 .
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Appendix C: The explicit expressions of k1,2, n1,2 and t1,2 as functions of

aD, bD, cD, fD, gD, aR, bR and cR

The explicit expressions of k1,2, n1,2 and t1,2 are:

k1 =
cD − dD
aD + bD

, k2 =
aD − bD
cD + dD

, (C1)

n1 =
{
a2D(bD − aD)(bR + cR)− bD

[
(cR − bR)(b

2
D + 2cDdD) + (c2D + d2D)cR

]
−aD

[
b2D(bR − cR) + 2cDdD(bR + cR) + (c2D + d2D)cR

]
+ (aD − bD)

√
∆
}

/
{
(cD − dD)

{
b2D(cR − bR) + a2D(bR + cR) +

[
(cD + dD)

2 − 2aDbD
]
cR
}}
, (C2)

n2 =
{
(cD + dD)

{[
(aD + bD)

2 + (cD − dD)
2
]
c2R + (a2D − b2D)cRbR + 2(cDdD − aDbD)b

2
R

−bR
√
∆
}}
/
{
(cD − dD)

[
b2DbR(cR − bR) + a2DbR(bR + cR) + bRcR(c

2
D + d2D)− cR

√
∆
]}
, (C3)

t1 =
{
a2D(bD − aD)(bR + cR) + bD

[
(b2D + 2cDdD)(bR − cR)− (c2D + d2D)cR

]
−aD

[
b2D(bR − cR) + c2DcR + 2cDdD(bR + cR) + cRd

2
D

]
+ (bD − aD)

√
∆
}

/
{
(cD − dD)

[
b2D(cR − bR)− 2aDbDcR + a2D(bR + cR) + cR(cD + dD)

2
]}
, (C4)

t2 =
{
(cD + dD)

{[
(aD + bD)

2 + (cD − dD)
2
]
c2R + (a2D − b2D)cRbR + 2(cDdD − aDbD)b

2
R

+bR
√
∆
]}}

/
{
(cD − dD)

[
b2DbR(cR − bR) + a2DbR(bR + cR) + bRcR(c

2
D + d2D) + cR

√
∆
]}
,(C5)

where

∆ = a4D(bR + cR)
2 +

[
b2DbR − (b2D + c2D)cR

]2
+ 8aDbDcDdD(c

2
R − b2R) + c2Rd

4
D

+2
[
2b2Rc

2
D − b2DbRcR + (b2D − c2D)c

2
R

]
d2D + 2a2D(bR + cR)

[
b2D(bR − cR) + cR(c

2
D + d2D)

]
. (C6)
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