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Abstract

We study limited strategic leadership. A collection of subsets covering the leader’s

action space determine her commitment opportunities. We characterize the outcomes

resulting from all possible commitment structures of this kind. If the commitment

structure is an interval partition, then the leader’s payoff is bounded by her Stackelberg

and Cournot payoffs. However, under more general commitment structures the leader

may obtain a payoff that is less than her minimum Cournot payoff. We apply our

results to study information design problems in leader-follower games where a mediator

communicates information about the leader’s action to the follower.
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1 Introduction

We study limited strategic leadership, where one player can make early commitments, but

only to a limited extent. This situation is typical in markets for innovative products like new

pharmaceuticals or technologies, where the leader enjoys a temporary monopoly, often due

to patents or specialized knowledge. During this monopoly phase, the leader’s early strategic

investments can shape—but crucially, not fully determine—future business decisions. We

introduce a framework to study situations of this kind. Our framework extends the Stackelberg

leadership model to account for the fact that commitment opportunities may be limited.

Our model is simple. There are two periods and two players, a leader and a follower. The

model is parametrized by a collection of subsets that cover the leader’s action space; we refer

to this collection of subsets as the commitment structure (CST). In the first period, the leader

selects an element from the CST. In the second period, leader and follower simultaneously

choose one action each, the leader being restricted to pick an action from the subset which

she selected in the first period. The “Stackelberg” and “Cournot” models are special cases

of our model: in the former, the CST consists of singletons; in the latter, the CST comprises

just one element, namely, the leader’s entire action space.

We say that an outcome is plausible if it is a subgame perfect equilibrium outcome of the

game described above for some CST. An outcome is simply plausible if said CST partitions

the leader’s action space into intervals. Our main results characterize the sets of plausible and

simply-plausible outcomes.

The function U mapping every action of the leader to the payoff she obtains when the

follower best-responds plays a central role in our results. A subset of the leader’s action space

is called U-monotone if whenever an action is contained in it so is the upper contour set of

that action with respect to U .

While any plausible outcome gives the leader at most her Stackelberg payoff, a natural

question is whether a Cournot payoff gives a corresponding lower bound. We show that all

simply-plausible outcomes give the leader at least her minimum Cournot payoff. However,
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in general, the simply-plausible actions of the leader are not U -monotone. In particular, an

outcome in which the follower best responds to the leader may fail to be simply plausible even

though the corresponding payoff of the leader is greater than one of her Cournot payoffs. By

contrast, the plausible actions of the leader are U -monotone, but an outcome may be plausible

and yet be such that the leader obtains a payoff that is less than her minimum Cournot payoff.

In settings with a single Cournot outcome, both the plausible and the simply-plausible

actions of the leader are U -monotone. But even then, some plausible outcomes give the leader

less than her Cournot payoff whenever the best-response functions are sufficiently steep.

We go on to show how our results can be applied to standard leader-follower games in

which information is imperfect. Specifically, we consider situations in which what the follower

can observe about the action of the leader is determined by a partition of the leader’s action

space. For example, a mediator might communicate the partition element containing the

leader’s action to the follower. We are interested in the problem of a designer choosing how

to partition the leader’s action space in such settings. We show that the outcomes which the

designer can induce are exactly the plausible outcomes we have defined. Having characterized

the set of plausible outcomes thus enables us to solve problems of this kind.

We illustrate various information design problems of the kind above in a textbook duopoly

setting. There, the designer’s objective may be to maximize total welfare, consumer surplus,

or producer surplus. We find that even simple binary partitions of the leader’s action space

may perform better than both the Stackelberg and Cournot CSTs.

We contribute to a literature on commitment whose starting point is that economic agents

often commit to subsets of actions rather than single actions. This literature is divided in two

parts. One branch of the literature posits that agents commit to subsets of actions because

they are constrained to do so: even if they wanted to, agents would be unable to commit

to specific actions. This branch includes Spence (1977), where an incumbent firm faces a

prospective entrant and invests in productive capacity during the first period but may choose

not to utilize the full capacity during the second period. It also includes Saloner (1987),

Admati and Perry (1991), and Romano and Yildirim (2005), where agents can set a lower
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bound on the action they will choose but retain until the last period the option to choose

any action that is at least as large as this lower bound. Our paper belongs to this branch

of literature. Our contribution is to consider all possible commitment structures, that is, all

collections of subsets that the leader may choose from in the first period.

A second branch of literature proposes that agents commit to subsets of actions because

doing so gives them a strategic advantage.1 In these models, agents could commit to single

actions but typically choose to commit to subsets containing more than one action because

doing so enables them to credibly threaten potential deviating players. Specifically, Bade,

Haeringer and Renou (2009), Renou (2009), and Dutta and Ishii (2016), embed a strategic-

form game into a multi-stage game in which, early on in the game, players can freely restrict

their action spaces.2 A player can commit to any action of his choice, but may also choose not

to commit at all. This ability to freely choose what to commit to differs from our model and

has stark implications: in our setting, if the leader can choose not to commit at all, she can

guarantee herself her lowest Cournot payoff, while if she can commit to any action, then she

can guarantee herself her Stackelberg payoff. By contrast, we show that if the leader’s ability

to commit is limited, she will not only fall short of her Stackelberg payoff but may also fall

short of her lowest Cournot payoff.3

Several other papers study what might be construed as a form of limited commitment.

Some allow agents to pick specific actions but let them revise these choices later on, either

at fixed times (Maskin and Tirole, 1988), stochastically (Kamada and Kandori, 2020), or by

incurring various costs (Henkel, 2002; Caruana and Einav, 2008).

Finally, our paper belongs to a recent strand of papers that take a base game as given

1For a study of more general commitment devices that include commitments contingent on other players’

commitments, see Kalai, Kalai, Lehrer and Samet (2010).
2For a multi-stage model of commitment where the base-game itself is an extensive-form game, see Arieli,

Babichenko and Tennenholtz (2017).
3Relatedly, Pei (2016) studies a setting where a player can restrict the actions of her opponent. Pei (2016)

shows that when a player has limited commitment ability, i.e., cannot reduce her opponent’s action set to a

singleton, then it is sometimes strictly optimal not to restrict the opponent’s actions at all.
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and examine how changing the structure of this game can affect its outcome. For example,

Kamenica and Gentzkow (2011), Bergemann and Morris (2016), and Makris and Renou (2023)

examine the implications of changing a game’s information structure. Nishihara (1997) and

Gallice and Monzón (2019) study instead the effects of changing the order of moves. Salcedo

(2017) and Doval and Ely (2020) allow the structure of the game to change in both of these

dimensions.

2 The Model

2.1 Setup

There are two players, a leader and a follower, with action spaces X = [x, x] and Y = [y, y],

respectively. A collection K of non-empty subsets of X covers the leader’s action space.4 We

refer to K as the commitment structure (CST).

There are two periods: in period 1, the leader publicly selects Xi ∈ K; in period 2, leader

and follower simultaneously choose actions x and y, with x contained in Xi and y contained

in Y . The resulting payoffs are u(x, y) for the leader and v(y, x) for the follower, where u and

v are continuous. We further assume that u(x, y) is strictly quasi-concave in x for all y ∈ Y ,

and that v(y, x) is strictly quasi-concave in y for all x ∈ X . This game is denoted by G(K).

2.2 Definitions and Notation

An action pair (x, y) with x ∈ X and y ∈ Y is referred to as an outcome. We say that outcome

(x, y) is plausible if (x, y) is a subgame perfect equilibrium outcome of G(K), for some CST

K. An action x is plausible if it is part of a plausible outcome (x, y).

Two salient commitment structures play a central role,

KS :=
{
{x} : x ∈ X

}
and KC :=

{
X
}
;

4That is, (i) for all Xi ∈ K: Xi ⊆ X ; (ii) for all x ∈ X : x ∈ Xi for some Xi ∈ K.
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we refer to these as the Stackelberg and Cournot CSTs, respectively. By extension, the

subgame perfect equilibrium outcomes of G(KS) and G(KC) will be referred to as Stackelberg

and Cournot outcomes. The Cournot actions of the leader are the actions of the leader forming

part of a Cournot outcome.

A commitment structure K is said to be simple if it partitions the leader’s action space

into intervals. For example, the Stackelberg and Cournot CSTs are simple CSTs. An outcome

(x, y) is simply plausible if (x, y) is a subgame perfect equilibrium outcome of G(K), for some

simple CST K.

To every action x of the leader corresponds a unique best response of the follower.5 We

denote this best response by RF (x), and let U(x) be the payoff of the leader from taking

action x when the follower best-responds to x, that is,

U(x) := u
(
x,RF (x)

)
.

A subset X̃ ⊆ X is called U -monotone if x̃ ∈ X̃ implies that the upper contour set of x̃ with

respect to U is contained in X̃ as well.6

2.3 Duopoly Example

In this subsection, we illustrate the model in the context of a textbook duopoly setting. Leader

and follower are two identical firms, each choosing a quantity in X = Y =
[
0, 2/(2− r)

]
.7 A

firm producing quantity q incurs cost 3q − rq2/2 and sells at unit price 4 − (1 − d)Q − dq,

where Q represents the total quantity produced by the two firms. In the previous expressions,

r < 2 measures the returns to scale, and d ∈ [0, 1] the degree of product differentiation.

Letting u(x, y) (respectively, v(y, x)) be the profit of the leader (respectively, the follower)

gives v(y, x) = u(y, x) and

u(x, y) = x− (1− d)xy −
(
1− r

2

)
x2. (1)

5Recall, the follower’s action space is compact, and v(y, x) is strictly quasi-concave in y.
6The upper contour set of an action x with respect to U is the set of actions x̃ such that U(x̃) ≥ U(x).
7Quantities larger than 2/(2− r) would lead to negative profits no matter what.
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Figure 1

We set for now d = 0 and r = 4/5. The (unique) Cournot and Stackelberg actions are then,

respectively, xC = 5/11 and xS = 1.

The commitment structure is

K =

{[
0,

3

2

)
,

[
3

2
,
5

3

]}
.

As it partitions the leader’s actions space into intervals, K is a simple CST. Figure 1 illustrates

this example. Any quantity in the interval [3/2, 5/3] is such that, whenever the follower best-

responds, the leader benefits from deviating to a smaller quantity. Hence, any subgame perfect

equilibrium of G(K) must be such that the leader produces 3/2 in the corresponding subgame.

If instead the leader picks [0, 3/2) in the first period, then each firm produces the Cournot

quantity. As U(3/2) > U(xC), the unique subgame perfect equilibrium is such that in period

1 the leader chooses the upper interval.

The previous reasoning applies if 3/2 is replaced by any quantity x∗ in the interval [xC , x],

where x solves U(x) = U(xC). So all actions in [xC , ¯̄x] are simply plausible. We will see in

Section 4 that, in fact, these are the only simply-plausible actions. In contrast, we will see in

Section 5 that beyond simple CSTs the Cournot payoffs generally do not bound the payoffs

that the leader can obtain.
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3 Preliminaries

Henceforth, let

η(x̃, x) := u
(
x̃, RF (x)

)
− u
(
x,RF (x)

)
.

In words, η(x̃, x) measures the leader’s gain from choosing x̃ instead of x when the follower

best-responds to x.

Consider an arbitrary CST K. Suppose that a subgame perfect equilibrium of G(K)

exists. Given Xi ∈ K, write β(Xi) for the leader’s action in the subgame following Xi. Then

β(Xi) ∈ Xi, and η
(
x, β(Xi)

)
≤ 0 for all x ∈ Xi. The notion of admissible pair summarizes

these basic properties.

Definition 1. A pair (K, β) made up of a commitment structure K and a mapping β : K → X
is said to be admissible if

(a) β(Xi) ∈ Xi, for all Xi ∈ K;

(b) η
(
x, β(Xi)

)
≤ 0, for all x ∈ Xi and all Xi ∈ K.

The following characterization of the set of plausible outcomes is immediate.

Lemma 1. An outcome (x, y) is plausible if and only if there exist an admissible pair (K, β)

and Xi ∈ K, such that

(i) x = β(Xi),

(ii) U(x) = maxXj∈K U
(
β(Xj)

)
,

(iii) y = RF (x).

We say that an admissible pair (K, β) implements outcome (x, y) if it satisfies conditions (i)–

(iii) of Lemma 1. We can then rephrase the lemma to say that an outcome (x, y) is plausible

if and only if some admissible pair (K, β) implements it.
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4 Simple Commitment Structures

This section contains the first part of our analysis; in it, we characterize the set of simply-

plausible outcomes. All proofs for this section are in Appendix A.

Denote by RL(y) the unique best response of the leader to the follower’s action y, and

define8

ϕ(x) := RL

(
RF (x)

)
.

The fixed points of ϕ are thus the Cournot actions of the leader. Let XC denote said set of

Cournot actions; the notation xC
n will indicate a generic element of this set.

The following lemma characterizes the admissible pairs (K, β) such that K is a CST

comprising only intervals. In essence, the content of the lemma is akin to Proposition 1 in

Bade, Haeringer and Renou (2007).

Lemma 2. Let K be a commitment structure comprising only intervals. Then (K, β) is

admissible if and only if, for all Xi ∈ K, one of the following conditions holds:

(i) β(Xi) ∈ Xi ∩ XC;

(ii) β(Xi) = minXi and ϕ
(
β(Xi)

)
< β(Xi);

(iii) β(Xi) = maxXi and ϕ
(
β(Xi)

)
> β(Xi).

The intuition behind the lemma is straightforward. Consider an interval Xi forming part

of a CST K, and a mapping β : K → X such that β(Xi) ∈ Xi for all Xi ∈ K. Suppose

ϕ
(
β(Xi)

)
> β(Xi). In this case, having chosen Xi in period 1, the leader would like to increase

her action slightly whenever the follower best-responds to β(Xi). This implies that for (K, β)

to be admissible the leader must be unable to slightly increase her action. As Xi is an interval,

β(Xi) must be the upper bound of the interval Xi. Similarly, if ϕ
(
β(Xi)

)
< β(Xi) then β(Xi)

must be the lower bound of the interval Xi.

8The leader’s action space being compact and u11 negative, to every y ∈ Y corresponds a unique best

response of the leader.
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Figure 2, panel A, illustrates Lemma 2 in the context of the duopoly example introduced

in Subsection 2.3, for parameter values d = 0 and r = 6/5. The black curve represents the

graph of the function ϕ. The leader’s Cournot actions are xC
1 = 0, xC

2 = 5/9, and xC
3 = 5/4.

An admissible pair (K, β) is such that every action β(Xi) belonging to a region of the figure

with a left-pointing arrow (respectively, right-pointing arrow) is either a Cournot action or

the leftmost (respectively, rightmost) element of Xi.

x

ϕ(x)

45◦
5
9

5
4

5
2

(a)

x

U(x)

5
9

5
4

5
2

5
17

(b)

Figure 2

Our first theorem characterizes the set of simply-plausible outcomes.

Theorem 1. An action x∗ is simply plausible if and only if the lower contour set of x∗ with

respect to U contains a Cournot action xC
n∗ such that

(
ϕ(x∗)− x∗)(xC

n∗ − x∗) ≥ 0. (2)
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Theorem 1 tells us that an action x∗ at which ϕ(x∗) > x∗ is simply plausible if and only

if some Cournot action greater than x∗ belongs to the lower contour set of x∗ with respect

to U . The if part is easy. Let xC
n be a Cournot action greater than x∗ and suppose that it

belongs to the lower contour set of x∗. Now consider K =
{
[x, x∗], (x∗, x]

}
, and β given by

β
(
[x, x∗]

)
= x∗ and β

(
(x∗, x]

)
= xC

n . By Lemma 2, the pair (K, β) is admissible; it implements

x∗ since U(x∗) ≥ U(xC
n ).

The gist of the proof of the only if part is as follows. Suppose that the admissible pair

(K, β) implements x∗, where K is a simple CST and ϕ(x∗) > x∗. Let Xi be the interval of the

CST K containing the action x∗. Then β(Xi) = x∗ and, as ϕ(x∗) > x∗, Lemma 2 implies that

x∗ must be the upper bound of Xi. Now let Xj ∈ K be the interval containing the actions

slightly greater than x∗.9 Applying Lemma 2 once more shows that either β(Xj) is a Cournot

action, or ϕ
(
β(Xj)

)
> β(Xj) and β(Xj) is the upper bound of Xj. Either way, we see by

induction that β(Xk) must be a Cournot action for some interval Xk ∈ K comprising actions

greater than x∗; and since (K, β) implements x∗, said Cournot action must belong to the lower

contour set of x∗ with respect to U .

Applying Theorem 1 to the example of Figure 2 shows that the set of simply-plausible

actions is equal to {0} ∪
[
5/17, 5/9

]
∪
[
5/4, 5/2

]
(illustrated in green in panel B of Figure 2).

Firstly, Theorem 1 shows that no action in the interval
(
0, 5/17

)
is simply plausible, since

all of them belong to the strict lower contour set of each Cournot action. Secondly, any

x ∈
(
5/9, 5/4

)
satisfies ϕ(x) > x (see panel A). The only Cournot action greater than any of

these actions is xC
3 . As U(xC

3 ) > U(x) for all x ∈
(
5/9, 5/4

)
, we conclude using Theorem 1

that no action in this interval is simply plausible. Mirror arguments show that all actions in

{0} ∪
[
5/17, 5/9

]
∪
[
5/4, 5/2

]
are simply plausible.10

By construction, the leader’s Stackelberg payoff provides an upper bound for the payoffs

attainable by the leader under any CST. Theorem 1 shows that the Cournot payoffs provide

9Of course, K could be infinite, in which case the argument sketched in the text needs to be modified. See

Appendix A.
10An action x∗ ∈ [5/17, 5/9] ∪ [5/4, 5/2] is for instance implemented by the pair (K,β) where K =

{[0, x∗), [x∗, 5/2]}, β
(
[0, x∗)

)
= 0, and β

(
[x∗, 5/2]

)
= x∗.
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a corresponding lower bound for simple CSTs. Moreover, Theorem 1 implies that if an action

is in the upper contour set of all Cournot actions, then that action must be simply plausible.

The following corollary records these observations.

Corollary 1. All simply-plausible actions belong to the upper contour set of a Cournot action

with respect to U . Furthermore, any action in the intersection of these upper contour sets

is simply plausible. When there exists a unique Cournot outcome, the set of simply-plausible

actions is U-monotone and coincides with the upper contour set of the unique Cournot action.

5 Beyond Simple Commitment Structures

We saw in the previous section that all simply-plausible outcomes guarantee the leader at

least her lowest Cournot payoff. The following examples show that the conditions imposed on

simple CSTs are crucial—an outcome may be plausible and give the leader a payoff that is

smaller than her minimum Cournot payoff.

Example A: Consider the duopoly example introduced in Subsection 2.3, with parameter

values d = 0 and r = 4/5. The commitment structure is

K =

{(
1

8
,
1

3

]
,

[
0,

1

8

]
∪
(
1

3
,
5

3

]}
.

While K partitions the leader’s actions space, one of its elements is a non-convex set; so K

is not a simple CST. Figure 3 illustrates this example. The subgame following the leader’s

choice of (1/8, 1/3] possesses a unique equilibrium, in which the leader produces 1/3. The

other subgame has two equilibria: one yielding the Cournot outcome, xC = 5/11, the other

involving the leader choosing quantity 1/8. As U(1/8) < U(1/3) < U(xC), we see that G(K)

possesses two subgame perfect equilibria: one in which the leader produces 1/3, and one in

which the leader produces xC . In the former equilibrium, the leader anticipates that if she

were to select [0, 1/8] ∪ (1/3, 5/3] in period 1, the follower would respond by producing a

12



x

U(x)

xC xS

U(xC)

1
8

1
3

5
3

K:

Figure 3

quantity larger than xC . Consequently, the leader settles for the quantity 1/3, and obtains

less than the Cournot payoff U(xC).

Example B: Consider the following setting. The action spaces are X = Y = [0, 1]. The

payoffs of the leader are given by

u(x, y) = xy + (1− x)(1− y)− 1

2

(
x− 1

2

)2

− 3

2

(
y − 1

2

)2

;

the payoffs of the follower are given by v(y, x) = u(y, x).11 In this setting, the leader’s

Stackelberg actions are 0, 1/2, and 1, and these are also the leader’s Cournot actions.

Let x∗ denote an action in (1/2, 1); the commitment structure is

K =
{
[0, x∗], [1− x∗, 1]

}
.

As x∗ > 1/2, K does not partition the leader’s action space; so K is not a simple CST.

Figure 4 illustrates this example. The subgame induced by the leader’s choice of [0, x∗] has an

11This setting might capture a situation in which two firms with complementary production processes choose

the locations of their plants. The first two terms of the function u capture the firms’ desire to be close to each

other. The remaining terms capture intrinsic features specific to the different locations.
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xx∗1− x∗
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Figure 4

equilibrium in which the leader chooses the action x∗. Symmetrically, the subgame induced

by the leader’s choice of [1− x∗, 1] has an equilibrium in which the leader chooses the action

1− x∗. Therefore, since U(x∗) = U(1− x∗), both x∗ and 1− x∗ are plausible. In both cases,

the leader obtains less than her Cournot payoff U(1/2).

A simple CST partitions the leader’s action space into intervals. The previous examples

illustrate that relaxing either of these conditions can expand the set of outcomes that are

plausible. In particular, relaxing either of these conditions can induce the leader to obtain

less than her minimum Cournot payoff. Subsection 5.1 characterizes the set of outcomes

induced by CSTs comprising only intervals. CSTs comprising non-convex sets are examined

in Subsection 5.2: we characterize the set of outcomes induced by CSTs which partition the

leader’s action space and show that every plausible outcome is plausible under such a CST.

Subsection 5.3 discusses equilibrium refinements.
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5.1 Commitment Structures Comprising Only Intervals

We say that an outcome (x, y) is I-plausible if it is a subgame perfect equilibrium outcome

of G(K) for some commitment structure K comprising only intervals. Every simply-plausible

outcome is I-plausible. However, as Example B illustrated, an outcome may be I-plausible even

though it is not simply plausible. The following theorem characterizes the set of I-plausible

outcomes. All proofs for this subsection are in Appendix B.

Theorem 2. The set of I-plausible actions is U-monotone. An action x∗ is I-plausible if and

only if the lower contour set of x∗ with respect to U includes actions x′ and x′′ such that

ϕ(x′) ≤ x′ ≤ x′′ ≤ ϕ(x′′). (3)

Suppose that x is I-plausible, and let (K, β) be an admissible pair that implements x in

which the CST K contains only intervals. Pick x′ in the upper contour set of x with respect

to U , and consider K ′ := K ∪
{
{x′}

}
, and β′ : K ′ → X such that β′(Xi) = β(Xi) for all

Xi ∈ K and β′({x′}) = x′. The CST K ′ contains only intervals. Furthermore, the pair

(K ′, β′) is evidently admissible and implements x′. We conclude that the I-plausible actions

are U -monotone.

The if part of the theorem is straightforward. Let x∗ be such that the lower con-

tour set of x∗ with respect to U includes actions x′ and x′′ satisfying (3). Consider K =
{
{x∗}, [x, x′′], [x′, x]

}
, and β given by β

(
{x∗}

)
= x∗, β

(
[x, x′′]

)
= x′′, and β

(
[x′, x]

)
= x′. By

Lemma 2, the pair (K, β) is admissible; it implements x∗ since U(x∗) ≥ max{U(x′), U(x′′)}.
The only if part of the theorem rests on Lemma 2. Suppose that every action x in the

lower contour set of x∗ for which ϕ(x) ≥ x is strictly smaller than every action x in the lower

contour set of x∗ for which ϕ(x) ≤ x, and pick x† in between these two subsets of actions.

Now let (K, β) be an admissible pair such that K is a CST comprising only intervals. By

Lemma 2, if Xi ∈ K is an interval containing x† then either β(Xi) ≥ x† and ϕ
(
β(Xi)

)
≥ β(Xi),

or β(Xi) ≤ x† and ϕ
(
β(Xi)

)
≤ β(Xi). Yet every action x in the lower contour set of x∗ for

which ϕ(x) ≥ x is strictly smaller than x†, while every action x in the lower contour set of x∗
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for which ϕ(x) ≤ x is strictly greater than x†. We conclude that β(Xi) must belong to the

strict upper contour set of x∗. So (K, β) cannot implement x∗.

Applying Theorem 2 to the example of Figure 2 shows that the I-plausible actions are

{0} ∪
[
5/17, 5/2

]
. In particular, actions in the interval

(
5/9, 5/4

)
are I-plausible but are not

simply plausible.12

If some Cournot action xC
n belongs to the lower contour set of x∗, then setting x′ = x′′ = xC

n

in Theorem 2 proves that x∗ is I-plausible. We thus obtain the following corollary:

Corollary 2. All actions in the upper contour set of a Cournot action with respect to U are

I-plausible.

The previous analysis has shown that an outcome may be I-plausible even though it is

not simply plausible and that I-plausible outcomes can give the leader a smaller payoff than

her lowest Cournot payoff. However, in certain prominent cases, every I-plausible outcome

does guarantee the leader at least her minimum Cournot payoff. For example, consider a

setting with a unique Cournot action xC . We have in this case
{
x : ϕ(x) ≥ x

}
= [x, xC ]

and
{
x : ϕ(x) ≤ x

}
= [xC , x]. Applying Theorem 2 thus shows that all I-plausible actions

must belong to the upper contour set of xC with respect to U . As all actions in the upper

contour set of xC are simply plausible (Corollary 1), we conclude that in this case an action

is I-plausible if and only if it is in the upper contour set of xC with respect to U . A similar

result holds when U is either quasi-convex or quasi-concave.

Proposition 1. If there exists a unique Cournot outcome, or if U is either quasi-convex or

quasi-concave, then an action is I-plausible if and only if it belongs to the union of the upper

contour sets of the Cournot actions with respect to U .

12An action x∗ ∈
(
5/9, 5/4

)
is for instance implemented by the pair (K,β) where K =

{
[0, 5/2], [0, x∗]

}
,

β
(
[0, 5/2]

)
= 0, and β

(
[0, x∗]

)
= x∗. To see that no x∗ ∈

(
0, 5/17

)
is I-plausible, notice that the intersection

between {x : ϕ(x) ≥ x} and the lower contour set of x∗ with respect to U is empty.

16



5.2 Partitional Commitment Structures

We say that an outcome (x, y) is P-plausible if it is a subgame perfect equilibrium outcome

of G(K) for some commitment structure K which partitions the leader’s action space. Every

simply-plausible outcome is P-plausible. However, as Example A illustrated, an outcome may

be P-plausible even though it is not simply plausible. We start this subsection by establish-

ing that any plausible outcome is, in fact, P-plausible.13 All proofs for this section are in

Appendix C.

Proposition 2. An outcome is plausible if and only if it is P-plausible. Moreover, the set of

P-plausible outcomes is U-monotone.

The proof that the set of P-plausible outcomes is U -monotone is similar to the proof that

the set of I-plausible outcomes is U -monotone. The if part of the proposition is trivial. The

gist of the proof of the only if part is as follows. Let (x, y) be plausible, and (K, β) be an

admissible pair that implements (x, y). Suppose that K = {X1, · · · ,Xn}, and14

β(Xi) /∈
⋃

j ̸=i

Xj, for i = 1, · · · , n. (4)

Now let X ′
i = Xi \

⋃
j<iXj, for i = 1, · · · , n, and K ′ = {X ′

i , · · · ,X ′
n}. Then K ′ partitions X

and (4) implies β(Xi) ∈ X ′
i , for i = 1, · · · , n. Letting β′(X ′

i ) = β(Xi) for i = 1, · · · , n, we
see that (K ′, β′) is admissible, since X ′

i ⊆ Xi. Finally, (K
′, β′) evidently implements (x, y), so

(x, y) is P-plausible.

Proposition 2 suggests that the set of P-plausible outcomes may be very large. To make

progress, we restrict attention in the rest of this subsection to settings that satisfy the following

three regularity conditions:

(RC1) there exists a unique and interior Cournot outcome;

(RC2) all externalities are either strictly positive or strictly negative;15

13We thank an anonymous referee for pointing this out to us.
14See the Appendix C for the general case.
15Formally, externalities are strictly positive (respectively, negative) if u and v are strictly increasing (re-

spectively, decreasing) in their second arguments.
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(RC3) payoffs are either strictly supermodular or strictly submodular.16

For instance, the duopoly example of Subsection 2.3 satisfies all three conditions as long as the

returns to scale are not too large (r < d+1). When u and v are twice differentiable, conditions

(RC2) and (RC3) become u2v2 > 0 and u12v12 > 0, respectively. Slightly abusing notation,

whether or not the payoffs are differentiable, u2 > 0 will indicate positive externalities, and

u2 < 0 negative externalities. Similarly, u12 > 0 will indicate supermodular payoffs, and

u12 < 0 submodular payoffs.

For every x ∈ X , the function η(·, x) is strictly quasi-concave and satisfies η(x, x) = 0.

It follows that η(x̃, x) = 0 for at most one action x̃ different from x. We can thus define

γ : X → X as follows: if η(x̃, x) = 0 for some x̃ ̸= x, set γ(x) = x̃; otherwise, set17

γ(x) =





x if x < xC ,

xC if x = xC ,

x if x > xC .

The interpretation is straightforward: in cases where such an action exists, γ(x) is the action

making the leader indifferent between choosing x or γ(x) when the follower best-responds to

x.

Next, let

S :=





{
x : x ≤ γ(x) ≤ xC

}
if u2u12 > 0,

{
x : xC ≤ γ(x) ≤ x

}
if u2u12 < 0.

Note that, as γ is continuous, the set S is compact.18 Moreover, this set evidently contains

xC . We are now ready to characterize the set of P-plausible outcomes.

16Formally, payoffs are strictly supermodular (respectively, submodular) if u(x′, y′) + u(x, y) > u(x′, y) +

u(x, y′) (respectively, u(x′, y′) + u(x, y) < u(x′, y) + u(x, y′)) for all x′ > x and y′ > y. Supermodular payoffs

capture strategic complementarities; submodular payoffs capture strategic substitutabilities.
17Here xC denotes the Cournot action.
18The continuity of γ is inherited from the continuity of u and RF .
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Theorem 3. Suppose (RC1)–(RC3) hold. The set of P-plausible actions coincides with the

upper level set of U := minx∈S U
(
γ(x)

)
with respect to U .19

For an action x to be plausible, the leader must face a credible punishment for choosing

any action from the strict upper contour set of x with respect to U . The characterization of

the plausible actions in Theorem 3 rests on the identification of all possible threats for the

leader. To understand the logic of the theorem, consider the case in which u2 > 0 and u12 > 0,

that is, players’ actions have positive externalities and are strategic complements. In this case,

the function U is increasing in the range [x, xC ].20 Now let x̂ be an action of the leader such

that x̂ < γ(x̂) < xC , and x∗ an action in the upper contour set of γ(x̂) with respect to U .

We will argue that x∗ is P-plausible. Let X1 be the subset of actions comprising x̂ as well as

all actions in the strict upper contour set of x∗. Note that, apart from x̂, all actions in X1

have to be at least as large as γ(x̂), since U(x∗) ≥ U
(
γ(x̂)

)
and U is increasing over [x, γ(x̂)].

Next, let K be the partition of the leader’s action space containing X1 and in which all other

subsets are singletons. Lastly, let β(X1) = x̂ and β({x}) = x for all x ∈ X \ X1. We claim

that the pair (K, β) is admissible. Indeed, x̂ < γ(x̂), whence η(x, x̂) ≤ 0 for all x ≥ γ(x̂)

(recall, η(·, x̂) is strictly quasi-concave and η
(
γ(x̂), x̂

)
= 0, by definition of γ(x̂)). Yet we saw

above that all actions in X1 other than x̂ are at least as large as γ(x̂), so η(x, x̂) ≤ 0 for all

x ∈ X1. Finally, we claim that (K, β) implements x∗. Indeed, all actions in the complement

of X1 belong to the lower contour set of x∗. Moreover, U(x̂) < U
(
γ(x̂)

)
≤ U(x∗); the first

inequality follows from x̂ < γ(x̂) and the fact that U is increasing over [x, γ(x̂)]; the second

inequality is immediate, since x∗ is in the upper contour set of γ(x̂).

Figure 5 illustrates Theorem 3 in the context of the duopoly example from Subsection 2.3

with parameter values d = 0 and r = 4/5. In panel A, the black curve represents the graph

of the function ϕ, which crosses the 45-degree line at xC = 5/11. In this example u2 < 0 and

u12 < 0, so S =
{
x : x ≤ γ(x) ≤ xC

}
. The gray curve represents the graph of the function γ:

19The upper level set of U with respect to U is defined as {x : U(x) ≥ U}.
20Intuitively, increasing the action of the leader induces the follower to increase her action too (due to

strategic complementarities), and this benefits the leader (since externalities are positive).
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we see that S = [0, xC ] and γ(S) =
[
5/18, xC

]
. Panel B depicts the graph of the function U .

Minimizing U
(
γ(x)

)
over S shows that U = U

(
γ(0)

)
= U(5/18).21 Because here externalities

are negative and the players’ actions are strategic substitutes, having the follower believe that

the leader played action 0 constitutes the worst possible threat to the leader. However, for

this threat to be credible, the partition element containing action 0 must not contain any

action in
(
0, γ(0)

)
. Hence, actions greater or equal to γ(0) are plausible, whereas those less

than γ(0) are not.

x

ϕ, γ

45◦

5
11

5
31

5
18

5
36

(a)

x

U(x)

U(xC)

U

5
18 x̂1x̂2

5
11

(b)

Figure 5

In the previous example, U is less than the leader’s Cournot payoff. The question remains

as to whether we can find conditions that guarantee U < U(xC). We show in Appendix C

21The upper level set of U corresponds to
[
5/18, x̂2

]
. Since the upper contour set of xC with respect to U

is
[
xC , x̂1

]
, actions in the intervals

[
5/18, xC

)
and

(
x̂1, x̂2] are P-plausible but are not simply plausible.
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that when the payoff functions are twice differentiable, a simple sufficient condition is given

by γ′(xC) > 0. Calculations relegated to Appendix C establish that γ′(xC) > 0 if and only if

R′
L(y

C)R′
F (x

C) > 1/2. We thus obtain:

Proposition 3. Suppose u and v are twice differentiable and (RC1)–(RC3) hold. If R′
L(y

C)R′
F (x

C) >

1/2 then U < U(xC).

5.3 Equilibrium Refinements

We saw that the Stackelberg and Cournot payoffs provide the bounds of the payoffs attain-

able by the leader under any simple CST. A natural question is whether some equilibrium

refinement ensures that the Stackelberg and Cournot payoffs provide the bounds of the payoffs

attainable by the leader under arbitrary CSTs.

Forward induction type of arguments eliminate some, but not all, subgame perfect equi-

libria giving the leader less than her Cournot payoffs.22 For instance, consider the setting of

Example B at the beginning of this section, but this time with commitment structure

{[
1

9
,
4

9

)
,

[
0,

1

9

)
∪
[
4

9
, 1

)}
.

Figure 6 depicts the graph of U . The subgame induced by the leader’s choice of [1/9, 4/9) has

a unique equilibrium, in which the leader chooses the action 1/9. The other subgame has an

equilibrium in which the leader picks 4/9. As U(4/9) > U(1/9), a subgame perfect equilibrium

exists in which the leader chooses 4/9. Yet, U(4/9) < U(xC
n ), so the leader obtains a payoff

smaller than her Cournot payoff. Since the subgame off the equilibrium path possesses a

unique equilibrium, forward induction type of arguments have no bite.

One alternative is to restrict attention to subgame perfect equilibria that select, in every

period-2 subgame, the best continuation equilibrium from the perspective of the leader. In this

case, any subgame induced by the leader’s period-1 choice of a subset containing a Cournot

action must give the leader a payoff at least as large as that Cournot payoff. Consequently,

22See Myerson (1997) for a discussion of the merits and flaws of forward induction.
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any such subgame perfect equilibrium ensures that the leader obtains at least her maximum

Cournot payoff.

6 Applications

In this section, we examine leader-follower games in which the follower imperfectly observes

the action of the leader. When the follower’s information about the leader’s action is designed

(e.g., by a mediator), the outcomes that the designer can induce are exactly the plausible

outcomes defined in Section 2. This enables us to use Theorem 3 to solve such information

design problems. We explore various design problems of this kind in the context of oligopolies.

6.1 Leader-Follower Games with Imperfect Information

The leader-follower games that we consider are as follows. The players’ action spaces are

X = [x, x] for the leader and Y = [y, y] for the follower. A partition K of the leader’s action

space X is exogenously fixed. The leader is the first mover, choosing x ∈ X . The follower

then observes the partition element containing x and chooses y ∈ Y . The resulting payoffs
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are u(x, y) for the leader and v(y, x) for the follower, where u and v are continuous, u(x, y)

is strictly quasi-concave in x for all y ∈ Y , and v(y, x) is strictly quasi-concave in y for all

x ∈ X . The game described above is denoted by Ĝ(K).

For Xi ∈ K, let β(Xi) represent the follower’s belief concerning the action of the leader

when the leader chooses x ∈ Xi. In a pure-strategy sequential equilibrium,23

β(Xi) ∈ Xi, ∀Xi ∈ K,

that is, when the follower observes Xi, the follower must believe that the leader chose an

action in Xi whenever this is true. Yet, off the equilibrium path, the notion of sequential

equilibrium imposes no further restrictions on the follower’s beliefs. In particular, the follower

could believe that the leader played β(Xi) even though some other actions in Xi were to give

the leader a payoff strictly larger than playing action β(Xi). The notion of proper sequential

equilibrium refines that of sequential equilibrium by ruling out such beliefs.

Definition 2. A pure-strategy sequential equilibrium of Ĝ(K) is said to be proper if the

follower’s beliefs β : K → X are such that24

u
(
β(Xi), RF (β(Xi))

)
≥ u

(
x,RF (β(Xi))

)
, for all x ∈ Xi and all Xi ∈ K.

In the setting that we consider, the set of sequential equilibria is also the set of perfect

equilibria. In the spirit of Myerson (1978), our notion of proper sequential equilibrium ef-

fectively refines that of perfect equilibrium by making “worse actions” infinitely less likely to

result from players’ trembles than “better actions”. In fact, we show in the online appendix

F that our proper sequential equilibria are isomorphic to Myerson’s proper equilibria.

23We extend the standard definition of sequential equilibria (Kreps and Wilson, 1982) to our model as

follows: a pure-strategy sequential equilibrium of Ĝ(K) is a triple (x∗, f, β) with x∗ ∈ X , f : K → Y, and

β : K → X such that, letting Xi∗ denote the element of K comprising x∗: (i) u
(
x∗, f(Xi∗)

)
≥ u

(
x, f(Xi)

)
for

all x ∈ X and Xi ∈ K comprising x, (ii) f(Xi) = RF

(
β(Xi)

)
, (iii) β(Xi) ∈ Xi for all Xi ∈ K.

24This condition is equivalent to η
(
x, β(Xi)

)
≤ 0, for all x ∈ Xi and all Xi ∈ K.
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6.2 Information Design

We now consider the problem of a designer choosing the information disclosed to the follower

concerning the action of the leader. Letting W (x, y) denote the payoff of the designer when

the leader chooses action x and the follower chooses action y, the problem of the designer is

max
K

W (x, y) s.t. (x, y) is a proper sequential equilibrium outcome of Ĝ(K). (DP)

To solve this problem, we use the following lemma:

Lemma 3. An action pair (x, y) is a proper sequential equilibrium outcome of Ĝ(K) if and

only if (x, y) is a subgame perfect equilibrium outcome of G(K).

Proof: Suppose (x, y) is a proper sequential equilibrium outcome of Ĝ(K), and pick an abri-

trary equilibrium with outcome (x, y). Let β(Xi) be the follower’s belief when the follower

observes Xi ∈ K. By definition of a proper sequential equilibrium: firstly, β(Xi) ∈ Xi; sec-

ondly, η
(
x, β(Xi)

)
≤ 0 for all x ∈ Xi. So (K, β) constitutes an admissible pair. Furthermore,

conditions (i)–(iii) of Lemma 1 evidently hold. Thus, (x, y) is a subgame perfect equilibrium

outcome of G(K). The proof of the converse is similar. ■

Coupling Lemma 3 with Proposition 2 enables us to rewrite (DP) as25

max
(x,y)

W (x, y) s.t. (x, y) is plausible. (DP’)

This equivalence enables us to use our results concerning plausible outcomes as a building

block for solving the problem of the designer.

6.3 Information Design in Oligopolies

In this subsection, we study design problems in the context of the duopoly example presented

in Subsection 2.3. For expository convenience, we rewrite the problem of the designer in terms

25As Lemma 3 holds “partition by partition”, this observation can be generalized to any restricted class of

partitions, such as simple CSTs.
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of the leader’s action x:

maxW
(
x,RF (x)

)
s.t. x is plausible. (DP”)

We first examine situations where the designer is one of the two firms (i.e., where W = u or

W = v). The Stackelberg outcome is plainly the best plausible outcome from the perspective

of the leader. On the other hand, since v2 is here negative, the optimal plausible outcome

from the perspective of the follower involves the leader producing as little as plausibly possible.

The proposition which follows summarizes these observations. In the rest of this section, x

(respectively, x) indicates the smallest (respectively, largest) plausible action of the leader.

Proposition 4. Suppose u is given by (1) and v(y, x) = u(y, x). If W = u, the unique

solution of (DP”) is xS. If W = v, the unique solution of (DP) is x.

The Stackelberg CST is optimal for the leader. The Cournot CST is optimal for the

follower if and only if r /∈
(
r∗(d), d+ 1

)
, where r∗(d) := 2−

√
2(1− d). For r ∈

(
r∗(d), d+ 1

)
,

the CST {(
0, γ(0)

]
, {0} ∪

(
γ(0), x

]}

is optimal for the follower. The latter CST is such that the leader either commits to producing

a quantity in the interval
(
0, γ(0)

]
, or commits to producing a quantity outside of this interval.

We next examine situations in which the designer aims to maximize either consumer sur-

plus, producer surplus, or total welfare (i.e., the sum of producer and consumer surplus). We

follow Singh and Vives (1984) and define the consumer surplus generated by an outcome (x, y)

as26

CS(x, y) =
(x+ y)2

2
− dxy.

Producer surplus is defined as

PS(x, y) = u(x, y) + v(y, x).

26The expression for consumer surplus is based on the representative consumer utility function, given by

4(x+ y) + dxy − (x+ y)2/2.
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Proposition 5. Suppose u is given by (1) and v(y, x) = u(y, x).

(i) If W = CS, the unique solution of (DP”) is x.

(ii) If W = PS, the unique solution of (DP”) is xC if r < r†(d), and xS if r†(d) < r < d+1;27

if r > d+ 1 then the solutions are xC
3 and 0.28

(iii) If W = CS + PS, the unique solution of (DP”) is x.

Part (i) of Proposition 5 is explained as follows. Firstly, we show that consumer surplus

is a convex function of the quantity which the leader produces. The problem of the designer

therefore reduces to choosing between x and x. Inducing the leader to produce x instead of x

is optimal because in this way the designer can exploit the strategic motive to produce large

quantities which arises from commitment. With multiple Cournot actions, or if there exists a

single Cournot action and γ(0) ≥ xC , the binary partition
{
[x, x), [x, x]

}
is consumer-optimal.

Otherwise, the CST {(
0, γ(0)

]
, {0} ∪

(
γ(0), x

)
,
[
x, x
]}

is optimal for the consumer. The latter CST is such that the leader either commits to pro-

ducing a quantity in the interval
(
0, γ(0)

]
, or commits to producing a quantity outside of this

interval; in the latter case, the leader either commits to producing a quantity at least as large

as x, or commits to producing less than this.

Part (ii) of Proposition 5 is straightforward. With decreasing returns to scale, producer

surplus is maximized by inducing both firms to produce the same quantity; in this case, the

Cournot CST is producer-optimal. By contrast, with large returns to scale, producer surplus

is maximized by letting one firm acquire a bigger market share than the other. In particular,

for very large returns to scale, producer surplus is maximized by letting one firm act as a

monopolist. Consequently, the Cournot CST is producer-optimal for extreme returns to scale,

whereas the Stackelberg CST is producer-optimal for sufficiently large returns to scale.

27r†(d) := 2−
(

3
√

3(9−
√
78)

3 + 1
3
√

3(9−
√
78)

)
(1− d).

28xC
3 = 1

2−r is the highest of the three Cournot equilibria.
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Part (iii) of Proposition 5 follows from the fact that producer surplus tends to be less

sensitive than consumer surplus to the quantity which the leader produces. So maximizing

total welfare implies maximizing consumer surplus.

7 Richer and Finer Commitment

In this section, we explore the intuitive notion that two commitment structures might give

different “degrees” of commitment to the leader.

Two natural partial orders on the set of commitment structures emerge from our analysis.

Firstly, we say that a CST K ′ is richer than a CST K if K ⊆ K ′. Secondly, we say that a

CST K ′ is finer than a CST K if the following conditions hold:

(i) each element X ′
i of the CST K ′ is a subset of some element Xi of the CST K,

(ii) each element of K can be written as the union of elements of K ′.

In other words, K ′ is finer than K if K ′ can be obtained from K by replacing each element

Xi of K by some cover of Xi.
29

Finally, given a CST K such that the set of subgame perfect equilibria of G(K) is non-

empty, say that a CST K ′ is worse than K if some subgame perfect equilibrium of G(K ′)

gives the leader a strictly lower payoff than every subgame perfect equilibrium of G(K).

It is not hard to see that, starting from a given CST, either enriching this CST or refining

it can make the leader better off. It is equally clear that a CST cannot be both richer and

worse than another one. By contrast, our analysis reveals that a CST may be finer and worse

than another CST. Indeed, every CST is finer than the Cournot CST. A corollary of our

analysis is thus that refining the Cournot CST can yield a CST that is worse.

A second corollary of our analysis is that every CST that is both finer and worse than the

Cournot CST must be non-simple. Therefore, a natural question is whether, by restricting

29Intuitively, a richer CST means that the leader is able to commit to a smaller set of actions (but does not

have to), whereas a finer CST means that the leader must commit to a smaller set of actions.
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attention to simple CSTs, we ensure that a CST which is finer than another is not also worse.

The following example shows that the answer is no.

Consider a more general version of Example B from Section 5, in which the payoffs of the

leader are given by

u(x, y) = xy + (1− x)(1− y)− 1

2

(
x− 1

2

)2

− 3(1 + a)

2

(
y − 1

2

)2

,

for some parameter a. Suppose a is a small but positive number.30 There are then three

Cournot actions (0, 1/2, and 1), but only one Stackelberg action (1/2). Next, consider the

simple CST

K =
{
{0}, (0, 1), {1}

}
.

Let ν be a small positive number, and denote by K ′ the CST comprising [ν, 1 − ν] and all

singletons {x} where x ∈ X \ [ν, 1− ν]. Notice that K ′ is a finer partition than K. The game

G(K) has a unique subgame perfect equilibrium outcome: (1/2, 1/2). However, the game

G(K ′) has three subgame perfect equilibrium outcomes, namely, (1/2, 1/2), (0, 0), and (1, 1).

As U(0) = U(1) < U(1/2), K ′ is worse than K. We show in Appendix E that Theorems 1

and 2 yield a method for checking whether a CST can be refined by some worse CST.

8 Conclusion

The Stackelberg leadership model assumes that the leader can commit to any action she might

choose. Our paper takes a different view: we only assume that the leader can commit not to

take certain subsets of actions.

We provide a tractable model of commitment that encompasses the Stackelberg and

Cournot models as special cases but also enables us to capture situations of limited commit-

ment. We characterize the set of outcomes resulting from all possible commitment structures,

and shed light thereby on the “limits of commitment”. Our results highlight that, more than

30Example B has a = 0. Intuitively, the effect of a > 0 is that coordination towards the middle outcome

(1/2, 1/2) is slightly better for both players.
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commitment, what matters is the precise form that commitment takes. For instance, we show

that whereas the Stackelberg and Cournot payoffs provide the bounds of the payoffs attainable

by the leader under some appropriately defined class of “simple” commitment structures, this

property fails to hold more generally.

Lastly, our results make it possible to study new information design problems in leader-

follower games, where a mediator communicates to the follower information about the action

of the leader.
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A Appendix of Section 4

Proof of Lemma 2: We prove the only if part of the lemma; the proof of the other part is

similar. Suppose that (K, β) constitutes an admissible pair. Reason by contradiction, and sup-

pose that we can find Xi ∈ K such that ϕ
(
β(Xi)

)
< β(Xi) while β(Xi) ̸= minXi. The function

η
(
·, β(Xi)

)
is strictly quasi-concave, maximized at ϕ

(
β(Xi)

)
, and satisfies η

(
β(Xi), β(Xi)

)
= 0.

So η
(
x, β(Xi)

)
> 0 for all x ∈

[
ϕ
(
β(Xi)

)
, β(Xi)

)
. Since Xi is an interval, β(Xi) ∈ Xi, and

β(Xi) ̸= minXi, we can find ε > 0 such that
(
β(Xi)− ε, β(Xi)

)
⊂ Xi. Coupling the previous

remarks shows the existence of x ∈ Xi such that η
(
x, β(Xi)

)
> 0; this contradicts the assump-

tion that (K, β) is admissible. Hence, ϕ
(
β(Xi)

)
< β(Xi) implies β(Xi) = minXi. Analogous

arguments show that ϕ
(
β(Xi)

)
> β(Xi) implies β(Xi) = maxXi. ■

Proof of Theorem 1: The if part of the theorem was proven in the text; we prove here the

converse. In the rest of the appendix, the upper contour set of x with respect to U will be

denoted by Q≥(x), that is,

Q≥(x) :=
{
x̃ : U(x̃) ≥ U(x)

}
.

The sets Q<(x), Q≤(x), and Q>(x) are similarly defined.

Pick an arbitrary simply-plausible action x∗. We aim to prove the existence of a Cournot

action xC
n∗ ∈ Q≤(x

∗) such that (2) holds. If ϕ(x∗) = x∗, just take xC
n∗ = x∗; we treat below

the case in which ϕ(x∗) > x∗ (the remaining case is analogous). Reason by contradiction, and

suppose that

XC ∩ (x∗, x] ∩Q≤(x
∗) = ∅. (5)

Let (K, β) be an admissible pair that implements x∗, with K a simple CST. We will show that

K cannot be finite. By Berge’s maximum theorem, both RF and RL are continuous, thus ϕ is

continuous as well. As ϕ(x∗) > x∗ and ϕ(x) ≤ x, the intermediate value theorem shows that

XC ∩ (x∗, x] ̸= ∅.

Note that the continuity of the function ϕ implies the compactness of XC . So XC ∩ (x∗, x] =

XC ∩ [x∗, x] possesses a smallest element, that we denote by xC
1 . Let X1 be the member of K
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containing xC
1 . Then Lemma 2 combined with (5) gives

β(X1) ∈ (xC
1 , x] ∩

{
x : ϕ(x) > x

}
.

Now let xC
2 be the smallest Cournot action greater than β(X1), and denote by X2 the member

of K containing xC
2 . The same logic as above gives β(X2) ∈ (xC

2 , x] ∩
{
x : ϕ(x) > x

}
, and

so on. If K were finite, the previous iteration would have to end after finitely many steps,

say m. But then β(Xm) = x and β(Xm) ∈
{
x : ϕ(x) > x

}
, giving ϕ(x) > x. The previous

contradiction proves that K cannot be finite.

We proceed to show that K cannot be infinite either. The function U is continuous and,

by (5), U(xC
n ) > U(x∗) for all xC

n ∈ XC ∩ (x∗, x]. Furthermore, as already pointed out above,

XC ∩ (x∗, x] is a compact set. Therefore,

∆ := min
xC
n∈ XC∩(x∗,x]

U(xC
n )− U(x∗) > 0. (6)

Next, U being continuous and X compact, the function U is uniformly continuous on X .

We can thus find δ > 0 such that |U(x′)− U(x)| < ∆ whenever |x′ − x| < δ. By (6), we thus

have

U(x) > U(x∗), for all x such that |x− xC
n | < δ, xC

n ∈ XC ∩ (x∗, x]. (7)

Now, since (K, β) implements x∗, we must have U
(
β(Xi)

)
≤ U(x∗) for all Xi ∈ K. So

(7) shows that each member of the sequence X1,X2, . . . defined in the first part of the proof

must have a length δ or more. This in turn implies that said sequence can have no more than

x−x∗

δ
terms. Yet we showed previously that this sequence cannot be finite. This contradiction

completes the proof of the theorem. ■

B Appendix of Subsection 5.1

Proof of Theorem 2: We prove here the only if part of the theorem; the rest was proven in

the text. Pick an arbitrary action x∗ of the leader. Suppose thatQ≤(x
∗)∩
{
x : ϕ(x) ≤ x

}
= ∅.

Applying Lemma 2 shows that any admissible pair (K, β) in which the CST K contains only
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intervals must be such that β(Xi) ∈
{
x : ϕ(x) ≤ x

}
for every Xi ∈ K containing x. This, in

turn, implies that every I-plausible action belongs to Q>(x
∗), whence x∗ cannot be I-plausible.

A similar argument shows that Q≤(x
∗)∩

{
x : ϕ(x) ≥ x

}
= ∅ implies that x∗ is not I-plausible.

Next, suppose that Q≤(x
∗) ∩

{
x : ϕ(x) ≤ x

}
and Q≤(x

∗) ∩
{
x : ϕ(x) ≥ x

}
are non-empty.

Both ϕ and U being continuous, the min and max of (3) are in this case well defined (since X
is a compact set). Suppose that maxQ≤(x

∗)∩
{
x : ϕ(x) ≥ x

}
< minQ≤(x

∗)∩
{
x : ϕ(x) ≤ x

}
,

and pick

x† ∈
(
maxQ≤(x

∗) ∩
{
x : ϕ(x) ≥ x

}
,minQ≤(x

∗) ∩
{
x : ϕ(x) ≤ x

})
. (8)

Applying Lemma 2 shows that any admissible pair (K, β) comprising an interval CST must

be such that, for every Xi ∈ K containing x†, either (i) β(Xi) ∈
{
x ≥ x† : ϕ(x) ≥ x

}
or (ii)

β(Xi) ∈
{
x ≤ x† : ϕ(x) ≤ x

}
. So (8) gives β(Xi) ∈ Q>(x

∗). It ensues that x∗ cannot be

I-plausible. ■

Proof of Proposition 1: By Corollary 2, an action that belongs to the upper contour set of

some Cournot action is I-plausible. Below we show that the converse is true too if U is either

quasi-convex or quasi-concave.

Suppose that U is quasi-convex, and consider an action x∗ in the strict lower contour set

of every Cournot action. Then Q≤(x
∗) is a convex set, and ϕ(x) ̸= x for all x ∈ Q≤(x

∗). The

intermediate value theorem shows that either x < ϕ(x) for all x ∈ Q≤(x
∗), or x > ϕ(x) for all

x ∈ Q≤(x
∗). Either way, Theorem 2 shows that x∗ cannot be I-plausible.

Next, suppose that U is quasi-concave, and consider an action x∗ in the strict lower contour

set of every Cournot action. Then Q>(x
∗) is a convex set, and ϕ(x) ̸= x for all x ∈ Q≤(x

∗).

This implies that, given x ∈ Q≤(x
∗), either (i) ϕ(x) > x and x < xC

n for all xC
n ∈ XC , or

(ii) ϕ(x) < x and x > xC
n for all xC

n ∈ XC . We conclude using Theorem 2 that x∗ is not

I-plausible. ■
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C Appendix of Subsection 5.2

Proof of Proposition 2: The if part of the proposition is evident. We prove here the only if

part. Let (x∗, y∗) be plausible, and (K, β) be an admissible pair that implements (x∗, y∗). Let

B denote the image of the function β, that is, B := β(K). Then, for each action x ∈ X \ B,

let

Bx := {β(Xi) | x ∈ Xi}.

Since (K, β) is admissible, note that

x̃ ∈ Bx ⇒ η(x̃, x) ≤ 0. (9)

Next, by the axiom of choice, there exists a function ρ : X \B → B. For each x ∈ B let

[x] := {x} ∪ ρ−1(x).

Finally, define

K ′ := {[x] | x ∈ B},

and β′ : K ′ → X such that β′([x]) = x, for all x ∈ B. By (9), the pair (K ′, β′) is admissible.

Moreover, it implements (x∗, y∗) since β′(K ′) = B = β(K). ■

Lemma C.1. Suppose (RC1)–(RC3) hold. If u2u12 > 0, then U is increasing over [x, xC ]. If

u2u12 < 0, then U is decreasing over [xC , x].

Proof: We show the proof for the case in which u2 > 0 and u12 > 0; the other cases are

similar.31 Pick an arbitrary x < xC , and ε > 0 sufficiently small that u
(
x + ε, RF (x)

)
>

u
(
x,RF (x)

)
.32 Then, RF being non-decreasing (since v12 > 0) and u2 > 0:

U(x+ ε) = u
(
x+ ε, RF (x+ ε)

)
≥ u

(
x+ ε, RF (x)

)
> u

(
x,RF (x)

)
= U(x).

■
31Recall, u2 > 0 is shorthand notation for positive externalities and u12 > 0 for supermodular payoffs.
32The function u

(
·, RF (x)

)
being strictly quasi-concave and maximized at ϕ(x), it ensues that x < xC

implies η(x+ ε, x) > 0 for all sufficiently small ε > 0.
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Lemma C.2. Suppose (RC1)–(RC3) hold. Then

S =
{
x : η(xC , x) ≤ 0

}
∩
{
x : u

(
xC , RF (x)

)
≤ U(xC)

}
. (10)

Proof: We show the proof of the lemma for the case u2 > 0 and u12 > 0 (the other cases are

similar). Recall that in this case S :=
{
x : x ≤ γ(x) ≤ xC

}
.

The function RF being in this case non-decreasing (and, indeed, increasing in a neighbor-

hood of xC since yC ∈ int(Y)) and u2 > 0, notice that

u
(
xC , RF (x)

)
> u

(
xC , RF (x

C)
)
= U(xC), for all x > xC .

So u
(
xC , RF (x)

)
≤ U(xC) implies x ≤ xC . Now consider x ≤ xC such that η(xC , x) ≤ 0. We

will show that x ∈ S. If x = xC the previous claim is immediate, so pick x < xC . The function

η(·, x) is strictly quasi-concave, and maximized at ϕ(x) > x.33 As η(x, x) = 0 ≥ η(xC , x), we

see by definition of γ(x) that x < γ(x) ≤ xC . The right-hand side of (10) is thus contained in

the set S. The proof of the reverse inclusion is analogous. ■

Lemma C.3. Suppose (RC1)–(RC3) hold, and S = {xC}. Then all plausible actions belong

to the upper contour set of xC with respect to U .

Proof: Reason by contradiction, and suppose that some action x∗ ∈ Q<(x
C) is plausible.

Let (K, β) be an admissible pair that implements x∗. Choose an element Xi of the CST K

such that xC ∈ Xi. Using Lemma 1 yields β(Xi) ∈
{
x : η(xC , x) ≤ 0

}
∩ Q≤(x

∗), and, since

x∗ ∈ Q<(x
C),

β(Xi) ∈
{
x : η(xC , x) ≤ 0

}
∩Q<(x

C). (12)

In turn, (12) yields

u
(
xC , RF

(
β(Xi)

))
≤ u

(
β(Xi), RF

(
β(Xi)

))
= U

(
β(Xi)

)
< U(xC). (13)

33As ϕ is continuous, notice that 


ϕ(x) > x for x < xC ,

ϕ(x) < x for x > xC .

(11)
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Coupling (12) and (13) gives

β(Xi) ∈
{
x : η(xC , x) ≤ 0

}
∩
{
x : u

(
xC , RF (x)

)
< U(xC)

}
.

Applying Lemma C.2, we obtain β(Xi) ∈ S \ {xC}, contradicting S = {xC}. ■

Lemma C.4. Suppose (RC1)–(RC3) hold. Assume u12 > 0 and u2 > 0. Consider an

admissible pair (K, β) which implements some action x∗. Then, if x ∈ Q>(x
∗), we have

β(Xi) < x for every Xi ∈ K which contains x.

Proof: Let x ∈ Q>(x
∗), and pick an arbitrary Xi ∈ K containing x. Reason by contradiction,

and suppose that β(Xi) ≥ x. Then, RF being non-decreasing (since v12 > 0) and u2 > 0, we

obtain

u
(
x,RF

(
β(Xi)

))
≥ u

(
x,RF (x)

)
> u

(
x∗, RF (x

∗)
)
. (14)

Since (K, β) is admissible, we also have

u
(
β(Xi), RF

(
β(Xi)

))
≥ u

(
x,RF

(
β(Xi)

))
. (15)

Coupling (14) and (15) yields

u
(
β(Xi), RF

(
β(Xi)

))
> u

(
x∗, RF (x

∗)
)
.

The previous inequality contradicts the assumption that (K, β) implements x∗. ■

Lemma C.5. Suppose (RC1) holds. Let (K, β) be an admissible pair. If β(Xi) < min{xC , x}
for some Xi ∈ K which contains x, then γ

(
β(Xi)

)
∈
(
β(Xi), x

]
.

Proof: Pick x ∈ X , and Xi ∈ K containing x. Since (K, β) is admissible:

η
(
x, β(Xi)

)
≤ 0. (16)

Now suppose that β(Xi) < min{xC , x}. In this case, the strictly concave function η
(
·, β(Xi)

)

attains (by virtue of (11)) a maximum at ϕ
(
β(Xi)

)
> β(Xi). From (16) and the fact that

β(Xi) < x we obtain (by definition of γ) β(Xi) < γ
(
β(Xi)

)
≤ x. ■
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Proof of Theorem 3: Start with the case S = {xC}. Combining Corollary 1, Proposition 2,

and Lemma C.3 shows that the set of simply-plausible actions, the set of I-plausible actions,

the set of P-plausible actions, and the set of plausible actions all coincide with the upper

contour set of xC .

The remainder of the proof deals with the case S ⊋ {xC}. Below, assume u12 > 0 and

u2 > 0 (the other cases are analogous). Recall that in this case S :=
{
x : x ≤ γ(x) ≤ xC

}
.

The function γ being continuous, S is a compact set. By Lemma C.1, we can thus find x̂ ∈ S
with x̂ < xC and

U
(
γ(x̂)

)
= min

x∈S
U
(
γ(x)

)
. (17)

To shorten notation, let γ̂ := γ(x̂); as x̂ < xC , note that, by definition of γ,

x̂ < γ̂ ≤ xC . (18)

We proceed to show that (a) all actions in Q≥(γ̂) are P-plausible, and (b) any plausible action

belongs to Q≥(γ̂).

All actions in Q≥(γ̂) are P-plausible. We know by Corollary 1 that all actions in Q≥(x
C) are

simply plausible. So pick an action x∗ ∈ Q≥(γ̂) \ Q≥(x
C) (if there exists none, we are done).

Define

X1 := {x̂} ∪ Q>(x
∗),

and let K denote the partition of X made up of X1, and only singletons besides X1. Lastly,

let β : K → X be given by β(X1) = x̂ and β({x}) = x for all x ∈ X \ X1. We now show that

(K, β) constitutes an admissible pair; notice that this amounts to showing that

η(x̃, x̂) ≤ 0, for all x̃ ∈ X1. (19)

As x∗ ∈ Q≥(γ̂), any x̃ ∈ Q>(x
∗) belongs to Q≥(γ̂). On the other hand, since γ̂ ≤ xC (see

(18)), Lemma C.1 shows that every x̃ ∈ Q>(x
∗) satisfies x̃ ≥ γ̂. Now, the function η(·, x̂) is

strictly quasi-concave, with η(x̂, x̂) = η(γ̂, x̂) = 0; it thus follows from (18) that η(x̃, x̂) ≤ 0

for all x̃ ≥ γ̂. Combining the previous observations establishes (19); so (K, β) is admissible.
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Finally, coupling (18) and Lemma C.1 yields U(γ̂) > U(x̂), giving in turn U(x∗) > U(x̂) =

U
(
β(X1)

)
(since x∗ ∈ Q≥(γ̂)). We conclude that (K, β) implements x∗, since X \X1 ⊂ Q≤(x

∗).

All plausible actions belong to Q≥(γ̂). Reason by contradiction, and suppose that some plausi-

ble action x∗ belongs toQ<(γ̂). Combining (18), Lemma C.1, and the fact that U is continuous

shows that we can find an action, say x†, such that:

x† < γ̂, (20)

and

x† ∈ Q>(x
∗) ∩Q<(γ̂). (21)

Now consider a pair (K, β) which implements x∗, and Xi an element of the CST K containing

x†. By virtue of (21), applying Lemma C.4 shows that

β(Xi) < x†. (22)

On the other hand, (18) and (20) show that

x† < γ̂ ≤ xC .

Hence, Lemma C.5 gives

β(Xi) < γ
(
β(Xi)

)
≤ x† < γ̂ ≤ xC . (23)

We thus obtain, firstly,

β(Xi) ∈ S, (24)

and, secondly (using Lemma C.1),

U
(
γ
(
β(Xi)

))
< U(γ̂). (25)

The combination of (24) and (25) contradicts (17). Therefore, every plausible action must

belong to Q≥(γ̂). ■
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Proof of Proposition 3: By definition of γ: η
(
γ(x), x

)
= 0 for all x in some neighborhood

O of xC . We thus have

u
(
γ(x), RF (x)

)
= u

(
x,RF (x)

)
, ∀x ∈ O.

Differentiating the previous expression with respect to x yields

u1

(
γ(x), RF (x)

)
γ′(x) + u2

(
γ(x), RF (x)

)
R′

F (x) = u1

(
x,RF (x)

)
+ u2

(
x,RF (x)

)
R′

F (x),

and, therefore,

γ′(x) =
u1

(
x,RF (x)

)
+R′

F (x)
[
u2

(
x,RF (x)

)
− u2

(
γ(x), RF (x)

)]

u1

(
γ(x), RF (x)

) , ∀x ∈ O \ {xC}. (26)

The numerator and denominator on the right-hand side of (26) tend to 0 as x → xC . Then,

by virtue of L’Hospital’s rule and using the fact that γ(x) → xC as x → xC :

lim
x→xC

γ′(x) = lim
x→xC

u11

(
x,RF (x)

)
+ 2u12

(
x,RF (x)

)
R′

F (x)− u12

(
x,RF (x)

)
R′

F (x)γ
′(x)

u11

(
γ(x), RF (x)

)
γ′(x) + u12

(
γ(x), RF (x)

)
R′

F (x)
. (27)

On the other hand, in a neighborhood of y = yC :

R′
L(y) =

−u12

(
RL(y), y

)

u11

(
RL(y), y

) .

Therefore,

R′
L(y

C) =
−u12(x

C , yC)

u11(xC , yC)
= lim

x→xC

−u12

(
x,RF (x)

)

u11

(
x,RF (x)

) = lim
x→xC

−u12

(
γ(x), RF (x)

)

u11

(
γ(x), RF (x)

) . (28)

Combining (28) with (27) gives

γ′(xC) =
1− 2R′

L(y
C)R′

F (x
C) +R′

L(y
C)R′

F (x
C)γ′(xC)

γ′(xC)−R′
L(y

C)R′
F (x

C)
.

So γ′(xC) is a solution of

Z(Z − 2α) = 1− 2α,

where α := R′
L(y

C)R′
F (x

C). So either γ′(xC) = 1 or γ′(xC) = 2α − 1, whence γ′(xC) > 0 if

R′
L(y

C)R′
F (x

C) > 1/2.

Now suppose that u12u2 > 0 (the other case is similar), so that S =
{
x : x ≤ γ(x) ≤ xC

}
.

If R′
L(y

C)R′
F (x

C) > 1/2, then γ′(xC) > 0. This in turn implies the existence of x < xC such

that x < γ(x) < xC . Such an x belongs to S, so Lemma C.1 enables us to conclude that

U < U(xC). ■
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D Appendix of Section 6

All the results in this appendix refer to the duopoly example presented in Subsection 2.3. Sub-

section D.1 characterizes the sets of plausible quantities. Subsection D.2 proves Proposition

5.

In this appendix, we denote the set of all CSTs by K. We use KI to denote the set of all

CSTs consisting only of intervals and KP to denote the set of all CSTs that are partitions.

Finally, the set of all simple CSTs (i.e., interval partitions) is denoted by KIP . For each of

these four classes of CSTs, Kz, we denote all plausible leader’s actions as XKz
. Whenever this

set has a minimum (respectively, a maximum) we denote it xKz
, (resp. xKz

). For example,

xKIP
denotes the smallest simply-plausible quantity, and xK denotes the largest plausible

quantity.

We define the following functions:

r∗(d) := 2−
√
2(1− d);

r∗∗(d) := 2−


 3

√√
57

9
+ 1


 (1− d)− 2(1− d)

3 3

√√
57
9

+ 1
;

r∗∗∗(d) :=
1

2

(
3−

√
5 + (1 +

√
5)d
)
;

r†(d) := 2−




3

√
3(9−

√
78)

3
+

1

3

√
3(9−

√
78)


 (1− d);

r††(d) := 2−
√
3(1− d);

r†††(d) := 2 +

(
1− 3

√
80− 9

√
79

3
− 1

3
3
√
80− 9

√
79

)
(1− d).

A firm acting as a monopolist would choose quantity xM := 1
2−r

.
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D.1 Plausible Quantities

The unique best response of the follower to x, and the leader payoff from x when the follower

best-responds to x are given, respectively, by

RF (x) =





1−(1−d)x
2−r

if x ≤ 1
1−d

,

0 if x > 1
1−d

,

and U(x) =





2(1−r+d)x−((2−r)2−2(1−d)2)x2

2(2−r)
if x ≤ 1

1−r
,

x−
(
1− r

2

)
x2 if x > 1

1−d
.

Function ϕ takes the form:

ϕ(x) =





0 if x ≤ r−(d+1)
(1−d)2

,

d+1−r+(1−d)2x
(2−r)2

if r−(d+1)
(1−d)2

< x < 1
1−d

,

xM if x ≥ 1
1−d

.

We characterize next the Cournot and the Stackelberg quantities.

Lemma D.1. The set of Cournot quantities is as follows:

XC =





{
1

3−r−d

}
if r < d+ 1,

[
0, xM

]
if r = d+ 1,

{
0, 1

3−r−d
, xM

}
if r > d+ 1.

Proof:

(i) If r < d+ 1, then
r − (d+ 1)

(1− d)2
< 0 and

1

1− d
>

2

2− r
,

hence XC = {x∗} where x = x∗ solves

d+ 1− r + (1− d)2x

(2− r)2
= x. (29)

(ii) If r = d+ 1, then ϕ(x) = x ⇐⇒ x ≤ 1
1−d

, and xM = 1
1−d

.

(iii) If r > d+ 1, then
2

2− r
>

1

1− d
>

r − (d+ 1)

(1− d)2
> 0,

hence set XC includes only 0, xM , and the solution to (29).
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In this appendix, xC
1 = 0, xC

2 = 1
3−r−d

, xC
3 = xM and xC = xC

2 .

Lemma D.2. The Stackelberg quantity, denoted xS, is as follows:

xS =





d+1−r
(2−r)2−2(1−d)2

if r < r∗∗∗(d),

1
1−d

if r∗∗∗(d) ≤ r ≤ d+ 1,

xM if r > d+ 1.

Proof: If r ≤ d+ 1, then U ′(x) < 0 for any x > 1
1−d

, hence xS =
[
0, 1

1−d

]
. Note that (i) U is

a quadratic function over this interval, (ii) U ′(0) > 0, and (iii) U ′
(

d+1−r
(2−r)2−2(1−d)2

)
= 0. Thus,

argmax
x∈X

U(x) ∈
{

1

1− d
,

d+ 1− r

(2− r)2 − 2(1− d)2

}
.

A few steps of algebra yield:

U

(
1

1− d

)
≥ U

(
d+ 1− r

(2− r)2 − 2(1− d)2

)
⇐⇒ r ≥ r∗∗∗(d).

One can also check that: r ∈ [0, r∗∗∗(d)] ⇒ d+1−r
(2−r)2−2(1−d)2

∈
[
0, 1

1−d

]
. Thus, xS = d+1−r

(2−r)2−2(1−d)2

for r < r∗∗∗(d) and xS = 1
1−d

for r ∈ [r∗∗∗(d), d + 1]. Finally, if r > d + 1 then RF (x
M) = 0

and therefore argmaxx∈X U(x) = xM . ■

Next, we characterize the sets of plausible quantities.

Lemma D.3. The set of simply-plausible quantities is as follows:

XKIP

=





[
xC , (2−r)2

(−r−d+3)((2−r)2−2(1−d)2)

]
if r < r∗∗(d),

[
xC ,

√
(1−d)(−2r−d+5)−r−d+3

(2−r)(−r−d+3)

]
if r∗∗(d) ≤ r < d+ 1,

X if r = d+ 1,

{xC
1 } ∪

[
2(r−d−1)

2(1−d)2−(2−r)2
, xC

2

]
∪
[
xC
3 ,

2
2−r

]
if r > d+ 1.

Proof:
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(i) If r < d + 1, then XC =
{
xC
}
, hence Proposition 1 ensures XKIP

= Q≥(x
C). For

r < d+1, then (i) U ′(x) < 0 for any x ≥ 1
1−d

, and (ii) over the interval [0, 1
1−d

], function

U is either non decreasing or concave, or both. Function U is thus quasi-concave. As

U ′(xC) > 0, then Q≥(x
C) = [xC , xKIP

], where xKIP
satisfies xKIP

> xC and U(xKIP
) =

U(xC). It is easy to verify that xC < (1+ d)−1, while r > r∗∗(d) ⇐⇒ xKIP
> (1+ d)−1.

A few steps of algebra thus yield the expressions for xKIP
.

(ii) Lemma D.1 ensures that if r = d+ 1, then XC =
[
0, xM

]
. For all x > xM , it is the case

that x > ϕ(x) = xM . Theorem 1 thus ensures XKIP
= X .

(iii) If r > d + 1, the characterization of the set XKIP
follows directly from Theorem 1 and

properties of ϕ. Note in particular that

• if x∗ ∈ {xC
1 }∪

[
2(r−d−1)

2(1−d)2−(2−r)2
, xC

2

]
∪
[
xC
3 ,

2
2−r

]
, then (ϕ(x∗)−x∗)(xC

1 −x∗) ≥ 0 hence

x∗ ∈ XKIP
;

• if instead x∗ /∈ {xC
1 }∪

[
2(r−d−1)

2(1−d)2−(2−r)2
, xC

2

]
∪
[
xC
3 ,

2
2−r

]
, then (ϕ(x∗)−x∗)(xC

i −x∗) < 0

for i = 1, 2 and 3, hence x∗ /∈ XKIP
.

■

Lemma D.4. The set of I-plausible quantities is as follows:

XKI

=




XKIP

if r ≤ d+ 1,

{0} ∪
[

2(r−d−1)
2(1−d)2−(2−r)2

, 2
2−r

]
if r > d+ 1.

Proof:

(i) If r < d+ 1, conditions (RC1)–(RC3) hold, hence XKI
= XKIP

by Proposition 1.

(ii) If r = d + 1, then XKIP
= X (Lemma D.3). As X ⊇ XKI

and XKI ⊇ XKIP
, then

XKI
= XKIP

.

(iii) Suppose r > d + 1. If x∗ ∈
(
0, 2(r−d−1)

2(1−d)2−(2−r)2

)
, then Q≤(x

∗) ∩ {x : ϕ(x) ≥ x} = ∅;

Theorem 2 ensures x∗ /∈ XKI
. If instead x∗ ∈ {0} ∪

[
2(r−d−1)

2(1−d)2−(2−r)2
, 2
2−r

]
, then x∗ ∈

Q≥(x
C
1 ); Corollary 2 ensures x∗ ∈ XKI

.
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■

Lemma D.5. The set of plausible quantities is as follows:

XK =





[
2(d+1−r)
(2−r)2

,
(2−r)2+

√
(2−r)4−8(1−d)2(d+1−r)2

(2−r)3

]
if r∗(d) ≤ r < d+ 1,

XKI
otherwise.

Proof:

(i) If r < d + 1, conditions (RC1)–(RC3) hold, and Theorem 3 applies. In particular, if

r < r∗(d), then S = {xC}, and therefore XK = XKIP
, which in turn implies XK = XKI

.

If instead r ≥ r∗(d), then S = [0, xC ]. Note that xC < 1
1−d

, hence

γ(x∗) =
2(1 + d− r)− x(2− r)2 + 2x(1− d)2

(2− r)2
, for all x∗ ∈ [0, xC ].

One can then verify that 0 = argminx∈[0,xC ] U(γ(x)), and γ(0) = 2(d+1−r)
(2−r)2

. Solving the

equation U(x) = U(γ(0)), and noting that U is quasi-concave, yields

XK =

[
γ(0),

(2− r)2 +
√
(2− r)4 − 8(1− d)2(d+ 1− r)2

(2− r)3

]
.

(ii) If r = d+1, then XKI
= X (see Lemma D.4). As XK ⊇ XKI

and X ⊇ XK , we conclude

that XKI
= XK .

(iii) If r > d + 1, Lemma D.4 ensures that Q≥(0) = XKI
. As u(0, y) = 0 for any y ∈ X ,

clearly Q<(0) /∈ XK ; thus, XK = XKI
.

■

The following remark is easy to verify.

Remark D.1. If r > d + 1, then Q≥(0) = {0} ∪
[

2(r−d−1)
2(1−d)2−(2−r)2

, 2
2−r

]
. If instead r ≤ d + 1,

then Q≥(0) = X .
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By Proposition 2, the set of all plausible outcomes coincides with the set of P-plausible

outcomes. We conclude with an immediate corollary of Lemma D.5 that will prove useful in

the next subsection.

Corollary D.1. The smallest and the largest plausible actions correspond to:

{
xK , xK} =





{
xKIP

, xKIP
}
=
{
0, 2

2−r

}
if r ≥ d+ 1,

{
xKP

, xKP
}
=

{
2(d+1−r)
(2−r)2

,
(2−r)2+

√
(2−r)4−8(1−d)2(d+1−r)2

(2−r)3

}
if r∗(d) < r < d+ 1,

{
xKIP

, xKIP
}
=

{
xC ,

√
(1−d)(−2r−d+5)−r−d+3

(2−r)(−r−d+3)

}
if r∗∗(d) < r < r∗(d),

{
xKIP

, xKIP
}
=
{
xC , (2−r)2

(−r−d+3)((2−r)2−2(1−d)2)

}
if r ≤ r∗∗(d).

D.2 The Designer Problem

We prove each of the three parts of Proposition 5 separately. To prove the first part, we need

the next two lemmata, where we characterize the solution the following problems

maxx+ y s.t. (x, y) is plausible, (30)

and

minxy s.t. (x, y) is plausible. (31)

Lemma D.6. The unique solution of (30) is (xK , RF (x
K)).

Proof: Outcome (x, y) is plausible only if y = RF (x), and

x+RF (x) =





1+(1+d−r)x
2−r

, if x < 1
1−d

,

x, if x ≥ 1
1−d

.

If r ≤ d+1, then x+RF (x) is non-decreasing in x, and therefore xK ∈ argmaxx∈XK{x+RF (x)}.
If r > d+ 1, then: (i) x+RF (x) is quasi-convex in x, (ii) xK = 2

2−r
(Corollary D.1), and (iii)

0 +RF (0) =
1

2−r
< xK ≤ xK +RF (x

K). The lemma follows. ■

Lemma D.7. If r ≥ 2d, the unique solution of (31) is (xK , RF (x
K)).
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Proof: If r ≥ d+ 1 then xK = 2
2−r

. Note that r ≥ 2d ⇐⇒ > 2
2−r

≥ 1
1−d

⇐⇒ RF (
2

2−r
) = 0.

The proof of Lemma D.3 shows that xKIP ≥ 1
1−d

if r ∈ (r∗∗(d), d + 1). As xK ≥ xKIP
, then

r ∈ (r∗∗(d), d + 1) ⇒ RF (x
K) = 0. Let f(x) := xRF (x). As f(x) ≥ 0 for all x ∈ X , we

conclude that xK = argminx∈XK f(x) for r > r∗∗(d). Finally, if r ≤ r∗∗(d), then

{
xK , xK} =

{
xC ,

(2− r)2

(3− r − d) ((2− r)2 − 2(1− d)2)

}
.

Function f is convex, and

f

(
(2− r)2

(3− r − d) ((2− r)2 − 2(1− d)2)

)
≥ f(xC) ⇐⇒ r ≥ 2d.

The lemma follows. ■

Proof of Proposition 5, part (i). Any plausible quantity x is associated with consumer

surplus:

CS(x,RF (x)) =
(x+RF (x))

2

2
− dxRF (x).

Let g(x) := CS(x,RF (x)). If r ≥ 2d, then Lemmata D.6 and D.7 together ensure that

xK = argmaxx∈XK g(x).

Suppose that r < 2d, so that 2
2−r

< 1
1−d

. We now prove that g(·) is increasing over the set

XK. First note that, in this parameter region, g(x) = a0 + a1x+ a2x
2, where

a0 :=
1

2(2− r)2
, a1 :=

(1− r)(1− d)

(2− r)2
, and a2 :=

(d+ 1− r)2 + 2(2− r)(1− d)d

2(2− r)2
.

Function g is then convex, and argminx g(x) = −a1
2a2

. As 2d < r∗∗(d), then r < 2d implies

xK = xC . Note that

xC >
−a1
2a2

⇐⇒ (2− r)(2− d)(d+ 1− r)

(3− r − d) ((d+ 1− r)2 + 2(2− r)(1− d)d)
> 0.

This inequality holds, hence g(·) is increasing over the set XK . ■

To prove the second part of Proposition 5 we need the following lemma.

Lemma D.8. For any d ∈ [0, 1),

2d < r††(d) < r†††(d) < r†(d) < r∗(d) < d+ 1.
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Proof: Functions 2d, r††(d), r†††(d), r†(d), r∗∗∗(d), and 1 + d are linear and take value 2 for

d = 1. To prove the lemma it is therefore sufficient to verify that their slopes are ordered

appropriately. The slopes are shown in Table 1 ■

Function Slope

2d 2

r††(d)
√
3 ≈ 1.732

r†††(d) 1
3

3
√

80− 9
√
79− 1

3
+ 1

3
3
√

80−9
√
79

≈ 1.538

r†(d)
3
√

3(9−
√
78)

3
+ 1

3
√

3(9−
√
78)

≈ 1.518

r∗(d)
√
2 ≈ 1.414

d+ 1 1

Table 1: Slopes of functions from Lemma D.8

Proof of Proposition 5, part (ii). Any plausible quantity x is associated with producer

surplus

PS(x,RF (x)) = (x+RF (x))−
(
1− r

2

)
(x+RF (x))

2 − (r − 2d)xRF (x)

=





1−2rx+4dx−x2+4rx2−r2x2−6dx2+3d2x2

2(2−r)
if x < 1

1−d
,

x−
(
1− r

2

)
x2 if x ≥ 1

1−d
.

(32)

Let h(x) := PS(x,RF (x)). If r > d + 1, then xC
1 ∈ XK , xC

3 ∈ XK , RF (x
C
3 ) = xC

1 = 0 and

RF (x
C
1 ) = xC

3 . As

xC
3 +RF (x

C
3 ) = xC

1 +RF (x
C
1 ) = argmax

x∈X
x−

(
1− r

2

)
x2,

and xC
3 RF (x

C
3 ) = xC

1 RF (x
C
1 ) = 0, we conclude that both xC

1 and xC
3 maximize producer surplus

among plausible quantities. The argument can be extended to the case r = d+ 1.

Suppose now that r < d + 1. It is easy to check that h(·) is decreasing over the interval
[

1
1−d

, 2
2−r

]
. Note that 1

1−d
∈ XK . For x ∈

[
0, 1

1−d

]
instead, g(x) = a0 + a1x+ a2x

2, where

a0 :=
1

2(2− r)
, a1 := −r − 2d

2− r
< 0, and a2 :=

−r2 + 4r + 3d2 − 6d− 1

2(2− r)
.
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Specifically, a2 > 0 if and only if r > r††(d). Therefore for r ∈ [r††(d), 1 + d), the function

g takes the highest value either at 1
1−d

, or at xK . Note that g
(

1
1−d

)
= PS1 := r−2d

2(1−d)2
. In

order to characterize g(xK), we distinguish two cases. If r < r∗(d), then xK = xC . Note

that g
(

1
1−d

)
> g(xC) ⇐⇒ r > r†(d). Lemma D.8 ensures that r††(d) < r†(d). If instead

r ≥ r∗(d), then xK = 2(d+1−r)
(2−r)2

, and

g

(
1

1− d

)
> g

(
2(d+ 1− r)

(2− r)2

)
⇐⇒

A ·
(
r3 + r2d− 7r2 − 4rd+ 16r − 6d3 + 18d2 − 14d− 6

)
> 0,

where

A :=
(d+ 1− r) (r2 − 2rd− 2r + 2d2 + 2)

2(2− r)5(1− d)2
> 0.

This inequality holds in the interval [r†††(d), 1 + d]. As r∗(d) > r†††(d) (Lemma D.8), we

conclude that
1

1− d
= arg max

x∈XK
g(x) for r ∈ [r†(d), 1 + d],

and

xC = arg max
x∈XK

g(x) for r ∈ [r††(d), r†(d)].

Consider next r ∈ [2d, r††(d)). For these parameter values the function g is concave

over the interval
[
0, 1

1−d

]
. The global maximum obtains at x = −a1/2a2 ≤ 0. Therefore

argmaxx∈XK g(x) = xK . As r††(d) < r∗(d), then xK = xC .

Finally, consider the case r < 2d. For these parameter values, the function g is concave

over the interval x ∈
[
0, 1

1−d

]
, and reaches its maximum at

−a1
2a2

=
−(r − 2d)

r2 − 4r − 3d2 + 6d+ 1
> 0.

As r < 2d, then (i) xK = xC , and (ii) xC > −a1
2a2

⇐⇒ r < r††(d). Noting that r††(d) > 2d

(Lemma D.8) concludes the proof. ■

Proof of Proposition 5, part (iii): Any plausible quantity x is associated with total wel-

fare

W (x,RF (x)) = CS(x,RF (x)) + PS(x,RF (x)) = Q(x)− 1− r

2
Q(x)2 − (r − d)xRF (x),
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where Q(x) = x+RF (x) is the total quantity.

Let us first consider the case r ≥ 2d. Define f(Q) := Q − 1
2
(1 − r)Q2. Whenever r ≥ 0,

the function f is increasing over the interval X . To see this, note that (i) if r > 1 then f is

convex and argmin f = (1− r)−1 < 0; (ii) if r = 1, then f is increasing for all Q; (iii) if r < 1

then, f is concave and argmax f = (1− r)−1 > 2
2−r

. Therefore for r ≥ 2d ≥ 0 the function f

is increasing in total quantity Q for any Q(x) ∈ X . It is easy to verify that Q(x) ∈ X for any

x ∈ X . By Lemma D.6, argmaxx∈XK f(Q(x)) = xK . Moreover, by Lemma D.7, when r ≥ 2d,

then argminx∈XK xRF (x) = xK . We conclude that argmaxx∈XK W (x) = xK , for r ≥ 2d.

Suppose that instead r < 2d. In this case 1
1−d

> 2
2−r

, hence for all x ∈ X it is the case

that RF (x) > 0 and W (x) = a0 + a1x+ a2x
2, where

a0 :=
3− r

2(2− r)2
; a1 := 1− (3− r)(1− d)

(2− r)2
; and

a2 :=
(d+ 1− r)2 + (2− r)(1− d)(3− d)− (2− r)3

2(2− r)2
.

There are three cases, depending on the sign of a2.

(i) Consider the case a2 = 0. This happens if and only if

d = d∗(r) := 1− (2− r)
√
(2− r)2 − 1

3− r
.

Note that (i) d∗(r) is strictly increasing over the interval [0, 1], (ii) d∗(1) = 1, and (iii)

2d∗(r) = r ⇐⇒ r = 1/3. So a2 = 0 requires that r ∈ (1/3, 1] and d = d∗(r). Replacing

d with d∗(r) in a1 gives:

a1 = 1−
√

1− 1

(2− r)2
> 0.

Therefore argmaxx∈XK W (x) = xK .

(ii) Suppose that a2 > 0. Note that (i) a2 > 0 if and only if d < d∗(r), and (ii) for a2 > 0

function W (x) is convex and reaches a minimum at −a1
a2

. We distinguish two cases.

(a) If r ≤ 1, then a1 ≥ 0. To see this, note that (i) a1 is increasing in d, so a1 for

d = r/2 is strictly smaller than for any d ∈ (r/2, d∗(r)), and (ii) evaluating a1 for
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d = r/2, gives
1− r

2(2− r)
≥ 0.

As −a1
a2

≤ 0, then argmaxx∈XK W (x) = xK .

(b) Let r > 1. As r < 2d, Corollary D.1 and Lemma D.8 together ensure that xK = xC .

Now,

xC − −a1
2a2

=
A(r, d)

B(r, d)
,

where

A(r, d) :=
(2− r)(d+ 1− r)

(3− r − d)
,

B(r, d) := (1− r + d)2 + (2− r)(1− d)(3− d)− (2− r)3.

Clearly A(r, d) > 0 for the relevant values of r and d. We show that B(r, d) > 0.

To see this, note that (i) B(r, d) is convex in d, with minimum at d = 1, therefore

B(r, d) decreasing in d ∈ [0, 1], and (ii) B(r, 1) = (2− r)2(r − 1) > 0 for r > 1.

Again, as W (x) is increasing in x over plausible values, it is maximized by xK .

(iii) Finally, suppose that a2 < 0. In this region W (·) is concave and reaches a maximum at

−a1
2a2

. As parameters satisfy min {2d, 1} > r, d > d∗(r), to conclude the proof it suffices

to show that
−a1
2a2

≥ xK , ∀r < 1 and ∀d > d∗∗(r),

where

d∗∗(r) :=





0 if r ≤ 0,

r
2

if 0 < r ≤ 1
3
,

d∗(r) if r > 1
3
.

Simple algebra shows that 2d < r∗∗(d) for all d ∈ [0, 1], hence r < 2d ensures r < r∗∗(d).

Corollary D.1 and Lemma D.8 together thus ensure that

xK =
(2− r)2

(3− r − d) ((2− r)2 − 2(1− d)2)
.
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Therefore
−a1
2a2

− xK =
F (r, d)

D(r, d)E(r, d)(3− r − d)

where

D(r, d) := (2− r)3 − (1− r + d)2 − (2− r)(1− d)(3− d);

E(r, d) := (2− r)2 − 2(1− d)2;

F (r, d) := (2− r)(3− r − d)(3r − 3r2 + r3 − 2d+ rd− r2d+ 2d2)

+ (2− 4r + r2 + 4d− 2d2)((2− r)3 − (2− r)(1− d)(3− d)− (1− r + d)2).

Clearly 3− r − d > 0 for all (r, d) such that r < 1, and d > d∗∗(r). We show next that

for these parameter values D > 0 and E > 0. Note that both D and E are concave

functions of d, and they both reach a maximum at d = 1. We conclude that both D

and E are increasing functions of d for all d ∈ [0, 1]. We consider, in turn, cases r ≤ 0,

r ∈ (0, 1/3] and r ∈ (1/3, 1).

(a) If r ≤ 0, then d∗∗(r) = 0. We just established thatD(r, d) ≥ D(r, 0) for all d ∈ [0, 1].

As D1(r, 0) < 0, then D(r, d) ≥ D(r, 0) ≥ D(0, 0) = 1. Similarly, E(r, d) ≥ E(r, 0)

for all d ∈ [0, 1]. As E1 < 0, then E(r, d) ≥ E(r, 0) ≥ E(0, 0) = 2.

(b) If r ∈ (0, 1
3
], then d∗∗(r) = r

2
, and D(r, d) ≥ D(r, r

2
) = 1/4(2 − r)2(1 − 3r) ≥ 0,

while E(r, d) ≥ E(r, r
2
) = 1/2(2− r)2 > 0.

(c) If r ∈ (1
3
, 1): then d∗∗(r) = d∗(r), and D(r, d) ≥ D(r, d∗(r)) = 0, while E(r, d) ≥

E(r, d∗(r)) = (2−r)2(r+1)
3−r

> 0.

In the rest of the proof we show that F (r, d) ≥ 0 for all r ≤ 1 and d ∈ [0, 1].

For any d ∈ [0, 1], the function F (r, d) is a 4th degree polynomial function of r. To prove

that it is non-negative for all r ≤ 1 and d ∈ [0, 1], it suffices to show that for all d ∈ [0, 1]: (i)

F (1, d) > 0 and (ii) F (·, d) does not have any real roots in (−∞, 1). To prove the first claim,

note that:

F (1, d) = 4− 17d+ 28d2 − 18d3 + 4d4.
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All four roots of this polynomial are complex, and, for example, F (1, 1) = 1 > 0. Therefore

F (1, d) > 0 for all d ∈ [0, 1].

To prove the second claim, we use Sturm’s theorem. For any d ∈ [0, 1], let: p0(r) :=

F (r, d), p1(r) := F1(r, d), p2(r) = − rem(p0(r), p1(r)), p3(r) = − rem(p1(r), p2(r)) and p4(r) =

− rem(p3(r), p4(r)), where rem(a, b) is the remainder of the Euclidean division of a by b. So

p1(r) = 4r3 + 6r2d2 − 15r2d− 15r2 − 24rd2 + 60rd+ 12r − 2d4 + 10d3 + 6d2 − 46d;

p2(r) = − 1

16
(1− d)2


 32 + 60r − 27r2 − 102d− 72rd+ 36r2d

+76d2 + 24rd2 − 12r2d2 − 22d3 + 4d4


 ;

p3(r) =
32(1− d)2

3(2d− 3)4


 16rd4 − 104rd3 + 212rd2 − 126rd− 24r

−52d4 + 314d3 − 600d2 + 335d+ 55


 ;

p4(r) =
(1− d)4(2d− 3)4 (64d6 − 672d5 + 2340d4 − 2984d3 + 252d2 + 1560d+ 197)

64 (8d4 − 52d3 + 106d2 − 63d− 12)2
.

Sturm’s theorem ensures that the number of real roots of F (·, d) in (−∞, 1] is equal to

V (−∞) − V (1), where V (r) denote the number of sign changes at r. We prove below that

V (−∞) = V (1) = 2, so that indeed the theorem ensures that F (·, d) does not have any real

roots in (−∞, 1).

First, we establish that V (−∞) = 2. To see this note that, at r → −∞ the sign of the

polynomial are

• positive for p0(r) (a 4th degree polynomial with leading coefficient 1);

• negative for p1(r) (a 3rd degree polynomial with leading coefficient 4);

• positive for p2(r) (a 2nd degree polynomial with leading coefficient 3
4
(1− d)2

(
3
2
− d
)2

>

0);

• positive for p3(r) (a linear function with negative slope for all d ∈ [0, 1]).

• positive for p4(r) (a positive constant).

The number of sign changes is therefore 2. Next, we establish that V (1) = 2. To see this note

that, at r = 1 the sign of the polynomial are

51



• positive for p0(r), p3(r) and p4(r);

• positive if d < a1 and negative if d > a1, where a1 ≈ 0.278 for p1(r);

• is negative if d < a2 and positive if d > a2, where a2 ≈ 0.845 for p2(r).
34

For any d ∈ [0, 1], the number of sign changes is indeed 2. ■

E Appendix of Subsection 7

In this appendix, we first show a method for checking whether a simple CST can be refined by

some worse simple CST. Then, we show a method for checking whether a CST that satisfies

Property I can be refined by some worse CST that satisfies Property I.

E.1 Simple Commitment Structures

Definition E.1. Let CST K satisfy Property I, and let X̃ be an interval corresponding to the

union of some elements of K. We define with GX̃ (K) a game that differs from G(K) only in

that, in period 1, the leader has to select some Xi such that Xi ⊆ X̃ .

Definition E.2. Let X̃ be an interval. An outcome (x∗, y∗) is said to be simply plausible with

respect to X̃ if there exists a simple CST, denoted K, such that (i) X̃ corresponds to the union

of some elements of K, and (ii) outcome (x∗, y∗) is a SPE outcome of GX̃ (K).

Accordingly, an action x∗ is said to be simply plausible with respect to X̃ if it forms part

of an outcome simply plausible with respect to X̃ .

Proposition E.1. Let X̃ be an interval. An action x∗ ∈ X̃ is simply plausible with respect to

X̃ if and only if either the set

X̃ ∩ XC ∩Q≤(x
∗) ∩ {x|(x− x∗)(ϕ(x∗)− x∗) ≥ 0}

34The exact values of a1 and a2 do not change the conclusions.
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is not empty, or else the set

X̃ ∩ Q≤(x
∗) ∩ {x|(ϕ(x)− x)(ϕ(x∗)− x∗) > 0}

includes every element of a sequence (xk)
∞
k=1 such that limk→∞ xk = x̃, for some action x̃ such

that (x̃− x)(ϕ(x∗)− x∗) ≥ 0 for every x ∈ X̃ , or both.

Proof: We prove first the if part of the proposition. Consider an action x∗ ∈ X̃ . If x∗ = ϕ(x∗),

the argument is trivial. Let x∗ < ϕ(x∗). We consider two cases.

Case 1: X̃ ∩ XC ∩Q≤(x
∗) ∩ {x|(x− x∗)(ϕ(x∗)− x∗) ≥ 0} ≠ ∅.

As x∗ < ϕ(x∗), then X̃ ∩ XC ∩ Q≤(x
∗) ∩ {x|x > x∗} ̸= ∅. It ensues that outcome

(x∗, RF (x
∗)) is a SPE outcome of GX̃ (K), for some simple CST K such that {x|x ∈ X̃ , x ≤

x∗} ∈ K, and {x|x ∈ X̃ , x > x∗} ∈ K.

Case 2: The set X̃ ∩ Q≤(x
∗) ∩ {x|(ϕ(x) − x)(ϕ(x∗) − x∗) > 0} includes every element of a

sequence (xk)
∞
k=1 such that limk→∞ xk = x̃, for some action x̃ such that (x̃−x)(ϕ(x∗)−x∗) ≥ 0

for every x ∈ X̃ .

As x∗ < ϕ(x∗), then the set X̃ ∩Q≤(x
∗)∩{x|ϕ(x) > x} includes a sequence (xk)

∞
k=1 such that

limk→∞ xk = sup(X̃ ). Suppose that this sequence includes a strictly increasing subsequence.

Denote the subsequence (x′
k)

∞
k=1. Consider a simple CSTK ′ such that {x|x ≤ x∗, x ∈ X̃} ∈ K,

(x∗, x′
1] ∈ K, and (x′

i, x
′
i+1] ∈ K for i ∈ {1, . . . ,∞}. Outcome (x∗, RF (x

∗)) is a SPE outcome

of GX̃ (K
′). Suppose instead that the aforementioned sequence (xk)

∞
k=1 does not include any

strictly increasing subsequence. Then the sequence must include a subsequence (x′
k)

∞
k=1 such

that every element satisfies x′
k = sup(X̃ ). We conclude that

sup(X̃ ) ∈ X̃ ∩ Q≤(x
∗) ∩ {x|ϕ(x) > x}.

Outcome (x∗, RF (x
∗)) is in this case a SPE outcome of GX̃ (K) for some simple CST K such

that {x|x ≤ x∗, x ∈ X̃} ∈ K and (x∗, sup(X̃ )] ∈ K. The proof for the case x∗ > ϕ(x∗) is

analogous.
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We prove now only if part of the proposition. Consider action x∗ in X̃ . If x∗ = ϕ(x∗),

then

X̃ ∩ XC ∩Q≤(x
∗) ∩ {x|(x− x∗)(ϕ(x∗)− x∗) ≥ 0} ≠ ∅.

Suppose instead that x∗ < ϕ(x∗). Let action x∗ be simply plausible with respect to X̃ .

Let K ′ denote a generic CST that satisfies:

(i) K ′ is simple;

(ii) X̃ is equal to the union of some elements of K ′;

(iii) {x|x ≤ x∗, x ∈ X̃} ∈ K ′.

Suppose some K ′ that satisfies (i)-(iii) also satisfies:

(iv) an equilibrium of GX̃ (K
′) exists in which the leader’s equilibrium action is x∗, and in

the subgame corresponding to some Xi ∈ X̃ the leader’s action belongs to XC .

Then

X̃ ∩ XC ∩Q≤(x
∗) ∩ {x|(x− x∗)(ϕ(x∗)− x∗) ≥ 0} ≠ ∅.

Suppose instead that every K ′ that satisfies (i)-(iii) violates (iv). Then, a SPE of GX̃ (K
′)

for some K ′ that satisfies (i)-(iii) exists in which the leader selects action x∗ on path, and an

action xi /∈ XC for every interval Xi ∈ K ′ such that Xi ⊆ X̃ . Standard arguments ensure that

the leader picks an action xi < ϕ(xi) for every interval Xi ∈ K ′ such that Xi ⊆ X̃ (call this

Remark 1).

We distinguish two cases. In the first case, sup(X̃ ) ∈ X̃ . Remark 1 ensures that sup(X̃ ) <

ϕ(sup(X̃ )) and sup(X̃ ) ∈ Q≤(x
∗). In this case, the set

X̃ ∩ Q≤(x
∗) ∩ {x|(ϕ(x)− x)(ϕ(x∗)− x∗) > 0}

includes a sequence (xk)
∞
k=1 such that limk→∞ xk = x̃, where (x̃−x)(ϕ(x∗)−x∗) ≥ 0 for every

x ∈ X̃ (consider, for instance, the sequence in which every element satisfies xk = sup(X̃ )).

In the second case, sup(X̃ ) /∈ X̃ . We can then construct a monotonically increasing sequence
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including only actions xi as described in Remark 1. Such sequence converges to sup(X̃ ) and

every element of the sequence satisfies xi < ϕ(xi) and xi ∈ {x|x ≥ x∗, x ∈ X̃}∩Q≤(x
∗). Thus,

also in this case the set X̃ ∩ Q≤(x
∗) ∩ {x|(ϕ(x) − x)(ϕ(x∗) − x∗) > 0} includes a sequence

(xk)
∞
k=1 such that limk→∞ xk = x̃, where (x̃ − x)(ϕ(x∗) − x∗) ≥ 0 for every x ∈ X̃ . This

concludes the only if part of the proof for x∗ < ϕ(x∗). The only if part of the proof for

x∗ > ϕ(x∗) is analogous. ■

The procedure to check whether a simple CST K can be refined by some worse simple

CST K ′ has two steps:

Step 1: for every Xi ∈ K find the set of actions that are simply plausible with respect to Xi.

Step 2: a worse CST that refines K exists if and only if there exists a utility level u such that

(i) u(x∗, y∗) > u for every SPE outcome (x∗, y∗) of G(K);

(ii) for every Xi ∈ K there exist an action x∗∗ simply plausible with respect to Xi such

that U(x∗∗) ≤ u, and the inequality holds as an equality for at least one Xi.

E.2 Commitment Structures that Satisfy Property I

Definition E.3. Let X̃ be an interval. An outcome (x∗, y∗) is said to be I-plausible with

respect to X̃ if there exists a CST, denoted K, such that (i) K satisfies Property I, (ii) X̃
corresponds to the union of some elements of K, and (iii) outcome (x∗, y∗) is a SPE outcome

of GX̃ (K).

Accordingly, an action x∗ is said to be I-plausible with respect to X̃ if it forms part of an

outcome I-plausible with respect to X̃ .

Definition E.4. Let X̃ ⊆ X . Define X̃≥ := {x|x ∈ X̃ , ϕ(x) ≥ x}, and X̃≤ := {x|x ∈
X̃ , ϕ(x) ≤ x}.

Proposition E.2. Let X̃ be an interval. Action x∗ ∈ X̃ is I-plausible with respect to X̃ if

and only if at least one of these conditions holds:
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(i) the set Q≤(x
∗) ∩ X̃≥ includes a sequence (xk)

∞
k=1, where limk→∞ xk = sup(X̃ );

(ii) the set Q≤(x
∗) ∩ X̃≤ includes a sequence (xk)

∞
k=1, where limk→∞ xk = inf(X̃ );

(iii) the set Q≤(x
∗) includes two actions, denoted x′ and x′′, such that (i) x′ ∈ X̃≤, (ii)

x′′ ∈ X̃≥ and (iii) x′ ≤ x′′.

Proof: We prove the if part of the proposition by construction. Let x∗ ∈ X̃ . Suppose that the

set Q≤(x
∗)∩X̃≥ includes every element of a sequence (xk)

∞
k=1, such that limk→∞ xk = sup(X̃ ).

Continuity of U then ensures that sup(X̃ ) ∈ Q≤(x
∗), while continuity of ϕ ensures that

sup(X̃ ) ≤ ϕ(sup(X̃ )). If sup(X̃ ) ∈ X̃ , then outcome (x∗, RF (x
∗)) is a SPE outcome of GX̃ (K)

for any CST K such that if Xi ∈ K and Xi ⊆ X̃ , then Xi ∈ {X̃ , {x∗}}. If instead sup(X̃ ) /∈ X̃ ,

then outcome (x∗, RF (x
∗)) is a SPE outcome of GX̃ (K) for any CST K such that if Xi ∈ K

and Xi ⊆ X̃ , then

Xi ∈ {{x∗}, {x|x ∈ Xi, x ≤ xk}∞k=1}.

An analogous argument holds if the set Q≤(x
∗) ∩ X̃≤ includes every element of a sequence

(xk)
∞
k=1, such that limk→∞ xk = inf(X̃ ).

Suppose instead that Q≤(x
∗) includes two actions, respectively denoted x′ and x′′, such

that x′ ∈ X̃≤, x′′ ∈ X̃≥ and x′ ≤ x′′. Outcome (x∗, RF (x
∗)) is then a SPE outcome of GX̃ (K)

for any CST K such that if Xi ∈ K and Xi ⊆ X̃ , then

Xi ∈ {{x|x ∈ X̃ , x ≤ x′′}, {x|x ∈ X̃ , x ≥ x′}, {x∗}}.

We prove now the only if part of the proposition. Let action x∗ ∈ X̃ be I-plausible with

respect to X̃ . If x∗ = ϕ(x∗), then the set Q≤(x
∗) includes a pair of actions, denoted x′ and

x′′, such that x′ = x′′ = x∗, x′ ∈ X̃≤, x′′ ∈ X̃≥ and x′ ≤ x′′. Suppose instead that x∗ < ϕ(x∗).

Action x∗ being I-plausible with respect to X̃ , for every action x ∈ X̃ there exits an action

x̃ ∈ X̃ ∩ Q≤(x
∗) such that either ϕ(x̃) ≥ x̃ ≥ x, or x > x̃ ≥ ϕ(x̃). Suppose that there does

not exist a pair of actions {x′, x′′} ∈ Q≤(x
∗), such that x′ ∈ X̃≤, x′′ ∈ X̃≥ and x′ ≤ x′′.

Then either x∗ = sup(X̃ ), or else for any action x ∈ X̃ such that x > x∗ there exists an

action x̃ ∈ X̃ ∩Q≤(x
∗) such that ϕ(x̃) ≥ x̃ ≥ x. In either case, the set Q≤(x

∗) ∩ X̃≥ includes
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every element of a sequence (xk)
∞
k=1, such that limk→∞ xk = sup(X̃ ). The argument in case

x∗ > ϕ(x∗) is analogous. ■

The procedure to check whether a CST K that satisfies Property I can be refined by some

worse CST K ′ that satisfies Property I resembles the procedure for a simple CST illustrated

in Subsection E.1.
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F Online Appendix

In this appendix, we consider a finite actions version of the leader-follower games introduced

in Subsection 6.1 and show that the pure-strategy proper equilibrium outcomes of these games

(as defined by Myerson (1978)) coincide with the plausible outcomes of our paper.

All definitions and notations from the main text carry over to this appendix. We keep in

line with the notation and terminology used in Myerson (1978) wherever possible.

To simplify notation, we work in a symmetric setting. That is, we assume that Y = X and

that v = u. Furthermore, we suppose that X is finite, and that (x, y) ̸= (x′, y′) ⇒ u(x, y) ̸=
u(x′, y′).35 Throughout, K is some fixed partition of X with cardinality m, and X1, . . . ,Xm

represent the elements of the partition K. The m-tuples of Xm will be represented by bold

letters, e.g., x = (x1, . . . , xm).

A pure (respectively, mixed and totally mixed) strategy of the leader is an element of X
(resp., ∆X and ∆0X ); a pure strategy of the follower is an element of Xm (resp., ∆Xm and

∆0Xm). Given an arbitrary strategy set S and s ∈ S, we sometimes slightly abuse notation

and write s for the element of ∆S attaching probability 1 to strategy s.

Given pure strategies x and y = (y1, . . . , ym) of the leader and follower, define (throughout,

the subscript ℓ stands for “leader” and f for “follower”)

vℓ(x,y) := u(x, yk), whenever x ∈ Xk,

and

vf (x,y) := v(yk, x), whenever x ∈ Xk.

Together, the players (leader and follower), their strategy spaces, and the above payoff func-

tions define a (normal-form) game G. In the remainder, we aim to show that the pure-strategy

proper equilibrium outcomes of G are the plausible outcomes of our setting.

Let Vj(sj | σ−j) denote the expected payoff of player j (i.e., j ∈ {ℓ, f}) from playing pure

strategy sj when the other player plays the mixed strategy σ−j. Say that σ−j induces a strict

35Note that the latter condition is satisfied “generically”.
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ranking over the pure strategies in Sj if Vj(sj | σ−j) ̸= Vj(s
′
j | σ−j) whenever sj ̸= s′j. Say that

a mixed strategy σj satisfies the ε-criterion against σ−j if

Vj(sj | σ−j) < Vj(s
′
j | σ−j) ⇒ σj(sj) ≤ εσj(s

′
j).

A pair (σℓ, σf ) constitutes a proper equilibrium of G (cf. Myerson (1978)) if there exist

sequences of totally mixed strategies {σn
ℓ }n∈N and {σn

f }n∈N, as well as a sequence of positive

scalars {εn}n∈N with limn→∞ εn = 0, such that, for every j ∈ {ℓ, f} and all n ∈ N: σn
j satisfies

the εn-criterion against σn
−j, and limn→∞ σn

j = σj.

Given x ∈ X1 × · · · × Xm, say that a sequence of totally mixed strategies of the leader

{σn
ℓ }n∈N tends to xi via x = (x1, . . . , xm) if

(i) σn
ℓ −→

n→∞
xi;

(ii) for k = 1, . . . ,m:
σn
ℓ (xk)∑

x̃∈Xk
σn
ℓ (x̃)

−→
n→∞

1.

For any pure strategy y of the follower, let Λk(y) be the unique maximizer of u(·, yk) over
Xk, that is,

argmax
x∈Xk

u(x, yk) =
{
Λk(y)

}
, (33)

and Λ(y) :=
(
Λ1(y), . . . ,Λm(y)

)
. Letting k∗ denote the index maximizing u

(
Λk(y), yk

)
, define

also Λ∗(y) := Λk∗(y).

Finally, given x ∈ X1 × · · · × Xm, let R(x) denote the strategy of the follower given by

Rk(x) = R(xk) for k = 1, . . . ,m.

Lemma F.1. Let y be a pure strategy of the follower, {σn
f }n∈N a sequence of mixed strategies

with limn→∞ σn
f = y, and {εn}n∈N a sequence of positive scalars with limn→∞ εn = 0. Suppose

that, for all n, σn
ℓ is a totally mixed strategy of the leader which satisfies the εn-criterion

against σn
f . Then {σn

ℓ }n∈N tends to Λ∗(y) via Λ(y).

Proof: Notice to begin with that y induces a strict ranking over the pure strategies of the

leader. Furthermore, for all sufficiently large n, the mixed strategy σn
f induces the same strict
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ranking as y. As σn
ℓ satisfies the εn-criterion against σn

f , we conclude from (33) that, for all

sufficiently large n and every k ∈ {1, . . . ,m}:

σn
ℓ (x̃) ≤ εnσ

n
ℓ

(
Λk(y)

)
, ∀x̃ ∈ Xk \

{
Λk(y)

}
.

Similarly, letting k∗ denote the index maximizing u
(
Λk(y), yk

)
, we have, for all sufficiently

large n,

σn
ℓ

(
Λk(y)

)
≤ εnσ

n
ℓ

(
Λk∗(y)

)
, ∀k ̸= k∗.

Taking the limits as n tends to infinity of these highlighted expressions establishes that {σn
ℓ }n∈N

tends to Λ∗(y) via Λ(y). ■

Lemma F.2. Let x ∈ X1 × · · · × Xm, {σn
ℓ }n∈N a sequence of totally mixed strategies which

tends to xi via x, and {εn}n∈N a sequence of positive scalars with limn→∞ εn = 0. Suppose

that, for all n, σn
f satisfies the εn-criterion against σn

ℓ . Then σn
f −→

n→∞
R(x).

Proof: Consider two strategies of the follower, y and y′, with y′j = R(xj) ̸= yj and y′k = yk

for all k ̸= j. Then

Vf (y | σn
ℓ )− Vf (y

′ | σn
ℓ ) =

∑

x̃∈Xj

σn
ℓ (x̃)

[
u(yj, x̃)− u(y′j, x̃)

]

=


∑

x̃∈Xj

σn
ℓ (x̃)


∑

x̃∈Xj

σn
ℓ (x̃)∑

x̃∈Xj
σn
ℓ (x̃)

[
u(yj, x̃)− u(y′j, x̃)

]
.

As {σn
ℓ }n∈N tends to xi via x, we conclude that, for all sufficiently large n, Vf (y | σn

ℓ ) < Vf (y
′ |

σn
ℓ ). We then find by induction that, for all sufficiently large n,

Vf (y | σn
ℓ ) < Vf

(
R(x) | σn

ℓ

)
, ∀y ̸= R(x).

Since σn
f satisfies the εn-criterion against σn

ℓ , the previous inequality implies that, for all

sufficiently large n,

σn
f (y) < εnσ

n
f

(
R(x)

)
, ∀y ̸= R(x).

As limn→∞ εn = 0, we obtain σn
f −→

n→∞
R(x). ■
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Proposition F.1. Let (x,y) be a pure-strategy proper equilibrium of G, with x ∈ Xi. Then

(x, yi) constitutes a plausible outcome.

Proof: The fact that (x,y) is a pure-strategy proper equilibrium of G tells us that there

exist sequences of totally mixed strategies {σn
ℓ }n∈N and {σn

f }n∈N with limn→∞ σn
ℓ = x and

limn→∞ σn
f = y, as well as a sequence of positive scalars {εn}n∈N with limn→∞ εn = 0, such

that σn
j satisfies the εn-criterion against σn

−j (for every j ∈ {ℓ, f} and all n ∈ N). Then, by

virtue of Lemma F.1, {σn
ℓ }n∈N tends to Λ∗(y) via Λ(y). Thus,

x = Λ∗(y), (34)

and, by virtue of Lemma F.2,

y = R
(
Λ(y)

)
. (35)

Now define β : K → X such that, for k = 1, . . . ,m:

β(Xk) = Λk(y). (36)

The combination of (33) and (35) shows that (K, β) constitutes an admissible pair. Finally, we

claim that (K, β) implements x. By (34), it is enough to show that Λ∗(y) maximizes u
(
x̃, R(x̃)

)

over all x̃ ∈ β(X ) =
{
Λ1(y), . . . ,Λm(y)

}
. Yet, by definition, u

(
Λk∗(y), yk∗

)
> u

(
Λk(y), yk

)

for all k ̸= k∗. So (35) finishes to show that (K, β) implements x. Then (x, yk∗) is a plausible

outcome since, using (34) and (35):

R(x) = R
(
Λ∗(y)

)
= R

(
Λk∗(y)

)
= yk∗ .

■

Proposition F.2. Let (x∗, y∗) be a plausible outcome, with x∗ ∈ Xi. Then there exists y, with

yi = y∗, such that (x∗,y) is a pure-strategy proper equilibrium of G.

Proof: Let (K, β) be an admissible pair that implements (x∗, y∗). Let β ∈ X1 × · · · × Xm be

given by βk = β(Xk), for k = 1, . . . ,m. Then βk maximizes u
(
·, R(βk)

)
over Xk. In view of

(33), we conclude that

β = Λ
(
R(β)

)
. (37)
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Furthermore, by definition,

u
(
Λk∗
(
R(β)

)
, R(βk∗)

)
> u

(
Λk

(
R(β)

)
, R(βk)

)
, for all k ̸= k∗.

By (37), this implies that Λk∗
(
R(β)

)
maximizes u

(
x̃, R(x̃)

)
over all x̃ ∈ {β1, . . . , βm}. Recall-

ing that Λ∗(R(β)
)
= Λk∗

(
R(β)

)
then yields

x∗ = Λ∗(R(β)
)
. (38)

Next, let {εn}n∈N be a sequence of positive scalars converging to 0, and pick a sequence

{σn
ℓ }n∈N of totally mixed strategies of the leader such that, for every n, σn

ℓ satisfies the εn-

criterion against R(β). By Lemma F.1, {σn
ℓ }n∈N tends to Λ∗(R(β)

)
via Λ

(
R(β)

)
, that is,

using (37) and (38), {σn
ℓ }n∈N tends to x∗ via β.

Now let {σn
f }n∈N be a sequence of totally mixed strategies of the follower such that, for

each n, σn
f satisfies the εn-criterion against σn

ℓ . By Lemma F.2, σn
f −→

n→∞
R(β). Since the

strategy R(β) of the follower induces a strict ranking over the pure strategies of the leader,

we conclude that, for all sufficiently large n, σn
f induces the same strict ranking as R(β). As

σn
ℓ satisfies the εn-criterion against R(β), the previous remark implies that, for all sufficiently

large n, σn
ℓ will satisfy the εn-criterion against σn

f . In sum, σn
ℓ tends to x∗ via β, σn

f tends to

R(β), and, for all sufficiently large n, each of these strategies satisfies the εn-criterion against

the other. So
(
x∗,R(β)

)
is a proper equilibrium of G. ■
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