
DIPS AT SMALL SIZES FOR TOPOLOGICAL GRAPH

OBSTRUCTION SETS

HYOUNGJUN KIM AND THOMAS W. MATTMAN

Abstract. The Graph Minor Theorem of Robertson and Seymour im-
plies a finite set of obstructions for any minor closed graph property.
We show that there are only three obstructions to knotless embedding
of size 23, which is far fewer than the 92 of size 22 and the hundreds
known to exist at larger sizes. We describe several other topological
properties whose obstruction set demonstrates a similar dip at small
size. For order ten graphs, we classify the 35 obstructions to knotless
embedding and the 49 maximal knotless graphs.

1. Introduction

The Graph Minor Theorem of Robertson and Seymour [RS] implies that
any minor closed graph property P is characterized by a finite set of ob-
structions. For example, planarity is determined by K5 and K3,3 [K, W]
while linkless embeddability has seven obstructions, known as the Petersen
family [RST]. However, Robertson and Seymour’s proof is highly non-
constructive and it remains frustratingly difficult to identify the obstruction
set, even for a simple property such as apex (see [JK]). Although we know
that the obstruction set for a property P is finite, in practice it is often
difficult to establish any useful bounds on its size.

In the absence of concrete bounds, information about the shape or dis-
tribution of an obstruction set would be welcome. Given that the number
of obstructions is finite, one might anticipate a unimodal distribution with
a central maximum and numbers tailing off to either side. Indeed, many of
the known obstruction sets do appear to follow this pattern. In [MW, Table
2], the authors present a listing of more than 17 thousand obstructions for
torus embeddings. Although, the list is likely incomplete, it does appear to
follow a normal distribution both with respect to graph order (number of
vertices) and graph size (number of edges), see Figure 1.

Size 18 19 20 21 22 23 · · · 28 29 30 31
Count 6 19 8 123 517 2821 · · · 299 8 4 1

Table 1. Count of torus embedding obstructions by size.

However, closer inspection (see Table 1) shows that there is a dip, or local
minimum, in the number of obstructions at size twenty. We will say that
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(a) By order (b) By size

Figure 1. Distribution of torus embedding obstructions

the dip occurs at small size meaning it is near the end of the left tail of the
size distribution.

In this paper, we will see that the knotless embedding property likewise
has a dip at size 23. A knotless embedding of a graph is an embedding in R3

such that each cycle is a trivial knot. Having noticed this dip we investigated
what other topological properties have a dip, or even gap (a size, or range of
sizes, for which there is no obstruction), at small sizes. We report on what
we found in the next section. In a word, the most prominent dips and gaps
seem to trace back to that perennial counterexample, the Petersen graph.

In Section 3, we prove the following.

Theorem 1.1. There are exactly three obstructions to knotless embedding
of size 23.

Since there are no obstructions of size 20 or less, 14 of size 21, 92 of size
22 and at least 156 of size 28 (see [FMMNN, GMN]), the theorem shows
that the knotless embedding obstruction set has a dip at small size, 23.

The proof of Theorem 1.1 naturally breaks into two parts. We show “by
hand” that the three obstruction graphs have no knotless embedding and
are minor minimal for that property. To show these three are the only
obstructions of size 23 we make use of the connection with 2-apex graphs.

c

a b

c

a b

v

Figure 2. ∇Y and Y∇ moves.

This second part of the argument is novel. While our analysis depends
on computer calculations, the resulting observations may be of independent
interest. To describe these, we review some terminology for graph families,
see [GMN]. The family of graph G is the set of graphs related to G by a
sequence of zero or more ∇Y and Y∇ moves, see Figure 2. The graphs in
G’s family are cousins of G. We do not allow Y∇ moves that would result
in doubled edges and all cousins have the same size. If a ∇Y move on G
results in graph H, we say H is a child of G and G is a parent of H. The
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set of graphs that can be obtained from G by a sequence of ∇Y moves are
G’s descendants. Similarly, the set of graphs that can be obtained from G
by a sequence of Y∇ moves are G’s ancestors.

To show that the three graphs are the only obstructions of size 23 relies
on a careful analysis of certain graph families with respect to knotless em-
bedding. This analysis includes progress in resolving the following question.

Question 1.2. If G has a vertex of degree less than three, can an ancestor
or descendant of G be an obstruction for knotless embedding?

It has been fruitful to search in graph families for obstructions to knot-
less embedding. For example, of the 264 known obstructions described in
[FMMNN], all but three occur as part of four graph families. The same
paper states “It is natural to investigate the graphs obtained by adding one
edge to each of ... six graphs” in the family of the Heawood graph. We carry
out this investigation and classify, with respect to knotless embedding, the
graphs obtained by adding an edge to a Heawood family graph; see Section
3 for details. As a first step toward a more general strategy for this type of
problem, we make the following connections between sets of graphs of the
form G+ e obtained by adding an edge to graph G.

Theorem 1.3. If G is a parent of H, then every G+ e has a cousin that is
an H + e.

Corollary 1.4. If G is an ancestor of H, then every G + e has a cousin
that is an H + e.

In Section 4, we prove the following.

Theorem 1.5. There are exactly 35 obstructions to knotless embedding of
order ten.

This depends on a classification of the maximal knotless graphs of order
ten, that is the graphs that are edge maximal in the set of graphs that admit
a knotless embedding, see [EFM]. In Appendix B we show that there are 49
maximal knotless graphs of order ten.

In contrast to graph size, distributions with respect to graph order gen-
erally do not have dips or gaps. In particular, Theorem 1.5 continues an
increasing trend of no obstructions of order 6 or less, one obstruction of
order 7 [CG], two of order 8 [CMOPRW, BBFFHL], and eight of order
9 [MMR].

In the next section we discuss some graph properties for which we know
something about the obstruction set, with a focus on those that have a
dip at small size. In Sections 3 and 4, we prove Theorems 1.1 and 1.5,
respectively. Appendix A is a traditional proof that the graphs G1 and
G2 are IK. In Appendix B we describe the 49 maxnik graphs of order ten.
Finally, Appendix C gives graph6 [Sg] notation for the important graphs and
further details of arguments throughout the paper including the structure
of the large families that occur at the end of subsection 3.2.

2. Dips at small size

As mentioned in the introduction, it remains difficult to determine the
obstruction set even for simple graph properties. In this section we survey
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Size 15 16 17 18 19 20 21
Count 7 0 0 4 5 22 33

Table 2. Count of apex obstructions through size 21.

Size 21 22 23
Count 20 60 0

Table 3. Count of 2-apex obstructions through size 23.

some topological graph properties for which we know something about the
obstruction set.

We begin by focusing on four properties that feature a prominent dip or
gap at small sizes. Two are the obstructions to knotless and torus embed-
dings mentioned in the introduction. Although the list of torus obstructions
is likely incomplete we can be confident about the dip at size 20. Like all
of the incomplete sets we look at, research has focused on smaller sizes such
that data on this side of the distribution is (nearly) complete. In the specific
case of torus obstructions, we can compare with a 2002 study [C] that listed
16,682 torus obstructions. Of the close to one thousand graphs added to the
set in the intervening decade and a half, only three are of size 23 or smaller.

Similarly, while our proof that there are three obstructions for knotless
embedding depends on computer verification, it seems certain that the num-
ber of obstructions at size 23 is far smaller than the 92 of size 22 and the
number for size 28, which is known to be at least 156 [GMN].

The set of apex obstructions, investigated by [JK, LMMPRTW, P], sug-
gests one possible source for these dips. A graph is apex if it is planar, or
becomes planar on deletion of a single vertex. As yet, we do not have a com-
plete listing of the apex obstruction set, but Jobson and Kézdy [JK] report
that there are at least 401 obstructions. Table 2 shows the classification
of obstructions through size 21 obtained by Pierce [P] in his senior thesis.
There is a noticeable gap at sizes 16 and 17. The seven graphs of size 15 are
the graphs in the Petersen family. This is the family of the Petersen graph,
which is also the obstruction set for linkless embedding. Note that, as for
all our tables of size distributions, the table begins with what is known to
be the smallest size in the distribution, in this case 15.

Our proof that there are only three knotless embeddding obstructions of
size 23 depends on a related property, 2-apex. We say that a graph is 2-apex
if it is apex, or becomes apex on deletion of a single vertex. Table 3 shows
the little that we know about the obstruction set for this family [MP]. Aside
from the counts for sizes 21 and 22 and the gap at size 23, we know only
that there are obstructions for each size from 24 through 30.

While it is not an explanation, these four properties with notable dips or
gaps are related to one another and seem to stem from the Petersen graph,
a notorious counterexample in graph theory. The most noticeable gap is for
the apex property and the seven graphs to the left of the gap are precisely
the Petersen family. The gap at size 23 for the 2-apex property is doubtless
related. In turn, our proof of Theorem 1.1 in Section 3 relies heavily on the
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Size 15 16 17 18 19 20
Count 4 7 10 10 2 2

Table 4. Count of projective planar obstructions by size.

strong connection between 2-apex and knotless graphs. For this reason, it
is not surprising that the gap at size 23 for 2-apex obstructions results in a
similar dip at size 23 for obstructions for knotless embeddings.

The connection with the dip at size 20 for torus embeddings is not as
direct, but we remark that eight of the obstructions of size 19 have a minor
that is either a graph in the Petersen family, or else one of those seven graphs
with a single edge deleted.

In contrast, let us briefly mention some well known obstruction sets that
do not have dips or gaps and are instead unimodal. There are two ob-
structions to planarity, one each of size nine (K3,3) and ten (K5). The two
obstructions, K4 andK3,2, to outerplanarity both have size six and the seven
obstructions to linkless embedding in the Petersen family [RST] are all of
size 15.

Aside from planarity and linkless embedding, the most famous set is likely
the 35 obstructions to projective planar embedding [A, GHW, MT]. Table 4
shows that the size distribution for these obstructions is unimodal.

3. Knotless embedding obstructions of size 23

In this section we prove Theorem 1.1: there are exactly three obstructions
to knotless embedding of size 23. Along the way (see subsection 3.2) we
provide evidence in support of a negative answer to Question 1.2 and prove
Theorem 1.3 and its corollary. We also classify, with respect to knotless
embedding, three graph families of size 22. These families include every
graph obtained by adding an edge to a Heawood family graph.

We begin with some terminology. A graph that admits no knotless em-
bedding is intrinsically knotted (IK). In contrast, we will call the graphs
that admit a knotless embedding not intrinsically knotted (nIK). If G is in
the obstruction set for knotless embedding we will say G is minor minimal
intrinsically knotted (MMIK). This reflects that, while G is IK, no proper
minor of G has that property. Similarly, we will call 2-apex obstructions
minor minimal not 2-apex (MMN2A).

Our strategy for classifying MMIK graphs of size 23 is based on the fol-
lowing observation.

Lemma 3.1. [BBFFHL, OT] If G is 2-apex, then G is not IK

Suppose G is MMIK of size 23. By Lemma 3.1, G is not 2-apex and,
therefore, G has an MMN2A minor. The MMN2A graphs through order 23
were classified in [MP]. All but eight of them are also MMIK and none are
of size 23. It follows that a MMIK graph of size 23 has one of the eight
exceptional MMN2A graphs as a minor. Our strategy is to construct all size
23 expansions of the eight exceptional graphs and determine which of those
is in fact MMIK.
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Before further describing our search, we remark that it does rely on com-
puter support. Indeed, the initial classification of MMN2A graphs in [MP]
is itself based on a computer search. We give a traditional proof that there
are three size 23 MMIK graphs, which is stated as Theorem 3.2 below. We
rely on computers only for the argument that there are no other size 23
MMIK graphs. Note that, even if we cannot provide a complete, tradi-
tional proof that there are no more than three size 23 MMIK graphs, our
argument does strongly suggest that there are far fewer MMIK graphs of
size 23 than the known 92 MMIK graphs of size 22 and at least 156 of size
28 [FMMNN, GMN]. In other words, even without computers, we have
compelling evidence that there is a dip at size 23 for the obstructions to
knotless embedding.

Below we give graph6 notation [Sg] and edge lists for the three MMIK
graphs of size 23. See also Figures 15 and 16 in Appendix A.
G1 J@yaig[gv@?

[(0, 4), (0, 5), (0, 9), (0, 10), (1, 4), (1, 6), (1, 7), (1, 10), (2, 3), (2, 4), (2, 5), (2, 9),

(2, 10), (3, 6), (3, 7), (3, 8), (4, 8), (5, 6), (5, 7), (5, 8), (6, 9), (7, 9), (8, 10)]

G2 JObFF‘wN?{?

[(0, 2), (0, 4), (0, 5), (0, 6), (0, 7), (1, 5), (1, 6), (1, 7), (1, 8), (2, 6), (2, 7), (2, 8),

(2, 9), (3, 7), (3, 8), (3, 9), (3, 10), (4, 8), (4, 9), (4, 10), (5, 9), (5, 10), (6, 10)]

G3 K?bAF‘wN?{SO

[(0, 4), (0, 5), (0, 7), (0, 11), (1, 5), (1, 6), (1, 7), (1, 8), (2, 7), (2, 8), (2, 9), (2, 11),

(3, 7), (3, 8), (3, 9), (3, 10), (4, 8), (4, 9), (4, 10), (5, 9), (5, 10), (6, 10), (6, 11)]

The graph G1 was discovered by Hannah Schwartz [N1]. Graphs G1

and G2 have order 11 while G3 has order 12. We prove the following in
subsection 3.1 below.

Theorem 3.2. The graphs G1, G2, and G3 are MMIK of size 23

We next describe the computer search that shows there are no other size
23 MMIK graphs and completes the proof of Theorem 1.1. We also describe
how Question 1.2, Theorem 1.3 and its corollary fit in, along with the various
size 22 families.

There are eight exceptional graphs of size at most 23 that are MMN2A
and not MMIK. Six of them are in the Heawood family of size 21 graphs.
The other two, H1 and H2, are 4-regular graphs on 11 vertices with size 22
described in [MP], listed in Appendix C, and shown in Figure 4.

It turns out that the three graphs of Theorem 3.2 are expansions of H1

and H2. In subsection 3.3 we show that these two graphs are MMN2A but
not IK and argue that no other size 23 expansion of H1 or H2 is MMIK.

The Heawood family consists of twenty graphs of size 21 related to one
another by ∇Y and Y∇ moves, see Figure 2. In [GMN, HNTY] two groups,
working independently, verified that 14 of the graphs in the family are
MMIK, and the remaining six are MMN2A and not MMIK. In subsection 3.2
below, we argue that no size 23 expansion of any of these six Heawood fam-
ily graphs is MMIK. Combining the arguments of the next three subsections
give a proof of Theorem 1.1.
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There are two Mathematica programs written by Naimi and available at
his website [N2] that we use throughout. One, isID4, is an implementation
of the algorithm of Miller and Naimi [MN] and we refer the reader to that
paper for details. Note that, while this algorithm can show that a particular
graph is IK, it does not allow us to deduce that a graph is nIK.

Instead, we make use of a second program of Naimi, findEasyKnots, to
find knotless embeddings of nIK graphs. This program determines the set
of cycles Σ of a graph G. Then, given an embedding of G, for each σ ∈ Σ
the program applies R1 and R2 Reidemeister moves (see [R]) until it arrives
at one of three possible outcomes: σ is the unknot; σ is an alternating
(hence non-trivial) knot; or σ is a non-alternating knot (which may or may
not be trivial). In this paper, we will often show that a graph is nIK by
presenting a knotless embedding. In all cases, this means that when we
apply findEasyKnots to the embedding, it determines that every cycle in
the graph is a trivial knot.

Before diving into our proof of Theorem 1.1, we state a few lemmas we
will use throughout. The first is about the minimal degree δ(G), which is
the least degree among the vertices of graph G.

Lemma 3.3. If G is MMIK, then δ(G) ≥ 3.

Proof. Suppose G is IK with δ(G) < 3. By either deleting, or contracting
an edge on, a vertex of small degree, we find a proper minor that is also
IK. □

Figure 3. Place a triangle in a neighborhood of the Y sub-
graph.

Lemma 3.4. The ∇Y move preserves IK: If G is IK and H is obtained from
G by a ∇Y move, then H is also IK. Equivalently, the Y∇ move preserves
nIK: if H is nIK and G is obtained from H by a Y∇ move, then G is also
nIK.

Proof. We begin by noting that the Y∇ move preserves planarity. Suppose
H is planar and has an induced Y or K3,1 subgraph with degree three vertex
v adjacent to vertices a, b, c. In a planar embedding of H we can choose a
neighborhood of the Y subgraph small enough that it excludes all other
edges of H, see Figure 3. This allows us to place a 3-cycle a, b, c within the
neighborhood which shows that the graph G that results from a Y∇ move
is also planar.

Now, suppose H is nIK with degree three vertex v. Then, as in Figure 3,
in a knotless embedding of H, we can find a neighborhood of the induced



8 H. KIM AND T.W. MATTMAN

Y subgraph small enough that it intersects no other edges of H. Again,
place a 3-cycle a, b, c within this neighborhood. We claim that the resulting
embedding of G obtained by this Y∇ move is likewise knotless. Indeed, any
cycle in G that uses vertices a, b, or c has a corresponding cycle in H that
differs only by a small move within the neighborhood of the Y subgraph.
Since every cycle of H is unknotted, the same is true for every cycle in this
embedding of G. □

Finally, we note that the MMIK property can move backwards along ∇Y
moves.

Lemma 3.5. [BDLST, OT] Suppose G is IK and H is obtained from G by
a ∇Y move. If H is MMIK, then G is also MMIK.

3.1. Proof of Theorem 3.2.
In this subsection we prove Theorem 3.2: the three graphs G1, G2, and

G3 are MMIK.
We first show these graphs are IK. For G1 and G2 we present a proof

“by hand” as Appendix A. We remark that we can also verify that these
two graphs are IK using Naimi’s Mathematica implementation [N2] of the
algorithm of Miller and Naimi [MN].

The graph G3 is obtained from G2 by a single ∇Y move. Specifically,
using the edge list for G2 given above:

[(0, 2), (0, 4), (0, 5), (0, 6), (0, 7), (1, 5), (1, 6), (1, 7), (1, 8), (2, 6), (2, 7), (2, 8),

(2, 9), (3, 7), (3, 8), (3, 9), (3, 10), (4, 8), (4, 9), (4, 10), (5, 9), (5, 10), (6, 10)],

make the ∇Y move on the triangle (0, 2, 6). Since G2 is IK, Lemma 3.4
implies G3 is also IK.

To complete the proof of Theorem 3.2, it remains only to show that all
proper minors of G1, G2 and G3 are nIK.

First we argue that no proper minor of G1 is IK. Up to isomorphism,
there are 12 minors obtained by contracting or deleting a single edge. Each
of these is 2-apex, except for the MMN2A graph H1. By Lemma 3.1, a
2-apex graph is nIK and Figure 4 gives a knotless embedding of H1 (as we
have verified using Naimi’s program findEasyKnots, see [N2]). This shows
that all proper minors of G1 are nIK.

Figure 4. Knotless embeddings of graphs H1 (left) and H2

(right).

Next we argue that no proper minor of G2 is IK. Up to isomorphism, there
are 26 minors obtained by deleting or contracting an edge of G2. Each of
these is 2-apex, except for the MMN2A graph H2. Since H2 has a knotless
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embedding as shown in Figure 4, then, similar to the argument for G1, all
proper minors of G2 are nIK.

It remains to argue that no proper minor of G3 is IK. Up to isomorphism,
there are 26 minors obtained by deleting or contracting an edge of G3. Each
of these is 2-apex, except for the MMN2A graph H2 which is nIK. Similar
to the previous cases, all proper minors of G3 are nIK. This completes the
proof of Theorem 3.2.

3.2. Expansions of nIK Heawood family graphs.
In this subsection we argue that there are no MMIK graphs among the

size 23 expansions of the six nIK graphs in the Heawood family. As part
of the argument, we classify with respect to knotless embedding all graphs
obtained by adding an edge to a Heawood family graph. We also discuss
our progress on Question 1.2 and prove Theorem 1.3 and its corollary.

We will use the notation of [HNTY] to describe the twenty graphs in
the Heawood family, which we also recall in Appendix C. For the reader’s
convenience, Figure 5 shows four of the graphs in the family that are central
to our discussion.

Figure 5. Four graphs in the Heawood family. (E9 is in the
family, but E9 + e is not.)

Kohara and Suzuki [KS] showed that 14 graphs in this family are MMIK.
The remaining six, N9, N10, N11, N

′
10, N

′
11, andN ′

12, are nIK [GMN, HNTY].
The graph N9 is called E9 in [GMN]. In this subsection we argue that no
size 23 expansion of these six graphs is MMIK.

The Heawood family graphs are the cousins of the Heawood graph, which
is denoted C14 in [HNTY]. All have size 21. We can expand a graph to one
of larger size either by adding an edge or by splitting a vertex. In splitting
a vertex we replace a graph G with a graph G′ so that the order increases
by one: |G′| = |G| + 1. This means we replace a vertex v of G with two
vertices v1 and v2 in G′ and identify the remaining vertices of G′ with those
of V (G) \ {v}. As for edges, E(G′) includes the edge v1v2. In addition,
we require that the union of the neigborhoods of v1 and v2 in G′ otherwise
agrees with the neighborhood of v: N(v) = N(v1) ∪ N(v2) \ {v1, v2}. In
other words, G is the result of contracting v1v2 in G′ where double edges
are suppressed: G = G′/v1v2.

Our goal is to argue that there is no size 23 MMIK graph that is an
expansion of one of the six nIK Heawood family graphs, N9, N10, N11, N

′
10,

N ′
11, and N ′

12. As a first step, we will argue that, if there were such a size
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23 MMIK expansion, it would also be an expansion of one of 29 nIK graphs
of size 22.

Given a graph G, we will use G+ e to denote a graph obtained by adding
an edge e ̸∈ E(G). As we will show, if G is a Heawood family graph, then
G + e will fall in one of three families that we will call the H8 + e family,
the E9 + e family, and the H9 + e family. The E9 + e family is discussed in
[GMN] where it is shown to consist of 110 graphs, all IK.

The H8 + e graph is formed by adding an edge to the Heawood family
graph H8 between two of its degree 5 vertices. The H8 + e family consists
of 125 graphs, 29 of which are nIK and the remaining 96 are IK, as we will
now argue. For this, we leverage graphs in the Heawood family. In addition
to H8 + e, the family includes an F9 + e graph formed by adding an edge
between the two degree 3 vertices of F9. Since H8 and F9 are both IK [KS],
the corresponding graphs with an edge added are as well. By Lemma 3.4,
H8 + e, F9 + e and all their descendants are IK. These are the 96 IK graphs
in the family.

The remaining 29 graphs are all ancestors of six graphs that we describe
below. Once we establish that these six are nIK, then Lemma 3.4 ensures
that all 29 are nIK.

We will denote the six graphs Ti, i = 1, . . . , 6 where we have used the
letter T since five of them have a degree two vertex (‘T’ being the first letter
of ‘two’). After contracting an edge on the degree 2 vertex, we recover one
of the nIK Heawood family graphs, N11 or N ′

12. It follows that these five
graphs are also nIK.

The two graphs that become N11 after contracting an edge have the fol-
lowing graph6 notation[Sg]:

T1: KSrb‘OTO?a‘S T2: KOtA‘_LWCMSS
The three graphs that contract to N ′

12 are:
T3: LSb‘@OLOASASCS T4: LSrbP?CO?dAIAW T5: L?tBP_SODGOS_T
The five graphs we have described so far along with their ancestors ac-

count for 26 of the nIK graphs in the H8 + e family. The remaining three
are ancestors of

T6: KSb‘‘OMSQSAK
Figure 6 shows a knotless embedding of T6. By Lemma 3.4, its two

ancestors are also nIK and this completes the count of 29 nIK graphs in the
H8 + e family.

Figure 6. A knotless embedding of the T6 graph.

The graph H9 + e is formed by adding an edge to H9 between the two
degree 3 vertices. There are five graphs in the H9 + e family, four of which
are H9 + e and its descendants. Since H9 is IK [KS], by Lemma 3.4, these
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four graphs are all IK. The remaining graph in the family is the MMIK
graph denoted GS in [FMMNN] and shown in Figure 7. Although the graph
is credited to Schwartz in that paper, it was a joint discovery of Schwartz
and and Barylskiy [N1]. Thus, all five graphs in the H9 + e family are IK.

Figure 7. The MMIK graph GS .

Having classified the graphs in the three families with respect to intrinsic
knotting, using Corollary 3.11 below, we have completed the investigation,
suggested by [FMMNN], of graphs formed by adding an edge to a Heawood
family graph.

We remark that among the three families H8 + e, E9 + e, and H9 + e,
the only instances of a graph with a degree 2 vertex occur in the family
H8+e, which also contains no MMIK graphs. This observation suggests the
following question.

Question 1.2. If G has minimal degree δ(G) < 3, is it true that G’s an-
cestors and descendants include no MMIK graphs?

Initially, we suspected that such a G has no MMIK cousins at all. How-
ever, we discovered that the MMIK graph of size 26, described in Section 4
below, includes graphs of minimal degree two among its cousins. Although
we have not completely resolved the question, we have two partial results.

Theorem 3.6. If δ(G) < 3 and H is a descendant of G, then H is not
MMIK.

Proof. Since δ(G) is non-increasing under the ∇Y move, δ(H) ≤ δ(G) < 3
and H is not MMIK by Lemma 3.3. □

As defined in [GMN] a graph has a Ȳ if there is a degree 3 vertex that is
also part of a 3-cycle. A Y∇ move at such a vertex would result in doubled
edges.

Lemma 3.7. A graph with a Ȳ is not MMIK.

Proof. Let G have a vertex v with N(v) = {a, b, c} and ab ∈ E(G). We can
assume G is IK. Make a ∇Y move on triangle v, a, b to obtain the graph
H. By Lemma 3.4 H is IK, as is the homeomorphic graph H ′ obtained by
contracting an edge at the degree 2 vertex c. But H ′ = G− ab is obtained
by deleting an edge ab from G. Since G has a proper subgraph H ′ that is
IK, G is not MMIK. □

Theorem 3.8. If G has a child H with δ(H) < 3, then G is not MMIK.

Proof. By Lemma 3.3, we can assume G is IK with δ(G) = 3. It follows that
G has a Ȳ and is not MMIK by the previous lemma. □
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Suppose G is a size 23 MMIK expansion of one of the six nIK Heawood
family graphs. We will argue that G must be an expansion of one of the
graphs in the three families, H8 + e, E9 + e, and H9 + e. However, as a
MMIK graph, G can have no size 22 IK minor. Therefore, G must be an
expansion of one of the 29 nIK graphs in the H8 + e family.

There are two ways to form a size 22 expansion of one of the six nIK
graphs, either add an edge or split a vertex. We now show that if H is in
the Heawood family, then H+e is in one of the three families, H8+e, E9+e,
and H9+e. We begin with a proof of a theorem and corollary, mentioned in
the introduction, that describe how adding an edge to a graph G interacts
with the graph’s family.

Theorem 1.3. If G is a parent of H, then every G+ e has a cousin that is
an H + e.

Proof. Let H be obtained by a ∇Y move that replaces the triangle abc in
G with three edges on the new vertex v. That is, V (H) = V (G) ∪ {v}.
Form G + e by adding the edge e = xy. Since V (H) = V (G) ∪ {v}, then
x, y ∈ V (H) and the graph H + e is a cousin of G+ e by a ∇Y move on the
triangle abc. □

Corollary 1.4. If G is an ancestor of H, then every G + e has a cousin
that is an H + e.

Every graph in the Heawood family is an ancestor of one of two graphs,
the Heawood graph (called C14 in [HNTY]) and the graphH12 (see Figure 5).

Theorem 3.9. Let H be the Heawood graph. Up to isomorphism, there are
two H + e graphs. One is in the H8 + e family, the other in the E9 + e
family.

Proof. The diameter of the Heawood graph is three. Up to isomorphism, we
can either add an edge between vertices of distance two or three. If we add
an edge between vertices of distance two, the result is a graph in the H8+ e
family. If the distance is three, we are adding an edge between the different
parts and the result is a bipartite graph of size 22. As shown in [KMO], this
means it is cousin 89 of the E9 + e family. □

Theorem 3.10. Let G be formed by adding an edge to H12. Then G is in
the H8 + e, E9 + e, or H9 + e family.

Proof. Note that H12 consists of six degree 4 vertices and six degree 3 ver-
tices. Moreover, five of the degree 3 vertices are created by ∇Y moves in
the process of obtaining H12 from K7. Let ai (i = 1 . . . 5) denote those five
degree 3 vertices. Further assume that b1 is the remaining degree 3 vertex
and b2, b3, b4, b5, b6 and b7 are the remaining degree 4 vertices. Then the
bj vertices correspond to vertices of K7 before applying the ∇Y moves.

First suppose that G is obtained from H12 by adding an edge which
connects two bj vertices. Since these seven vertices are the vertices of K7

before using ∇Y moves, there is exactly one vertex among the ai, say a1,
that is adjacent to the two endpoints of the added edge. Let G′ be the graph
obtained from G by applying Y∇ moves at a2, a3, a4 and a5. Then G′ is
isomorphic to H8 + e. Therefore G is in the H8 + e family.
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Next suppose that G is obtained from H12 by adding an edge which
connects two ai vertices. Let a1 and a2 be the endpoints of the added edge.
We assume that G′ is obtained from G by using Y∇ moves at a3, a4 and a5.
Then there are two cases: either G′ is obtained from H9 or F9 by adding an
edge which connects two degree 3 vertices. In the first case, G′ is isomorphic
to H9 + e. Thus G is in the H9 + e family. In the second case, G′ is in the
H8+ e or E9+ e family by Corollary 1.4 and Theorem 3.9. Thus G is in the
H8 + e or E9 + e family.

Finally suppose that G is obtained from H12 by adding an edge which
connects an ai vertex and a bj vertex. Let a1 be a vertex of the added edge.
We assume that G′ is the graph obtained from G by using Y∇ moves at a2,
a3, a4 and a5. Since G′ is obtained from H8 by adding an edge, G′ is in the
H8 + e or E9 + e family by Corollary 1.4 and Theorem 3.9. Therefore G is
in the H8 + e or E9 + e family. □

Corollary 3.11. If H is in the Heawood family, then H+e is in the H8+e,
E9 + e, or H9 + e family.

Proof. The graph H is either an ancestor of the Heawood graph or H12.
Apply Corollary 1.4 and Theorems 3.9 and 3.10. □

Corollary 3.12. If H is in the Heawood family and H + e is nIK, then
H + e is one of the 29 nIK graphs in the H8 + e family

Lemma 3.13. Let H be a nIK Heawood family graph and G be an expansion
obtained by splitting a vertex of H. Then either G has a vertex of degree at
most two, or else it is in the H8 + e, E9 + e, or H9 + e family.

Proof. Note that ∆(H) ≤ 5. If G has no vertex of degree at most two, then
the vertex split produces a vertex of degree three. A Y∇ move on the degree
three vertex produces G′ which is of the form H + e. □

Corollary 3.14. Suppose G is nIK and a size 22 expansion of a nIK Hea-
wood family graph. Then either G has a vertex of degree at most two or G
is in the H8 + e family.

Theorem 3.15. Let G be size 23 MMIK with a minor that is a nIK Heawood
family graph. Then G is an expansion of one of the 29 nIK graphs in the
H8 + e family.

Proof. There must be a size 22 graph G′ intermediate to G and the Heawood
family graph H. That is, G is an expansion of G′, which is an expansion of
H. By Corollary 3.14, we can assume G′ has a vertex v of degree at most
two.

By Lemma 3.3, a MMIK graph has minimal degree, δ(G) ≥ 3. Since G′

expands to G by adding an edge or splitting a vertex, we conclude v has
degree two exactly and G is G′ with an edge added at v. Since δ(H) ≥ 3,
this means G′ is obtained from H by a vertex split.

In G′, let N(v) = {a, b} and let cv be the edge added to form G. Then
H = G′/av and we recognize H +ac as a minor of G. We are assuming G is
MMIK, so H + ac is nIK and, by Corollary 3.12, one of the 29 nIK graphs
in the H8 + e family. Thus, G is an expansion of H + ac, which is one of
these 29 graphs, as required. □
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It remains to study the expansions of the 29 nIK graphs in the H8 + e
family. We will give an overview of the argument, leaving many of the details
to Appendix C.

The size 23 expansions of the 29 size 22 nIK graphs fall into one of eight
families, which we identify by the number of graphs in the family: F9, F55

F174, F183, F547, F668, F1229, and F1293. We list the graphs in each family
in Appendix C.

Theorem 3.16. If G is a size 23 MMIK expansion of a nIK Heawood family
graph, then G is in one of the eight families, F9, F55 F174, F183, F547, F668,
F1229, and F1293.

Proof. By Theorem 3.15, G is an expansion of G′, which is one of the 29 nIK
graphs in the H8 + e family. As we have seen, these 29 graphs are ancestors
of the six graphs T1, . . . , T6. By Corollary 1.4, we can find the G′+ e graphs
by looking at the six graphs. Given the family listings in Appendix C, it is
straightforward to verify that each Ti+e is in one of the eight families. This
accounts for the graphs G obtained by adding an edge to one of the 29 nIK
graphs in the H8 + e family.

If instead G is obtained by splitting a vertex of G′, we use the strategy of
Lemma 3.13. By Lemma 3.3, δ(G) ≥ 3. Since ∆(G′) ≤ 5, the vertex split
must produce a vertex of degree three. Then, a Y∇ move on the degree
three vertex produces G′′ which is of the form G′ + e. Thus G is a cousin of
G′ + e and must be in one of the eight families. □

To complete our argument that there is no size 23 MMIK graph with a
nIK Heawood family minor, we argue that there are no MMIK graphs in
the eight families F9,F55, . . . ,F1293. In large part our argument is based on
two criteria that immediately show a graph G is not MMIK.

(1) δ(G) < 3, see Lemma 3.3.
(2) By deleting an edge, there is a proper minor G − e that is an IK

graph in the H8+ e, E9 + e, or H9 + e families. In this case G is IK,
but not MMIK.

By Lemma 3.5, if G has an ancestor that satisfies criterion 2, then G is also
not MMIK. By Lemma 3.4, if G has a nIK descendant, then G is also not
nIK.

Theorem 3.17. There is no MMIK graph in the F9 family.

Proof. Four of the nine graphs satisfy the first criterion, δ(G) = 2, and
these are not MMIK by Lemma 3.3. The remaining graphs are descendants
of a graph G that is IK but not MMIK. Indeed, G satisfies criterion 2: by
deleting an edge, we recognize G − e as an IK graph in the H9 + e family
(see Appendix C for details). By Lemma 3.5, G and its descendants are also
not MMIK. □

Theorem 3.18. There is no MMIK graph in the F55 family.

Proof. All graphs in this family have δ(G) ≥ 3, so none satisfy the first
criterion. All but two of the graphs in this family are not MMIK by the
second criterion. The remaining two graphs have a common parent that is
IK but not MMIK. By Lemma 3.5, these last two graphs are also not MMIK.
See Appendix C for details. □
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We remark that F55 is the only one of the eight families that has no graph
with δ(G) < 3.

Theorem 3.19. There is no MMIK graph in the F174 family.

Proof. All but 51 graphs are not MMIK by the first criterion. Of the re-
maining graphs, all but 17 are not MMIK by the second criterion. Of these,
11 are descendants of a graph G that is IK but not MMIK by the second cri-
terion. By Lemma 3.5, these 11 are also not MMIK. This leaves six graphs.
For these we find two nIK descendants. By Lemma 3.4 the remaining six are
also not MMIK. Both descendants have a degree 2 vertex. On contracting
an edge of the degree 2 vertex, we obtain a homeomorphic graph that is one
of the 29 nIK graphs in the H8 + e family. □

Theorem 3.20. There is no MMIK graph in the F183 family.

Proof. All graphs in this family have a vertex of degree two or less and are
not MMIK by the first criterion. □

Theorem 3.21. There is no MMIK graph in the F547 family.

Proof. All but 229 of the graphs in the family are not MMIK by criterion
one. Of those, all but 52 are not MMIK by criterion two. Of those, 25 are
ancestors of one of the graphs meeting criterion two and are not MMIK by
Lemma 3.5. For the remaining 27 graphs, all but five have a nIK descendant
and are not IK by Lemma 3.4. For the remaining five, three are ancestors
of one of the five. In Figure 8 we give knotless embeddings of the other two
graphs. Using Lemma 3.4, all five graphs are nIK, hence not MMIK. □

Figure 8. Knotless embeddings of two graphs in F547.

Theorem 3.22. There is no MMIK graph in the F668 family.

Proof. All but 283 of the graphs in the family are not MMIK by criterion
one. Of those, all but 56 are not MMIK by criterion two. Of those, 23 are
ancestors of one of the graphs meeting criterion two and are not MMIK by
Lemma 3.5. For the remaining 33 graphs all but three have a nIK descendant
and are not IK by Lemma 3.4. Of the remaining three, two are ancestors of
the third. Figure 9 is a knotless embedding of the common descendant. By
Lemma 3.4 all three of these graphs are nIK, hence not MMIK. □

Theorem 3.23. There is no MMIK graph in the F1229 family.
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Figure 9. Knotless embedding of a graph in F668.

Proof. There are 268 graphs in the family that are not MMIK by criterion
one. Of the remaining 961 graphs, all but 140 are not MMIK by criterion
two. Of those, all but three are ancestors of one of the graphs meeting
criterion two and are not MMIK by Lemma 3.5. The remaining three graphs
have an IK minor by contracting an edge and are, therefore, not MMIK. □

Theorem 3.24. There is no MMIK graph in the F1293 family.

Proof. There are 570 graphs in the family that are not MMIK by criterion
one. Of the remaining 723 graphs, all but 99 are not MMIK by criterion
two. Of those, all but 12 are ancestors of one of the graphs meeting criterion
two and are not MMIK by Lemma 3.5. The remaining 12 graphs have an
IK minor by contracting an edge and are, therefore, not MMIK. □

3.3. Expansions of the size 22 graphs H1 and H2. We have argued that
a size 23 MMIK graph must have a minor that is either one of six nIK graphs
in the Heawood family, or else one of two (11, 22) graphs that we call H1:
J?B@xzoyEo? and H2: J?bFF‘wN?{? (see Figure 4). We treated expansions
of the Heawood family graphs in the previous subsection. In this subsection
we show that G1, G2, and G3 are the only size 23 MMIK expansions of H1

and H2. Recall that these two graphs were shown MMN2A (minor minimal
for 2-apex) in [MP]. The unknotted embeddings of Figure 4 demonstrate
that they are nIK.

By Lemma 3.3, if a vertex split of H1 results in a vertex of degree less
than three, the resulting graph is not MMIK. Since H1 is 4-regular, the only
other way to make a vertex split produces adjacent degree 3 vertices. Then,
a Y∇ move on one of the degree three vertices yields an H1 + e. Thus, a
size 23 MMIK expansion of H1 must be in the family of a H1 + e.

Up to isomorphism, there are six H1+e graphs formed by adding an edge
to H1. These six graphs generate families of size 6, 2, 2, and 1. Three of the
six graphs are in the family of size 6 and there is one each in the remaining
three families.

All graphs in the family of size six are ancestors of three graphs. In Fig-
ure 10 we provide knotless embeddings of those three graphs. By Lemma 3.4,
all graphs in this family are nIK, hence not MMIK.

In a family of two graphs, there is a single ∇Y move. In Figure 11 we give
knotless embeddings of the children in these two families. By Lemma 3.4,
all graphs in these two families are nIK, hence not MMIK.

The unique graph in the family of size one is G1. In subsection 3.1 we
show that this graph is MMIK. Using the edge list of G1 given above near
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Figure 10. Knotless embeddings of three graphs in the size
six family from H1.

Figure 11. Knotless embeddings of two graphs in the size
two families from H1.

the beginning of Section 3:

[(0, 4), (0, 5), (0, 9), (0, 10), (1, 4), (1, 6), (1, 7), (1, 10), (2, 3), (2, 4), (2, 5), (2, 9),

(2, 10), (3, 6), (3, 7), (3, 8), (4, 8), (5, 6), (5, 7), (5, 8), (6, 9), (7, 9), (8, 10)],

we recover H1 by deleting edge (2, 5).
Again, since H2 is 4-regular, MMIK expansions formed by vertex splits

(if any) will be in the families of H2 + e graphs. Up to isomorphism, there
are three H2 + e graphs. These produce a family of size four and another of
size two.

Figure 12. Knotless embeddings of two graphs in the size
four family from H2.

The family of size four includes two H2 + e graphs. All graphs in the
family are ancestors of the two graphs that are each shown to have a knotless
embedding in Figure 12. By Lemma 3.4, all graphs in this family are nIK,
hence not MMIK.

The family of size two consists of the graphs G2 and G3. In subsection 3.1
we show that these two graphs are MMIK. Using the edge list for G2 given
above near the beginning of Section 3:

[(0, 2), (0, 4), (0, 5), (0, 6), (0, 7), (1, 5), (1, 6), (1, 7), (1, 8), (2, 6), (2, 7), (2, 8),

(2, 9), (3, 7), (3, 8), (3, 9), (3, 10), (4, 8), (4, 9), (4, 10), (5, 9), (5, 10), (6, 10)],
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we recover H2 by deleting edge (0, 2). As for G3:

[(0, 4), (0, 5), (0, 7), (0, 11), (1, 5), (1, 6), (1, 7), (1, 8), (2, 7), (2, 8), (2, 9), (2, 11),

(3, 7), (3, 8), (3, 9), (3, 10), (4, 8), (4, 9), (4, 10), (5, 9), (5, 10), (6, 10), (6, 11)],

contracting edge (6, 11) leads back to H2.

4. Knotless embedding obstructions of order ten.

In this section, we prove Theorem 1.5: there are exactly 35 obstructions
to knotless embedding of order ten. As in the previous section, we refer to
knotless embedding obstructions as MMIK graphs. We first describe the 26
graphs given in [FMMNN, MNPP] and then list the 9 new graphs unearthed
by our computer search.

4.1. 26 previously known order ten MMIK graphs. In [FMMNN],
the authors describe 264 MMIK graphs. There are three sporadic graphs
(none of order ten), the rest falling into four graph families. Of these, 24
have ten vertices and they appear in the families as follows.

There are three MMIK graphs of order ten in the Heawood family [KS,
GMN, HNTY]: H10, F10, and E10.

In [GMN], the authors study the other three families. All 56 graphs in
the K3,3,1,1 family are MMIK. Of these, 11 have order ten: Cousins 4, 5, 6,
7, 22, 25, 26, 27, 28, 48, and 51. There are 33 MMIK graphs in the family
of E9 + e. Of these seven have order ten: Cousins 3, 28, 31, 41, 44, 47, and
50. Finally, the family of G9,28 includes 156 MMIK graphs. Of these, there
are three of order ten: Cousins 2, 3, and 4.

The other two known MMIK graphs of order ten are described in [MNPP],
one having size 26 and the other size 30. We remark that the family for the
graph of size 26 includes both MMIK graphs and graphs with δ(G) = 2.
However, no ancestor or descendant of a δ(G) = 2 graph is MMIK. This is
part of our motivation for Question 1.2

4.2. Nine new MMIK graphs of order ten. In this subsection we list
the nine additional MMIK graphs that we found after a computer search
described following the list. In each case, we use the program of [MN] to
verify that the graph we found is IK. We use the Mathematica implementa-
tion of the program available at Ramin Naimi’s website [N2]. To show that
the graph is MMIK, we must in addition verify that each minor formed by
deleting or contracting an edge is nIK. Many of these minors are 2-apex and
not IK by Lemma 3.1. There remain 21 minors and below we discuss how
we know that those are also nIK.

First we list the nine new MMIK graphs of order ten, including size,
graph6 format [Sg], and an edge list.

(1) Size: 25; graph6 format: ICrfbp{No

[(0, 3), (0, 4), (0, 5), (0, 6), (1, 4), (1, 5), (1, 6), (1, 7), (1, 8),

(2, 5), (2, 6), (2, 7), (2, 8), (2, 9), (3, 6), (3, 7), (3, 8),

(3, 9), (4, 7), (4, 8), (4, 9), (5, 8), (5, 9), (6, 9), (7, 9)]
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(2) Size: 25; graph6 format: ICrbrrqNg

[(0, 3), (0, 4), (0, 5), (0, 8), (1, 4), (1, 5), (1, 6), (1, 7), (1, 8),

(2, 5), (2, 6), (2, 7), (2, 8), (2, 9), (3, 6), (3, 7), (3, 8),

(3, 9), (4, 6), (4, 7), (4, 9), (5, 9), (6, 8), (6, 9), (8, 9)]

(3) Size: 25; graph6 format: ICrbrriVg

[(0, 3), (0, 4), (0, 5), (0, 8), (1, 4), (1, 5), (1, 6), (1, 7), (1, 8),

(1, 9), (2, 5), (2, 6), (2, 7), (2, 8), (3, 6), (3, 7), (3, 9),

(4, 6), (4, 7), (4, 8), (4, 9), (5, 9), (6, 8), (6, 9), (8, 9)]

(4) Size: 25; graph6 format: ICrbrriNW

[(0, 3), (0, 4), (0, 5), (0, 8), (1, 4), (1, 5), (1, 6), (1, 7), (1, 8),

(2, 5), (2, 6), (2, 7), (2, 8), (2, 9), (3, 6), (3, 7), (3, 9),

(4, 6), (4, 7), (4, 8), (4, 9), (5, 9), (6, 8), (7, 9), (8, 9)]

(5) Size: 27; graph6 format: ICfvRzwfo

[(0, 3), (0, 4), (0, 5), (0, 6), (0, 8), (0, 9), (1, 5), (1, 6), (1, 7),

(1, 8), (2, 5), (2, 6), (2, 7), (2, 8), (3, 4), (3, 5), (3, 7), (3, 8),

(3, 9), (4, 6), (4, 7), (4, 8), (4, 9), (5, 7), (5, 9), (6, 9), (7, 9)]

(6) Size: 29; graph6 format: ICfvRr^vo

[(0, 3), (0, 4), (0, 5), (0, 6), (0, 8), (0, 9), (1, 5), (1, 6), (1, 7), (1, 8),

(1, 9), (2, 5), (2, 6), (2, 7), (3, 4), (3, 5), (3, 7), (3, 8), (3, 9), (4, 6),

(4, 7), (4, 8), (4, 9), (5, 8), (5, 9), (6, 8), (6, 9), (7, 8), (7, 9)]

(7) Size: 30; graph6 format: IQjuvrm^o

[(0, 2), (0, 4), (0, 5), (0, 6), (0, 7), (0, 8), (1, 3), (1, 5), (1, 6), (1, 7),

(1, 8), (1, 9), (2, 4), (2, 5), (2, 7), (2, 8), (2, 9), (3, 5), (3, 6), (3, 7),

(3, 9), (4, 6), (4, 7), (4, 8), (4, 9), (5, 8), (5, 9), (6, 8), (6, 9), (7, 9)]

(8) Size: 31; graph6 format: IQjur~m^o

[(0, 2), (0, 4), (0, 5), (0, 6), (0, 8), (1, 3), (1, 5), (1, 6), (1, 7), (1, 8), (1, 9),

(2, 4), (2, 5), (2, 7), (2, 8), (2, 9), (3, 5), (3, 6), (3, 7), (3, 9), (4, 6),

(4, 7), (4, 8), (4, 9), (5, 7), (5, 8), (5, 9), (6, 7), (6, 8), (6, 9), (7, 9)]

(9) Size: 32; graph6 format: IEznfvm|o

[(0, 3), (0, 4), (0, 5), (0, 6), (0, 7), (0, 8), (0, 9), (1, 3), (1, 4), (1, 5), (1, 6),

(1, 7), (1, 8), (1, 9), (2, 4), (2, 5), (2, 6), (2, 7), (2, 8), (2, 9), (3, 6), (3, 7),

(3, 9), (4, 5), (4, 7), (4, 8), (5, 8), (5, 9), (6, 7), (6, 8), (6, 9), (7, 9)]
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Figure 13. Knotless embeddings of two order ten graphs.

To complete our argument, it remains to argue that the 21 non 2-apex
minors are nIK. Each of these minors is formed by deleting or contracting
an edge in one of the nine graphs just listed. Of these minors, 19 have a
2-apex descendant and are nIK by Lemmas 3.1 and 3.4. In Figure 13 we
give knotless embeddings of the remaining two minors showing that they
are also nIK.

Let us describe our computer search. A MMIK graph G of order ten
must be connected, have δ(G) ≤ 3 (by Lemma 3.3) and have size (number
of edges) between 21 and 35. For, the lower bound on size, see [M]. The
upper bound follows as Mader [Ma] showed that a graph with n ≥ 7 vertices
and 5n− 14 or more edges has a K7 minor. Since K7 is IK (see [CG]), this
means that a graph of order ten with 36 or more edges cannot be MMIK as
it has a proper IK minor, K7. There remain just under 5 million graphs to
consider.

We next sieve out any graph that has one of the 26 known MMIK graphs
of order ten (see subsection 4.1) as a subgraph or any of the known MMIK
graphs of order less than ten as a minor. We also discard any 2-apex
graph, which must be nIK by Lemma 3.1. We test the remaining graphs
using Ramin Naimi’s implementation [N2] of the algorithm of Miller and
Naimi [MN]. Those which were found to be IK led us to the nine new
MMIK graphs listed above. Those graphs that we could not otherwise clas-
sify led us to a list of 35 graphs that we subsequently showed to be maxnik:
following [EFM], we say that a graph G is maximal knotless or maxnik if
G is nIK, but every G+ e is IK. In Appendix B we provide a classification
of the 49 maxnik graphs of order ten. In addition to the 35 graphs just
mentioned, there are 14 maximal 2-apex graphs.

Once we determined the 35 MMIK obstructions and the 35 maxnik (and
not 2-apex) graphs of order ten, we were in a position to show that the
remaining nearly 5 million candidates G are not MMIK for at least one of
the following three reasons: 1) G is 2-apex and nIK by Lemma 3.1, 2) G has
a proper minor that is IK and is therefore not MMIK, or 3) G is a subgraph
of one of the 35 maxnik graphs and is therefore nIK.

Having determined the 49 maxnik graphs of order ten (see Appendix B),
we can update some observations of [EFM], which catalogs the maxnik
graphs through order nine. The fourteen maximally 2-apex graphs are of
the form K2 ∗T8, the join of K2 and a planar triangulation on eight vertices.
As such, each has 35 edges and ∆(G) = 9. The remaining 35 maxnik graphs
range between size 23 and 34. In particular, we still know of no maxnik
graph on 22 edges. To continue Tables 1 and 2 of [EFM], the least |E|/|V |
among maxnik graphs of order ten is 23/10 and we have 2 ≤ δ(G) ≤ 6 and
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5 ≤ ∆(G) ≤ 9. Although we still have no regular maxnik graph, there are
several examples where ∆(G)− δ(G) is only one.
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Appendix A. Proof by hand that G1 and G2 are IK

In this section, we give a traditional proof (ie one that does not rely on
computers) that G1 and G2 are IK. For this we use a lemma due, indepen-
dently, to two groups [F, TY]. Let D4 denote the multigraph of Figure 14
and, for i = 1, 2, 3, 4, let Ci be the cycle of edges e2i−1, e2i. For any given
embedding of D4, let σ denote the mod 2 sum of the Arf invariants of the 16
Hamiltonian cycles in D4 and lk(C,D) the mod 2 linking number of cycles
C and D. Since the Arf invariant of the unknot is zero, an embedding of D4

with σ ̸= 0 must have a knotted cycle.

C1 C3

C2

C4

e1 e2

e3

e4

e5 e6

e7

e8

Figure 14. The D4 graph.

Lemma A.1. [F, TY] Given an embedding of D4, σ ̸= 0 if and only if
lk(C1, C3) ̸= 0 and lk(C2, C4) ̸= 0.

A.1. G1 is IK.
In this subsection, we show that G1 is IK. To use Lemma A.1 we need

pairs of linked cycles. We first describe three sets of pairs that we will call
Ai’s, Bi’s, and Ci’s

Step I: Define Ai pairs.
To find pairs of linked cycles, we use minors of G1 that are members

of the Petersen family of graphs as these are the obstructions to linkless
embedding [RST]. Our first example is based on contracting the edges (3, 6),
(5, 7), and (6, 9) in Figure 15 to produce a K4,4 minor with {3, 4, 5, 10} and
{0, 1, 2, 8} as the two parts. For convenience, we use the smallest vertex
label to denote the new vertex obtained when contracting edges. Thus, we
denote by 3 the vertex obtained by identifying 3, 6, and 9 of G1. Further
deleting the edge (1, 3) we identify the Petersen family graph K−

4.4 as a minor
of G1.
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Figure 15. The graph G1.

There are nine pairs of disjoint cycles in K−
4,4 and we denote these pairs

as A1 through A9. In Table 5, we first give the cycle pair in the K−
4,4 and

then the corresponding pair in G1.

A1 0,4,1,5 – 2,3,8,10 0,4,1,7,5 – 2,3,8,10
A2 0,4,1,10 – 2,3,8,5 0,4,1,10 – 2,3,8,5
A3 1,4,2,5 – 0,3,8,10 1,4,2,5,7 – 0,9,6,3,8,10
A4 1,4,2,10 – 0,3,8,5 1,4,2,10 – 0,9,6,3,8,5
A5 1,4,8,5 – 0,3,2,10 1,4,8,5,7 – 0,9,6,3,2,10
A6 1,4,8,10 – 0,3,2,5 1,4,8,10 – 0,9,6,3,2,5
A7 1,5,2,10 – 0,3,8,4 1,7,5,2,10 – 0,9,6,3,8,4
A8 0,5,1,10 – 2,3,8,4 0,5,7,1,10 – 2,3,8,4
A9 1,5,8,10 – 0,3,2,4 1,7,5,8,10 – 0,9,6,3,2,4

Table 5. Nine pairs of cycles in G1 called A1, . . . , A9.

Step II: Find pairs Bi and Ci.
Similarly, we will describe a K3,3,1 minor that gives pairs of cycles B1

through B9. Contract edges (1, 7), (3, 7), and (7, 9). Delete vertex 6 and
edge (2, 9). The result is a K3,3,1 minor with parts {0, 2, 8}, {4, 5, 10}, and
{1}. In Table 6 we give the nine pairs of cycles, first in K3,3,1 and then in
G1.

B1 0,1,4 – 2,5,8,10 0,4,1,7,9 – 2,5,8,10
B2 0,1,5 – 2,4,8,10 0,5,7,9 – 2,4,8,10
B3 0,1,10 – 2,4,8,5 0,9,7,1,10 – 2,4,8,5
B4 1,2,4 – 0,5,8,10 1,4,2,3,7 – 0,5,8,10
B5 1,2,5 – 0,4,8,10 2,3,7,5 – 0,4,8,10
B6 1,2,10 – 0,4,8,5 2,3,7,1,10 – 0,4,8,5
B7 1,4,8 – 0,5,2,10 1,4,8,3,7 – 0,5,2,10
B8 1,5,8 – 0,4,2,10 3,7,5,8 – 0,4,2,10
B9 1,8,10 – 0,4,2,5 1,7,3,8,10 – 0,4,2,5

Table 6. Nine pairs of cycles in G1 called B1, . . . , B9.

Another K−
4,4 minor of G1 will give our last set of nine cycle pairs. Con-

tract edges (0, 9), (2, 5), and (3, 8) to obtain a K4,4 with parts {0, 1, 2, 8}
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and {4, 6, 7, 10}. Then delete edge (1, 4) to make a K−
4.4 minor. Table 7 lists

the nine pairs of cycles, first in the K−
4,4 minor and then in G1.

C1 0,6,1,7 – 2,4,8,10 9,6,1,7 – 2,4,8,10
C2 0,6,1,10 – 2,4,8,7 0,9,6,1,10 – 2,4,8,3,7,5
C3 1,6,2,7 – 0,4,8,10 1,6,5,7 – 0,4,8,10
C4 1,6,2,10 – 0,4,8,7 1,6,5,2,10 – 0,4,8,3,7,9
C5 1,6,8,7 – 0,4,2,10 1,6,,3,7 – 0,4,2,10
C6 1,6,8,10 – 0,4,2,7 1,6,3,8,10 – 0,4,2,5,7,9
C7 0,7,1,10 – 2,4,8,6 0,9,7,1,10 – 2,4,8,3,6,5
C8 1,7,2,10 – 0,4,8,6 1,7,5,2,10 – 0,4,8,3,6,9
C9 1,7,8,10 – 0,4,2,6 1,7,3,8,10 – 0,4,2,5,6,9

Table 7. Nine pairs of cycles in G1 called C1, . . . , C9.

As shown by Sachs [Sc], in any embedding of K−
4,4 or K3,3,1, at least one

pair of the nine disjoint cycles in each graph has odd linking number. We
will simply say the cycles are linked if the linking number is odd. Fix an
embedding of G1. Our goal is to show that the embedding must have a
knotted cycle.

We will argue by contradiction. For a contradiction, assume that there is
no knotted cycle in the embedding of G1. We leverage Lemma A.1 to deduce
that certain pairs of cycles are not linked. Eventually, we will conclude that
none of B1, . . . , B9 are linked. This is a contradiction as these correspond
to cycles in a K3,3,1 and we know that every embedding of this Petersen
family graph must have a pair of linked cycles [Sc]. The contradiction shows
that there must in fact be a knotted cycle in the embedding of G1. As the
embedding is arbitrary, this shows that G1 is IK.

Step III: Eliminate A2 by combining with each Bi.
We illustrate our strategy by first focusing on the pair A2 = 0,4,1,10 –

2,3,8,5. Combine A2 with each Bi. In each case we form a D4 graph as
in Figure 14. Since the Bi are pairs of cycles in K3,3,1, a Petersen family
graph, at least one pair is linked [Sc]. If A2 is also linked, then Lemma A.1
implies that the embedding of G1 has a knotted cycle, in contradiction to
our assumption. Therefore, we conclude that A2 is not linked (i.e., does not
have odd linking number).

B1 {0, 1, 4}, {2, 5, 8}, {3, 7}, {10}
B2 {0}, {1, 4, 10}, {2, 3, 8}, {5}
B3 {0, 1, 10}, {2, 5, 8}, {3, 7}, {4}
B4 {0, 10}, {1, 4}, {2, 3}, {5, 8}
B5 {0, 4, 10}, {1}, {2, 3, 5}, {8}
B6 {0, 4}, {1, 10}, {2, 3}, {5, 8}
B7 {0, 10}, {1, 4}, {2, 5}, {3, 8}
B8 {0, 4, 10}, {1, 7}, {2}, {3, 8, 5}
B9 {0, 4}, {1, 10}, {2, 5}, {3, 8}

Table 8. Pairing A2 with B1, . . . , B9.
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In Table 8, we list the vertices in G1 that are identified to give each of the
four vertices of D4. Let us examine the pairing with B2 as an example to
see how this results in a D4. We identify {1, 4, 10} as a single vertex by con-
tracting edges (1, 4) and (1, 10). Similarly contract (2, 3) and (3, 8) to make
a vertex of the D4 from vertices {2, 3, 8} of G1. In this way, the cycle 0,4,1,10
of A2 in G1 becomes cycle C1 of the D4 (see Figure 14) between {1, 4, 10}
and {0} and the cycle 2,3,8,5 becomes cycle C3 between {2, 3, 8} and {5}.
Similarly 0,5,7,9 of B2 becomes homeomorphic to the cycle C2 between {0}
and {5}. For the final cycle of B2, 2,4,8,10, we observe that, in homology,
2,4,8,10 = 1,4,2,10 ∪ 1,4,8,10. Assuming lk((0,5,7,9), (2,4,8,10)) ̸= 0, then
one of lk((0,5,7,9), (1,4,2,10)) and lk((0,5,7,9), (1,4,8,10)) is also nonzero.
Whichever it is, 1,4,2,10 or 1,4,8,10, that will be our C4 cycle in the D4 of
Figure 14.

To summarize, we have argued thatA2 forms aD4 with each pairB1, . . . , B9.
Since at least one of the Bi’s is linked, then, assuming A2 is linked, these
two pairs make a D4 that has a knotted cycle. Therefore, by way of contra-
diction, going forward, we may assume A2 is not linked.

Step IV: Argue A6 is not linked.
We next argue that A6 is not linked. For a contradiction, assume instead

that A6 is linked. Pairing with the Bi’s again, the vertices for each D4 are

B1{0, 9}, {1, 4}, {2, 5}, {8, 9} B2{0, 5, 9}, {1, 7}, {2}, {4, 8, 10}
B3{0, 9}, {1, 10}, {2, 5}, {4, 8} B4{0, 5}, {1, 4}, {2, 3}, {8, 10}
B5{0}, {1, 7}, {2, 3, 5}, {4, 8, 10} B6{0, 5}, {1, 10}, {2, 3}, {4, 8}
B7{0, 2, 5}, {1, 4, 8}, {3}, {10} B9{0, 2, 5}, {1, 8, 10}, {3}, {4}.

For B8 = 3,7,5,8 – 0,4,2,10, we first split one of the A6 cycles: 0,5,2,3,6,9 =
0,5,2,9 ∪ 2,3,6,9. One of the two summands must link with the other A2

cycle 1, 4, 8, 10. If lk((0,5,2,9), (1,4,8,10)) ̸= 0, then, by a symmetry of G1,
lk((8,5,2,3), (1,4,0,10)) ̸= 0. But this last is the pair A2, and we have already
argued that A2 is not linked.

Therefore, it must be that lk((2,3,6,9), (1,4,8,10)) ̸= 0. Next, we split a
cycle of B8: 0,4,2,10 = 1,4,2,10 ∪ 0,4,1,10. If lk((3,7,5,8), (1,4,2,10)) ̸= 0,
form a D4 with vertices {1, 4, 10}, {2}, {3}, and {8}. On the other hand, If
lk((3,7,5,8), (0,4,1,10)) ̸= 0, form a D4 with vertices {0, 9}, {1, 4, 10}, {3},
and {8}.

For every choice of Bi we can make a D4 with A6. We know that at
least one Bi is a linked pair. If A6 is also linked, then, by Lemma A.1, this
embedding of G1 has a knotted cycle. Therefore, by way of contradiction,
we may assume the pair of A6 is not linked.

Step V: Eliminate B2 and B8.
We next eliminate B2 by pairing it with each Ai. As we are assuming A2

and A6 are not linked, it must be some other Ai pair that is linked. Here



DIPS AT SMALL SIZES FOR TOPOLOGICAL GRAPH OBSTRUCTION SETS 25

are the vertices of the D4’s in each case:

A1{0, 5, 7}, {2, 8, 10}, {3, 6, 9}, {4} A3{0, 9}, {2, 4}, {5, 7}, {8, 10}
A4{0, 5, 9}, {1, 7}, {2, 4, 10}, {8} A5{0, 9}, {2, 10}, {4, 8}, {5, 7}
A7{0, 9}, {2, 10}, {4, 8}, {5, 7} A8{0, 5, 7}, {2, 4, 8}, {3, 6, 9}, {10}
A9{0, 9}, {2, 4}, {5, 7}, {8, 10}.

This shows B2 is not linked. Since B8 is the same as B2 by a symmetry of
G1, B8 is likewise not linked. Ultimately, we will show that no Bi is linked.
So far, we have this for B2 and B8.

Step VI: Eliminate C1, C5, and C3.
Our next step is to argue C1 is not linked by pairing it with the remaining

Ai’s:

A1{1, 7}, {2, 8, 10}, {3, 6}, {4} A3{1, 7}, {2, 4}, {6, 9}, {8, 10}
A4{1}, {2, 4, 10}, {6, 9}, {8} A5{1, 7}, {2, 10}, {4, 8}, {6, 9}
A7{0, 4, 8}, {1, 5, 7}, {6}, {10} A8{1, 7}, {2, 4, 8}, {3, 6}, {10}
A9{1, 7}, {2, 4}, {6, 9}, {8, 10}.

By a symmetry of G1, C5 is also not linked.
Now we argue that C3 is not linked, again by pairing with Ai’s:

A1{0, 4}, {1, 5, 7}, {3, 6}, {8, 10} A3{0, 8, 10}, {1, 5, 7}, {4}, {6}
A5{0, 10}, {1, 5, 7}, {4, 8}, {6} A7{0, 4, 8}, {1, 5, 7}, {6}, {10}
A8{0, 10}, {1, 5, 7}, {4, 8}, {6} A9{0, 4}, {1, 5, 7}, {6}, {8, 10}.

For A4 we split the second cycle: 0,9,6,3,8,5 = 0,9,6,5 ∪ 6,3,8,5. Suppose
that it is 0,9,6,5 that is linked with 1,4,2,10. In this case we also split that
cycle: 1,4,2,10 = 1,4,8,10 ∪ 2,4,8,10. To get a D4 when pairing 0,9,6,5
– 1,4,8,10 with C3 we use vertices {0}, {1}, {4, 8, 10}, and {5, 6} and for
0,9,6,5 – 2,4,8,10 with C3, {0}, {2, 3, 7}, {4, 8, 10}, and {5, 6}.

On the other hand, if it is 6,3,8,5 that is linked with 1,4,2,10, we write
1,4,2,10 = 0,4,1,10 ∪ 0,4,2,10. Then when C3 is paired with 6,3,8,5 —
0,4,1,10, we have a D4 using vertices {0, 4, 10}, {1}, {5, 6}, and {8} while
if C3 is paired with 6,3,8,5 – 0,4,2,10 the vertices are {0, 4, 10}, {2, 7, 9},
{5, 6}, and {8}. This completes the argument that C3 is not linked.

Step VII: Eliminate A8 and A1.
We will show that A8 is not linked by pairing with the remaining Ci’s. For

C8, the vertices would be {0}, {1, 5, 7, 10}, {2}, and {3, 4, 8}. The remaining
cases involve splitting cycles.

For C2 we write 2,4,8,3,7,5 = 3,7,5,8 ∪ 2,4,8,5. If it is 3,7,5,8 – 0,9,6,1,10
that is linked, we use vertices {0, 1, 10}, {2, 9}, {3, 8}, and {5, 7} and if,
instead, 2,4,8,5 – 0,9,6,10 is linked, we have {0, 1, 10}, {2, 4, 8}, {3, 6}, and
{5}.
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For C4, it is a cycle of A8 that we rewrite: 0,5,7,1,10 = 0,9,7,1,10 ∪
0,9,7,5. In either case, we use the same vertices: {0, 7, 9}, {1, 5, 6, 10}, {2},
and {3, 4, 8}.

For C6, 0,4,2,5,7,9 = 0,4,2,9 ∪ 2,5,7,9. When 0,4,2,9 is linked with
1,6,3,8,10 the vertices are {0, 9}, {1, 10}, {2, 4}, and {3, 8} while if 2,5,7,9
links 1,6,3,8,10, we use {1, 10}, {2}, {3, 8}, and {5, 7}.

Continuing with C7, 2,4,8,3,6,5 = 3,6,5,8 ∪ 2,4,8,5. The vertices for
3,6,5,8 – 0,9,7,1,0 are {0, 1, 7, 10}, {2, 9}, {3, 8}, and {5} and for 2,4,8,5 –
0,9,7,1,10, use {0, 1, 7, 10}, {2, 4, 8}, {3, 6, 9}, and {5}.

Finally, in the case of C9, write 0,4,2,5,6,9 = 0,4,2,9 ∪ 2,5,6,9. When
0,4,2,9 – 1,7,3,8,10 is linked, the vertices are {0}, {1, 7, 10}, {2, 4}, and
{3, 8} and for 2,5,6,9 – 1,7,3,8,10 use {1, 7, 10}, {2}, {3, 8}, and {5}. This
completes the argument for A8. By a symmetry of G1, A1 is also not linked.
In other words, going forward, we will assume it is one of A3, A4, A5, A7,
or A9 that is linked.

Step VIII: Eliminate B1, B3, and B5.
Next, we will argue that B1 is not linked by comparing with the remaining

Ai’s:

A3{0, 9}, {1, 4, 7}, {2, 5}, {8, 10} A4{0, 9}, {1, 4}, {2, 10}, {5, 8}
A5{0, 9}, {1, 4, 7}, {2, 10}, {5, 8} A7{0, 4, 9}, {1, 7}, {2, 5, 10}, {8}
A9{0, 4, 9}, {1, 7}, {2}, {5, 8, 10}.

By a symmetry of G1 we also assume B3 is not linked.
Now, by pairing with the remaining Ai’s, we show B5 is not linked:

A3{0, 8, 10}, {2, 5, 7}, {3}, {4} A5{0, 10}, {2, 3}, {4, 8}, {5, 7}
A7{0, 4, 8}, {2, 5, 7}, {3}, {10} A9{0, 4}, {2, 3}, {5, 7}, {8, 10}.

For A4 we employ several splits. First, 0,9,6,3,8,5 = 0,9,6,5 ∪ 6,3,8,5.
In the case that 0,9,6,5 – 1,4,2,10 is linked, write 1,4,2,10 = 2,4,8,10 ∪
1,4,8,10. Pairing 0,9,6,5 – 2,4,8,10 with B5, the vertices are {0}, {2},
{4, 8, 10}, and {5}. If instead it is 0,9,6,5 – 1,4,8,10 that is linked, we use
{0}, {1, 7}, {4, 8, 10}, and {5}.

So we assume that 6,3,8,5 – 1,4,2,10 is linked and rewrite a B5 cycle:
2,3,7,5 = 2,3,6,5 ∪ 3,6,5,7. In case 2,3,6,5 – 0,4,8,10 is linked, we make a
further split: 1,4,2,10 = 1,7,9,2,10 ∪ 1,4,9,2,10. Thus, assuming 2,3,6,5 –
0,4,8,10 and 1,7,9,2,10 – 6,3,8,5 are both linked, we have a D4 with vertices
{2}, {3, 5, 6}, {8}, and {10}. If instead it is 2,3,6,5 – 0,4,8,10 and 1,4,9,2,10
– 6,3,8,5 that are linked, use {2}, {3, 5, 6}, {4}, and {8}. This leaves the case
where 3,6,5,7 – 0,4,8,10 is linked. We must split a final time: 1,4,2,10 =
0,4,1,10 ∪ 0,4,2,10. If 3,6,5,7 – 0,4,8,10 and 0,4,1,10 – 6,3,8,5 are both
linked, the vertices are {0, 4, 10}, {1, 7}, {3, 5, 6}, and {8}. On the other
hand, when 3,6,5,7 – 0,4,8,10 and 0,4,2,10 – 6,3,8,5 are linked, use {0, 4, 10},
{2, 7, 9}, {3, 5, 6}, and {8}. This completes the argument for B5, which we
have shown is not linked.

Step IX: Eliminate B9. Only B4 and B6 remain.
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Next we turn to B9 which we compare with the remaining Ai’s:

A3{0}, {1, 7}, {2, 4, 5}, {3, 8, 10} A4{0, 5}, {1, 10}, {2, 4}, {3, 8}
A7{0, 4}, {1, 7, 10}, {2, 5}, {3, 8} A9{0, 2, 4}, {1, 7, 8, 10}, {3}, {5}.

This leaves A5 for which we rewrite: 0,9,6,3,2,10 = 0,9,2,10 ∪ 2,3,6,9. If
0,9,2,10 – 1,4,8,5,7 is linked, then observe that, by a symmetry of G1, this is
the same as A8, which is not linked. Thus, we can assume 2,3,6,9 – 1,4,8,5,7
is linked and rewrite: 1,4,8,5,7 = 1,4,0,5,7 ∪ 0,4,8,5. Pairing 2,3,6,9 -
1,4,0,5,7 with B9 gives a D4 on vertices {0, 4, 5}, {1, 7}, {2}, and {3}. If it
is 2,3,6,9 – 0,4,8,5 that is linked, then, pairing with B9, use {0, 4, 5}, {2},
{3}, and {8}. This completes the argument for B9 and, by a symmetry of
G1, also for B7.

Recall that our goal is to argue, for a contradiction, that no Bi is linked.
At this stage we are left only with B4 and B6 as pairs that could be linked.

Step X: Eliminate A4, A5, and A9 leaving only A3 and A7.
Before providing the argument for the remaining two Bi’s, we first elim-

inate a few more Ai’s, starting with A4, which we compare with the two
remaining Bi’s:

B4{0, 5, 8}, {1, 2, 4}, {3}, {10} B6{0, 5, 8}, {1, 2, 10}, {3}, {4}.

Next A5, again by pairing with B4 and B6:

B4{0, 10}, {1, 4, 7}, {2, 3}, {5, 8} B6{0}, {1, 7}, {2, 3, 10}, {4, 8, 5}.

Since A9 agrees with A5 under a symmetry of G1, this leaves only A3 and
A7 as pairs that may yet be linked among the Ai’s.

Step XI: Eliminate C6 and C9, leaving C2, C4, C7, and C8.
As a penultimate step, we show that C6 is not linked by comparing with

these two remaining Ai’s:

A3{0, 9}, {1}, {2, 4, 5, 7}, {3, 6, 8, 10} A7{0, 4, 9}, {1, 10}, {2, 5, 7}, {3, 6, 8}.

By a symmetry of G1, we can also assume that C9 is not linked. This leaves
only four Ci’s that may be linked: C2, C4, C7, and C8.

Step XII: Eliminate the remaining two Bi’s (B6 and B4) to complete the
argument.

Finally, compare B6 with the remaining Ci’s:

C4{0, 4, 8}, {1, 2, 10}, {3, 7}, {5} C8{0, 4, 8}, {1, 2, 7, 10}, {3}, {5}.

For C2 we rewrite: 2,4,8,3,7,5 = 2,3,8,4 ∪ 2,3,7,5. If 2,3,8,4 – 0,9,6,1,10
is linked, then pairing with B6, we have vertices {0}, {1, 10}, {2, 3}, and
{4, 8}. On the other hand pairing B6 with 2,3,7,5 – 0,9,6,1,10 we will have
a D4 using the vertices {0}, {1, 10}, {2, 3, 7}, and {5}.

For C7: 2,4,8,3,6,5 = 2,3,8,4 ∪ 2,3,6,5. Then 2,3,8,4 – 0,9,7,1,10 with
B6 gives a D4 for vertices {0}, {1, 7, 10}, {2, 3}, and {4, 8}. On the other
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hand, 2,3,6,5 – 0,9,7,1,10 pairs with B6 using vertices {0}, {1, 7, 10}, {2, 3},
and {5}.

This completes the argument for B6. By a symmetry of G1 we see that
B4 is also not linked.

In this way, the assumption that there is no knotted cycle in the given
embedding of G1 forces us to conclude that no pair B1, . . . , B9 is linked.
However, these correspond to the cycles of a K3,3,1. As Sachs [Sc] has shown,
any embedding of K3,3,1 must have a pair of cycles with odd linking number.
The contradiction shows that there can be no such knotless embedding and
G1 is IK. This completes the proof that G1 is MMIK.

A.2. G2 is MMIK.
In this subsection, we show that G2 is IK. The argument is similar to that

for G1 above. To use Lemma A.1, we need pairs of linked cycles in G2.

Step I: Define pairs Ai, Bi, Ci, and Di.
We begin by identifying four ways that the Petersen family graph P9, of

order nine, appears as a minor of graph G2. Using the vertex labelling of
Figure 16, on contracting edge (0, 4) and deleting vertex 8, the resulting
graph has P9 as a subgraph.

0

1

2

3

4

5
6 7

8

9

10

Figure 16. The graph G2.

There are seven pairs of disjoint cycles in P9. we denote these pairs as A1

through A7. In Table 9, we give the pairs in G2.

A1 0,4,10,5 – 1,6,2,9,3,7
A2 0,2,6,10,4 – 1,5,9,3,7
A3 0,2,9,5 – 1,6,10,3,7
A4 0,5,1,7 – 2,6,10,3,9
A5 0,4,10,3,7 – 1,5,9,2,6
A6 1,5,10,6 – 0,2,9,3,7
A7 3,9,5,10 – 0,2,6,1,7

Table 9. Seven pairs of cycles in G2 called A1, . . . , A7.

Similarly, if we contract edge (3, 10) and delete vertex 7 in G2, the result-
ing graph has a P9 subgraph. We will call these seven cycles B1, . . . B7 as
in Table 10

Contracting edge (4, 10) and deleting vertex 6, we have the seven cycles
of Table 11.
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B1 0,2,6 – 1,5,9,3,10,4,8
B2 0,2,8,4 – 1,5,9,3,10,6
B3 0,2,9,5 – 1,6,10,4,8
B4 0,4,10,6 – 1,5,9,2,8
B5 0,5,1,6 – 2,8,4,10,3,9
B6 1,6,2,8 – 0,4,10,3,9,5
B7 2,6,10,3,9 – 0,4,8,1,5

Table 10. Seven pairs of cycles in G2 called B1, . . . , B7.

C1 3,8,4,10 – 0,2,9,5,1,7
C2 3,8,1,7 – 0,2,9,5,10,4
C3 2,8,3,9 – 0,4,10,5,1,7
C4 0,4,10,3,7 – 1,5,9,2,8
C5 3,9,5,10 – 0,2,8,1,7
C6 1,5,10,4,8 – 0,2,9,3,7
C7 0,2,8,4 – 1,5,9,3,7

Table 11. Seven pairs of cycles in G2 called C1, . . . , C7.

Finally, if we contract edge (3, 9) and delete vertex 7 in G2, the resulting
graph has a P9 subgraph. We will call these seven cycles D1, . . . D7 as in
Table 12.

D1 2,8,3,9 – 0,4,10,6,1,5
D2 0,2,9,5 – 1,6,10,4,8
D3 0,2,8,4 – 1,5,9,3,10,6
D4 1,5,9,3,8 – 0,2,6,10,4
D5 1,6,2,8 – 0,4,10,3,9,5
D6 3,8,4,10 – 0,2,6,1,5
D7 2,6,10,3,9 – 0,4,8,1,5

Table 12. Seven pairs of cycles in G2 called D1, . . . , D7.

Step II: Eliminate A5.
We will need to introduce two more Petersen family graph minors later,

but let us begin by ruling out some of the pairs we already have. As in
our argument for G1, we assume that we have a knotless embedding of G2

and step by step argue that various cycle pairs are not linked (i.e. do not
have odd linking number) using Lemma A.1. Eventually, this will allow us to
deduce that all seven pairs B1, . . . , B7 are not linked. This is a contradiction
since Sachs [Sc] showed that in any embedding of P9, there must be a pair
of cycles with odd linking number. The contradiction shows that there is
no such knotless embedding and G2 is IK.

We will see that A5 is not linked by showing it results in a D4 with every
pair B1, . . . , B7. Indeed the vertices of the D4 are formed by contracting the
following vertices
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B1{0}, {1, 5, 9}, {2, 6}, {3, 4, 10} B2{0, 4}, {1, 5, 6, 9}, {2}, {3, 10}
B3{0}, {1, 6}, {2, 5, 9}, {4, 10} B4{0, 4, 10}, {1, 2, 5, 9}, {3, 8}, {6}
B5{0}, {1, 5, 6}, {2, 9}, {3, 4, 10} B7{0, 4}, {1, 5}, {2, 6, 9}, {3, 10}.

ForB6 = 1,6,2,8 – 0,4,10,3,9,5, we first split one of theA5 cycles: 0,4,10,3,7 =
0,4,8,3,7 ∪ 3,8,4,10. One of the two summands must link with the other A5

cycle 1, 5, 9, 2, 6. If lk((3,8,4,10), (1,5,9,2,6)) ̸= 0, then, by contracting edges,
we form a D4 with A5 whose vertices are {1, 2, 6}, {3, 4, 10}, {5, 9}, {8}. On
the other hand, if lk((0,4,8,3,7), (1,5,9,2,6)) ̸= 0, then we will split the B6

cycle 0,4,10,3,9,5 = 0,4,10,5 ∪ 3,9,5,10. When lk((1,6,2,8), (0,4,10,5)) ̸= 0,
we have a D4 with vertices {0, 4}, {1, 2, 6}, {5}, {8} and when lk((1,6,2,8),
(3,9,5,10)) ̸= 0, the D4 is on {1, 2, 6}, {3}, {5, 9}, {8}.

We have shown that, for each Bi, we must have a D4 with A5. Sachs [Sc]
showed that in every embedding of P9, there is a pair of linked cycles. Thus,
in our embedding of G2, at least one Bi is linked. If A5 were also linked, that
would result in a D4 with a knotted cycle by Lemma A.1. This contradicts
our assumption that we have a knotless embedding of G2. Therefore, going
forward, we can assume A5 is not linked.

Step III: Eliminate B7 and A4.
We next argue that B7 is not linked by comparing with C1, . . . , C7. For

C4, C6, and C7, we immediately form a D4 as follows

C4{0, 4}, {1, 5, 8}, {2, 9}, {3, 7} C6{0}, {1, 4, 5, 8}, {2, 3, 9}, {10}
C7{0, 4, 8}, {1, 5}, {2}, {3, 9}.

For the remaining pairs, we will split a cycle of the Ci. For C1, write
0,2,9,5,1,7 = 0,2,7 ∪ 1,5,9,2,7. In the first case, where lk((3,8,4,10), (0,2,7)) ̸=
0, the D4 is on {0}, {2}, {3, 10}, {4, 8}. In the second case, lk((3,8,4,10),
(1,5,9,7)) ̸= 0, we have {1, 5}, {2, 9}, {3, 10}, {4, 8}.

For C2, split 0,2,9,5,10,4 = 0,2,9,5 ∪ 0,4,10,5 with, in the first case, a D4

on {0, 5}, {1, 8}, {2, 9}, {3} and, in the second, on {0, 4, 5}, {1, 8}, {3}, {10}.
For C5, 0,2,8,1,7 = 0,2,7 ∪ 1,7,2,8, the first case is {0}, {2}, {3, 9, 10}, {5}
and the second has {1, 8}, {2}, {3, 9, 10}, {5}.

Finally, for C3 split 0,4,10,5,1,7 = 1,6,7 ∪ 1,6,7,0,4,10,5. In the first case,
there is a D4 with vertices {1}, {2, 3, 9}, {6}, {8}. In the second case, we split
the same cycle a second time: 1,6,7,0,4,10,5 = 1,5,10,6 ∪ 0,4,10,6,7. In the
first subcase, we have a D4 with vertices {1, 5}, {2, 3, 9}, {6, 10}, {8} and in
the second subcase, {0, 4}, {2, 3, 9}, {6, 10}, {8}.

Going forward, we can assume that B7 is not linked.
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We next argue that A4 is not linked by comparing with D1, . . . , D7. For
four links, we immediately give the vertices of the D4:

D2{0, 5}, {1}, {2, 9}, {6, 10} D3{0}, {1, 5}, {2}, {3, 6, 9, 10}
D4{0}, {1, 5}, {2, 6, 10}, {3, 9} D5{0, 5}, {1}, {2, 6}, {3, 9, 10}.

For D1, split the second cycle of A4: 2,6,10,3,9 = 3,9,4,10 ∪ 2,9,4,10,6.
In the first case, the verices of the D4 are {0, 1, 5}, {2, 7}, {3, 9}, {4, 10} and
in the second, {0, 1, 5}, {2, 9}, {3, 7}, {4, 6, 10}. For D6, split the second
cycle: 0,2,6,1,5 = 0,2,9,5 ∪ 1,5,9,2,6. In the first case, we have vertices
{0, 5}, {1, 8}, {2, 9}, {3, 10} and in the second, {0, 4}, {1, 5}, {2, 6, 9}, {3, 10}.
Finally, D7 is the same pair of cycles as B7, which we have assumed is not
linked. Going forward, we will assume A4 is not linked.

Step IV: Introduce pairs Ei to eliminate A2 and A3. This leaves only A1,
A6, and A7.

We have already argued that we can assume A4 and A5 are not linked.
In this step we eliminate A2 and A3, leaving only three Ai that could be
linked. For this we use another Petersen graph minor. Using the labelling
of Figure 16, partition the vertices as {0, 8, 9, 10} and {2, 3, 4, 5}. Contract
edges (0, 7) and (2, 6). This resulting graph has a K−

4,4 subgraph, where

(5, 8) is the missing edge. As in Table 13, we will call the resulting nine
pairs of cycles E1, . . . , E9.

E1 2,8,4,9 – 0,5,10,3,7
E2 0,4,10,5 – 2,8,3,9
E3 0,2,6,10,5 – 3,8,4,9
E4 0,2,4,8 – 3,9,5,10
E5 4,9,5,10 – 0,2,8,3,7
E6 0,4,8,3,7 – 2,6,10,5,9
E7 0,5,9,3,7 – 2,6,10,4,8
E8 0,4,9,5 – 2,6,10,3,8
E9 0,2,9,5 – 3,8,4,10

Table 13. Nine pairs of cycles in G2 called E1, . . . , E9.

We will use E1, . . . , E9 to show that A2 may be assumed unlinked. Except
for E1, we list the vertices of the D4:

E2{0, 4, 10}, {2}, {3, 9}, {5} E3{0, 2, 6, 10}, {3, 9}, {4}, {5}
E4{0, 2, 4}, {1, 8}, {3, 5, 9}, {10} E5{0, 2}, {3, 7}, {4, 10}, {5, 9}
E6{0, 4}, {2, 6, 10}, {3, 7}, {5, 9} E7{0}, {1, 8}, {2, 4, 6, 10}, {3, 5, 7, 9}
E8{0, 4}, {2, 6, 10}, {3}, {5, 9} E9{0, 2}, {3}, {4, 10}, {5, 9}.

The argument for E1 is a little involved. Let us split the second cycle
0,5,10,3,7 = 0,5,10,6,1,7 ∪ 1,6,10,3,7.
Case 1: Suppose that lk((2,8,4,9), (0,5,10,6,1,7)) ̸= 0. Next split the first
cycle of A2: 0,2,6,10,4 = 0,2,6 ∪ 0,4,10,6.
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Case 1a): Suppose that lk((0,2,6), (1,5,9,3,7)) ̸= 0. We split the second
E1 cycle again: 0,5,10,6,1,7 = 0,5,10,6 ∪ 0,6,1,7 In the first case, where
lk((2,8,4,9), (0,5,10,6)) ̸= 0, we have a D4 with vertices {0, 6}, {2}, {5}, {9}.
In the second case, lk((2,8,4,9), (0,6,1,7)) ̸= 0, theD4 vertices are {0, 6}, {1, 7},
{2}, {9}.

Case 1b): Suppose that lk((0,4,10,6), (1,5,9,3,7)) ̸= 0. Split the second
E1 cycle again: 0,5,10,6,1,7 = 0,5,10,6 ∪ 0,6,1,7. In the first case, where
lk((2,8,4,9), (0,5,10,6)) ̸= 0, the D4 vertices are {0, 6, 10}, {4}, {5}, {9}. In
the second case, where lk((2,8,4,9), (0,6,1,7)) ̸= 0, we have vertices {0, 6}, {1, 7},
{4}, {9}.
Case 2: Suppose that lk((2,8,4,9), (1,6,10,3,7)) ̸= 0. We split the fist cycle
of A2: 0,2,6,10,4 = 0,2,6 ∪ 0,4,10,6. In the first case, the D4 has vertices
{1, 3, 7}, {2}, {6}, {9} and in the second {1, 3, 7}, {4}, {6, 10}, {9}.

This completes the argument for A2, which we henceforth assume is not
linked.

Next we again use E1, . . . , E9 to see that A3 is also not linked. Except
for E8 and E9 we immediately have a D4:

E1{0, 5}, {1, 8}, {2, 9}, {3, 7, 10} E2{0, 5}, {2, 9}, {3}, {10}
E3{0, 2, 5}, {3}, {6}, {9} E4{0, 2}, {1, 8}, {3, 10}, {5, 9}
E5{0, 2}, {3, 7}, {5, 9}, {10} E6{0}, {2, 5, 9}, {3, 7}, {6, 10}
E7{0, 5, 9}, {2}, {3, 7}, {6, 10}

For E8, split the first cycle 0,4,9,5 = 0,5,1,7 ∪ 0,4,9,5,1,7. In the first case,
we have a D4 with vertices {0, 5}, {1, 7}, {2}, {3, 6, 10}. In the second case,
we further split the first cycle of A3: 0,2,9,5 = 2,8,4,9 ∪ 0,2,8,4,9,5 leading
to two subcases. In the first subcase the D4 is {1, 7}, {2, 8}, {3, 6, 10}, {4, 9}
and in the second {0, 4, 5, 9}, {1, 7}, {2, 8}, {3, 6, 10}.

For E9 split the first cycle 0,2,9,5 = 0,2,6,1,5 ∪ 2,6,1,5,9 with a D4 on
first {0, 2, 5}, {1, 6}, {3, 10}, {4, 9} and then {0, 4}, {1, 6}, {2, 5, 9}, {3, 10}.

We will not need E1, . . . , E9 in the remainder of the argument. At this
stage, we can assume that it is one of A1, A6, and A7 that is linked.

Step V: Eliminate B5, B2, and B3, leaving only B1, B4, and B6.
Our next step is to argue that we can assume B5 is not linked by com-

paring with the three remaining Ai’s. For the first two, we immediately
recognize a D4:

A1{0, 5}, {1, 6}, {2, 3, 9}, {4, 10} A6{0}, {1, 5, 6}, {2, 3, 9}, {10}

For A7, split the second cycle: 0,2,6,1,7 = 0,2,7 ∪ 2,6,1,7 so that the
D4 has vertices {0}, {2}, {3, 9, 10}, {5} in the first case and then {1, 6}, {2},
{3, 9, 10}, {5}. Going forward, we assume that B5 is not linked.
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Next we will eliminate B2 and B3. For B3, we have a D4 with each of the
remaining Ai’s:

A1{0, 5}, {1, 6}, {2, 9}, {4, 10} A6{0, 2, 9}, {1, 6, 10}, {3, 8}, {5}
A7{0, 2}, {1, 6}, {5, 9}, {10}

For B2, notice first that, as we are assuming A3 is not linked, by a symmetry
of G2, we can assume that 0,2,8,4 - 1,6,10,3,7 is also not linked. Again, since
B3 is unlinked, the symmetric pair 0,2,8,4 - 1,5,9,3,7 is also not linked. Since
1,5,9,3,10,6 = 1,5,9,3,7 ∪ 1,6,10,3,7 we conclude that B2 is not linked.
Having eliminated four of the Bi’s, going forward, we can assume that it is
one of B1, B4, and B6 that is linked. Recall that our ultimate goal is to
argue that none of the Bi are linked and thereby force a contradiction.

Step VI: Eliminate C1 and A7. This leaves only A1 and A6 among the Ai

pairs.
Our next step is to argue that C1 is not linked by comparing with the

remaining three Ai’s. For A1 split the second cycle of C1 0,2,9,5,1,7 =
0,2,9,5 ∪ 0,5,1,7, yielding first a D4 on {0, 5}, {2, 9}, {3}, {4, 10} and then on
{0, 5}, {1, 7}, {3}, {4, 10}. ForA6, we haveD4 with vertices {0, 2, 7, 9}, {1, 5},
{3}, {10}.

For A7, split the second cycle 0,2,6,1,7 = 0,2,8,1,7 ∪ 1,6,2,8. In the first
case, we have a D4 with vertices {0, 1, 2, 7}, {3, 10}, {5, 9}, {8}. In the second
case, split the second cycle of C1 0,2,9,5,1,7 = 0,2,9,5 ∪ 0,5,1,7, resulting
in a D4 either on {2}, {3, 10}, {5, 9}, {8} or {1}, {3, 10}, {5}, {8}.

Now we can eliminate A7. Using a symmetry of G2 we will instead argue
that the pair A′

7 = 3,8,4,10 - 0,2,6,1,7 is not linked. Note that this resembles
C1, which we just proved unlinked. Since 0,2,6,1,7 ∪ 0,2,9,5,1,7 = 1,5,9,2,6
it will be enough to show that 3,8,4,10 - 1,5,9,2,6 is not linked by comparing
with the remaining Ai’s:

A1{1, 2, 6, 9}, {3}, {4, 10}, {5} A6{1, 5, 6}, {2, 9}, {3}, {10}
A7{0, 4}, {1, 2, 6}, {3, 10}, {5, 9}

Thus we can assume that it is A1 or A6 that is the linked pair in our
embedding of G2.

Step VII: Eliminate B1 and B6, leaving only B4.
As for the Bi’s, only three candidates remain. We next eliminate B1

by comparing with the remaining two Ai’s. For A1, split the second cy-
cle of B1: 1,5,9,3,10,4,8 = 1,5,10,4,8 ∪ 3,9,10,5 giving a D4 on either
{0}, {1}, {2, 6}, {4, 5, 10} or {0}, {2, 6}, {3, 9}, {5, 10}. For A6, using the
same split of the second cycle of B1 the vertices are either {0, 2}, {1, 5, 10},
{4, 9}, {6} or {0, 2}, {3, 9}, {5, 10}, {6}.

To proceed, we will argue that C5 is unlinked. In fact, we will show that
it is D6 = C ′

5, the result of applying the symmetry of G2, that is not linked
by comparing with the two remaining Ai’s:

A1{0, 5}, {1, 2, 6}, {3}, {4, 10} A6{0, 2}, {1, 5, 6}, {3}, {10}
We can now eliminate B6 by comparing with the Ci’s. This will leave

only B4, which, therefore, must be linked. We have already argued that C1
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and C5 are not linked. Also, by a symmetry of G2, since B7 is not linked,
C4 is also not linked. For C3 and C7, we immediately see a D4:

C3{0, 4, 5, 10}, {1}, {2, 6}, {3, 9} C7{0, 4}, {1}, {2, 8}, {3, 9, 5}.

For C2, split the second cycle: 0,2,9,5,10,4 = 0,2,6,10,4 ∪ 2,6,10,5,9. In
the first case, we have a D4 on {0, 4, 10}, {1, 8}, {2, 6}, {3}. In the second
case, split the second cycle of B6: 0,4,10,3,9,5 = 0,4,10,3,7 ∪ 0,5,9,3,7
giving a D4 with vertices {1, 8}, {2, 6}, {3, 7}, {10} in the first subcase and
{1, 8}, {2, 6}, {3, 7}, {5, 9} in the second.

For C6, we split the second cycle of B6: 0,4,10,3,9,5 = 0,4,10,5∪ 3,9,5,10
giving, first, aD4 on {0}, {1, 8}, {2}, {4, 5, 10} and, second, aD4 on {1, 8}, {2},
{3, 9}, {5, 10}.
Step VIII: Introduce Fi pairs to eliminate B4 and complete the argument.

Since B1, . . . , B7, represent the pairs of cycles in an embedding of P9, we
know by [Sc] that at least one pair must have odd linking number. We have
just argued that all but B4 are not linked, so we can conclude that it is B4

that has odd linking number in our embedding of G2. We will now derive a
contradiction by using a final Petersen family graph minor.

F1 0,5,1,7 – 2,6,10,3,8
F2 0,4,8,1,5 – 2,6,10,3,7
F3 0,2,8,4 – 1,6,10,3,7
F4 0,2,7 – 1,6,10,3,8
F5 1,5,10,6 – 2,7,3,8
F6 1,7,3,8 – 0,2,6,10,5
F7 1,6,2,8 – 0,5,10,3,7
F8 1,6,2,7 – 0,4,8,3,10,5

Table 14. Eight pairs of cycles in G2 called F1, . . . , F8.

Our last set of cycles comes from a P8 minor. This is the Petersen family
graph on eight vertices that is not K−

4,4. Using the labelling of G2 in Fig-

ure 16, contracting edges (0, 4) and (0, 5) and deleting vertex 9 results in a
graph with a P8 subgraph. This graph has eight pairs of cycles shown in
Table 14.

Using B4 will derive aD4 with each Fi. For the first five Fi we immediately
find a D4:

F1{0}, {1, 2, 6}, {3}, {4, 10} F2{0, 2}, {1, 5, 6}, {3}, {10}
F3{0, 5}, {1, 2, 6}, {3}, {4, 10} F4{0, 2}, {1, 5, 6}, {3}, {10}
F5{0, 5}, {1, 2, 6}, {3}, {4, 10}.

Since B4 is linked, we deduce that the pair B′
4 = 2, 7, 3, 9 − −0, 4, 8, 1, 5,

obtained by the symmetry of G2, is also linked. Using B′
4 we have a D4 with

the remaining cycles of F :
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F6{0, 5}, {1, 8}, {2}, {3, 7} F7{0, 5}, {1, 8}, {2}, {3, 7}
F8{0, 4, 5, 8}, {1}, {2, 7}, {3}

We have shown that there is a D4 with each Fi using the pairs B4 or
B′

4, both of which must be linked. Since the F1, . . . , F8 represent the cycle
pairs of a P8 minor, at least one of them has odd linking number [Sc]. By
Lemma A.1, our embedding of G2 has a knotted cycle. This contradicts
our assumption that we were working with a knotless embedding. The
contradiction shows that there is no such knotless embedding and G2 is IK.
This completes the proof that G2 is MMIK.

Appendix B. Maxnik graphs of order ten

In this section we describe the maxnik graphs of order ten. Recall (see [EFM])
that a maximal 2-apex graph is maxnik. There are 14 maximal 2-apex
graphs formed as the join K2 ∗ T8 of K2 with one of the 14 triangulations
on eight vertices, see Bowen and Fisk [BF]. We list the 14 maximal 2-apex
graphs of order ten in Appendix C. Aside from those 14 there are 35 addi-
tional maxnik graphs. Our computer search, described in Section 4 above,
shows that there are no other maxnik graphs beyond these 49. In this sec-
tion we argue that the 35 non 2-apex graphs that we have found are indeed
maxnik. The graphs are listed below.

To show a graph is maxnik requires two things. Using Naimi’s implemen-
tation [N2] of Miller and Naimi’s [MN] algorithm, we have verified for each
graph G that whenever we add an edge e ̸∈ E(G), the graph G+ e is IK. It
remains to show that each of the graphs is nIK. We divide the graphs into
three bins. For the first 14 graphs we argue the graph is nIK by demon-
strating a 2-apex child. We handle the next three graphs using two lemmas
from [EFM]. For the remaining 18 graphs, we give a knotless embedding.

B.1. Graphs with a 2-apex child. In this subsection we list the first 14
of the 35 maxnik graphs of order ten that are not 2-apex. We show these
graphs are nIK by demonstrating a 2-apex child.

For each graph G in this list of 14, we provide the size, graph6 format [Sg],
edge list, and the vertices of a triangle in the graph. Making a ∇Y move on
that triangle results in a child H that is 2-apex. In each case, H becomes
planar on deleting vertex 9 and the new degree 3 vertex. By Lemma 3.4,
since G has a 2-apex (hence nIK) child, G is also nIK.

(1) Size: 33; graph6 format: ICf^f\~~w; triangle: 0, 3, 6

[(0, 3), (0, 4), (0, 5), (0, 6), (0, 7), (0, 9), (1, 5), (1, 6), (1, 7), (1, 8), (1, 9),

(2, 6), (2, 7), (2, 8), (2, 9), (3, 4), (3, 5), (3, 6), (3, 8), (3, 9), (4, 5), (4, 7),

(4, 8), (4, 9), (5, 7), (5, 8), (5, 9), (6, 7), (6, 8), (6, 9), (7, 8), (7, 9), (8, 9)]

(2) Size: 33; graph6 format: ICxu|~{~w; triangle: 0, 3, 8

[(0, 3), (0, 4), (0, 6), (0, 7), (0, 8), (0, 9), (1, 4), (1, 5), (1, 6), (1, 8), (1, 9),

(2, 4), (2, 5), (2, 7), (2, 8), (2, 9), (3, 5), (3, 6), (3, 7), (3, 8), (3, 9), (4, 6),
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(4, 7), (4, 8), (4, 9), (5, 6), (5, 7), (5, 8), (5, 9), (6, 7), (6, 9), (7, 9), (8, 9)]

(3) Size: 33; graph6 format: ICvbm~}~w; triangle 0, 5, 7

[(0, 3), (0, 4), (0, 5), (0, 7), (0, 8), (0, 9), (1, 4), (1, 5), (1, 6), (1, 7), (1, 8),

(1, 9), (2, 5), (2, 6), (2, 8), (2, 9), (3, 4), (3, 6), (3, 7), (3, 8), (3, 9), (4, 7),

(4, 8), (4, 9), (5, 6), (5, 7), (5, 8), (5, 9), (6, 7), (6, 8), (6, 9), (7, 9), (8, 9)]

(4) Size: 33; graph6 format: IEirt~}~w; triangle 0, 4, 7

[(0, 3), (0, 4), (0, 5), (0, 7), (0, 8), (0, 9), (1, 3), (1, 6), (1, 8), (1, 9), (2, 4),

(2, 5), (2, 6), (2, 7), (2, 8), (2, 9), (3, 5), (3, 6), (3, 7), (3, 8), (3, 9), (4, 6),

(4, 7), (4, 8), (4, 9), (5, 7), (5, 8), (5, 9), (6, 7), (6, 8), (6, 9), (7, 9), (8, 9)]

(5) Size: 33; graph6 format: IEhuV~}~w; triangle 0, 3, 7

[(0, 3), (0, 4), (0, 6), (0, 7), (0, 8), (0, 9), (1, 3), (1, 5), (1, 6), (1, 7), (1, 8),

(1, 9), (2, 4), (2, 5), (2, 7), (2, 8), (2, 9), (3, 5), (3, 7), (3, 8), (3, 9), (4, 6),

(4, 7), (4, 8), (4, 9), (5, 7), (5, 8), (5, 9), (6, 7), (6, 8), (6, 9), (7, 9), (8, 9)]

(6) Size: 33; graph6 format: IEhvVn}~w; triangle 0, 3, 7

[(0, 3), (0, 4), (0, 6), (0, 7), (0, 8), (0, 9), (1, 3), (1, 5), (1, 6), (1, 7), (1, 8),

(1, 9), (2, 4), (2, 5), (2, 6), (2, 7), (2, 8), (2, 9), (3, 5), (3, 7), (3, 8), (3, 9),

(4, 6), (4, 8), (4, 9), (5, 7), (5, 8), (5, 9), (6, 7), (6, 8), (6, 9), (7, 9), (8, 9)]

(7) Size: 33; graph6 format: IEh~f]}~w; triangle 0, 4, 7

[(0, 3), (0, 4), (0, 6), (0, 7), (0, 8), (0, 9), (1, 3), (1, 5), (1, 6), (1, 7), (1, 9),

(2, 4), (2, 5), (2, 6), (2, 7), (2, 8), (2, 9), (3, 5), (3, 6), (3, 8), (3, 9), (4, 5),

(4, 7), (4, 8), (4, 9), (5, 7), (5, 8), (5, 9), (6, 7), (6, 8), (6, 9), (7, 9), (8, 9)]

(8) Size: 33; graph6 format: IQjnex~~w; triangle 0, 2, 6

[(0, 2), (0, 4), (0, 5), (0, 6), (0, 7), (0, 9), (1, 3), (1, 5), (1, 6), (1, 7), (1, 8),

(1, 9), (2, 4), (2, 5), (2, 6), (2, 8), (2, 9), (3, 6), (3, 7), (3, 8), (3, 9), (4, 5),

(4, 7), (4, 8), (4, 9), (5, 7), (5, 8), (5, 9), (6, 8), (6, 9), (7, 8), (7, 9), (8, 9)]

(9) Size: 33; graph6 format: IQzTuz}~w; triangle 3, 6, 8

[(0, 2), (0, 4), (0, 5), (0, 6), (0, 7), (0, 8), (0, 9), (1, 3), (1, 4), (1, 5), (1, 7),

(1, 8), (1, 9), (2, 4), (2, 6), (2, 8), (2, 9), (3, 5), (3, 6), (3, 7), (3, 8), (3, 9),

(4, 6), (4, 7), (4, 8), (4, 9), (5, 7), (5, 8), (5, 9), (6, 8), (6, 9), (7, 9), (8, 9)]

(10) Size: 33; graph6 format: IQzTvz]~w; triangle 3, 6, 8

[(0, 2), (0, 4), (0, 5), (0, 6), (0, 7), (0, 8), (0, 9), (1, 3), (1, 4), (1, 5), (1, 7),

(1, 8), (1, 9), (2, 4), (2, 6), (2, 7), (2, 9), (3, 5), (3, 6), (3, 7), (3, 8), (3, 9),

(4, 6), (4, 7), (4, 8), (4, 9), (5, 7), (5, 8), (5, 9), (6, 8), (6, 9), (7, 9), (8, 9)]

(11) Size: 33; graph6 format: IQzTu~]~w; triangle 0, 5, 7

[(0, 2), (0, 4), (0, 5), (0, 6), (0, 7), (0, 8), (0, 9), (1, 3), (1, 4), (1, 5), (1, 7),

(1, 8), (1, 9), (2, 4), (2, 6), (2, 9), (3, 5), (3, 6), (3, 7), (3, 8), (3, 9), (4, 6),

(4, 7), (4, 8), (4, 9), (5, 7), (5, 8), (5, 9), (6, 7), (6, 8), (6, 9), (7, 9), (8, 9)]
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(12) Size: 33; graph6 format: IQyuvx}~w; triangle 0, 4, 6

[(0, 2), (0, 4), (0, 5), (0, 6), (0, 7), (0, 9), (1, 3), (1, 4), (1, 6), (1, 7), (1, 8),

(1, 9), (2, 4), (2, 5), (2, 7), (2, 8), (2, 9), (3, 5), (3, 6), (3, 7), (3, 8), (3, 9),

(4, 6), (4, 7), (4, 8), (4, 9), (5, 7), (5, 8), (5, 9), (6, 8), (6, 9), (7, 9), (8, 9)]

(13) Size: 33; graph6 format: IQyvux|~w; triangle 1, 3, 6

[(0, 2), (0, 4), (0, 5), (0, 6), (0, 7), (0, 9), (1, 3), (1, 4), (1, 6), (1, 7), (1, 8),

(1, 9), (2, 4), (2, 5), (2, 6), (2, 8), (2, 9), (3, 5), (3, 6), (3, 7), (3, 8), (3, 9),

(4, 6), (4, 7), (4, 8), (4, 9), (5, 7), (5, 8), (5, 9), (6, 9), (7, 8), (7, 9), (8, 9)]

(14) Size: 33; graph6 format: IUZurzm~w; triangle 0, 3, 6

[(0, 2), (0, 3), (0, 5), (0, 6), (0, 8), (0, 9), (1, 3), (1, 4), (1, 5), (1, 6), (1, 7),

(1, 8), (1, 9), (2, 4), (2, 5), (2, 7), (2, 8), (2, 9), (3, 5), (3, 6), (3, 7), (3, 9),

(4, 6), (4, 7), (4, 8), (4, 9), (5, 7), (5, 8), (5, 9), (6, 8), (6, 9), (7, 9), (8, 9)]

B.2. Lemmas from [EFM]. In this subsection, we argue that graphs 15,
16, and 17 (listed below) are nIK using ideas from [EFM].

Graphs 16 and 17 have a degree 2 vertex and we can recognize them as
clique sums. In both cases, the graph is the sum of K3 and the Heawood
family graph E9 over K2. Since K3 and E9 are both nIK, by [EFM, Lemma
3.1] graphs 16 and 17 are nIK.

Graph 15 has a degree 3 vertex and is the clique sum over K3 of K4 and
E9. In the embedding of E9 in [EFM, Figure 2] the K3 is given by the
vertices a, b, c, which bound a disk whose interior is disjoint from the graph.
By [EFM, Lemma 3.4], Graph 15 is also nIK.

(15) Size: 24; graph6 format: ICRffQmn_

[(0, 3), (0, 5), (0, 6), (0, 7), (0, 8), (0, 9), (1, 4), (1, 5), (1, 6), (1, 7), (2, 5), (2, 6),

(2, 7), (2, 8), (2, 9), (3, 6), (3, 9), (4, 7), (4, 8), (4, 9), (5, 8), (5, 9), (6, 8), (6, 9)]

(16) Size: 23; graph6 format: I?qtdo}^_

[(0, 4), (0, 5), (0, 6), (0, 7), (1, 4), (1, 9), (2, 5), (2, 6), (2, 7), (2, 8), (2, 9), (3, 5),

(3, 6), (3, 7), (3, 8), (3, 9), (4, 7), (4, 8), (4, 9), (5, 8), (5, 9), (6, 8), (6, 9)]

(17) Size: 23; graph6 format: I?qtfo}N_

[(0, 4), (0, 5), (0, 6), (0, 7), (1, 4), (1, 7), (2, 5), (2, 6), (2, 7), (2, 8), (2, 9), (3, 5),

(3, 6), (3, 7), (3, 8), (3, 9), (4, 7), (4, 8), (4, 9), (5, 8), (5, 9), (6, 8), (6, 9)]
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Figure 17. Knotless embeddings of 18 graphs.

B.3. Knotless embeddings. We show that the remaining 18 graphs (listed
below) are nIK by presenting knotless embeddings in Figure 17. Recall
that this means when we apply Naimi’s findEasyKnots program [N2] to the
embedding, it confirms that every cycle in the graph is an unknot.

(18) Size: 34; graph6 format: IQjuz~nnw

[(0, 2), (0, 4), (0, 5), (0, 6), (0, 8), (0, 9), (1, 3), (1, 5), (1, 6), (1, 7), (1, 8), (2, 4),
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(2, 5), (2, 7), (2, 8), (2, 9), (3, 5), (3, 6), (3, 7), (3, 9), (4, 6), (4, 7), (4, 8),

(4, 9), (5, 6), (5, 7), (5, 8), (5, 9), (6, 7), (6, 8), (6, 9), (7, 8), (7, 9), (8, 9)]

(19) Size: 33; graph6 format: IQjUnzz~w

[(0, 2), (0, 4), (0, 5), (0, 6), (0, 7), (0, 8), (0, 9), (1, 3), (1, 5), (1, 6), (1, 7),

(1, 8), (1, 9), (2, 4), (2, 7), (2, 8), (2, 9), (3, 5), (3, 6), (3, 7), (3, 8), (3, 9),

(4, 7), (4, 8), (4, 9), (5, 6), (5, 7), (5, 9), (6, 8), (6, 9), (7, 8), (7, 9), (8, 9)]

(20) Size: 33; graph6 format: IQjne~^^w

[(0, 2), (0, 4), (0, 5), (0, 6), (0, 7), (0, 8), (1, 3), (1, 5), (1, 6), (1, 7), (1, 8),

(1, 9), (2, 4), (2, 5), (2, 6), (2, 9), (3, 6), (3, 7), (3, 8), (3, 9), (4, 5), (4, 7),

(4, 8), (4, 9), (5, 7), (5, 8), (5, 9), (6, 7), (6, 8), (6, 9), (7, 8), (7, 9), (8, 9)]

(21) Size: 33; graph6 format: IQjne|~~W

[(0, 2), (0, 4), (0, 5), (0, 6), (0, 7), (0, 9), (1, 3), (1, 5), (1, 6), (1, 7), (1, 8),

(1, 9), (2, 4), (2, 5), (2, 6), (2, 8), (2, 9), (3, 6), (3, 7), (3, 8), (3, 9), (4, 5),

(4, 7), (4, 8), (4, 9), (5, 7), (5, 8), (5, 9), (6, 7), (6, 8), (7, 8), (7, 9), (8, 9)]

(22) Size: 33; graph6 format: IQjne|~zw

[(0, 2), (0, 4), (0, 5), (0, 6), (0, 7), (0, 9), (1, 3), (1, 5), (1, 6), (1, 7), (1, 8),

(1, 9), (2, 4), (2, 5), (2, 6), (2, 8), (2, 9), (3, 6), (3, 7), (3, 8), (4, 5), (4, 7),

(4, 8), (4, 9), (5, 7), (5, 8), (5, 9), (6, 7), (6, 8), (6, 9), (7, 8), (7, 9), (8, 9)]

(23) Size: 33; graph6 format: IQzTvz^~o

[(0, 2), (0, 4), (0, 5), (0, 6), (0, 7), (0, 8), (0, 9), (1, 3), (1, 4), (1, 5), (1, 7),

(1, 8), (1, 9), (2, 4), (2, 6), (2, 7), (2, 9), (3, 5), (3, 6), (3, 7), (3, 8), (3, 9),

(4, 6), (4, 7), (4, 8), (4, 9), (5, 7), (5, 8), (5, 9), (6, 8), (6, 9), (7, 8), (7, 9)]

(24) Size: 33; graph6 format: IQzTvv^~o

[(0, 2), (0, 4), (0, 5), (0, 6), (0, 7), (0, 8), (0, 9), (1, 3), (1, 4), (1, 5), (1, 7),

(1, 8), (1, 9), (2, 4), (2, 6), (2, 7), (2, 9), (3, 5), (3, 6), (3, 7), (3, 8), (3, 9),

(4, 6), (4, 7), (4, 8), (4, 9), (5, 8), (5, 9), (6, 7), (6, 8), (6, 9), (7, 8), (7, 9)]

(25) Size: 33; graph6 format: IQzTu~^~o

[(0, 2), (0, 4), (0, 5), (0, 6), (0, 7), (0, 8), (0, 9), (1, 3), (1, 4), (1, 5), (1, 7),

(1, 8), (1, 9), (2, 4), (2, 6), (2, 9), (3, 5), (3, 6), (3, 7), (3, 8), (3, 9), (4, 6),

(4, 7), (4, 8), (4, 9), (5, 7), (5, 8), (5, 9), (6, 7), (6, 8), (6, 9), (7, 8), (7, 9)]

(26) Size: 33; graph6 format: IQyuz~{~o

[(0, 2), (0, 4), (0, 5), (0, 6), (0, 8), (0, 9), (1, 3), (1, 4), (1, 6), (1, 7), (1, 8),

(1, 9), (2, 4), (2, 5), (2, 7), (2, 8), (2, 9), (3, 5), (3, 6), (3, 7), (3, 8), (3, 9),

(4, 6), (4, 7), (4, 8), (4, 9), (5, 6), (5, 7), (5, 8), (5, 9), (6, 7), (6, 9), (7, 9)]

(27) Size: 33; graph6 format: IQyuz~{zw

[(0, 2), (0, 4), (0, 5), (0, 6), (0, 8), (0, 9), (1, 3), (1, 4), (1, 6), (1, 7), (1, 8),

(1, 9), (2, 4), (2, 5), (2, 7), (2, 8), (2, 9), (3, 5), (3, 6), (3, 7), (3, 8), (4, 6),

(4, 7), (4, 8), (4, 9), (5, 6), (5, 7), (5, 8), (5, 9), (6, 7), (6, 9), (7, 9), (8, 9)]
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(28) Size: 33; graph6 format: IQyuz~{vw

[(0, 2), (0, 4), (0, 5), (0, 6), (0, 8), (0, 9), (1, 3), (1, 4), (1, 6), (1, 7), (1, 8),

(1, 9), (2, 4), (2, 5), (2, 7), (2, 8), (3, 5), (3, 6), (3, 7), (3, 8), (3, 9), (4, 6),

(4, 7), (4, 8), (4, 9), (5, 6), (5, 7), (5, 8), (5, 9), (6, 7), (6, 9), (7, 9), (8, 9)]

(29) Size: 32; graph6 format: IQzTrj~~o

[(0, 2), (0, 4), (0, 5), (0, 6), (0, 8), (0, 9), (1, 3), (1, 4), (1, 5), (1, 7), (1, 8),

(1, 9), (2, 4), (2, 6), (2, 7), (2, 8), (2, 9), (3, 5), (3, 6), (3, 7), (3, 8), (3, 9),

(4, 6), (4, 8), (4, 9), (5, 7), (5, 8), (5, 9), (6, 8), (6, 9), (7, 8), (7, 9)]

(30) Size: 32; graph6 format: IUZuvzmno

[(0, 2), (0, 3), (0, 5), (0, 6), (0, 7), (0, 8), (0, 9), (1, 3), (1, 4), (1, 5), (1, 6),

(1, 7), (1, 8), (2, 4), (2, 5), (2, 7), (2, 8), (2, 9), (3, 5), (3, 6), (3, 7), (3, 9),

(4, 6), (4, 7), (4, 8), (4, 9), (5, 7), (5, 8), (5, 9), (6, 8), (6, 9), (7, 9)]

(31) Size: 31; graph6 format: IEivux~zo

[(0, 3), (0, 4), (0, 5), (0, 6), (0, 7), (0, 9), (1, 3), (1, 6), (1, 7), (1, 8), (1, 9),

(2, 4), (2, 5), (2, 6), (2, 8), (2, 9), (3, 5), (3, 6), (3, 7), (3, 8), (4, 6), (4, 7),

(4, 8), (4, 9), (5, 7), (5, 8), (5, 9), (6, 8), (6, 9), (7, 8), (7, 9)]

(32) Size: 31; graph6 format: IEhvuzn^o

[(0, 3), (0, 4), (0, 6), (0, 7), (0, 8), (1, 3), (1, 5), (1, 6), (1, 7), (1, 8), (1, 9),

(2, 4), (2, 5), (2, 6), (2, 8), (2, 9), (3, 5), (3, 6), (3, 7), (3, 9), (4, 6), (4, 7),

(4, 8), (4, 9), (5, 7), (5, 8), (5, 9), (6, 8), (6, 9), (7, 8), (7, 9)]

(33) Size: 31; graph6 format: IEnb~jm}W

[(0, 3), (0, 4), (0, 5), (0, 7), (0, 8), (0, 9), (1, 3), (1, 5), (1, 6), (1, 7), (1, 8),

(1, 9), (2, 4), (2, 5), (2, 6), (2, 7), (2, 8), (2, 9), (3, 4), (3, 6), (3, 7), (3, 9),

(4, 6), (4, 8), (4, 9), (5, 6), (5, 7), (5, 8), (6, 8), (7, 9), (8, 9)]

(34) Size: 23; graph6 format: ICpVbrkN_

[(0, 3), (0, 4), (0, 6), (0, 8), (1, 4), (1, 5), (1, 6), (1, 7), (1, 8), (2, 6), (2, 7), (2, 8),

(2, 9), (3, 5), (3, 6), (3, 7), (3, 9), (4, 7), (4, 8), (4, 9), (5, 8), (5, 9), (6, 9)]

(35) Size: 23; graph6 format: ICpvbqkN_

[(0, 3), (0, 4), (0, 6), (0, 8), (1, 4), (1, 5), (1, 6), (1, 7), (2, 5), (2, 6), (2, 7), (2, 8),

(2, 9), (3, 5), (3, 6), (3, 7), (3, 9), (4, 7), (4, 8), (4, 9), (5, 8), (5, 9), (6, 9)]
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