
A Statistical-Modelling Approach to Feedforward
Neural Network Model Selection

Andrew McInerney∗ Kevin Burke†

May 2, 2024

Abstract

Feedforward neural networks (FNNs) can be viewed as non-linear regression
models, where covariates enter the model through a combination of weighted sum-
mations and non-linear functions. Although these models have some similarities to
the approaches used within statistical modelling, the majority of neural network
research has been conducted outside of the field of statistics. This has resulted in a
lack of statistically-based methodology, and, in particular, there has been little em-
phasis on model parsimony. Determining the input layer structure is analogous to
variable selection, while the structure for the hidden layer relates to model complex-
ity. In practice, neural network model selection is often carried out by comparing
models using out-of-sample performance. However, in contrast, the construction of
an associated likelihood function opens the door to information-criteria-based vari-
able and architecture selection. A novel model selection method, which performs
both input- and hidden-node selection, is proposed using the Bayesian information
criterion (BIC) for FNNs. The choice of BIC over out-of-sample performance as the
model selection objective function leads to an increased probability of recovering
the true model, while parsimoniously achieving favourable out-of-sample perfor-
mance. Simulation studies are used to evaluate and justify the proposed method,
and applications on real data are investigated.

Keywords. Neural networks; Model selection; Variable selection; Information
criteria.

∗Department of Mathematics and Statistics, University of Limerick; andrew.mcinerney@ul.ie
†Department of Mathematics and Statistics, University of Limerick; kevin.burke@ul.ie

1

ar
X

iv
:2

20
7.

04
24

8v
5

 [
st

at
.M

E
]

 1
 M

ay
 2

02
4

1 Introduction

Neural networks are a popular class of machine-learning models, which pervade mod-
ern society through their use in many artificial-intelligence-based systems (LeCun et al.,
2015). Their success can be attributed to their predictive performance in an array of
complex problems (Abiodun et al., 2018). Recently, neural networks have been used to
perform tasks such as natural language processing (Goldberg, 2016), anomaly detection
(Pang et al., 2021), and image recognition (Voulodimos et al., 2018). Feedforward neural
networks (FNNs), which are a particular type of neural network, can be viewed as non-
linear regression models, and have some similarities to statistical modelling approaches
(e.g., covariates enter the model through a weighted summation, and the estimation of the
weights for an FNN is equivalent to the calculation of a vector-valued statistic) (Ripley,
1994; White, 1989). Despite early interest from the statistical community (White, 1989;
Ripley, 1993; Cheng and Titterington, 1994), the majority of neural network research
has been conducted outside of the field of statistics (Breiman, 2001; Hooker and Mentch,
2021). Given this, there is a general lack of statistically-based methods, such as model
and variable selection, which focus on developing parsimonious models.

Typically, the primary focus when implementing a neural network centres on model
predictivity (rather than parsimony); the models are viewed as ‘black-boxes’ whose com-
plexity is not of great concern (Efron, 2020). It is perhaps not surprising, therefore, that
there is a tendency for neural networks to be highly over-parameterised, miscalibrated,
and unstable (Sun et al., 2022). Nevertheless, FNNs can capture more complex covariate
effects than is typical within popular (linear/additive) statistical models. Consequently,
there has been renewed interest in merging statistical models and neural networks, for ex-
ample, in the context of flexible distributional regression (Rügamer et al., 2020) and mixed
modelling (Tran et al., 2020). However, statistically-based model selection procedures are
required to increase the utility of the FNN within the statistician’s toolbox.

Traditional statistical modelling is concerned with developing parsimonious models,
as it is crucial for the efficient estimation of covariate effects and significance testing
(Efron, 2020). Indeed, model selection (which includes variable selection) is one of the
fundamental problems of statistical modelling (Fisher and Russell, 1922). It involves
choosing the “best” model, from a range of candidate models, by trading pure data fit
against model complexity (Anderson and Burnham, 2004). As such, there has been a
substantial amount of research on model and variable selection (Miller, 2002). As noted
by Heinze et al. (2018), typical approaches include significance testing combined with
forward selection or backward elimination (or a combination thereof); information criteria
such as AIC or BIC (Akaike, 1998; Schwarz, 1978; Anderson and Burnham, 2004); and
penalised likelihood such as LASSO (Tibshirani, 1996; Fan and Lv, 2010).

In machine learning, due to the focus on model predictivity, relatively less emphasis is
placed on finding a model that strikes a balance between complexity and fit. Looking at
FNNs in particular, the number of hidden nodes is usually treated as a tunable hyperpa-
rameter (Bishop et al., 1995; Pontes et al., 2016). Input-node selection is not as common,

2

as the usual consensus when fitting FNNs appears to be similar to the early opinion of
Breiman (2001): “the more predictor variables, the more information”. However, there
are some approaches in this direction, and a survey of variable selection techniques in
machine learning can be found in Chandrashekar and Sahin (2014). Nevertheless, typi-
cally, the optimal model is usually determined based on its predictive performance, such
as out-of-sample mean squared error, which can be calculated on a validation data set.
Unlike an information criteria, out-of-sample performance does not directly take account
of model complexity.

When framing an FNN statistically, there are several motivating reasons for a model
selection procedure that aims to obtain a parsimonious model. For example, the estima-
tion of parameters in a larger-than-required model results in a loss in model efficiency,
which, in turn, leads to less precise estimates. Input-node selection, which is often ig-
nored in the context of neural networks, can provide the practitioner with insights on
the importance of covariates. Instead, other feature importance measures are typically
used such as the feature attribution methods described in Koenen and Wright (2024).
Furthermore, eliminating irrelevant covariates can result in cheaper models by reducing
potential costs associated with data collection (e.g. financial, time, energy). In this
paper, we take a statistical-modelling view of neural network selection by assuming an
underlying (normal) error distribution. Doing so enables us to construct a likelihood
function, and, hence, carry out information-criteria-based model selection, such as the
BIC (Schwarz, 1978), naturally encapsulating the parsimony in the context of a neural
network. More specifically, we propose an algorithm that alternates between selecting the
hidden layer complexity and the inputs with the objective of minimizing the BIC. We
have found, in practice, that this leads to more parsimonious neural network models than
the more usual approach of minimizing out-of-sample error, while also not compromising
the out-of-sample performance itself.

The remainder of this paper is structured as follows. In Section 2, we introduce the
FNN model while linking it to a normal log-likelihood function. Section 3 motivates and
details the proposed model selection procedure. Simulation studies to investigate the
performance of the proposed method, and to compare it to other approaches, are given in
Section 4. In Section 5, we apply our method to real-data examples. Finally, we conclude
in Section 6 with a discussion.

2 Feedforward Neural Network

Let y = (y1, y2, . . . , yn) ∈ Rn be the response variable of interest for a regression-based
problem, where n represents the number of observations. For the ith observation, i =
1, . . . , n, let xi = (x1i, x2i, . . . , xpi)

T be a vector of p covariates—the inputs to the neural
network model. We assume a model of the form yi = NN(xi) + εi, where εi is a random

3

error that we assume has a N(0, σ2) distribution, and NN(·) is a neural network,

NN(xi) = γ0 +

q∑
k=1

γkϕ

(
p∑

j=0

ωjkxji

)
. (2.1)

As we aim to frame FNNs as an alternative to other statistical non-linear regression models
(i.e., used on small-to-medium sized tabular data sets relative to the much larger data sets
seen more broadly in machine learning), and due to the universal approximation theorem
(Cybenko, 1989; Hornik et al., 1989), we are restricting our attention to FNNs with a
single-hidden layer. The parameters in Equation 2.1 are as follows: ω0k, the intercept
term associated with the kth hidden node; ωjk, the weight that connects the jth input
node to the kth hidden node; γ0, the intercept term associated with the output node;
and γk, the weight that connects the kth hidden node to the output node. The function
ϕ(·) is the activation function for the hidden layer, which is often a logistic function. The
number of parameters in the neural network is given by K = (p+2)q+1. A diagram of a
neural network architecture with p input nodes and q hidden nodes is shown in Figure 1.

In the diagram, x0 = 1, h0 = 1, and hk = ϕ
(∑p

j=0 ωjkxji

)
.

Given our assumption that εi ∼ N(0, σ2), we then make use of the log-likelihood
function

ℓ(θ) = −n

2
log(2πσ2)− 1

2σ2

n∑
i=1

(yi − NN(xi))
2, (2.2)

where θ = (ω01, . . . , ωp1, . . . , ω0q, . . . , ωpq, γ0, . . . , γq, σ
2)T . We maximise this log-likelihood

to obtain θ̂ but note that the estimates of the neural network parameters do not depend
on the value of σ2, i.e., the residual sum of squares,

∑n
i=1(yi−NN(xi))

2, can be estimated
to obtain the neural network parameters. This is useful since standard neural network
software (that minimises the residual sum of squares) such as nnet (Ripley and Venables,
2022) can be used used to optimise the neural network followed by the estimation of σ2

in a separate step.
The calculation of a log-likelihood function allows for the use of information criteria

when selecting a given model, and in particular, the Bayesian information criterion (BIC)
(Schwarz, 1978), BIC = −2ℓ(θ̂)+log(n)(K+1), where we have K+1 parameters, i.e., the
K neural network parameters plus the variance parameter, σ2. An attractive property of
the BIC is that it is “dimension-consistent”, i.e., the probability of selecting the “true”
model approaches one as sample size increases (Anderson and Burnham, 2004). It is
important to note that other approaches for the calculation of the degrees of freedom
exist (Murata et al., 1994; Ye, 1998), but we find these do not penalise more complex
models (with redundancies) heavily enough in the model selection context compared to
using K (see Appendix A).

4

x1

x2

x3

...
xp

x0

h1

h2

...
hq

h0

ŷ

ωjk γk

Figure 1: Neural network architecture with p input nodes and q hidden nodes.

3 Model Selection

To begin model selection, a set of candidate models must be considered. For the input
layer, we can have up to pmax inputs, where pmax is the maximum number of covariates
being considered, and this is often the total number of covariates available in the data
under study. The input layer can contain any combination of these pmax inputs. For
the hidden layer, we must specify a qmax value, which is the maximum number of hidden
nodes to be considered; this controls the maximum level of complexity of the candidate
models. We can then have between one and qmax nodes in the hidden layer. From a neural
network selection perspective, we aim to select a subset of p ≤ pmax covariates to enter
the input layer and to build a hidden layer of q ≤ qmax nodes to adapt to the required
complexity. To carry out these selections, we suggest a statistically-motivated procedure
based on minimising the BIC, since it directly penalises complexity and is known to be
selection consistent, i.e., BIC minimisation converges to the true model asymptotically. In
contrast, and more usually in machine learning applications, one could consider predictive
performance, for example, the out-of-sample mean squared error. We will also consider
this approach but find that it leads to significantly more complex models than the use of
BIC while only marginally improving predictive performance. Whether one is aiming to
minimise BIC or out-of-sample mean squared error, multiple initialisations of the neural
network (from ninit random vectors of parameters) are required to improve the chance of
finding a global maximiser of the log-likelihood surface.

3.1 Proposed Approach

We propose a stepwise procedure that starts with a hidden-node selection phase followed
by an input-node selection phase. (We find that this ordering leads to improved model
selection.) This is, in turn, followed by a fine-tuning phase that alternates between the
hidden and input layers for further improvements. The proposed model selection proce-

5

Figure 2: Model selection schematic. Nodes coloured grey are being considered in current
phase. Nodes coloured gold represent optimal nodes in that phase to be brought forward
to the next phase.

dure is detailed in Algorithm 4 (which relies on Algorithms 1–3), and a schematic diagram
is provided in Figure 2. It is also described at a high level in the following paragraphs.

The procedure (Algorithm 4) is initialised with the full set of input nodes, Xfull, the
maximum number of hidden nodes being considered, qmax, and the number of initiali-
sations, ninit, and, as mentioned, starts with a hidden-node selection phase (Algorithm
2 with Q = {1, 2, . . . , qmax − 1}). For each candidate model in this phase (i.e., models
with q ∈ {1, . . . , qmax}), the network optimiser is supplied with ninit random vectors of
initial parameters, the log-likelihood function is maximised at each of these vectors, and
the overall maximiser is found (see Algorithm 1). The reason for supplying the neural
network with different vectors of initial parameters is due to the complex optimisation
surface for neural networks that may contain several local maxima. Thus, the use of a set
of initial vectors (rather than just one) aims to increase the chance of finding the global
maxima; of course, this cannot be guaranteed as is often the case in more complex sta-
tistical models. Once all of the qmax candidate models have been fitted, the hidden-node
selection phase is concluded by selecting the one whose hidden structure (i.e., number of
nodes, q) minimises the BIC.

Once the hidden-node selection phase has concluded, the focus switches to the input
layer (Algorithm 3); at this point, there are pmax inputs (i.e., the set of input nodes
currently included in the model is the set of all input nodes, X = Xfull). For the input-
node selection phase, each input node is dropped in turn, with the aim of finding an input
whose removal yields a lower BIC; as with the previous phase, random sets of initial
parameters are used for each candidate model in the underlying likelihood optimisation.
If the removal of a given input node does yield a lower BIC value, then that input node
is dropped from the model (and if two or more inputs result in a lower BIC, the one
yielding the lower BIC is removed). This is repeated until no covariate, when removed
from the model, results in a lower BIC, and, then, the set of included input nodes, X , is
returned. (Thus, in this phase, Algorithm 3 is applied with only the “drop inputs” step

6

Algorithm 1 Fit Candidate Model
Input: The set of input nodes, X , the number of hidden nodes, q, and the number of initiali-
sations, ninit.

1. Generate ninit random initial weight vectors of size K = (p+2)q+1 with p = |X | and | · |
is the cardinality of a set.

2. Using a neural network optimiser, maximise the log-likelihood function (Equation 2.2) for
each initialisation.

3. Select the model with the maximum log-likelihood value as the candidate model.

4. Calculate the associated BIC value.

Output: A fitted neural network with its associated BIC value.

Algorithm 2 Hidden-Node Selection
Input: The set of input nodes currently included in the model, X , the number of hidden nodes
currently in the model, q, the set of hidden-layer structures being considered, Q, and the number
of initialisations, ninit.

1. For k in Q:
Perform Algorithm 1 with the set X of input nodes, k hidden nodes, and ninit initialisa-
tions.
If BIC(k) ≤ BIC(q):
Set q = k.

Output: The number of hidden nodes, q.

and nsteps = pmax.)
Both the hidden layer and covariate selection phases are backward elimination pro-

cedures. Rather than stopping the algorithm after these two phases, we have found it
fruitful to search for an improved model in a neighbourhood of the current “best” model
by carrying out some further fine tuning. This is done by considering the addition or
removal of one hidden node (Algorithm 2 with Q = {q − 1, q + 1}), then the further ad-
dition or removal of one input node (Algorithm 3 with with both the “drop inputs” and
“add inputs” steps and nsteps = 1), and these two steps are repeated alternately until no
further adjustment decreases the BIC (see Step 3 in Algorithm 4). This fine-tuning stage
is analogous to stepwise model selection with backward and forward steps. Note that one
could apply this alternating stepwise procedure from the offset, but we have found it to be
significantly more computationally efficient to focus first on the hidden and input layers
(separately and in that order) before moving to the stepwise phase.

The particular order of the model selection steps described above has been chosen in
order to have a higher probability in recovering the “true” model, and to have a lower
computational cost (see Section 4.1 for a detailed simulation). Note that choosing the set

7

Algorithm 3 Input-Node Selection
Input: The set of all input nodes under consideration, Xfull, the set of input nodes currently
included in the model, X , the number of hidden nodes currently in the model, q, the limit
on the number of iterations of the repeat step, nsteps, the number of initialisations, ninit, and
this Algorithm covers the possibility of both dropping and adding input variables depending on
whether Steps 2(a) and/or 2(b) are applied.

1. Set i = 0 and Xnew = X .

2. Repeat:

(a) If drop inputs:

i. For c in X :
Perform Algorithm 1 with the set X \ {c} of input nodes, q hidden nodes, and
ninit initialisations, where X \ {c} is the set X of input nodes with input node
c removed.
If BIC(X \ {c}) ≤ BIC(Xnew):
Set Xnew = X \ {c}.

(b) If add inputs:

i. For c in Xfull \ X :
Perform Algorithm 1 with the set X ∪ {c} of input nodes, q hidden nodes, and
ninit initialisations, where X ∪ {c} is the set X of input nodes with input node
c added.
If BIC(X ∪ {c}) ≤ BIC(Xnew):
Set Xnew = X ∪ {c}.

(c) If X ̸= Xnew:
Set X = Xnew and i = i+ 1.
Else:
End repeat.

(d) If i ≥ nsteps:
End repeat.

Output: The set of included input nodes, X .

of input nodes requires a more extensive search than choosing the number of hidden nodes.
There are more candidate structures for the input layer as you can have any combination
of the nodes. Therefore, it is recommended to perform hidden-node selection first, to
eliminate any redundant hidden nodes and decrease the number of parameters in the
model, before performing input-node selection.

8

Algorithm 4 Model Selection

Input: The set of all input nodes, Xfull = {x1, x2, . . . , xpmax}, the maximum number of
hidden nodes to be considered, qmax, and the number of initialisations, ninit.

1. Hidden-Node Selection:

Perform Algorithm 2 with X = Xfull, Q = {1, 2, . . . , qmax − 1}, q = qmax, and
ninit = ninit.

2. Input-Node Selection:

Perform Algorithm 3 with Xfull = Xfull, X = Xfull, q = q, nsteps = pmax, and
ninit = ninit, applying only the “drop inputs” step.

3. Fine Tuning:

• Repeat:

(a) Hidden Layer:
Perform Algorithm 2 with X = X , Q = {q − 1, q + 1}, q = q, and ninit =
ninit.
If Step 3(a) did not update the value of q:
End repeat.∗

(b) Input Layer:
Perform Algorithm 3 with Xfull = {x1, x2, . . . , xpmax}, X = X , q = q,
nsteps = 1, and ninit = ninit, applying both the “drop inputs” and “add
inputs” steps.
If Step 3(b) did not update the value of X :
End repeat.∗

Output: The set of included input nodes, X , and the number of hidden nodes, q.
∗ Note: The fine-tuning phase stops if either Step 3(a) or Step 3(b) does not find an
improvement. This is to avoid either input-node or hidden-node selection being repeated
under conditions previously considered.

4 Simulation Studies

In order to justify and evaluate the proposed model selection approach, three simulation
studies are used:

• Simulation 1 (Section 4.1): In our first simulation study, we investigate the
effect of the ordering of the model selection steps to justify the procedure. This
includes the effect of performing input-node and hidden-node selection phases first,
the improvement of including a stepwise fine-tuning step, and the performance of
a procedure that only carries out iterative stepwise steps (i.e., fine tuning from the

9

offset).

• Simulation 2 (Section 4.2): The second simulation study compares the perfor-
mance of using the BIC as the model selection objective function versus using AIC
or out-of-sample mean squared error (OOS).

• Simulation 3 (Section 4.3): The third simulation study investigates the per-
formance of the proposed model selection procedure in the case where the true
data-generating process is not a neural network, but, rather is that of a linear-type
regression model (albeit with non-linear and interaction terms). Here, we com-
pare the performance of our procedure against classical linear-regression stepwise
selection.

In the first two simulation studies, the response is generated from an FNN with known
“true” architecture. The weights are generated so that there are three important in-
puts, x1, x2, x3, with non-zero weights, and ten unimportant inputs, x4, . . . , x13, with zero
weights. All input variables are independent and generated from a standard normal dis-
tribution and the error variance is 0.7 (but the results are similar when the inputs are
correlated as shown in Appendix B). The “true” hidden layer consists of q = 3 hidden
nodes, while we set our procedure to consider a maximum of qmax = 10 hidden nodes.
The weights of the neural network are held constant over all repetitions and are given
by (ω01 = 1.40, ω11 = 4.35, ω21 = 3.22, ω31 = −2.43, ω02 = −2.89, ω12 = 4.28, ω22 =
−3.27, ω32 = −2.30, ω03 = −1.90, ω13 = 4.49, ω23 = 3.24, ω33 = 2.46, γ0 = 2.98, γ1 =
2.37, γ2 = 2.37, γ3 = 2.47)T . The metrics calculated to evaluate the performance of the
model selection approach are the true negative rate (TNR) for the input nodes (i.e., the
proportion of input nodes with true zero weights that are correctly dropped from the
model), the false discovery rate (FDR) for the input nodes (i.e., the proportion of input
nodes with true zero weights that are incorrectly included in the model), the average
number of hidden nodes selected (q̄), the probability of choosing the correct set of inputs
(PI), the probability of choosing the correct number of hidden nodes (PH), and the prob-
ability of choosing the overall true model (PT). (All probabilities refer to the proportion
of correct results from the 1,000 simulation replicates.) In all simulation studies, we vary
the sample size n ∈ {250, 500, 1000} and carry out 1,000 replicates. Our proposed model
selection approach is implemented in our publicly available R package selectnn (McIner-
ney and Burke, 2022). The neural network function used is nnet, which is available from
the R package of the same name (Ripley and Venables, 2022). (Note that we do not use
a weight decay penalty when fitting the models, i.e., we set decay = 0 within the nnet

function.)

4.1 Simulation 1: Model Selection Approach

This simulation study aims to justify the approach of the proposed model selection proce-
dure, i.e., a hidden-node phase, followed by an input-node phase, followed by a fine-tuning
phase; here, we label this approach as H-I-F. Some other possibilities would be: to start

10

with the input-node phase (I-H-F), to stop the procedure without fine tuning (either H-I
or I-H), or to only carry out fine-tuning from the beginning (F). Descriptions of the con-
sidered model selection approaches are as follows (the proposed approach is highlighted
in bold; round brackets indicate the reordering of the steps in Algorithm 4 required to
achieve the approach):

• H-I: Hidden-node selection phase, followed by input-node selection phase (Step 1 →
Step 2).

• I-H: Input-node selection phase, followed by hidden-node selection phase (Step 2 →
Step 1).

• H-I-F: Hidden-node selection phase, followed by input-node selection
phase, and then a fine-tuning phase (Step 1 → Step 2 → Step 3).

• I-H-F: Input-node selection phase, followed by hidden-node selection phase, and
then a fine-tuning phase (Step 2 → Step 1 → Step 3).

• F: Fine-tuning phase only (Step 3).

The objective function used for model selection is BIC, and each approach has ninit = 5
initial vectors for the optimisation procedure. (The choice of objective function and the
effect of ninit are investigated in Section 4.2 and Appendix C, respectively.) The results
of the simulation study are shown in Table 1. Boxplots for TNR for the inputs and q for
all approaches are displayed in Figure 3 and Figure 4, respectively. The true-positive rate
is not shown as it is one for all methods.

Looking at the the model selection metrics, it is clear that the proposed H-I-F approach
performs well, both in terms of selecting the correct set of input nodes and selecting the
correct number of hidden nodes. Furthermore, the TNR is high, the FDR is low, and,
as expected, we see that performance improves across all metrics with increasing sample
size. From the results in Table 1, and from Figures 3 and 4, it is clear that the H-I-F
approach performs best at recovering the true model structure.

Comparing the methods without the fine-tuning stage in the boxplots, and looking at
layerwise selection, the probability of selecting the correct structure is increased when that
layer is selected in the second phase, e.g., input-node selection is best when it comes second
(see H-I versus I-H in Figure 3). This suggests a relationship between the structure of the
input and hidden layers (the probability of correctly selecting the structure of one layer
increases when the other layer is more correctly specified). This is investigated further in
Appendix D. Therefore, H-I is likely better than I-H due to input-node selection being a
more difficult task than hidden-node selection (determining the optimal set of input nodes
versus the optimal number of hidden nodes), and, hence, it is favourable to perform it
after hidden-node selection (given the number of hidden nodes is not substantially larger
than the number of input nodes). This relationship between the structure of both layers
can be handled by incorporating a fine-tuning phase after both the H and I phases are
completed. Recall that the aim of fine tuning is to search for an improved solution

11

Table 1: Simulation 1: model selection metrics.

Input layer Hidden layer
n Method Time (s) TNR FDR PI q̄ (3) PH PT

H-I 13 0.78 0.23 0.59 2.29 0.18 0.10
I-H 50 0.25 0.70 0.01 2.85 0.44 0.01

250 H-I-F 14 0.87 0.15 0.72 2.66 0.54 0.43
I-H-F 53 0.46 0.61 0.03 2.87 0.50 0.03
F 116 0.77 0.29 0.47 8.58 0.13 0.12

H-I 32 0.90 0.10 0.83 3.47 0.53 0.50
I-H 100 0.64 0.36 0.42 3.14 0.87 0.40

500 H-I-F 36 0.96 0.05 0.90 3.05 0.95 0.85
I-H-F 103 0.72 0.32 0.46 3.08 0.92 0.43
F 82 0.97 0.04 0.89 3.17 0.90 0.82

H-I 53 1.00 0.00 0.99 3.02 0.98 0.97
I-H 186 0.87 0.14 0.78 3.00 1.00 0.77

1000 H-I-F 53 1.00 0.00 0.99 3.00 1.00 0.99
I-H-F 189 0.88 0.14 0.77 3.01 0.99 0.76
F 169 0.99 0.02 0.97 3.04 0.99 0.96

Time (s), median time to completion in seconds (carried out on an Intel® Core™ i5-
10210U Processor). Best values for a given sample size are highlighted in bold.

in a neighbourhood of the current solution, where both H and I steps are carried out
alternately (and include both backward and forward selections). Indeed, we see that the
addition of the fine-tuning phase improves on H-I in the smaller sample sizes (in large
part due to improved hidden-layer selection), but its addition does not greatly improve
on I-H. Moreover, a boxplot for the computational time for each approach is provided in
Appendix E, and the addition of fine tuning only marginally adds to the computational
expense. Overall, H-I-F is significantly better than I-H-F both in terms of computational
expense and model selection. One may also consider only carrying out fine-tuning steps
from the offset, which we denote by F. However, this does not perform as well as H-I-F
at the smallest sample size and is more computationally demanding. From the above, the
H-I-F approach is what we suggest as it leads to good model selection performance while
also being the most computationally efficient approach.

4.2 Simulation 2: Model Selection Objective Function

This simulation study aims to determine the performance of using different objective func-
tions when carrying out model selection. In particular, it aims to determine whether the
use of an information criterion can improve the ability for the model selection procedure
to recover the true model; this is compared to the far more common approach in neural

12

n = 250 n = 500 n = 1000

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

F

I−H−F

H−I−F

I−H

H−I

TNR

M
et

ho
d

Figure 3: Simulation 1: boxplots for TNR (the true negative rate for the input variables)
for each method by sample size.

n = 250 n = 500 n = 1000

0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10

F

I−H−F

H−I−F

I−H

H−I

q

M
et

ho
d

Figure 4: Simulation 1: boxplots for q (the number of hidden nodes selected) for each
method by sample size. Median value highlighted in red. Dashed line indicates the true
value of q.

networks of using out-of-sample performance. Three objective functions are investigated:
BIC, AIC, and out-of-sample mean squared error (OOS). The AIC approach is the same
as the proposed approach in Section 3.1, swapping BIC for AIC = −2ℓ(θ̂) + 2(K + 1).
The OOS approach follows the same procedure, but with the objective function replaced
by out-of-sample mean squared error, which is calculated on an additional validation data

13

Table 2: Simulation 2: model selection metrics.

Input layer Hidden layer
n Method TNR FDR PI q̄ (3) PH K (16) OOS Test PT

AIC 0.25 0.71 0.00 11.70 0.00 144 2.29 0.00
250 BIC 0.87 0.15 0.72 2.66 0.54 16 0.86 0.43

OOS 0.45 0.60 0.04 2.79 0.28 27 1.30 0.01

AIC 0.24 0.71 0.00 11.40 0.00 144 1.03 0.00
500 BIC 0.96 0.05 0.90 3.05 0.95 16 0.53 0.85

OOS 0.46 0.60 0.03 3.91 0.36 37 0.57 0.00

AIC 0.27 0.70 0.00 11.40 0.00 141 0.76 0.00
1000 BIC 1.00 0.00 0.99 3.00 1.00 16 0.56 0.99

OOS 0.53 0.57 0.02 3.72 0.46 34 0.57 0.00

Best values for a given sample size are highlighted in bold.

set that is 20% the size of the training data set, i.e., OOS = 1
ñ

∑ñ
i=1(ỹi−NN(x̃i))

2, where
ñ is the number of observations in the validation data set with response variable ỹi and
covariate vector x̃i. As before, ninit = 5 random initialisations are used. The results of
the simulation study are shown in Table 2 and boxplots of TNR for the inputs and q for
the different objective functions are given in Appendix G.

The results show that BIC far outperforms OOS and AIC in correctly identifying the
correct FNN architecture. Using OOS as the model selection objective function almost
never leads to correct neural network architecture being identified. This is due to the
inability of the OOS to correctly identify and remove the unimportant covariates (TNR
is always relatively low). Using AIC leads to even worse performance, and this is likely
due to the weaker penalty on model complexity compared to BIC. It is also of interest
to compare the approaches in terms of the size of the model selected and its out-of-
sample performance. The median number of neural network parameters, K (note that
the true value is K = 16), and the median out-of-sample mean squared error (OOS Test)
evaluated on a test set are reported. The OOS Test is computed on an entirely new
dataset (20% the size of the training set) that the OOS-optimising procedure was not
exposed to. Interestingly, BIC-minimisation leads to the lowest OOS values on the test
data. This is particularly noteworthy since this is achieved using approximately half as
many parameters as the OOS-minimisation procedure. Boxplots highlighting the values
of OOS Test and K are shown in Figures 5 and 6, respectively. Figure 5 also displays
the OOS Test values for the true model (inputs x1, x2, x3 and q = 3) and the full model
(inputs x1, x2, . . . , x13 and q = 10); this allow us to evaluate the performance of selection
compared to the full model, and how close we can get to the true model. The models
selected using the BIC procedure have similar performance to the true model, particularly
as the sample size increases. In contrast, the models selected using AIC have worse out-
of-sample performance and significantly more parameters, and the performance is similar

14

n = 250 n = 500 n = 1000

0 1 2 3 0 1 2 3 0 1 2 3

True

Full

OOS

BIC

AIC

OOS Test

M
et

ho
d

Figure 5: Simulation 2: boxplots for OOS Test for the models selected by each objective
function; for comparison, the results for the true model (with inputs x1, x2, x3 and q = 3)
and the full model (with inputs x1, x2, . . . , x13 and q = 10).

n = 250 n = 500 n = 1000

0 50 100 150 0 50 100 150 0 50 100 150

OOS

BIC

AIC

K

M
et

ho
d

Figure 6: Simulation 2: boxplots for K (number of parameters) for the models selected
by each objective function.

to fitting the full model.
We have also compared our proposed BIC-based selection procedure to two commonly

used strategies for dealing with overfitting, namely, weight decay and early stopping. The
results are deferred to Appendix H, where we have found that our proposed approach
yields improved OOS Test values compared to these other two strategies.

15

4.3 Simulation 3: Data-generating Process is not a Neural Net-
work

For this simulation study, we investigate the performance of the proposed H-I-F model
selection procedure on a data set simulated from a data-generating process that is not a
neural network:

y = x1 − 0.75x2
2 + 0.9x3x4x5 + ε, (4.3)

where x1, x2, . . . , x10 ∼ N(0, 1), i.e., there are five relevant and five irrelevant covariates,
and σ2 = V ar(ε) = 0.3. For comparison, we have also performed stepwise model selection
for a linear model using BIC. We applied this using the stepAIC function from the MASS
R package with k = log(n) (Venables and Ripley, 2002). To compare with the H-I-F
procedure, we also performed stepwise selection on a linear model with a search space
containing (i) all terms up to three-way interactions (step-lm-3), (ii) all terms up to two-
way interactions (step-lm-2), and (iii) only main effects (step-lm-1). Note that the first
model is correctly specified, and the latter two are misspecified. For these linear models,
we began the search with all possible terms in the model, and allowed the stepwise search
to consider both the elimination of an included variable and the addition of an excluded
variable at each step (i.e., direction = "both"). For the purpose of this study, when
computing performance metrics (displayed in Table 3), we only considered whether or not
relevant variables (x1, . . . , x5) and irrelevant variables (x6, . . . , x10) are selected. While the
exact functional form of each selected variable is not considered, the OOS metrics facilitate
model comparisons in the sense that lower OOS values imply a better approximation to
the generating model (i.e., the functional form of input variables). In Table 3, as with
earlier tables, the TNR, FDR, and PT selection metrics are shown, but, here, the TPR
(true positive rate) metric is also shown. Moreover, we also show median number of
parameters (K), the median out-of-sample mean squared error evaluated on a test set
(OOS Test), and the median computational time (Time) for each approach.

From Table 3, we see that the proposed H-I-F procedure has a high true negative
rate, a low false discovery rate, and the true positive rate increases with the sample size;
consequently, the probability of selecting the true set of covariates (PT) increases with
the sample size. At the highest sample size, the out-of-sample performance is very close
to that of the correctly specified third order linear model (step-lm-3). Although this true
step-lm-3 model provides the lowest out-of-sample performance, its true negative and
false discovery rates are relatively poor compared to the neural network, and, hence, the
probability of selecting the true set of covariates does not approach one for the sample
sizes we have considered. The selected step-lm-3 model does have fewer parameters on
average than the neural network model (at n = 500 and n = 1000), but the step-lm-3
search is far more computationally intensive; this is due to the large number of possible
interaction terms up to order three. It is important to note that the stepwise approaches
for the linear models require the search space of models to be explicitly specified through
the interaction and polynomial terms, and the performance of the misspecified (step-
lm-2 and step-lm-1) approaches is very poor. In contrast, the proposed H-I-F selection

16

Table 3: Simulation 3: Comparison of proposed model selection approach
for neural networks with stepwise model selection for linear models for the
data-generating process given by Equation 4.3.

Method n TPR TNR FDR PT K OOS Test Time (s)

H-I-F 250 0.53 0.90 0.13 0.02 11 2.12 12
H-I-F 500 0.78 0.95 0.04 0.50 43 0.52 22
H-I-F 1000 1.00 0.98 0.02 0.93 57 0.30 46

step-lm-3 250 1.00 0.13 0.45 0.04 61 0.73 53
step-lm-3 500 1.00 0.46 0.32 0.12 20 0.36 105
step-lm-3 1000 1.00 0.63 0.24 0.23 16 0.28 215

step-lm-2 250 0.85 0.35 0.43 0.00 15 1.95 2
step-lm-2 500 0.83 0.39 0.42 0.00 13 1.31 3
step-lm-2 1000 0.93 0.80 0.16 0.00 10 1.02 5

step-lm-1 250 0.20 1.00 0.00 0.00 2 3.55 0
step-lm-1 500 0.20 1.00 0.00 0.00 2 2.46 0
step-lm-1 1000 0.40 1.00 0.00 0.00 3 1.98 0

Time (s), median time to completion in seconds (carried out on an Intel® Core™ i5-
10210U Processor).

approach does not require these terms to be explicitly specified, but still achieves very
good out-of-sample performance since complex functional relationships and interactions
are captured in a more automatic manner within the neural network structure.

5 Application to Data

Airbnb is an online marketplace that provides both short-term and long-term rentals.
Data relating to the rental listings can be obtained from Inside Airbnb (http://insideair
bnb.com). Here, we focus on rental listings in the Dún Laoghaire–Rathdown area of
Dublin on the seventh of September 2023, and aim to implement our proposed model
selection approach, and determine factors that may be associated with the listing’s price.
The data consists of information relating to 625 rental listings, and the following ex-
planatory variables: the number of people the rental accommodates (accommodates), the
rental’s review rating (rating), the number of reviews per month (num reviews), an in-
dicator of whether the rental is an entire home or a private room (room type; 0 for an
entire home, 1 for a private room), an indicator of whether or not the host is a “superhost”
(superhost; i.e., top-performing Airbnb hosts, where performance is based on reviews,
responsiveness and their cancellation rate), the total number of Airbnb listings that the
host has (num listings), an indicator of whether or not the listing is instantly bookable
(instant), and the latitude (latitude) and longitude (longitude) of the rental. The

17

http://insideairbnb.com
http://insideairbnb.com

Table 4: Dublin Airbnb: selected versus full model comparison.

p q K BIC OOS

Selected 3 2 11 884.2 0.25
Full 9 10 111 1136.3 0.48

response variable is the natural logarithm of the price per night of each rental (lnprice).
The data is available in our R package selectnn (McInerney and Burke, 2022).

The dataset has been randomly split into a training set and test set with a 80%–
20% split, respectively, and all continuous variables have been standardised (based on
the training data) to have zero mean and unit variance. The model selection procedure
was implemented with ninit = 10 and qmax = 10. For comparison purposes, the model
found by our proposed model selection procedure is compared to fitting an FNN with all
inputs and the maximum number of hidden nodes considered. For both models (selected
and full), we report the number of input nodes (p), the number of hidden nodes (q),
the total number of parameters (K), the BIC, and the out-of-sample mean squared error
(OOS) computed using the test set. For the covariates that are selected, we also report:
(i) relative covariate importance via the change in BIC (∆BIC) upon removal of that
covariate, and (ii) a simple covariate effect (τ̂) as measured by the change in the average
predicted response going from lower to higher covariate values (below/above median for
numeric covariates and 0/1 for binary covariates). See Appendix I for more detail on
these measures.

Our proposed procedure selects two hidden nodes and includes three covariates:
accommodates, num reviews and room type. As shown in Table 4, the selected model
has 100 fewer parameters than the full model, while also having a much lower BIC value
and a lower out-of-sample mean squared error. The BIC differences and covariate effects
(and their associated bootstrapped confidence intervals) for the variables that remain in
the model are reported in Table 5. Using ∆BIC as a measure of variable importance, we
find that accommodates is the most important variable with ∆BICrm = 200.16. Based
on its effect (τ̂accommodates = 1.38), the more people the listing accommodates, the higher
the price per night. The binary variable room type has a negative effect, which suggests
that the listing price of a private room is lower than an entire house, on average. The
other covariate, num reviews, is more important than room type as judged by its ∆BIC
value, but the confidence interval for its covariate effect includes zero. This suggests that
num reviews has a non-linear effect that cannot be seen in an overall average change in
the predicted response.

The selected model dropped six covariates (from a set of nine possible covariates).
While the underlying selection procedure cannot guarantee that this model minimises the
BIC, and an exhaustive search through all sub-models is computationally expensive, we
have nevertheless carried out such a search for the purpose of comparison. To this end, we
fitted the model with all covariates included, all nine models that arise by dropping one of

18

Table 5: Dublin Airbnb: covariate effects and BIC differences.

τ̂ (95% CI) ∆BIC

accommodates 1.38 (1.30, 1.47) 200.16
num reviews 0.07 (-0.07, 0.21) 89.56
room type -1.44 (-1.51, -1.37) 64.02

each of the covariates, all 36 models that arise when pairs of covariates are dropped, all 84
models that arise when triples of covariates are dropped, and so on, for each hidden layer
size, q = 1, . . . , 10. Each model was allowed ninit = 10 random initialisations, mirroring
that of our selection procedure.

Figure 7 shows the BIC for each model where each point corresponds to a different
input-layer hidden-layer combination; for comparison, the model selected by our procedure
is indicated using a box. First, note that there is a subset of models with relatively large
BIC values. Each of these models are missing the variables accommodates and room type,
which further highlights their importance in the model. It is clear that the proposed
selection procedure has indeed found a model with a BIC value that is among the lowest
of the alternative models we have considered. That being said, the exhaustive search did
return two models with lower BIC values (∆BIC = −4.4 and ∆BIC = −2.7). These
models are more complex than the model selected by our procedure (with q = 2 and
p = 3) as they have q = 3 and q = 2 hidden nodes with p = 4 and p = 5 input nodes,
respectively. We note that the out-of-sample predictive performance is very similar across
all three of these models.

6 Discussion

FNNs have become very popular in recent years and have the potential to capture more
complex covariate effects than traditional statistical models. However, model selection
procedures are of the utmost importance in the context of FNNs since their flexibil-
ity may increase the chance of over-fitting; indeed, the principle of parsimony is very
common throughout statistical modelling more generally. Therefore, we have proposed
a statistically-motivated neural network selection procedure by assuming an underlying
(normal) error distribution, which then permits BIC minimisation. More specifically, our
procedure involves a hidden-node selection phase, followed by an input-node (covariate)
selection phase, followed by a final fine-tuning phase. We have made this procedure
available in our selectnn package in R (McInerney and Burke, 2022).

Through extensive simulation studies, we have found that that (i) the order of selection
(input versus hidden layer) is important, with respect to the probability of recovering the
true model and the computational efficiency, (ii) the addition of a fine-tuning stage pro-
vides a non-negligible improvement while not significantly increasing the computational
burden, (iii) using the BIC is necessary to asymptotically converge to the true model,

19

900

1100

1300

1500

1700

1 2 3 4 5 6 7 8 9 10

Hidden Layer Size

B
IC

Input Layer
Size

1
2
3
4
5
6
7
8
9

Figure 7: Dublin Airbnb: BIC of models for different input-layer and hidden-layer com-
binations. Points are coloured according to the input layer size. The model selected by
our procedure is enclosed in a box and the horizontal dashed line indicates the BIC for
this model.

and (iv) although the models selected using BIC have fewer parameters than those se-
lected using out-of-sample performance, they have comparable, and sometimes improved,
predictivity. We suggest that statistically-orientated model selection approaches are nec-
essary in the application of neural networks — just as they are in the application of more
traditional statistical models — and we have demonstrated the favourable performance
of our proposal.

In its current form, a limitation of the proposed procedure is that, due to its stepwise
nature, it would be more computationally intensive when dealing with larger models
and datasets. We expect that randomisation and/or divide-and-conquer throughout the
selection phases would be required in more complex problems involving many covariates
and/or hidden layers, and adaptations may also be required for stochastic optimisation
procedures used on much larger datasets. Nevertheless, neural networks are still valuable
in more traditional (smaller) statistical problems for which procedures such as ours will
lead to more insightful outputs. Furthermore, the implementation of statistical approaches
more broadly (such as uncertainty quantification and hypothesis testing) in neural network
modelling will be crucial for the enhancement of these insights. This will be the direction
of our future work.

20

Acknowledgement

This publication has emanated from research conducted with the financial support of
Science Foundation Ireland under Grant number 18/CRT/6049. The second author was
supported by the Confirm Smart Manufacturing Centre (https://confirm.ie/) funded by
Science Foundation Ireland (Grant Number: 16/RC/3918). For the purpose of Open
Access, the author has applied a CC BY public copyright licence to any Author Accepted
Manuscript version arising from this submission.

References

Abiodun, O. I., Jantan, A., Omolara, A. E., Dada, K. V., Mohamed, N. A., and Arshad,
H. (2018). State-of-the-art in artificial neural network applications: A survey. Heliyon,
4(11):e00938.

Akaike, H. (1998). Information Theory and an Extension of the Maximum Likelihood
Principle, pages 199–213. Springer New York, New York, NY.

Anderson, D. and Burnham, K. (2004). Model selection and multi-model inference. Sec-
ond. NY: Springer-Verlag.

Bishop, C. M. et al. (1995). Neural networks for pattern recognition, chapter 9, pages
353–354. Oxford university press.

Breiman, L. (2001). Statistical Modeling: The Two Cultures (with comments and a
rejoinder by the author). Statistical Science, 16(3):199 – 231.

Chandrashekar, G. and Sahin, F. (2014). A survey on feature selection methods. Com-
puters & Electrical Engineering, 40(1):16–28.

Cheng, B. and Titterington, D. M. (1994). Neural networks: A review from a statistical
perspective. Statistical Science, 9(1):2–30.

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathe-
matics of Control, Signals and Systems, 2(4):303–314.

Efron, B. (2020). Prediction, estimation, and attribution. International Statistical Review,
88(S1):S28–S59.

Elder, J. F. (2003). The generalization paradox of ensembles. Journal of Computational
and Graphical Statistics, 12(4):853–864.

Fan, J. and Lv, J. (2010). A selective overview of variable selection in high dimensional
feature space. Statistica Sinica, 20(1):101–148.

21

Fisher, R. A. and Russell, E. J. (1922). On the mathematical foundations of theoret-
ical statistics. Philosophical Transactions of the Royal Society of London. Series A,
Containing Papers of a Mathematical or Physical Character, 222(594-604):309–368.

Goldberg, Y. (2016). A primer on neural network models for natural language processing.
Journal of Artificial Intelligence Research, 57:345–420.

Heinze, G., Wallisch, C., and Dunkler, D. (2018). Variable selection – a review and
recommendations for the practicing statistician. Biometrical Journal, 60(3):431–449.

Hooker, G. and Mentch, L. (2021). Bridging breiman’s brook: From algorithmic modeling
to statistical learning. Observational Studies, 7(1):107–125.

Hornik, K., Stinchcombe, M., and White, H. (1989). Multilayer feedforward networks are
universal approximators. Neural Networks, 2(5):359–366.

Koenen, N. and Wright, M. N. (2024). Interpreting deep neural networks with the package
innsight. arXiv preprint arXiv:2306.10822.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature, 521(7553):436–444.

McInerney, A. and Burke, K. (2022). selectnn: A Statistically-Based Approach to Neural
Network Model Selection. R package version 0.0.0.9000.

Miller, A. (2002). Subset selection in regression. chapman and hall/CRC.

Murata, N., Yoshizawa, S., and Amari, S. (1994). Network information criterion-
determining the number of hidden units for an artificial neural network model. IEEE
Transactions on Neural Networks, 5(6):865–872.

Pang, G., Shen, C., Cao, L., and Hengel, A. V. D. (2021). Deep learning for anomaly
detection: A review. ACM Computing Surveys (CSUR), 54(2):1–38.

Pontes, F., Amorim, G., Balestrassi, P., Paiva, A., and Ferreira, J. (2016). Design of
experiments and focused grid search for neural network parameter optimization. Neu-
rocomputing, 186:22–34.

Ripley, B. and Venables, W. (2022). nnet: Feed-forward neural networks and multinomial
log-linear models. R package version, 7.3-17.

Ripley, B. D. (1993). Statistical aspects of neural networks. In Nielsen, B. O. E., Jensen,
J. L., and Kendall, W. S., editors, Networks and Chaos: Statistical and Probabilistic
Aspects, pages 40–123. Chapman & Hall.

Ripley, B. D. (1994). Neural networks and related methods for classification. Journal of
the Royal Statistical Society: Series B (Methodological), 56(3):409–437.

22

Rügamer, D., Kolb, C., and Klein, N. (2020). Semi-structured deep distributional re-
gression: Combining structured additive models and deep learning. arXiv preprint
arXiv:2002.05777.

Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics,
6(2):461–464.

Sun, Y., Song, Q., and Liang, F. (2022). Learning sparse deep neural networks with a
spike-and-slab prior. Statistics & Probability Letters, 180:109246.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society: Series B (Methodological), 58(1):267–288.

Tran, M.-N., Nguyen, N., Nott, D., and Kohn, R. (2020). Bayesian deep net glm and
glmm. Journal of Computational and Graphical Statistics, 29(1):97–113.

Venables, W. N. and Ripley, B. D. (2002). Modern Applied Statistics with S. Springer,
New York, fourth edition. ISBN 0-387-95457-0.

Voulodimos, A., Doulamis, N., Doulamis, A., and Protopapadakis, E. (2018). Deep learn-
ing for computer vision: A brief review. Computational Intelligence and Neuroscience,
2018.

White, H. (1989). Learning in Artificial Neural Networks: A Statistical Perspective.
Neural Computation, 1(4):425–464.

Ye, J. (1998). On measuring and correcting the effects of data mining and model selection.
Journal of the American Statistical Association, 93(441):120–131.

23

A Neural Network Degrees of Freedom

The use of the BIC for model selection introduces the question of degrees of freedom for
neural networks. In our procedure, we define the degrees of freedom to be the number
of parameters in the model, K. From our simulation results in Section 4 of the main
paper, we see that this leads to consistent model selection. However, other approaches to
defining the degrees of freedom for neural networks exist. Ye (1998) defined the concept
of generalised degrees of freedom (GDF) as

GDF =

∑n
i=1 cov(yi, ŷi)

σ2
,

where ŷi are the predicted values from the model; note that the computation of GDF
in practice is based refitting the model many times to datasets with slightly perturbed
values of yi (Elder, 2003; Ye, 1998). Murata et al. (1994) introduced a network information
criterion (NIC) whose penalty for model complexity is given by

EDF = tr(GQ−1),

where Q = E[∇θ∇T
θ ℓ(θ)], G = V ar[∇θℓ(θ)] and tr(·) denotes the trace operator. In

this Appendix, we consider the behaviour of these degrees of freedom formulae using
a variety of simulations. The first simulation study investigates the values of EDF and
GDF for different neural network architectures when the model is correctly specified. The
second simulation study also investigates EDF and GDF, but for neural networks that are
incorrectly specified. In particular, we focus on cases when the neural network fit to the
data is larger than the true data-generating model. Finally, we implement both methods
as the degrees-of-freedom term within our model selection procedure, and compare the
results to our proposed use of the number of parameters as the degrees of freedom (i.e.,
the classical BIC penalty).

For the first simulation study, the degrees of freedom are estimated for various neural
network architectures. Both the size of the input layer and the hidden layer are varied
with p, q ∈ {2, 4, 6, 8}. For each architecture, a correctly specified neural network model
is fit to the data. Sample size is varied with n ∈ {250, 500, 1000, 2000} and 100 simulation
replicates are carried out. The results for each architecture are displayed in Figure 8.

It is clear that the GDF, EDF, and K (the number of parameters) closely align with
each other in the scenarios we have considered. In the more complicated (larger) mod-
els, there is more variability in the GDF and EDF values at smaller samples, but they
converge to K with the sample size. Interestingly, the convergence to K is from below,
implying that, if GDF or EDF are used within a BIC selection procedure, they will pe-
nalise complexity less than when using K (and, hence, select more complex models than
those selected using the classical BIC).

Aside from the reduced penalisation relative toK, it is also worth noting that GDF and
EDF have other drawbacks. First, GDF is quite computationally intensive to compute; a
plot of the average time taken to compute GDF is given in Figure 9. The computational

24

p = 8; q = 2 p = 8; q = 4 p = 8; q = 6 p = 8; q = 8

p = 6; q = 2 p = 6; q = 4 p = 6; q = 6 p = 6; q = 8

p = 4; q = 2 p = 4; q = 4 p = 4; q = 6 p = 4; q = 8

p = 2; q = 2 p = 2; q = 4 p = 2; q = 6 p = 2; q = 8

500 1000 1500 2000 500 1000 1500 2000 500 1000 1500 2000 500 1000 1500 2000

25

50

75

100

125

25

50

75

100

125

25

50

75

100

125

25

50

75

100

125

n

D
eg

re
es

 o
f F

re
ed

om

Method
EDF
GDF

Figure 8: The average EDF and GDF values and their associated 2.5 and 97.5 quantiles
versus sample size for different neural network architectures. The horizontal dashed line
represents the number of parameters for each architecture.

times observed (which further increase with sample size and model complexity) render the
use of GDF within model selection less feasible since a degrees-of-freedom value is needed
at each step of the selection procedure. As for the EDF computation, this requires the
inversion of the Hessian matrix of the neural network parameters, which is not possible
when there are redundancies present in the model; this is something that becomes more
likely in more complex models. Figure 10 displays the proportion of replicates where the
EDF could not be computed for each architecture and sample size. It is clear that larger
sample sizes are required for more complicated architectures in order to ensure stable
computation of EDF.

The second simulation study is similar to the first, but now the neural network ar-
chitecture is misspecified. The true data-generating model has p = 4 input nodes and
q = 4 hidden nodes. Neural networks of various architectures are fit to the data, with
p, q ∈ {2, 4, 6, 8}. The results are displayed in Figure 11. For all models where the hidden
layer is correctly specified (q = 4), the results are similar to Figure 8, i.e., the GDF and

25

n = 1000 n = 2000

n = 250 n = 500

2 4 6 8 2 4 6 8

10

100

1000

10

100

1000

Number of hidden nodes (q)

T
im

e
(s

) p
2
4
6
8

Figure 9: The average time taken to compute GDF for different architectures and sample
sizes.

n = 1000 n = 2000

n = 250 n = 500

2 4 6 8 2 4 6 8

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

Number of hidden nodes (q)

P
ro

po
rt

io
n

of
 fa

ilu
re

s

p
2
4
6
8

Figure 10: The proportion of replicates that the computation of EDF failed due to a
non-invertible Hessian matrix.

26

p = 8; q = 4 p = 8; q = 6 p = 8; q = 8

p = 6; q = 4 p = 6; q = 6 p = 6; q = 8

p = 4; q = 4 p = 4; q = 6 p = 4; q = 8

500 1000 1500 2000 500 1000 1500 2000 500 1000 1500 2000

20

40

60

80

20

40

60

80

20

40

60

80

n

D
eg

re
es

 o
f F

re
ed

om

Method
EDF
GDF

Figure 11: The average EDF and GDF values and their associated 2.5 and 97.5 quantiles
versus sample size for different neural network architectures. The horizontal dashed line
represents the number of parameters for each architecture.

EDF approaches align with the number of parameters, K. However, when the number of
hidden nodes is incorrectly specified, EDF and GDF do not tend to the number of param-
eters. In these scenarios, the degrees of freedom is lower than the number of parameters
in the model; this suggests redundancies in the fitted model.

Finally, we compared all three approaches to defining the degrees of freedom within
our proposed model selection procedure. Due to the computational expense of GDF, a
simpler simulation set up is used compared to the simulation study in the main paper.
Here, the true data-generating model is the same as the neural network used in Sections
4.1 and 4.2. However, only two unimportant inputs and a qmax = 5 are considered. The
results of the model selection simulation are displayed in Table 6.

From the simulation results, it is clear that using GDF or EDF within the BIC penalty
leads to reduced performance in the model selection procedure compared with using K.
This is likely due to the penalty being weaker when there is redundancy present (as seen
in Figure 11), which leads to the selection of larger-than-required models (evidenced in

27

the inflated false discovery rates in both the input and hidden nodes). The median out-of-
sample mean squared error (OOS) evaluated on a test set (20% the size of the training set)
is also reported. The models selected using K as the degrees-of-freedom term have better
predictive performance than the models selected using the EDF and GDF approaches
(albeit the OOS values appear to converge with the sample size).

Table 6: Simulation results: model selection metrics for different
degrees-of-freedom approaches.

Input layer Hidden layer
n Method TNR FDR PI q̄ (3) PH OOS PT

K 0.85 0.07 0.77 3.24 0.47 0.89 0.38
250 GDF 0.56 0.20 0.29 4.93 0.05 1.10 0.00

EDF 0.22 0.33 0.04 5.80 0.02 1.49 0.00

K 0.94 0.03 0.90 3.08 0.92 0.53 0.82
500 GDF 0.74 0.12 0.55 4.66 0.15 0.60 0.10

EDF 0.60 0.18 0.40 5.30 0.03 0.62 0.02

K 0.97 0.01 0.95 3.04 0.98 0.47 0.98
1000 GDF 0.74 0.12 0.57 5.61 0.02 0.51 0.02

EDF 0.74 0.12 0.59 4.78 0.02 0.50 0.01

B Simulation Results with Correlated Data

The performance of the proposed H-I-F approach is further investigated in the setting
where there is correlation among the covariates. Here, the data-generating process is
the same as in the main paper, however, the data is generated such that the covariates
are multivariate normal, i.e., x1, x2, . . . , x13 ∼ MVN wherein corr(xj, xk) = 0.7|j−k|. The
non-zero covariates are x1, x7, x13. The results corresponding to Simulation 1 and 2 are
shown in Tables 7 and 8, respectively.

28

Table 7: Simulation results: model selection metrics with
correlated data for different model selection approaches.

Input layer Hidden layer
n Method TNR FDR PI q̄ (3) PH PT

H-I 0.82 0.38 0.63 2.89 0.52 0.38
I-H 0.27 0.71 0.03 2.80 0.57 0.02

250 H-I-F 0.84 0.35 0.60 3.07 0.82 0.53
I-H-F 0.35 0.71 0.02 2.77 0.54 0.02
F 0.68 0.52 0.35 7.52 0.24 0.18

H-I 0.96 0.13 0.90 3.23 0.76 0.73
I-H 0.65 0.54 0.44 2.99 0.95 0.43

500 H-I-F 0.97 0.10 0.91 3.06 0.94 0.86
I-H-F 0.68 0.53 0.42 2.99 0.92 0.40
F 0.97 0.10 0.88 3.15 0.92 0.83

H-I 1.00 0.00 0.99 3.00 1.00 0.98
I-H 0.86 0.32 0.76 2.99 0.99 0.76

1000 H-I-F 1.00 0.00 0.99 3.00 1.00 0.99
I-H-F 0.88 0.29 0.78 3.00 0.98 0.77
F 0.99 0.03 0.97 3.03 0.98 0.96

Table 8: Simulation results: model selection metrics for the proposed approach
(H-I-F) with correlated data for different objective functions.

Input layer Hidden layer
n Method TNR FDR PI q̄ (3) PH K (16) OOS Test PT

AIC 0.12 0.75 0.00 12.17 0.00 157 2.17 0.00
250 BIC 0.84 0.35 0.60 3.07 0.82 16 0.57 0.53

OOS 0.41 0.66 0.02 4.12 0.35 39 0.87 0.00

AIC 0.13 0.74 0.00 11.71 0.00 155 1.25 0.00
500 BIC 0.97 0.10 0.91 3.06 0.94 16 0.61 0.86

OOS 0.49 0.63 0.02 3.74 0.44 37 0.64 0.00

AIC 0.14 0.74 0.00 11.77 0.00 155 0.83 0.00
1000 BIC 1.00 0.00 0.99 3.00 1.00 16 0.51 0.99

OOS 0.52 0.62 0.02 3.78 0.43 34 0.52 0.00

29

C Simulation: Number of Initialisations

Since FNNs have a complex optimisation surface (the log-likelihood function), each model
fit is supplied with ninit random initial vectors with the aim of avoiding local maxima. Of
course, larger values of ninit improve the chances of finding the global maximum but in-
crease the computational expense. In the previous simulations, we fixed ninit = 5, whereas,
here, we vary it at ninit ∈ {1, 5, 10} using the proposed H-I-F BIC-minimisation procedure.
Plots of the probability of choosing the correct number of hidden nodes (PH), the proba-
bility of choosing the correct set of inputs (PI), and the probability of choosing the overall
true model (PT) for different values of n and ninit are shown in Figure 12. Also, Figure 13
displays boxplots of the computational time for each scenario. The corresponding table
of simulation results is given in Table 9.

PH PI PT

250 500 750 1000 250 500 750 1000 250 500 750 1000

0.25

0.50

0.75

1.00

n

P
ro

ba
bi

lit
y

ninit 1 5 10

Figure 12: Simulation for number of initialisations: line plots for PH (the probability of
choosing the correct number of hidden nodes), PI (the probability of choosing the correct
set of inputs) and PT (the probability of choosing the overall true model) for different
values of n and ninit.

From the plots, we can clearly see the trade-off between better model selection and
worse computational efficiency as ninit increases. We would certainly recommend ninit > 1
initial vectors since the results are poor for ninit = 1. Beyond this, the choice might
be based on the computational constraints in a given practical setting, but we note, in
particular, that larger values of ninit are more important in smaller sample sizes.

30

10

5

1

0 50 100
Time (s)

n i
ni

t
n 250 500 1000

Figure 13: Simulation for number of initialisations: boxplots of computational time (s)
for different values of n and ninit.

Table 9: Simulation for number of initialisations: model selection
metrics.

Input layer Hidden layer
n ninit Time (s) TNR FDR PI q̄ (3) PH PT

1 1.90 0.80 0.23 0.52 2.20 0.17 0.06
250 5 14.42 0.87 0.15 0.72 2.66 0.54 0.43

10 32.30 0.89 0.14 0.72 3.05 0.89 0.68

1 9.37 0.73 0.31 0.44 3.82 0.28 0.12
500 5 38.18 0.96 0.05 0.90 3.05 0.95 0.85

10 70.69 0.98 0.03 0.95 3.01 0.99 0.93

1 12.98 0.89 0.16 0.62 3.40 0.64 0.38
1000 5 54.39 1.00 0.00 0.99 3.00 1.00 0.99

10 117.32 1.00 0.00 1.00 3.00 1.00 1.00

Time (s), median time to completion in seconds (carried out on an Intel®

Core™ i5-10210U Processor). Best values for a given sample size are highlighted
in bold.

31

D Relationship Between the Structure of the Input

and Hidden Layer

In Simulation 1 (Section 4.1), there appears to be a relationship between the structure
of one layer on the probability of selecting the correct structure for the other layer. For
example, when n = 500, performing input-layer selection after first performing hidden-
layer selection (H-I) results in a much higher probability of selecting the correct set of
input nodes (PI = 0.83) in comparison to performing input-layer selection first (I-H)
(PI = 0.43). This suggests that input-layer selection is improved when the hidden layer
is closer to its correct structure. In order to investigate this further, we performed two
simulation studies: one to explore the relationship between the input-layer structure and
the probability of selecting the correct number of hidden nodes, and another to explore
the relationship between the hidden-layer structure and the probability of selecting the
correct set of input nodes. In each simulation study, the response is generated from an
FNN with known “true” architecture containing five important inputs, x1, x2, . . . , x5, and
q = 5 hidden nodes. Within each simulation, every scenario is implemented for 1,000
replicates, using a sample size of n = 500.

The aim of the first simulation study is to investigate the effect of adding additional
unimportant covariates to the set of important covariates on hidden-node selection. All
important covariates remain in the data, while the number of unimportant inputs, nunimp,
is varied from zero up to ten. The hidden-node selection step (Algorithm 2) is implemented
for each replicate, with a maximum of 10 hidden nodes being considered. The probability
of choosing the correct number of hidden nodes (PH) is then calculated. The results are
displayed in Table 10 and Figure 14. It is clear that the more unimportant covariates that
are included in the data, the lower the probability in recovering the correct hidden-layer
structure.

Table 10: Probability of selecting the correct hidden-layer structure.

nunimp 0 1 2 3 4 5 6 7 8 9 10

PH 0.86 0.78 0.74 0.66 0.54 0.40 0.43 0.40 0.39 0.27 0.23

nunimp, the number of unimportant covariates; PH, the probability of selecting the correct
number of hidden nodes.

The second simulation study aims to investigate the effect of the number of hidden
nodes on input-node selection. Ten additional unimportant inputs, x6, x7, . . . , x15, are
added to the data. The number of hidden nodes is varied from one up to ten. The input-
node selection step (Algorithm 3) is implemented for each replicate, and the probability
of choosing the correct set of input nodes (PI) is calculated. The results are displayed in
Table 11 and Figure 15. We find that the closer the hidden layer is to having the correct
number of hidden nodes, the greater the probability of recovering the correct set of input
nodes. Both simulation studies verify that model selection for one layer is dependent on

32

the structure of the other layer, and, hence, justifies the use of a fine-tuning phase after
performing input- and hidden-node selection.

Table 11: Probability of selecting the correct input-layer structure.

q 1 2 3 4 5 6 7 8 9 10

PI 0.01 0.53 0.59 0.58 0.71 0.60 0.63 0.66 0.63 0.58

q, the number of hidden nodes; PI, the probability of selecting the correct set of
input nodes.

0.4

0.6

0.8

0 1 2 3 4 5 6 7 8 9 10
Number of Unimportant Covariates

P
H

Figure 14: Number of unimportant covariates versus the probability of selecting the
correct hidden-layer structure.

0.0

0.2

0.4

0.6

1 2 3 4 5 6 7 8 9 10
Number of Hidden Units

P
I

Figure 15: Number of hidden nodes versus the probability of selecting the correct input-
layer structure.

33

E Simulation 1: Boxplots of Computational Time for

Each Model Selection Method

This section contains the boxplots associated with the computational time for the different
model selection approaches, and corresponds to Table 1 in the main paper.

n = 250 n = 500 n = 1000

0 50 100 150 200 250 0 50 100 150 200 250 0 50 100 150 200 250

F

I−H−F

H−I−F

I−H

H−I

Time (s)

M
et

ho
d

Figure 16: Simulation 1: boxplots of computational time (s) for each model selection
approach and different values of n.

F Simulation 1: Combined Approach

Since H-I yields a higher probability of recovering the input layer than I-H, and I-H yields
a higher probability of recovering the hidden layer than H-I, we have also considered the
following approach: run both H-I and I-H independently, then take the input layer from
H-I and the hidden layer from I-H to form the model; we refer to this as [H-I∗]-[I-H∗],
where an asterisk denotes the layer being selected. We also investigate the aforementioned
approach but followed by a fine-tuning phase, which we refer to as [H-I∗]-[I-H∗]-F. The
simulation results for these procedures are given in Table 12.

We find that the [H-I∗]-[I-H∗] approach outperforms both the H-I and the I-H ap-
proaches, but is more computationally expensive. The addition of a fine-tuning phase
improves the model selection performance further, but the proposed H-I-F approach has
very similar performance while being much less computationally demanding.

34

Table 12: Model selection metrics for combined approaches.

Input layer Hidden layer
n Method Time (s) TNR FDR PI q̄ (3) PH PT

250 [H-I∗]-[I-H∗] 44.96 0.83 0.20 0.61 2.89 0.42 0.25
500 [H-I∗]-[I-H∗] 131.50 0.90 0.11 0.79 3.19 0.81 0.64
1000 [H-I∗]-[I-H∗] 238.15 1.00 0.00 0.98 3.00 1.00 0.98

250 [H-I∗]-[I-H∗]-F 45.72 0.85 0.18 0.65 2.81 0.59 0.46
500 [H-I∗]-[I-H∗]-F 134.73 0.93 0.08 0.85 3.04 0.96 0.82
1000 [H-I∗]-[I-H∗]-F 240.06 1.00 0.01 0.99 3.00 1.00 0.98

Time (s), median time to completion in seconds (carried out on an Intel® Core™ i5-10210U
Processor).

G Simulation 2: Boxplots of TNR and q for Different

Model Selection Objective Functions

This section contains the boxplots associated with TNR and q corresponding to Table 2
in Section 4.2 of the main paper.

n = 250 n = 500 n = 1000

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

OOS

BIC

AIC

TNR

M
et

ho
d

Figure 17: Simulation 2: boxplots for TNR (the true negative rate for the input variables)
for the models selected by each objective function.

35

n = 250 n = 500 n = 1000

0 2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18

OOS

BIC

AIC

q

M
et

ho
d

Figure 18: Simulation 2: boxplots for q (the number of hidden nodes selected) for the
models selected by each objective function.

H Comparison of models selected with the full model

trained using weight decay and early stopping

Over-parameterised neural networks can often suffer from issues of overfitting. Therefore,
it is of interest to compare the out-of-sample performance of the models selected using our
stepwise BIC procedure with the out-of-sample performance of the full model trained with
common approaches that deal with overfitting. We investigate two popular approaches
to overfitting: the use of a weight decay penalty, and early stopping. The weight decay
penalty and the stopping point are both chosen based on the performance of the model on
an additional validation data set (which is 20% the size of the training data set). Boxplots
of the out-of-sample performance on the test data set for the BIC-selected model, the full
model, and the models trained with weight decay and early stopping are displayed in
Figure 19.

It is clear that both weight decay and early stopping improve the out-of-sample per-
formance of the full model. However, the more parsimonious models that are selected
via the proposed approach outperform both the commonly used weight decay and early
stopping strategies.

36

n = 250 n = 500 n = 1000

0.5 1.0 2.0 4.0 0.5 1.0 2.0 4.0 0.5 1.0 2.0 4.0

Weight Decay

Early Stopping

Full

BIC

OOS Test

M
et

ho
d

Figure 19: Boxplots of out-of-sample mean squared error evaluated on a test data set (on
a logarithmic scale) for the models selected using the proposed approach, the full model,
the full model with early stopping, and the full model with weight decay.

I ∆BIC and simple covariate effects

Simple measures of covariate importance and effects are used in Section 5 to accompany
the model selection procedure for the data application. For the covariates that are selected,
their relative importance is estimated using BIC differences (∆BIC), which is given by
∆BICj = BICj − BICmin, where BICmin is the BIC for the selected model (i.e., it is
the model with the minimum BIC found by our algorithm) and BICj is the BIC for the
model with the same hidden-layer structure as this selected model but with covariate j
removed; hence, the more important covariate j is, the larger the corresponding ∆BICj

value as its removal would lead to an increased BICj compared to BICmin. In addition to
covariate importance, simple covariate effects (τ̂j) are constructed by splitting the data
into two groups based on whether or not the value of jth covariate for the ith individual,
xji, is above or below the empirical median value, mj = median(xj1, xj2, . . . , xjn), and
computing the difference in the average predicted response for these two groups. The
corresponding equation is

τ̂j = E[NN(X) | X(j) > mj]− E[NN(X) | X(j) < mj],

where NN(X) is the output of the neural network for input covariate vector X (see
Equation 2.1), X(j) denotes the jth covariate, and we take the conditional expected value

37

with respect to the empirical distribution of covariates in the dataset, i.e.,

E[NN(X) | X(j) > mj] =
1

card(i | xji > mj)

∑
i|xji>mj

NN(xi)

where card(·) is the cardinality operator. Although this metric is a simplification of the
(potentially non-linear) effects captured by the neural network, and our focus is on model
selection, it is nevertheless a useful supplement to our approach that provides a high-level
overview of the estimated covariate effects.

38

	Introduction
	Feedforward Neural Network
	Model Selection
	Proposed Approach

	Simulation Studies
	Simulation 1: Model Selection Approach
	Simulation 2: Model Selection Objective Function
	Simulation 3: Data-generating Process is not a Neural Network

	Application to Data
	Discussion
	Neural Network Degrees of Freedom
	Simulation Results with Correlated Data
	Simulation: Number of Initialisations
	Relationship Between the Structure of the Input and Hidden Layer
	Simulation 1: Boxplots of Computational Time for Each Model Selection Method
	Simulation 1: Combined Approach
	Simulation 2: Boxplots of TNR and q for Different Model Selection Objective Functions
	Comparison of models selected with the full model trained using weight decay and early stopping
	BIC and simple covariate effects

