
SWARM-BASED GRADIENT DESCENT METHOD
FOR NON-CONVEX OPTIMIZATION

JINGCHENG LU, EITAN TADMOR, AND ANIL ZENGINOGLU

Abstract. We introduce a new Swarm-Based Gradient Descent (SBGD) method for non-
convex optimization. The swarm consists of agents, each is identified with a position, x, and
mass, m. The key to their dynamics is communication: masses are being transferred from
agents at high ground to low(-est) ground. At the same time, agents change positions with
step size, h = h(x,m), adjusted to their relative mass: heavier agents proceed with small
time-steps in the direction of local gradient, while lighter agents take larger time-steps based
on a backtracking protocol. Accordingly, the crowd of agents is dynamically divided between
‘heavier’ leaders, expected to approach local minima, and ‘lighter’ explorers. With their
large-step protocol, explorers are expected to encounter improved position for the swarm; if
they do, then they assume the role of ‘heavy’ swarm leaders and so on. Convergence analysis
and numerical simulations in one-, two-, and 20-dimensional benchmarks demonstrate the
effectiveness of SBGD as a global optimizer.
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1. Introduction

The classical Gradient Descent (GD) methods for optimization, argminx∈Ω⊂Rd F (x), explore
the ambient space by marching along the directions dictated by local gradients, ∇F (x).
Once the marching direction is determined, the remaining key aspect is a choice of step size.
More often than not, however, GD protocols get trapped in basins of attraction of local
minima, and therefore are not suitable for global optimization of non-convex functions.
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In this work we introduce a swarm-based gradient descent approach for global optimization.
Communication between agents of the swarm plays a key role in dictating their step size.
Here, the usual ambient space of positions is embedded in Rd× [0, 1]: each agent is character-
ized by its time-dependent position, xi(t

n) ∈ Ω ⊂ Rd, and its relative weight, m̃i(t
n) ∈ [0, 1].

An interplay between positions and weights proceeds by communicating a dynamic mass
transition from high to low, thus our protocol favors agents positioned on ‘lower grounds’.
Looking ahead, the time-stepping protocol is then adjusted according to the distinction be-
tween ‘heavy’ agents taking small time steps, and ‘light’ agents taking large(-r) time steps.
While heavy agents take smaller time-steps, expecting their convergence toward a local min-
imum, light agents proceed with larger time-steps, so that they explore larger regions, away
from local basins of attraction; they are expected to improve the global position of the swarm.
In the sequel, those light explorers are expected to encounter a ‘better’ minimizing ground.
Then, these light explorers are gradually converted into heavier, global leaders of the swarm.
Here, the dynamic distinction between heavy leaders and light explorers enables a simultane-
ous approach towards local minimizers, while keep searching for even better global minimizers.

Let us recall other well-known multi-agent optimization algorithms based on ‘wisdom of the
crowd’ — particle swarm optimization [15, 9], 2-agent simulated annealing [7], ant colony
optimization [31], genetic algorithms [12, 3] and consensus-based optimization [21, 4, 5, 6].
Our Swarm-Based Gradient descent (SBGD) method is shown to be a most effective opti-
mizer, in particular, when the unknown global minimizer is away from the initial swarm.
Visiting larger portions of the ambient space, using explorers based on the communication
in swarm dynamics, proved an essential feature for such optimization of remote minimizers.
Equally important role is played by the leading agents of the swarm: using the backtracking
we prove the sequence of leaders must converge to a minimizer with a quantified rate.

Description of the SBGD method, given in Section 2, highlights the decisive role of commu-
nication; indeed, the SBGD can be viewed as alignment dynamics towards minimal heading.
A precise time-stepping protocol based on backtracking line search, is outlined in Section 3.
Detouring the general paradigm of our swarm-based optimization, we note in Section 4 that
our recipe for dynamically adjusting the weights can be extended to more general protocols.
In particular, our implementation of SBGD enforces elimination of ‘worst’ agent at each
iteration. This ‘survival of the fittest’ approach can be relaxed, increasing the exploring
capabilities at the expense of additional computational time. In Section 5 we present con-
vergence and error analysis of SBGD. The time-stepping protocol of backtracking implies
that the time sequence of SBGD minimizers has a limit set of one (or more) equi-height
minima, and depending on the ‘flatness’ of F , expressed in terms of Lojasiewicz bound,
there follows convergence rate estimate of the corresponding polynomial order. Finally, in
Sections 6, 7 and 8 we present a series of numerical experiments, comparing the SBGD
with various GD methods in one-, two- and respectively 20-dimensional problems. These in-
clude GD methods with time-stepping protocol based on a fixed time-step, backtracking and
momentum-based Adam protocol [16]. These single-agent methods were implemented using
N agents with randomly distributed positions. Of course, having N such agents exploring
the region of interest, is expected to be “N times better” than their single-agent versions.
Still, when compared with our N -based swarm method, we found superior performance of
SBGD. Specifically, the communication-based approach in SBGD avoids local minima traps,
providing better performance when the search for global minimum requires exploration away
from the initial ‘blob’ of randomly distributed positions.
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2. The Swarm-Based Gradient Descent (SBGD) algorithm

The SBGD dynamics consists of three main ingredients.

☞ Agents. Each agent is identified by its position, xi(t) ∈ Rd, and its mass, mi(t) ∈
(0, 1]. The total mass is kept constant in time,

∑
imi(t) = 1.

☞ Protocol for time step. The position of each agent is dynamically adjusted by
taking a time step hi in the gradient direction, ∇F (xi(t))

d

dt
xi(t) = −hi∇F (xi(t)).

The time step, hi, depends on the position of the agent at, xi(t), and on its relative
mass, m̃i(t),

m̃i(t) :=
mi(t)

m+(t)
, m+(t) = max

i
mi(t).

The precise dynamic protocol for choosing the step size, based on backtracking, is
outlined below. A key aspect is choosing hi as a decreasing function of the relative
mass, m̃i: ‘heavier’ agents move slower, while ‘lighter’ agents take larger time steps.
An alternative point of view is to interpret the m̃i’s as the probabilities of agents
to identify global minimum: those with mass mi(t) ≪ m+(t) take large time steps
to explore the region of interest, since their probability of identifying the global
minimum at their current position, xi(t), is low.

☞ Communication. Let Fmax(t) = max
j
F (xj(t)) and Fmin(t) = min

j
F (xj(t)) denote

the maximal and respectively, minimal heights of the swarm at time t. The mass of
each agent, mi(t), is dynamically adjusted according to its relative height, ηi(t),
d

dt
mi(t) = −ϕp(ηi(t))mi(t), i ̸= i(t)

mi(t) = 1−
∑
j ̸=i(t)

mj(t), i = i(t) := argmin
i

F (xi(t)),
ηi(t) :=

F (xi(t))− Fmin(t)

Fmax(t)− Fmin(t)
.

Thus, each agent ‘sheds’ a fraction of its mass, ϕp(ηi(t)) ∈ (0, 1], which is transferred
to the current global minimizer at xi(t)(here we allow to adjust the mass transition,
ϕp(η) = ηp, using a user choice of a fine-tuning parameter p > 0, with the default
choice p = 1). As the global minimizer becomes ‘heavier’, it will be ‘cautious’, taking
smaller time steps while enabling the other, ‘lighter’ agents, to take larger time steps.
As the lighter agents explore the ambient space with larger time steps, it will increase
their likelihood to encounter a new neighborhood of a global minimum, which in turn
may place one of them as the new heaviest global minimizer and so on. Observe that
the larger p is, the more tamed the mass transition of ϕp(ηi(t)).

The discrete time marching of SBGD is realized by agents positioned at xn+1
i = xi(t

n+1)
with masses mn+1

i = mi(t
n+1) at discrete time steps tn+1 = tn + ∆t. We use the simple
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forward time discretization with time step ∆t = 1, acting on all non-empty agents, mn
i > 0,

(2.1)



mn+1
i = mn

i − ϕp(η
n
i )m

n
i , i ̸= i−n

mn+1

i−n
= mn

i−n
+

∑
i ̸=i−n

ϕp(η
n
i )m

n
i ,

 i−n := argmini F (x
n
i )

mn+1
+ := max

i
mn+1

i

xn+1
i = xn

i − h
(
xn
i , λψq(m̃

n+1
i )

)
∇F (xn

i ), m̃n+1
i =

mn+1
i

mn+1
+


mn

i > 0.

Initially, the agents are placed at random positions, {x0
i } with equi-distributed masses {m0

i =
1/N}. At each iteration, masses of agents are exchanged according to their relative heights,
and the positions of agents are updated in the direction of the local gradient, with time step,
hni = h

(
xn
i , λψq(m̃

n+1
i )

)
, depending on these relative mass. Note that the agent with the

worst configuration, positioned at x+ = argmaxF (xn
i ), is eliminated from the computation;

consequently, the size of the swarm decreases, one agent at a time, until it remains with
the one heaviest agent. Our choice for the time-stepping protocol, h

(
x, λψq(m̃)

)
, is the

backtracking line search outlined in §3.2, which is weighted by the relative masses, ψq(m̃
n+1
i )

(again, here we allow fine-tuning the dependence on the relative mass, ψq(m̃) = m̃q, based on
a user choice of q > 0, with the default choice q = 1). The backtracking enforces a descent
property for the SBGD iterations xn

i , and the parameter, λ ∈ (0, 1), dictates how much
the descent property holds in the sense that (3.4) below is fulfilled. The communication is
designed so that the total mass of the swarm gradually concentrates with the agents most
likely to become the global minimizers, that is, the agents which will most likely to reach the
global minimum of the region explored so far by the swarm. Such ‘heavy’ agents are assigned
with relatively small step sizes, as they are suspected to be close to ’good’ minimizers, hence
their subsequent explorations should be sufficiently cautious. On the other hand, the ‘lighter’
agents should not be trapped in basins of attraction of local minimizers, so they proceed
with larger step sizes, allowing them to explore a larger regions, during which they may
encounter ‘better’ minimizers; then they may be gradually converted from ‘light explorers’
into ‘heavy leaders’ and so on.

We note the flexibility of the SBGD communication protocol, depending on fractional
mass transition, ϕp(η

n
i ), and the mass-dependent step size, h(xn

i , λψq(m̃
n+1
i )). Their detailed

construction is outlined in §3. The algorithm (2.1) then forms a family of swarm-based
methods, denoted SBGDpq whenever we want to emphasize its dependence on the parameters
(p, q); the ‘vanilla’ version corresponding to (p, q) = (1, 1) is denoted simply by SBGD.

2.1. Why communication is important. Consider the particular scenario in which all
agents are assigned with the same constant mass, i.e., mn

i ≡ 1/N and ηni ≡ 0, so that
ψq(m̃

n
i ) ≡ 1 yields

(2.2) xn+1
i = xn

i − h(xn
i , λ)∇F (xn

i ), i = 1, 2, . . . , N.

In this case, there is no mass transition and the dynamics is reduced to a crowd of non-
communicating agents. In particular, each agent makes its own decision to proceed with
variable step size based on the backtracking protocol outlined in section 3.2 below. We refer
to this as the backtracking GD, or GD(BT) method. There is also the vanilla version of
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Gradient Descent, denoted GD(h), which proceeds with a fixed step size h(xn
i , λ) ≡ h. In

either case, we have N agents, exploring the region of interest independently of each other.
Of course, if there are N such agents exploring the region of interest, the corresponding
GD(h) and GD(BT) method are expected to be “N times better” than their the single-
agent versions. However, compared with the swarm of N communicating agents, we find
that the SBGD dynamics has a superior global behavior. Specifically, the advantage of
communication in SBGD dynamics becomes apparent in exploring larger regions for potential
global minimum. This will be borne out in the numerical results presented in sections 6,7
and 8. Here, we demonstrate the benefit of communication with a simple example of an
objective function shown in Figure 2.1,

(2.3) F (x) = esin(2x
2) +

1

10

(
x− π

2

)2
.

The function admits multiple local minima, with a unique global minimum (x∗ ≈ 1.5355). We
compare the performance of SBGDpq, (2.1) vs. the non-communicating GD(BT) iterations,
(2.2), the GD(h) iterations with a fixed step size h, and the Adam method with initial step
size h0, denoted Adam(h0), [16]. We report on the results of SBGD21 which seems to perform
slightly better than the ‘vanilla’ version SBGD11, and both offer a more robust optimizer
than all other non-communicating methods.

Figure 2.1. Plot of the objective function (2.3).

At first, we initialize the positions of agents uniformly in the interval [−3, 3]. In this
case, the global minimum is included in the support of initial data. We implemented 1000
independent simulations and observe the results of SBGD, GD(h), GD(BT) and Adam.
Table 2.1 presents the success rates for an increasing number of agents. All methods perform
equally well in locating the global minimum, except for Adam(1.1): a large initial step size
in Adam method may take it outside the initial region that already contains the global
minimum.

The situation is different, however, if we initialize the agents to be uniformly distributed
in [−3,−1]. The results shown in Table 2.2, indicate that the performance of the non-
communicating GD(h), GD(BT) and Adam(0.1) is significantly worse, whereas the SBGD
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still identifies the global minimum with high success rates. In particular, the GD(h) and
Adam with small time steps are trapped inside an initial basin of attraction, unable to get
out of that neighborhood of local minimum. This is also depicted in Figure 2.2 where each
local minimum sheds its local basin of attraction for GD(0.8) and Adam(0.1). In particular,
the initial data outside [1, 2] will necessarily fail to reach the global minimum at x∗ ≈ 1.5355.
Only when combined with a larger initial step, Adam(1.1) leads to substantial improvement.

This is further clarified when we examine the distribution of m = 1000 solutions by SBGD
vs. GD(BT) in Figure 2.3. Observe that in most of the 1000 experiments, the iterations
of GD(BT) are blocked by the relatively flat basin near the origin, and subsequently they
end at the local minimizer lying in the interval [−2,−1]. In contrast, the SBGD iterations,
thanks to the ‘aggressive’ exploration of light agents, are much more likely to avoid getting
trapped in the local flat basin of attraction and eventually accumulate enough mass nearby
the global minimum.

N 5 10 15 20 30

SBGD11 64.3% 96.5% 99.8% 99.9% 100%

SBGD21 68.2% 97.7% 99.7% 100% 100%

GD(0.8) 75.2% 93.5% 98.7% 100% 100%

GD(BT) 73.6% 96.7% 99.5% 100% 100%

Adam(1.1) 19.6% 35.0% 64.9% 77.1% 89%

Adam(0.1) 58.3% 65.6% 85.8% 95.2% 95.7%

Table 2.1. Success rates of SBGD, GD(h), GD(BT) and Adam methods for
global optimization of (2.3), based onm = 1000 runs with uniformly generated
initial data in [−3, 3]. Backtracking parameters (see algorithm 3.1), λ = 0.2
and γ = 0.9.

4 3 2 1 0 1 2 3 4
x

0

1

2

3

4

5

F(
x)

Basins of attraction for Adam(0.1)

Figure 2.2. Basins of attraction for GD(0.8) and Adam(0.1) method.
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N 5 10 15 20 30

SBGD11 36.5% 83.1% 97.2% 99.5% 100%

SBGD21 42.4% 91.4% 99.0% 99.8% 100%

GD(0.8) 0.0% 0.0% 0.0% 0.0% 0.0%

GD(BT) 1.8% 5.2% 8.5% 12.8% 21.8%

Adam(1.1) 40.2% 47.9% 82.7% 88.7% 93.9%

Adam(0.1) 0.0% 0.0% 0.0% 0.0% 0.0%

Table 2.2. Success rates of SBGD, GD(h), GD(BT) and Adam methods for
global optimization of (2.3) based on m = 1000 runs of uniformly generated
initial data in [−3,−1]. Backtracking parameters (see algorithm 3.1), λ = 0.2
and γ = 0.9

The example shows the advantage of communication-based SBGD as an algorithm that
is more resilient to the initial guess. Specifically, in complicated applications it may not be
realistic to ‘guess’ an initial configuration that encloses the unknown location of the global
minimum, and consequently, GD(h), GD(BT) and Adam iterations may be trapped near a
local minimizer dictated by ill-conceived initial guesses. In contrast, the final outcome of
SBGD is more resilient with respect to the initial configuration, in exploring regions outside
the enclosure of initial guesses. More can be found in numerical simulations recorded for
one-, two- and 20-dimensional benchmark problems presented, respectively, in sections 6, 7
and 8.

2.2. Alignment towards minimal heading. The dynamic adjustment of masses in SBGD
leads to a gradual distinction between ‘leaders’ and ‘explorers’, according to their relative
masses. This adjustment of masses (or probabilities), m̃n

i , is dictated by the communication
among agents. The SBGD method (2.1) can be also interpreted as a particular case of
alignment dynamics, e.g., [26], in which agents steer towards the minimal heading, instead of
steering towards the average heading [23]. In the context of alignment for opinion dynamics,
for example, the parameter m̃n

i can be viewed as fraction of the population supporting
‘opinion’ xn

i .
This is reminiscent of the Consensus-Based Optimization (CBO) method, first proposed in
[21] and further modified and analyzed in [4, 5, 10, 11]; see recent survey [28]. The CBO
method lets a swarm of agents evolve their positions, {xj

t}, by a stochastic motion in search
of a global minimizer,

(2.4) dxj
t = −λ(x

j
t −mN

t )dt+ σ(xj
t −mN

t )dW
j
t , λ, σ > 0

Agents are driven by two types of motions: the drift towards an exponentially weighted

average, mN
t :=

(∑N
j=1(Fe)

j
t

)−1∑N
j=1 x

j
t(Fe)

j
t , (Fe)

j
t := exp(−αF (xj

t)), and the stochas-

tic diffusion, dWj
t (implemented by independent Brownian motion different components,∑d

k=1(x
j
t −mN

t )kdW
j,k
t e⃗k). By the Laplace principle, [2], the exponentially weighted aver-

age, mN
t , concentrates most of its weight with agents of minimal height (or smallest loss).
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(a) SBGD, N = 10. (b) GD(BT) , N = 10.

(c) SBGD, N = 20. (d) GD(BT) , N = 20.

(e) SBGD, N = 30. (f) GD(BT) , N = 30.

Figure 2.3. Histograms of problem (2.3) by m = 200 experiments. Initial
data is generated uniformly in [−3,−1]. Global minimum at x∗ = 1.5355.

Thus, the drift in (2.4) aligns towards those agents with minimal heading, while the stochas-
tic diffusion is responsible for enhancing the other agents to explore a larger portion of the
domain. This should be compared with the deterministic SBGD method, where explorers
are driven by communication with lightweight agents.
Unlike gradient-based methods, the CBO has the advantage of avoiding computation of
gradients, which are replaced here by a drift towards the α-weighted average. In actual com-
putation, however, in particular in high-dimensional problems, the CBO method is sensitive
to the application of the α-weighted Laplace principle, requiring α≫ 1, which is likely to sig-
nificantly damage the quality of the solution. It is also sensitive to the choice of parameters
λ and σ, [5].
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3. Implementation of the SBGDpq algorithm

The success of the SBGDpq method relies heavily on two main procedures: (i) a properly
defined communication protocol which dictates mass transition factors, {ϕp(η

n
i )}; and (ii) an

effective strategy for taking step size, h
(
xn
i , ψq(m̃

n+1
i )

)
, which is adjusted to the position and

the relative mass of a given agent. In this section, we discuss the details of these procedures,
which are summarized in corresponding pseudo-codes.

3.1. Communications and mass transition. Let i−n = argmin
i

F (xn
i ) denote the global

minimizer at iteration number n or time level tn. All other agents will shed part (or all) of
their mass, ϕp(η

n
i )m

n
i , i ̸= i−n , which will be transitioned to the mass of the global minimizer

mn
i−n
7→ mn

i−n
+

∑
i ̸=i−n

ϕp(η
n
i )m

n
i . The fraction of mass loss, ηni is determined by the relative

height

(3.1) ηni :=
F (xn

i )− F n
min

F n
max − F n

min + ϵ
,

where F n
min = min

j
F (xn

j ) and F n
max = max

j
F (xn

j ) are the current global extremes1. In this

fashion, the ‘higher’ the agent is, the more mass it will lose, and indeed, the highest agent
in each iteration will be eliminated2. The function ϕ is user-dependent; for example ϕp(η) =
ηp, p > 0 enables adjusting the amount of mass transition, with mass transition tamed as
p ↑ ∞. This usage of a relative height keeps a minimal amount of global communication
necessary to calibrate each agent relative to the current extremes of the crowd, while being
invariant under the transition and dilation of the target function. Therefore, the computation
of the relative height is more stable.

3.2. Backtracking – a protocol for time stepping. Consider the vanilla Gradient De-
scent (GD) iteration

xn+1 = xn − h∇F (xn).

The new position, xn+1 = xn+1(h), is viewed as a function of the step size, h. A proper
strategy for choosing the step size is now the key for the success of GD iterations. We
recall the classical backtracking line search, [20, §3], which is a computational realization of
the well-known Wolfe conditions [30, 1] for inexact line searches. The idea is to secure an
acceptable step length, h, that enforces a sufficient amount of height reduction (or loss) in
the target function

(3.2) F (xn+1(h)) ⩽ F (xn)− λh|∇F (xn)|2, λ ∈ (0, 1).

Of course, since F ((xn+1(h)) = F (xn
i )−h|∇F (xn)|2+{higher order terms}, then (3.2) holds

for any fixed 0 < λ < 1, provided the time step is small enough, h ≪ 1. The purpose is to
secure (3.2) for large enough h, so that we maximize the size of descent, λh|∇F (xn)|2. To
this end, one employs a dynamic adjustment, starting with a relatively large h (for which
one expects F

(
xn − h∇F (xn)

)
> F (xn) − λh|∇F (xn)|2) and then repeatedly shrink the

1To prevent vanishing denominator in the extreme case Fmax = Fmin, we introduce a small ϵ-correction, say
ϵ = 10−10; the effect on the numerical performance is minimal.
2To be precise, the worst agent is eliminated whenever its relative height ηni = 1. This can be realized only
when ϵ = 0. When ϵ > 0, elimination of worst agents takes place whenever 1− ηni = O(ϵ)≪ 1.
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step size h → γh, γ < 1 until (3.2) is observed. At this stage, we have a final step size,
h = h(xn, λ), which secure (3.2)

F (xn+1(h)) ⩽ F (xn)− λh(xn, λ)|∇F (xn)|2.

Thus, the protocol for step size hinges on the choice of the parameter λ which dictates
the amount of descent property (3.2). One expects that as the iterations approach the
(potentially) global minimum their descent property is ‘tamed’ with a larger λ, yet they
should be able to avoid getting trapped in local basins of attraction by allowing smaller λ≪
1. This is exactly where we take advantage of our swarm-based approach: as a compromise
between these two conflicting requirements, we offer to use the relative mass of different
agents, m̃n+1

i , as an indicator which distinguishes between the ‘heavier’ agents who are
potentially close to the global minimizer, and the ‘lighter’ agents which are allowed to take
large(r) time steps. We therefore adjust the descent parameter λ to each SBGDpq agent
positioned at xn

i , according to its relative mass m̃n+1
i

(3.3) hni = h
(
xn
i , λψq(m̃

n+1
i )

)
m̃n+1

i :=
mn+1

i

mn+1
+

, mn+1
+ := max

i
mn+1

i , 0 < λ < 1.

The parameter q > 0 tunes the role of the relative mass m̃n+1
i : as q increases then ψq(m̃

n+1
i )

decreases, and backtracking allows intermediate agents to take larger time steps. The pseudo-
code for computing the SBGDpq steps based on backtracking line search is given in Algorithm
3.1. The results reported in §7.3 below show that although fine-tuning the parameter, q,
can lead to improved results, it has a limited effect on the overall performance of SBGDpq

iterations.

Algorithm 3.1 Backtracking Line Search

% Determine hni : the SBGD step-size of the agent positioned at xi at time tn

Set the descent parameter, λ ∈ (0, 1), and shrinkage parameter, γ ∈ (0, 1)

Set ψq with q > 0

Set the relative mass m̃n+1
i =

mn+1
i

mn+1
+

Initialize the step size, h = h0, with large enough h0 (see (5.2) below).

while F
(
xn
i − h∇F (xn

i )
)
> F (xn

i )− λψq(m̃
n+1
i )h|∇F (xn

i )|2 do

h← γh.

end while

Set hni ← h % sets hni as the step size depending on xn
i and λψq(m̃

n+1
i )

)
Observe that the successive shrinking of step size in backtracking involves a shrinking factor
γ ∈ (0, 1): a small γ corresponds to a ‘crude’ line search while γ ∼ 1, corresponds to a more
refined search. Again, although fine-tuning the shrinkage parameter γ may lead to improved
results, it does not seem to have a substantial effect on the overall performance of SBGDpq.
It does, however, comes at a substantial cost: a fine-tuning of γ ∼ 1 may end up with many
function calls of F -evaluations, before its descent bound, analyzed in Lemma 5.1 below, is
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fulfilled. On the other hand, such tighter ‘screening’ of the ambient space is more likely to
lead to better, i.e., lower minima values..

The final output of algorithm 3.1 yields, for each agent, an adjusted step size, hni =
h
(
xn
i , λψq(m̃

n+1
i )

)
, which secures the descent property (3.2) with λψq(m̃

n+1
i ) substituted for

λ,

(3.4) F (xn+1
i ) ⩽ F (xn

i )− λψq(m̃
n+1
i )hni |∇F (xn

i )|2, xn+1
i = xn

i − hni∇F (xn
i ).

Moreover, as we shall see in Lemma 5.1 below, the step sizes, hni , admit a lower bound in
terms of the corresponding relative masses of the different agents. The scaling of the step size
using relative masses encodes the communication of different agents, which is the key to the
success of the SBGDpq algorithm. Roughly speaking, we can distinguish between two types
of agents. The SBGDpq iterations are led by the heavier agents, mn+1

i ≈ mn+1
+ , which tend

to recover a maximal local descent rate of order λ, (3.2). On the other hand, there are the
lighter agents where mn+1

i ≪ mn+1
+ , which are less driven by the steepness of their decent,

and are therefore better equipped as explorers of large areal search for the global minimizer.
In this way, the mass-dependent adjustment of step size captures both the descent property
of the target function while allowing the lighter explorers to pull away from local minimizers.

3.3. SBGDpq pseudocode. The pseudocode of the SBGDpq method is given in Algorithm
3.2. The initial setup consists of N randomly distributed agents x0

1, · · · ,x0
N , associated with

masses m0
1, · · · ,m0

N . At the beginning, all agents are assigned equal masses, m0
j = 1/N,

j = 1, . . . , N . At each iteration step, the agent xi−n
= argminxn

i
F (xn

i ) attains the minimal
value, while the other agents transfer part of their masses to the current optimal minimizer
xi−n

. Then all the agents are updated with the gradient descent method using the step lengths
obtained with (3.3).
To further improve efficiency, we use three tolerance factors:
· If the mass of an agent is lower than a minimal threshold tolm, then this agent will be
eliminated and its remaining mass will be transferred to the optimal agent at xi−n

.
· “Sticking particles”. Agents that are sufficiently close to each other below a threshold
tolmerge, are merged into a new agent, and their masses are combined into the newly
generated agent.
· The iterations stop when the minimizer’s descent in two consecutive iterations is below a
minimal threshold tolres.
Unless otherwise specified, all simulations reported in this paper employ the same thresholds

(3.5) tolm = 10−4, tolmerge = 10−3, tolres = 10−4.

The optimal choices of these thresholds are experimental. With smaller thresholds, tolm
and tolmerge, the SBGD algorithm will explore a larger part of the ambient space ending
with a better solution, at the expense of reduced efficiency. A balance between the quality
of the solution and the computational cost should be explored.

4. A general outlook

We are aware that there are many possible extensions that can be worked out in connection
with the SBGD algorithm, leading to a large class of swarm-based optimizers (SBO) with
better communication protocols. We mention three of them.
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Algorithm 3.2 Swarm-Based Gradient Descent

Set three tolerance parameters, tolm, tolmerge and tolres

Set the adjustment parameters p, q > 0

Initialization:

Set N — the number of agents

Set initial positions x0
1, · · · ,x0

N randomly generated under initial distribution ρ0
Set initial mass m0

1 = · · · = m0
N = 1/N

Set the optimal agent, i−0 = argmin
i

F (x0
i )

for n = 0, 1, 2, · · · do
Set F n

− = F (xn
i−n
), F n

+ = max
i
F (xn

i )

for i = 1, · · · , N and i ̸= i−n do % Mass transitions

if mn
i < 1/N ∗ tolm then

set mn+1
i = 0

reduce the # of active agents: N ← N − 1

else mn+1
i = mn

i − ϕp(η
n
i )m

n
i where ηni =

F (xn
i )− F n

min

F n
max − F n

min

.

end if

end for

mn+1

i−n
= mn

i−n
+

∑
i ̸=i−n

ϕp(η
n
i )m

n
i % The mass of the overall crowd is conserved

Compute m+ = max
i
mn+1

i

for i = 1, · · · , N do % Gradient descent

Compute relative masses m̃n+1
i =

mn+1
i

m+

Compute the step size h = h
(
xn
i , λψq(m̃

n+1
i )

)
according to algorithm 3.1.

March: xn+1
i = xn

i − h∇F (xn
i ).

end for

Merge the agents if their distance < tolmerge.

Set the new optimal agent i−n+1 = argmin
i

F (xn+1
i ).

Compute the residual res = |xn+1
in+1
− xn

in|2
if res < tolres then

xSOL ← xn+1

i−n+1

break

end if

end for

· General gradient descent directions. Our SBGD approach can be used with a more
general set of gradient descent directions, pn

i

xn+1
i = xn

i + h
(
xn
i , λψq(m̃

n+1
i )

)
pn
i , ⟨pn

i ,∇F (xn
i )⟩ < 0.
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The convergence results in §5, with appropriate adjustments, remain valid. Moreover, the
variety in choice of directions, other than local gradients, may offer a better ‘covering’ of the
ambient space Ω ⊂ Rd. This swarm-based descent approach with randomly chosen descent
directions satisfying ⟨pn

i ,∇F (xn
i )⟩ < 0 was pursued in our recent work [27].

· Swarm-based optimization — a general paradigm. The general paradigm for our
swarm-based optimization is realized by embedding the d-dimensional ambient space in
(x, m̃) ∈ Rd× [0, 1]; here m̃ is an additional parameter space of masses/weights (or probabil-
ities, or ‘fractional population’, ...) which serves as a communication platform for the crowd
of agents positioned at {xi} ∈ Rd. In this context, one can combine such communication-
based swarm iterations with any single agent time-marching protocol. As examples we refer
to the recent adaptive GD method [17] and the references therein. In the present work we
use the time-marching protocol of gradient-descent, based on backtracking search. Other
time marching protocols can be used.

· Survival of the fittest. The communication in SBGD is designed so that in each iteration,
the ‘worst’ agent, positioned at xi+ := argmax

xi

F (xn
i ), is eliminated, as it loses all of its mass

(ηni+ = 1). This policy of ‘survival of the fittest’ implies that the number of N initial active
agents decreases in each iteration until the SBGD remains with only a single, ‘heaviest’ agent,
which proceeds by the GD(BT) protocol. In particular, this policy implies that for small
swarms, say N ∼ 10, the performance of SBGD iterations is expected to be similar or only
slightly better than GD(BT) iterations, as borne out in the numerical simulations reported
in sections 7 and 8. Alternatively, one can design a less restrictive evolutionary policy that
will allow ‘worst’ agents below a certain threshold to survive. This will evolve a larger set of
explorers for longer times, with a greater chance of exploring new and better minima unseen
before. Our numerical experiments show that a balanced policy for the ‘fittest’ can indeed
have a substantial effect on the final result, at the expense of increased computational time.
The main target of these different policies is to computational efficiency; we emphasize that
the convergence analysis carried out on §5 is independent of the ‘evolutionary policy’.

5. Convergence and error analysis

The study of convergence and error estimates for the SBGD method requires to quantify
the behavior of F . Here we emphasize that the required smoothness properties of F are
only sought in the region explored by the SBGD iterations. We assume that there exists
a bounded region, Ω ∋ xn

i for all agents. Since the SBGD allows light agents to explore
the ambient space with large step size (starting with h0), we do not have apriori bound on
Ω; in particular, the footprint of the SBGD crowd, ∪nconvi{xn

i }, may expand well beyond
its initial convex hull convi{x0

i }. We let x∗ := argminx∈Ω F (x) denote the global minimum
value in that region. This is the minimum that we would wish to converge to.
We consider the class of loss functions, F ∈ C2(Ω), with Lipschitz bound

(5.1) |∇F (x)−∇F (y)| ⩽ L|x− y|, ∀x,y ∈ Ω.

We begin by recalling the lower bound on the step size, secured by the backtracking line
search in algorithm 3.1.

Lemma 5.1. Consider the SBGDpq iterations (2.1), with step size hni = h
(
xn
i , λψq(m̃

n+1
i )

)
determined by the backtracking line search in algorithm, 3.1, with shrinkage factor γ ∈ (0, 1)
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and initial step size, h0, large enough so that

(5.2) h0 >
2

L
.

Then we have the descent bound

(5.3) F (xn+1
i ) ⩽ F (xn

i )−
2γ

L

(
1− λm̃n+1

i

)
λm̃n+1

i |∇F (xn
i )|2, xn+1

i = xn
i − hni∇F (xn

i ).

We make two comments before turning to the proof of the lemma.
First we note that if one employs a step size h small enough then there holds

(5.4) F
(
xn
i − h∇F (xn

i )
)
⩽ F (xn

i )−
2γ

L
λm̃n+1

i h|∇F (xn
i )|2.

However, in this case the ‘amount of descent’,
2γ

L
λm̃n+1

i h|∇F (xn
i )|2, is comparably small

with h≪ 1. In contrast, (5.3) secures the amount of descent which depends on the relative
mass, but otherwise is independent of the smallness of h. To this end, we need to secure a
step size hni large enough; this is the goal of the backtracking algorithm 3.1.
Second — it is customary to find stability results which state that “if h is small enough than
such and such”; typically in this case, e.g., (5.4), “smallness” is measured by 1/L and the
difficulty is that in general we have no access to how large L is. The point of Lemma 5.1 is
that the descant (5.3) holds without access to L (to be precise, (5.2) requires 1/L; however,
here h0 needs to be large relative to 1/L).
Proof of Lemma 5.1. We claim that the descent bound holds

(5.5a) F (xn+1
i ) ⩽ F (xn

i )− λψq(m̃
n+1
i )hni |∇F (xn

i )|2,
with step size satisfying the lower bound

(5.5b) hni ⩾
2γ

L

(
1− λψq(m̃

n+1
i )

)
.

Clearly, (5.3) follows from (5.5).
Now, it may happen that (5.5a) holds for our initial choice of a step size h0 which already
tuned to satisfy (5.5b), in which case we are done. But in general, h0 need not secure any
descent at all and we appeal to the backtracking iterations. By the Lipschitz continuity of
∇F ,

F
(
xn
i − h∇F (xn

i )
)
⩽ F (xn)− h|∇F (xn

i )|2 +
L

2
h2|∇F (xn

i )|2

= F (xn
i )−

(
1− L

2
h
)
h|∇F (xn

i )|2,

and hence, if h is small enough

h ⩽
2

L

(
1− λψq(m̃

n+1
i )

)
; F (xn

i − h∇F (xn
i )) ⩽ F (xn

i )− λψq(m̃
n+1
i )h|∇F (xn

i )|2.

The backtracking line search iterations tell us that the inequality on the right holds for

h = hni , that is (5.5a) holds; but it does not hold for
hni
γ

(the stopping criterion fails with

hni /γ). In particular, therefore,
hni
γ

must satisfy the reverse inequality on the left, that is,

(5.5b) holds. □
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5.1. Convergence to a band of local minima. Our next proposition provides a rather
precise quantitative description for the convergence of the SBGD method. The convergence
is determined by the time series of SBGD minimizers, {Xn

−},

Xn
− = xn

i−n
, i−n := argmin

i
F (xn

i ),

and the time series of parents of the heaviest agents, {Xn
+},

Xn
+ = xn

i+n+1
, i+n+1 := argmax

i
mn+1

i .

Note that Xn
+ is the “parent” of xn+1

i+n+1

which is, by definition, the heaviest agent at t = tn+1.

The interplay between minimizers and communication of masses leads to a gradual shift of
mass, from higher ground to the minimizers. Eventually, when the SBGD minimizers gain
enough mass to assume the role of heaviest agents, the two sequences coincide. Convergence
is independent of the lighter agents.
We introduce the scaling M = maxj F (x

0
j)−F (x∗); since F (xn

i ) are decreasing, we conclude
that the SBGD iterations remain within that range, namely

(5.6) ∀n, i : max
j
F (xn

j )− F (xn
i ) ⩽M, M := maxF (x0

i )− F (x∗)

To simplify matters we restrict our attention to the vanilla version of SBGD, (p, q) = (1, 1).

Proposition 5.2. Fix λ ∈ (0, 1) and consider the SBGD iterations (2.1) with step size
hni = h

(
xn
i , λm̃

n+1
i

)
determined by backtracking line search of algorithm 3.1 in (3.3).

Let {Xn
−}n⩾0 and {Xn

+}n⩾0 denote the time sequence of SBGD minimizers and, respectively,
(parent of) heaviest agents, at tn. Then, there exists a constant, C = C(γ, L,M, λ) given in
(5.15) below, such that

(5.7)
∞∑
n=0

|∇F (Xn
+)|2 ×min

{
1, |∇F (Xn

−)|2
}
< CM.

Proof. By Lemma 5.1, the descent property (5.3) of different agents is dictated by their
relative mass

(5.8) F (xn+1
i ) ⩽ F (xn

i )−
2γ

L

(
1− λm̃n+1

i

)
λm̃n+1

i |∇F (xn
i )|2, m̃n+1

i =
mn+1

i

mn+1

i+n+1

.

In particular, application with i = i+n+1 implies the descent of the heaviest agent positioned
at Xn

+ = xn
i+n+1

(5.9) F (xn+1

i+n+1

) ⩽ F (Xn
+)−

2γ

L

(
1− λ

)
λ|∇F (Xn

+)|2.

We also need to quantify the descent of the minimizer positioned at Xn
− = xn

i−n
; this requires

a lower bound on its relative mass mn+1

i−n
on the right of (5.8). To this end, we consider two

sub-cases, depending on the size of F (Xn
+)− F (Xn

−) > 0.
Case (i). Assume

(5.10) F (Xn
+)− F (Xn

−) ⩽
γ

L

(
1− λ

)
λ|∇F (Xn

+)|2.



16 JINGCHENG LU, EITAN TADMOR, AND ANIL ZENGINOGLU

Appealing to the descent property (5.9) for the heaviest agent i = i+n+1, then

F (Xn+1
− ) ⩽ F (xn+1

i+n+1

) ⩽ F (Xn
+)−

2γ

L

(
1− λ

)
λ|∇F (Xn

+)|2

⩽ F (Xn
−)−

γ

L

(
1− λ

)
λ|∇F (Xn

+)|2.
(5.11)

The inequality on the left follows since Xn+1
− is the global minimizer at tn+1; the middle

inequality is the descent property for the heaviest agent, (5.9), and the last inequality follows
from the assumed bound (5.10).
Case (ii). We remain with the case

(5.12) F (Xn
+)− F (Xn

−) ⩾
γ

L

(
1− λ

)
λ|∇F (Xn

+)|2.

In this case, the (parent of the) heaviest agent positioned at Xn
+ = xn

i+n+1

, must different from

the minimizer positioned at Xn
− = xn

i−n
, or else F (Xn

+) = F (Xn
−) which is already covered by

case (i), (5.10). Therefore, the heaviest agent had to shed a fraction of its mass, ηn+m
n
i+n+1

,

which will be transferred to that minimzier:m
n+1
+ = mn

+ − ηn+mn
+, mn

+ := mn
i+n+1

, mn+1
+ := mn+1

i+n+1

, ηn+ =
F (Xn

+)− F (Xn
−)

F n

max − F
n

min

,

mn+1
− = mn

i−n
+ ηn+m

n
+ + (mass from other heavier agents) . . . , mn+1

− := mn+1

i−n

It follows that the relative mass of that minimizer is at least as large as

mn+1
− > ηn+m

n
+ =

ηn+
1− ηn+

mn+1
+ ; m̃n+1

i−n
=
mn+1

−

mn+1
+

>
ηn+

1− ηn+
.

Recall that the transition factors, ηni , are determined by the relative heights, (3.1). Using
the assumed bound of case (ii), (5.12), we conclude

m̃n+1

i−n
> ηn+ =

F (Xn
+)− F (Xn

−)

F n

max − F
n

min

⩾
γ

ML

(
1− λ

)
λ|∇F (Xn

+)|2.

As before, the descent property (5.8) for Xn
− = xn

i−n
together with the lower bound we secured

for m̃n+1

i−n
in this case, imply

F (Xn+1
− ) ⩽ F (xn+1

i−n
) ⩽ F (xn

i−n
)− 2γ

L

(
1− λm̃n+1

i−n

)
λm̃n+1

i−n
|∇F (xn

i−n
)|2

⩽ F (Xn
−)−

2γ2

ML2
(1− λ)2λ2|∇F (Xn

+)|2 × |∇F (Xn
−)|2.

(5.13)

Combining (5.11) and (5.13), we find

F (Xn+1
− ) ⩽ F (Xn

−)−
1

C
min

{
|∇F (Xn

+)|2, |∇F (Xn
+)|2 × |∇F (Xn

−)|2
}

⩽ F (Xn
−)−

1

C
|∇F (Xn

+)|2 ×min
{
1, |∇F (Xn

−)|2
}
,

(5.14)

with

(5.15) C = max
{ L

γ(1− λ)λ
,

ML2

2γ2(1− λ)2λ2
}
,
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and a telescoping sum of (5.15) implies the desired bound on the right of (5.7) with F (X0
−)−

F (x∗) ⩽M . □

Remark 5.3. We observe that the summability bound (5.7) is driven by a worst case scenario
alluded in case (ii) above. In this case, there is a potentially large difference of heights between
the minimizing agent and heaviest agent; consequently, the descent property of the relatively
lighter minimizer could be small and we had to rely on the descent property of the heaviest
agent in (5.11), which led to (5.13).

The descent rates of different agents can be arbitrarily slow, due to their time-dependent
mass. The summability bound (5.7) depends solely on the time sequence of SBGDminimzers,
{Xn

−}, and (the parents of the) heaviest agents, {Xn
+}, but it is independent of the lightweight

agents. Eventually, for large enough n, the minimizers and heaviest agents of SBGDpq

coincide into one time sequence, {Xn}. The key point is that time sub-sequences, {Xnα},
satisfy a Palais-Smale condition [24, §II.2]: by monotonicity, F (Xnα) ⩽ maxi F (x

0
i ) while

∇F (Xnα)
α→∞−→ 0.

Theorem 5.4. Consider the loss function F ∈ C2(Ω) such that the Lip bound (5.1) holds
and let {Xn

−}n⩾0 denote the time sequence of SBGD minimizers, (2.1),(3.3). Then {Xn
−}n⩾0

consists of one or more sub-sequences, {Xnα
− , α = 1, 2, . . . , }, that converge to a band of local

minima with equal heights,

Xnα
−

nα→∞−→ X∗
α such that ∇F (X∗

α) = 0, and F (X∗
α) = F (X∗

β)

In particular, if F admits only distinct local minima in Ω (i.e., different local minima have
different heights), then the whole sequence Xn converges to a minimum.

Proof. Since we assume the sequence {Xn
−} is bounded in Ω, it has a converging sub-

sequences. Take any such converging sub-sequence Xnα
− → X∗

α ∈ Ω. By (5.7), ∇F (Xnα
− )→ 0

for all sub-sequences, and hence X∗
α are local minimizers, ∇F (X∗

α) = 0. Moreover, since
F (Xn

−) is a decreasing, all F (X∗
α) must have the same ‘height’. The collection of equi-height

minimizers {X∗
α

∣∣ F (X∗
α) = F (X∗

β)} is the limit-set of {Xn
−}. □

Remark 5.5. We reiterate our earlier comment that the convergence analysis does not take
into account the finitely many agents in the ‘survival of the fittest’ policy. Putting efficiency
aside, theorem 5.4 applies to the general case where all agents from initial crowd survive the
SBGD iterations.

5.2. Flatness and convergence rate. Theorem 5.4 indicates the convergence of SBGD
without imposing any convexity condition on the loss function F , and therefore it comes
without any rate. To quantify convergence rate, we need access to the fact that F should
be ‘curved up’, at least within a sufficiently small neighborhood of a local minimum X∗

α. In
the simplest case, F may be assumed to be locally convex. However, one must take into
account that F may be more flat than just quadratic convexity. Indeed, these relatively
flat local minima are the main hurdle in non-convex optimization. A precise classification
for the level of ‘flatness’ is offered by the Lojasiewicz condition. Accortoing to Lojasiewicz
inequality, [18, 19], if F is analytic in Ω then for every critical point of F, x∗ ∈ Ω, there
exists a neighborhood N∗ ∋ x∗ surrounding x∗, an exponent β ∈ (1, 2] and a constant µ > 0
such that

(5.16) µ|F (x)− F (x∗)| ⩽ |∇F (x)|β, ∀x ∈ N∗.
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The exponent β is tied to the flatness of ∇F at x = x∗: if ∇F (x) vanishes of order m at

x = x∗, then β =
m+ 1

m
. In the particular case of local convexity, x∗ is a simple minimum

and (5.16) is reduced to the Polyak-Lojasiewicz condition [22] corresponding to β = 2

(5.17) µ
(
F (x)− F (x∗)

)
⩽ |∇F (x)|2, ∀x ∈ N (x∗).

A smaller value of β < 2 indicates a more flat configuration of F in a region N∗ ∋ x∗.
In the theorem below, we restrict attention to SBGD1,1 and we assume that n is large enough
which allows us to treat only the canonical scenario where minimizers and heaviest agents
coincide, Xn

+ = Xn
−.

Theorem 5.6. Consider the loss function F ∈ C2(C) such that the Lip bound (5.1) holds,
with minimal flatness β. Let {Xn

−}n⩾0 denote the time sequence of SBGD minimizers,
(2.1),(3.3). Then, there exists a constant, C = C(γ, λ, µ), such that

(5.18) F (Xnα
− )− F (X∗

α)


⩽

(
1− 2µγλ(1− λ)

L

)n(
min

i
F (x0

i )− F (x∗)
)
, β = 2

≲ C
( 1

nα

) β
2−β

, β ∈ (1, 2)

Observe that as ‘flatness’, increases, β is decreasing and the exponential decay in (5.18)1
is replaced by a polynomial decay which may slow down all the way to first-order decay, 1/nα.
Proof. We limit ourselves to the canonical scenario in which the heaviest agent at Xn

+

coincides with the minimizer at Xn
−. The descent property for the heaviest agent (5.11) then

reads

F (Xn+1
− ) ⩽ F (Xn

−)− λh−|∇F (Xn
−)|2, h− :=

2γ

L
(1− λ).

We focus on the converging sub-sequence {Xnα
− },

F (Xnα+1
− ) ⩽ F (Xnα

− )− λh−|∇F (Xnα
− )|2.

Let us first discuss the quadratic case, β = 2, of Polyak-Lojasiewicz condition (5.17), which
yields

F (Xnα+1
− ) ⩽ F (Xnα

− )− µλh−
(
F (Xnα

− )− F (X∗
α)
)
, Xnα

− ∈ Nα.

Rearranging we find

(5.19) F (Xnα+1
− )− F (X∗

α) ⩽ (1− µλh−)
(
F (Xnα

− )− F (X∗
α)
)
,

which yields exponential rate, [22, 14]

F (Xnα
− )− F (X∗

α) ⩽ (1− µλh−)n
(
F (x0)− F (X∗

α)
)
.

The case of general Lojasiewicz bound (5.16) with β < 2 yields that the error, Enα :=
F (Xnα

− )− F (X∗
α), satisfies

Enα+1 ⩽ Enα − λh−(µEnα)
2/β, Xnα

− ∈ Nα.

The solution of this Riccati inequality (e.g., [25, Theorem 3.1] for the limiting case β = 1),
yields

F (Xnα
− )− F (X∗

α) ≲µ

{
|min

i
F (x0

i )− F (X∗
α)|−

1/β′ + λh−µ
2/βnα

}−β′

, β′ =
β

2− β
> 1.
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and (5.18) follows with C =
( L

2γλ(1− λ)

) β
2−β

(1/µ)
2

2−β . □

6. Numerical results — one dimensional problems

We use the swarm-based gradient descent method to search for the global minimizers of
the 1D functions

Ackley function : FAckley(x) = −20e−0.2|xB | − ecos(2π(xB)) + 20 + e+ C, xB := x−B
Rastrigin function : FRstrgn(x) = (xB)

2 − 10 cos(2π(xB)) + 10 + C,

with shift parameters B,C. Figure 6.1 shows that both, the Ackley and the Rastrigin
function attain multiple local minimizers.

(a) Ackley (b) Rastrigin

Figure 6.1. Benchmark functions

We implemented the ‘vanilla’ version of SBGD method (p, q) = (1, 1) (i.e., ϕp(η) = η and
ψq(m̃) = m̃), and with parameters λ = 0.2, γ = 0.9, h0 = 1. Here λ, γ are the descent
and shrinkage parameters, and h0 is the initial step length for backtracking line search. We
record the results of m = 200 independent simulations of Algorithm 3.2 with initial positions
of the agents uniformly distributed in the interval [−3, 3].
To illustrate the behavior of the algorithm, we present the evolution of agents in one

representative simulation for the Ackley function and the Rastrigin function in Figures 6.2
and 6.3, where N = 20 agents are applied to search the domain. The blue line depicts the
target function, the red circles represent the agents. It is seen that as the iterations progress,
the agents flock towards different minima. The agents getting stuck at local minimizers are
gradually removed due to the mass transition, while those approaching the global minimizer
are eventually merged into one agent. Table 6.1 shows the results for the Ackley and the
Rastrigin functions with a varying number of agents. The algorithm gives accurate solutions
in all the test cases. With more agents applied the quality of the approximation is improved.
However, we notice that improvement is significant as N increases from 5 to 10, whereas
increasing the number of agents from 10 to 20 does not result in much enhancement.
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B=0 N=5 N=10 N=20

Ackley function FAckley success rate 99.50% 100% 100%

E|xSOL − x∗|2 4.70e−3 8.21e−10 6.89e−10

Rastrigin function FRstrgn success rate 97.00% 100% 100%

E|xSOL − x∗|2 4.45e−2 5.18e−10 1.89e−10

Table 6.1. Results of SBGD for 1D Ackley and Rastrigin functions,m = 200.

The key feature of the SBGD algorithm is communication, reflected by the mass transitions
between the agents. Such a mechanism dynamically adjusts the search strategies of different
individuals. It is of interest to verify the benefit of communication. We compare the results
by the SBGD method with those by the non-communicating multi-agents gradient descent,
GD(BT), of which all the agents conduct gradient descent search independently. Tables
6.2 and 6.3 present the results by SBGD and GD(BT) methods obtained from m =200
experiments computed with varying shift parameter B and different numbers of agents. We
observe that when the initial distribution centers at x∗ or is moderately shifted, both SBGD
and GD(BT) methods are able to find the global minimizer. However, the advantage of
SBGD is more pronounced as x∗ is shifted farther away from the center of initial data, and the
non-communicating GD(BT) fails to give correct solutions since its exploration is restricted
to the neighborhood of its initial data. Figure 6.4 displays the scenario B = 25, where the
initial distribution is strongly shifted away from the global minimizer. The GD(BT) fails to
find the global minimum. In contrast, the SBGD method employs light agents to conduct a
more aggressive search in a larger area, and the algorithm ends at the correct minimizer at
a surprisingly high success rate.

Remark 6.1. Observe that when the initial data are placed far from the global minmum, the
presence of a strong shift, B = 25, requires sufficiently many swarming agents N > 20, in
order to secure a success rate > 90% and drive the expected value of the error, E|xSOL−x∗|2 <
0.5.

x∗ = B N=10 N=20 N=30

B = 0
success rate
E|xSOL − x∗|2

100%
8.42e−10

100%
8.37e−10

100%
3.38e−10

B = 5
success rate
E|xSOL − x∗|2

100%
8.41e−10

100%
7.58e−10

100%
5.01e−10

B = 15
success rate
E|xSOL − x∗|2

98.5%
1.41e−2

100%
4.69e−3

100%
8.27e−10

B = 25
success rate
E|xSOL − x∗|2

45.5%
1.48e+2

89.0%
1.49e+1

98.5%
3.28e−1

Table 6.2. Shifted 1D Ackley, results by SBGD, m = 200.
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x∗ = B N=10 N=20 N=30

B = 0
success rate
E|xSOL − x∗|2

100%
8.60e−10

100%
1.36e−9

100%
1.29e−9

B = 5
success rate
E|xSOL − x∗|2

100%
8.51e−10

100%
1.25e−9

100%
1.21e−9

B = 15
success rate
E|xSOL − x∗|2

46.5%
6.44e+1

75.0%
2.26e+1

85.5%
1.14e+1

B = 25
success rate
E|xSOL − x∗|2

0%
4.86e+2

0%
4.50e+2

0%
4.38e+2

Table 6.3. Shifted 1D Ackley, results by GD(BT) (no communication), m =
200.
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Swarm Search in Ackley

Figure 6.2. 1D Ackley with B = C = 0. Four iterations of the SBGD
visualized on the Ackley landscape show the dynamics of merged agents and
convergence patterns.

7. Numerical results — two-dimensional problems

7.1. Optimization of parameters. Let us first comment on the general issue of optimiza-
tion of parameter space. As noted in [29], once the parameterization of an adaptive GD
method is fixed, it may not yield as good as or better results as simpler GD methods, yet
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Figure 6.3. 1D Rastrigin with B = C = 0. Four iterations of SBGD visu-
alized on the Rastrigin landscape show show the dynamics of merged agents
and convergence patterns.

adaptivity should be ‘judged’ after being optimized in space parameter, [8]. In this con-
text, one can argue that optimizing a single agent method in parameter space is equivalent
to a selective choice among many simulations of non-communicating multi-agent dynamics,
whereas the swarm-based approach provides a dynamic, ‘on the fly’ selection of optimized
parameters, which is precisely the type of comparisons we make below.

On the other hand, our SBGD method depends on several parameters: the initial step h0,
the descent parameter λ and shrinkage parameter γ tied to the backtracking, the tolerance
parameters (3.5) and the (p, q) parameters. In the multi-dimensional computations reported
below, we do not optimize these SBGD parameters. Thus, unless otherwise stated, we
examine the performance of the SBGD method in Algorithm 3.2 with initial step size h0 = 1,
a descent parameter λ = 0.2, a shrinkage parameter γ = 0.9 and the threshold parameters
(3.5). We begin here with the ‘vanilla’ version of SBGD, (p, q) = (1, 1), although later we
shall find out that the choice (p, q) = (2, 1) seems universally better. We run m number of
independent simulations, initiated with uniformly distributed positions, {x0

i } and measure
the success of the SBGD according to the proportion of its successful end results.

We illustrate the performance of the SBGD algorithm in multiple dimensions on three
benchmark test cases, [13]. First, the Ackley function

(7.1) FAckley(x) = −20 exp
{
− 0.2√

d

{ d∑
i=1

(xB)
2
i

}1/2}
−exp

{1

d

d∑
i=1

cos(2π(xB)i)
}
+20+e+C.
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(a) SBGD, N = 10 (b) GD(BT) , N = 10

(c) SBGD, N = 20 (d) GD(BT) , N = 20

(e) SBGD, N = 20 (f) GD(BT) , N = 20

Figure 6.4. Histograms of the shifted 1D Ackley function by 200 experi-
ments. B = 25, C = 5. Global minimum minFAckley = 5 is attained at
x∗ = 25.

Second, the Rastrigin function

(7.2) FRstgin(x) =
1

d

d∑
i=1

{
(xB)

2
i − 10 cos(2π(xB)i) + 10

}
+ C.
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(a) Ackley (b) Rastrigin

Figure 6.5. Histograms of 1-D optimization, B = C = 0, 200 simulations,
bin width = 10−4.

Here d is the dimension of the ambient space, xB := (x1 − B, . . . , xd − B) is the shifted
variable in Rd and B,C ∈ R are the shift parameters. Both functions attain the global
minimum C at the unique global minimizer x∗ = B.

Third, we consider the drop-wave function

(7.3) FDrop(x) = −
1 + cos(12|x|)
0.5|x|2 + 2

,

with SBGD parameters λ = 0.3, γ = 0.9, h0 = 1. The agents are initialized with uniform
distribution of positions in the hypercube [−3, 3]d.

To evaluate the quality of the solution, we make use of the success rate among m in-
dependent simulations. We consider a simulation to be successful if xSOL is within the
d-dimensional cube [x∗ − 0.25,x∗ + 0.25]d, e.g., [5, §4.2]. This condition ensures that the
approximate solution lies in the basin of attraction of the global minimizer. In fact, in a
successful experiment the solution will lie in a much smaller neighborhood of x∗.

7.2. SBGD compared with non-communicating GD(BT). We verify the advantage
of the SBGD method in comparison to the non-communicating GD(BT) algorithm. We con-
sider the three benchmarks of Ackley, Rastrigin and drop-wave functions in two dimensions.
The landscapes are as shown in Figure 7.1. All functions have multiple local minimums.
While the global minimum of the Ackley function is obviously lower than the other local
minimums, the global minimum of the Rastrigin function is much less distinguishable. The
drop-wave function has complex geometry with high frequency local minima and sharp basins
of attractions. Its global minimum F (x∗) = −1 is attained at the unique global minimizer
x∗ = 0.

Table 7.1 compares the success rates of SBGD and GD(BT) methods in the Ackley test
cases with varying function shifts B and different numbers of agents N . It is observed that
the two methods perform comparably well when the initial distribution is centered at x∗ or
moderately shifted. But as the shift parameter B increases, the SBGD method still achieves
high success rates whereas the non-communicating GD(BT) method fails. The results for
the Rastrigin function, given in Table 7.2, echo the same advantage of SBGD in shifted
scenarios.
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(a) Ackley: B = 2, C = 5, argminFA = 2. (b) Ackley: B = 7, C = 5, argminFA = 7.

(c) Rastrigin: B = 2, C = 5, argminFB =
2.

(d) Rastrigin: B = 5, C = 5, argminFB =
7.

Figure 6.6. Histograms of 1D optimization with shifting, 200 simulations,
bin width = 10−4.

x∗ = B N=25 N=50 N=100

B = 0
SBGD

GD(BT)

98.0%

100%

100%

100%

100%

100%

B = 5
SBGD

GD(BT)

93.6%

71.2%

98.6%

87.0%

99.8%

99.2%

B = 10
SBGD

GD(BT)

66.2%

0%

90.8%

0%

98.4%

0.6%

Table 7.1. 2D Ackley, success rates of SBGD vs. GD(BT), m = 500.

Table 7.3 compares the success rates of SBGD and GD(BT) methods in the test case of
the 2D drop-wave function, (7.3). We compare the success rates of SBGD with λ = 0.3
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(a) 2-D Ackley (b) 2-D Rastrigin

(c) 2-D drop-wave function (d) zoom into 2-D drop-wave function

Figure 7.1. Landscapes of benchmark functions in two dimensions

x∗ = B N=25 N=50 N=100

B = 0
SBGD

GD(BT)

73.6%

53.0%

95.2%

76.4%

100%

96.40%

B = 5
SBGD

GD(BT)

44.4%

15.8%

80.4%

28.4%

99.2%

56.4%

B = 10
SBGD

GD(BT)

14.8%

13.0%

44.0%

30.4%

78.4%

56.2%

Table 7.2. 2D Rastrigin, success rates of SBGD vs. GD(BT), m = 500.

vs. the non-communicating GD(BT) using m = 200 simulations randomly initiated with
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N=10 N=20 N=30

SBGD 90.5% 99.5% 100%

GD(BT) 15.0% 21.5% 35.5%

Table 7.3. 2D drop-wave, success rates of SBGD vs. GD(BT), m = 500.

E|xSOL − x∗|2 λ = 0.3 λ = 0.5 λ = 0.7

SBGD 2.07e-1 6.18e-2 1.29e-1

GD(BT) 4.25e-2 6.08e-2 1.29e-1

Table 7.4. Average error for 2D Rosenbrock function SBGD vs. GD(BT),
m = 500 simulations equi-distributed at [−4,−2]2.

uniform distribution at [−3, 3]2. The SBGD results reported in Table 7.3 show a remarkable
improvement over the performance of GD(BT); communication helps.

The SBGD does not always offer such a decisive lead over GD(BT). In table 7.4 we compare
the error of SBGD vs. GD(BT) for the 2D Rosenbrock function

(7.4) FRsnbrk(x) = (1− x1)2 + 100(x2 − x21)2.
The stiffness of FRsnbrk near its global minimum at x∗ = (1, 1) produces comparable results
of the swarm dynamics and non-communicating GD(BT).

7.3. SBGDpq method — dependence of (p, q) parameters. We now turn to discuss the
effect of adjusting the mass transition with ϕp(η

n
i ) and backtracking with ψq(m̃

n+1
i ).

We implemented the SBGDpq for shifted 2D Rastrigin function (7.2) with shift B = 5, and
drop-wave function (7.3) using SBGDpq with descent parameter λ = 0.3, using N agents
uniformly initialized at [−3, 3]2. The success rate m = 500 simulations with different (p, q)
are recorded in Table 7.5.
In both cases, the results for the ‘vanilla’ SBGD, (p, q) = (1, 1), with a success rate of
80% and respectively 90%, are substantially improved to 97%, once we use SBGDpq with
(p, q) = (2, 1/2). In this case, the use of p = 2 enforces more moderate mass transitions which
seems to play a key role whenever F has steep basins of attractions, while q = 1/2 enforces
a slower marching protocol for intermediate agents.

As a further example we consider the 2D Rosenbrock function FRsnbrk in (7.4). The
difficulty arises when the iterations approach the neighborhood of a global minimum F (x∗) =
0 attained at x∗ = (1, 1). This is due to the severe “skew-ness” of F which is sensitive to
the descent parameter λ. We employ N = 30 agents initialized with randomly distributed
positions at [−4,−2]2. Success rates are computed among m = 500 experiments. Table 7.6
records the GD(BT) and SBGDpq errors, measured by E|xSOL − x∗|2, for different values
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HH
HHH

HHHH
ϕp(η)

ψq(m̃) √
m̃ m̃ m̃2

√
η 77.2% 43.0% 40.0%

η 94.8% 80.4% 73.4%

η2 97.8% 94.0% 88.4%

η20 83.4% 95.4% 98.2%

(a) 2D Rastrigin function; N = 50 agents

HH
HHH

HHHH
ϕp(η)

ψq(m̃) √
m̃ m̃ m̃2

√
η 93.6% 83.0% 79.8%

η 97.2% 90.4% 85.2%

η2 97.6% 96.0% 90.2%

η20 80.8% 98.8% 97.4%

(b) 2D Drop-wave function; N = 10 agents

Table 7.5. SBGDpq for shifted 2D Rastrigin and drop-wave with different
(p, q)

of descent parameter, λ, and for different protocols of (p, q). The sensitive dependence on
λ is observed with both the non-communicating GD(BT) and the SBGDpq. Once again,
the parameters (p, q) = (2, 1/2) yield the most stable performance of SBGDpq, whereas other
scaling of GD(BT) and SBGD are more sensitive to the choice of λ.

In summary, Tables 7.5 and 7.6 indicate that while the results of SBGDpq are mostly
comparable, SBGD(2,1/2) seems to provide optimal results, with main emphasize on p = 2.
At the same time, we conclude that the tuning parameters, (pq), have a limited effect on the
overall performance of SBGDpq method. Accordingly, we did not optimize these parameters.
Motivated by these findings, we focus below on two versions of SBGD (see also Tables 2.1
and 2.2): the vanilla version, SBGD1,1 with ϕp(η) = η and ϕq(m̃) = m̃, and SBGD2,1 with
ϕp(η) = η2 which seems to be a universally better.

7.4. 2D comparison with the Adam method. We report on the results of SBGDpq,
compared with the Adam method for the 2D Rastrigin function 7.2. We also include results
for the GD(h) and GD(BT) methods. As in the case of the 1D objective function (2.3),
we distinguish between two cases: initial data uniformly distributed in [−3, 3]2 enclosing
the global minimum at the origin, vs. initial data uniformly distributed at [−3,−1]2. The
SBGDpq variants with (p, q) = (1, 1) and (p, q) = (2, 1) were computed for m = 1000
simulations with random with descent parameter λ = 0.8, and using tolerance parameters,
tolmerge = 0.1, tolm = 0.01 and tolres = 10−4.
The SBGDpq variant with (p, q) = (2, 1) seems consistently better than the vanilla version
(p, q) = (1, 1). This will be further explored in the next §7.3. When the methods are initiated
at [−3, 3]2, the SBGD variants provide comparable or better results than GD(h) , GD(BT)
and Adams methods. When initiated at [−3,−1]2 which does not enclose x∗, the SBGD
variants provide distinctively better results than GD(h) , GD(BT) and Adam methods. The
Adam iterations with the smaller initial step size h0 = 0.2 remain trapped in local basins of
attraction.
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HH
HHH

HHHH
ϕp(η)

ψq(m̃) √
m̃ m̃ m̃2

η 2.53e-1 2.07e-1 1.78e-1

η2 8.51e-2 3.07e-1 1.70e-1

η20 6.39e-2 2.01e-1 2.74e-1

η50 5.75e-2 1.88e-1 2.61e-1

(a) SBGDpq with λ = 0.3.

HH
HHH

HHHH
ϕp(η)

ψq(m̃) √
m̃ m̃ m̃2

η 6.79e-2 6.18e-2 6.05e-2

η2 4.97e-2 7.10e-2 6.08e-2

η20 4.65e-2 5.95e-2 6.74e-2

η50 4.98e-2 6.02e-2 6.87e-2

(b) SBGDpq with λ = 0.5.

HHH
HHH

HHH
ϕp(η)

ψq(m̃) √
m̃ m̃ m̃2

η 7.11e-2 1.51e-1 1.29e-1

η2 6.83e-2 1.22e-1 1.29e-1

η20 1.21e-1 6.45e-2 1.48e-1

η50 1.26e-1 6.76e-2 1.37e-1

(c) SBGDpq with λ = 0.7.

Table 7.6. SBGDpq simulation of 2D Rosenbrock FRsnbrk with different (p, q).
A larger λ enforces a stronger descent property. The parameter p = 2 is a most
effective parameterization of SBGDpq.

8. Numerical results — 20-dimensional problems

We now turn attention to the computation of the global minimizer for the 20-dimensional
Rastrigin and Ackley functions. As the dimension of the ambient space to be explored
increases, so does the number of agents, N , necessary to explore that space in order to
secure a ‘faithful’ approximate minimizer. The increase of N dependence on the dimension
d is intimately related to the way one quantifies the quality of such an approximation .

8.1. Success rate — N vs. d. One approach to measure success that was used in one-
and two-dimensional problems, is to secure a computed solution within a pre-determined
neighborhood of the global minimizer, [x∗ − 0.25,x∗ + 0.25]d. This approach places severe
restrictions in the case of high-dimensional data. Specifically, Table 8.1a and even more
so, Table 8.1, show the rapid growth in the number of SBGD agents, N = N(d), which
are required to ensure 80% success rate in m = 500 tests of high-dimensional Ackley, and
respectively, 70% success rate in Rastrigin benchmark functions. In both cases, one observes
a rather small critical dimension, dc, such that N(d)≫ N(dc) for d > dc.
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N 5 10 15 20 30

SBGD11 34.4% 52.1% 62.6% 70.0% 75.8%

SBGD21 34.5% 60.1% 75.3% 84.3% 91.0%

GD(0.004) 36.3% 50.5% 60.0% 70.0% 78.1%

GD(BT) 35.0% 51.0% 62.0% 70.8% 79.3%

Adam(0.8) 23.7% 29.6% 39.1% 46.8% 65.5%

Adam(0.2) 32.1% 40.9% 55.9% 65.3% 79.4%

Table 7.7. Success rates of SBGD compared with GD(h) , GD(BT) and
Adam methods for global optimization of (7.2)(B = 0), based on m = 1000
runs with uniformly generated initial data in [−3, 3]2.

N 5 10 15 20 30

SBGD11 17.0% 49.2% 61.7% 67.0% 72.7%

SBGD21 14.2% 46.7% 68.4% 81.9% 89.6%

GD(0.004) 0.0% 0.0% 0.0% 0.0% 0.0%

GD(BT) 1.8% 2.4% 3.4% 4.3% 5.9%

Adam(0.8) 24.5% 31.3% 41.4% 49.2% 66.9%

Adam(0.2) 0.0% 0.0% 0.0% 0.0% 0.0%

Table 7.8. Success rates of SBGD compared with GD(h) , GD(BT) and
Adam methods for global optimization of 2D Rastrigin (7.2)(B = 0) based on
m = 1000 runs of uniformly generated initial data in [−3,−1]2.

d 10 11 12 13 14 15 16

N 15 18 23 42 120 540 3000

(a) 80% success rate with Ackley function

d 1 2 3 4

N 4 23 180 2900

(b) 70% success rate with Rastrigin function

Table 8.1. Success rate of xSOL ∈ [x∗ − 0.25,x∗ + 0.25]20.

An alternative approach to quantify the quality of computed minimizers is to measure the
expected (average) error in position, E[xSOL − x∗|. The results recorded in Tables 8.7 and
8.8 for 20-dimensional Ackley and, respectively, Rastrigin functions, indicate the advantage
of SBGD21 as the shift B increases. But the main point to observe is that even for relatively
large N = 100, 200, the results fail to faithfully capture the global minimizer. Indeed, we
claim that going beyond the two examples of Ackley and Rastrigin, measuring the (average)
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x∗ = B N=50 N=100 N=200

B = 0

SBGD21

GD(BT)

Adam(0.5)

9.00e-07

1.18e-01

3.37e-03

2.02e-07

6.90e-02

4.03e-03

1.43e-07

1.88e-02

4.96e-03

B = 3

SBGD21

GD(BT)

Adam(0.5)

1.65e-06

7.64

2.14e-01

1.51e-06

6.72

1.22e-01

7.96e-07

5.67

1.27e-01

B = 5

SBGD21

GD(BT)

Adam(0.5)

4.15

17.99

11.01

1.07

17.59

9.27

2.36e-01

17.11

7.52

Table 8.2. E[xSOL − x∗] for 20-dimensional shifted Ackley. m = 1000.

x∗ = B N=50 N=100 N=200

B = 0

SBGD21

GD(BT)

Adam(0.5)

4.03e-01

2.96e-01

3.75e-01

4.98e-01

3.25e-01

2.86e-01

3.91e-01

4.35e-01

4.14e-01

B = 3

SBGD21

GD(BT)

Adam(0.5)

5.07

9.43

9.02

3.71

9.02

8.63

2.92

8.57

8.15

B = 5

SBGD21

GD(BT)

Adam(0.5)

3.53

18.02

17.13

2.45

17.64

16.73

1.29

17.18

16.3

Table 8.3. E[xSOL − x∗| for 20-dimensional shifted Rastrigin. m = 1000.

distance to of the computed minimizers, is not necessarily an effective quantifier for the
quality of an optimizer: one might need a large N = N(d) before approaching a small
neighborhood of the global minimizer.

8.2. Measuring the loss. A more ‘faithful’ way to measure the quality of numerical opti-
mizers in high-dimensional data is to measure the average loss (height), E[F (xSOL)]. After
all, the underlying goal is to minimize the value of F . In particular, one might argue that
xSOL will provide a faithful approximation whenever F (xSOL)−F (x∗) is small, even if xSOL

remains far from xn
i . This approach of ‘looking from above’, masks the increasing complexity

with the increasing dimension.
We begin, in Table 8.4, where we record the average ‘loss’ obtained by SBGD21, GD(BT)

and Adam(0.5) with initial data equi-distributed in [−3, 3]2 for the 20-dimensional Rastrigin
function. SBGD21 was used with descent parameter λ = 0.8, shrinkage parameter γ = 0.5
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x∗ = B N=5 N=10 N=20 N=50 N=100 N=200

B = 0

SBGD21

GD(BT)

Adam(0.5)

54.30

53.43

48.66

43.74

44.62

44.02

39.34

39.43

37.35

34.55

34.55

32.65

32.01

31.85

30.46

33.95

29.53

27.76

B = 1

SBGD21

GD(BT)

Adam(0.5)

65.75

64.86

56.02

53.24

53.98

50.35

47.14

47.1

42.56

40.90

40.77

37.69

37.20

37.06

34.58

33.95

33.57

31.79

B = 3

SBGD21

GD(BT)

Adam(0.5)

189.24

187.8

164.46

166.46

167.58

146.82

149.14

152.46

137.16

121.45

122.35

122.84

102.98

125.44

115.16

94.77

115.83

105.5

B = 5

SBGD21

GD(BT)

Adam(0.5)

463.09

465.42

411.77

387.88

434.9

381.19

254.23

409.11

364.68

200.34

381.42

339.81

160.62

362.54

325.86

142.22

345.52

309.99

Table 8.4. 20D Rastrigin. Average loss with m = 1000 simulations.

and thresholds

tolmerge = 1e-1, tolm = 1e-3, tolres = 1e-2.

The reason for the smaller shrinkage parameter γ = 0.5 was efficiency: backtracking is
accelerated with more rough backtracking steps, yet this does not seem to deteriorate the
quality of SBGD results. As indicated before, the results for SBGD11 were only slightly
worse than but otherwise comparable to SBGD21 and therefore are not recorded here. We
make two observations.

(i) For a small number of agents, N ⩽ 10, the results, particularly SBGD21 and GD(BT) are
comparable. Indeed, we recall that SBGD eliminates the lightest agents, so that after N − 1
iterations, it is left with a single agent which explores the large, uncharted ambient space,
much like a single-agent method.
(ii) There is a clear trend that we saw before: SBGD21 outperforms the non-communicating
GD(BT) and Adam when the global minimum is not enclosed within the initial domain of
initial data. While the results are comparable for B = 0, 1 and/or small N ’s, there is an
increasing difference for B = 3, 5 and N > 20.

Finally, in Table 8.5 we report on the corresponding comparison of average loss for the
20-dimensional Ackley function. Here, one encounters a much more sensitive dependence on
the initial step size: we had to increase h0 = 2 (instead of h0 = 1 used before) in order to
realize the advantage of SBGD21. We maintain the usual backtracking parameters λ = 0.2
and γ = 0.9, and threshold parameters

tolmerge = 1e-3, tolm = 1e-4, tolres = 1e-4.
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x∗ = B N=10 N=20 N=50 N=100 N=200

B = 0

SBGD21

GD(BT)

Adam(0.5)

0.89

2.76

0.37

2.62e-05

1.92

0.073

1.17e-05

0.97

0.061

9.72e-07

0.41

0.061

1.82e-07

7.73e-02

0.061

B = 1

SBGD21

GD(BT)

Adam(0.5)

2.38

3.01

0.87

0.27

2.00

0.17

3.9e-05

0.92

0.061

6e-06

0.31

0.061

1e-06

5,45e-02

0.061

B = 3

SBGD21

GD(BT)

Adam(0.5)

7.67

7.91

3.74

4.41

7.47

2.65

0.72

6.81

1.70

0.06

6.13

1.22

5.4e-05

5.37

0.79

B = 5

SBGD21

GD(BT)

Adam(0.5)

12.01

11.98

10.72

11.49

11.8

9.70

10.01

11.53

8.45

8.47

11.36

7.58

7.09

11.17

6.67

Table 8.5. 20D Ackley. Average loss with m = 1000 simulations.

8.3. SBGD as pre-conditioner. A more practical strategy is to take the expected value,
E[xSOL], varying overall SBGD solutions resulted fromm randomly generated initial configu-
rations, as a good initial guess and then iterate it with the steepest descent correction. In this
way, the algorithm is expected to mimic the convergence in expectation E[xSOL]

n→∞−→ x∗. Ta-
ble 8.6 records the L∞−distance between the expectation E[xSOL] and the global minimizer
x∗ for the 20-dimensional Ackley and Rastrigin functions. The expectation is computed with
m = 1000 runs. We also present the error of the corrected solution xcorr, which is obtained
by iterating E[xSOL] with gradient descent until |∇F (xcorr)|2 < 10−3. For both benchmark
functions, this strategy gives very good solutions with a reasonable amount of agents. The
quality of E[xSOL] is improved with more agents applied.

We also investigate the effect of shifting in the initial distribution. The solution xcorr is
considered to be a correct approximation of global minimizer if it lies in the region Q0.5(x∗).
Table 8.7 and 8.8 show the results for the Ackley and the Rastrigin function under varying
shift parameters and different agent numbers. It turns out that the quality of the solution
is very sensitive to the initial data in high dimension. The algorithm fails to work correctly
in the Ackley test cases when B = 2. The situation is even worse for the Rastrigin test
cases due to the unclear difference between different minimums. The method gives wrong
solutions in all the test cases when B is 1.5.
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N=50 N=100 N=200

Ackley function
|E[xSOL] − x∗|∞
|xcorr − x∗|∞

8.29e−2

2.07e−13

7.28e−2

1.96e−13

6.79e−2

2.18e−13

Rastrigin function
|E[xSOL] − x∗|∞
|xcorr − x∗|∞

2.07e−1

9.06e−6

7.86e−2

2.29e−6

7.36e−2

2.05e−6

Table 8.6. Errors of the expectation and the corrected solution in d = 20,
B = C = 0.

x∗ = B N=50 N=100 N=200

B = 1
|E[xSOL] − x∗|∞
|xcorr − x∗|∞

3.97e−1

2.10e−13

3.53e−1

1.29e−13

3.36e−2

1.15e−13

B = 1.5
|E[xSOL] − x∗|∞
|xcorr − x∗|∞

7.45e−1

9.69e−1

6.78e−1

1.27e−13

5.43e−1

1.60e−13

B = 2
|E[xSOL] − x∗|∞
|xcorr − x∗|∞

1.20

9.69e−1

1.09

9.69e−1

1.01

9.68e−1

Table 8.7. Solutions for the shifted Ackley function by SBGD, d = 20, m =
1000.

x∗ = B N=50 N=100 N=200

B = 0.5
|E[xSOL] − x∗|∞
|xcorr − x∗|∞

2.21e−1

5.86e−6

2.38e−1

1.06e−5

2.24e−1

6.53e−6

B = 1
|E[xSOL] − x∗|∞
|xcorr − x∗|∞

5.97e−1

1.99

4.80e−1

5.89e−6

4.19e−1

1.11e−5

B = 1.5
|E[xSOL] − x∗|∞
|xcorr − x∗|∞

7.92e−1

9.95e−1

7.00e−1

9.95e−1

6.34e−1

1.99

Table 8.8. Solutions for the shifted Rastrigin function by SGBD, d = 20,
m = 1000.

The results above indicate that the solutions obtained for high-dimensional problems can
be significantly affected by the shifting in the target function, especially when the global
minimum is not very distinguishable from the other minima.
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[21] René Pinnau, Claudia Totzeck, Oliver Tse, and Stephan Martin. A consensus-based model for global op-

timization and its mean-field limit. Mathematical Models and Methods in Applied Sciences, 27(01):183–
204, 2017.

[22] Boris T Polyak. Gradient methods for solving equations and inequalities. USSR Computational Mathe-
matics and Mathematical Physics, 4(6):17–32, 1964.

[23] Craig W Reynolds. Flocks, herds and schools: A distributed behavioral model. In Proceedings of the
14th annual conference on Computer graphics and interactive techniques, pages 25–34, 1987.

[24] Michael Struwe. Variational methods, volume 991. Springer, 2000.



36 JINGCHENG LU, EITAN TADMOR, AND ANIL ZENGINOGLU

[25] Eitan Tadmor. The large-time behavior of the scalar, genuinely nonlinear lax-friedrichs scheme. Math-
ematics of computation, 43(168):353–368, 1984.

[26] Eitan Tadmor. On the mathematics of swarming: emergent behavior in alignment dynamics. Notices of
the AMS, 68(4):493–503, 2021.
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