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Abstract. Brunerie’s 2016 PhD thesis contains the first synthetic proof in Homotopy
Type Theory (HoTT) of the classical result that the fourth homotopy group of the 3-sphere
is Z/2Z. The proof is one of the most impressive pieces of synthetic homotopy theory
to date and uses a lot of advanced classical algebraic topology rephrased synthetically.
Furthermore, the proof is fully constructive and the main result can be reduced to the
question of whether a particular “Brunerie number” β can be normalised to ±2. The
question of whether Brunerie’s proof could be formalised in a proof assistant, either by
computing this number or by formalising the pen-and-paper proof, has since remained
open. In this paper, we present a complete formalisation in Cubical Agda. We do this
by modifying Brunerie’s proof so that a key technical result, whose proof Brunerie only
sketched in his thesis, can be avoided. We also present a formalisation of a new and much
simpler proof that β is ±2. This formalisation provides us with a sequence of simpler
Brunerie numbers, one of which normalises very quickly to −2 in Cubical Agda, resulting
in a fully formalised computer-assisted proof that π4(S3) ∼= Z/2Z.

1. Introduction

Homotopy theory originated in algebraic topology, but is by now a central tool in many
branches of modern mathematics, such as algebraic geometry and category theory. One of
the central notions of study in homotopy theory is that of the homotopy groups of a space
X, denoted πn(X). These groups constitute a topological invariant, making them a powerful
tool for establishing whether two given spaces can or cannot be homotopy equivalent. The
first two such groups of a space are easy to understand: π0(X) characterises the connected
components of X and π1(X) is the fundamental group, i.e. the group of equivalence classes
consisting of the loops contained in X up to homotopy. This idea generalises to higher values
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of n, for which πn(X) consists of n-dimensional loops up to homotopy. For many spaces,
these groups tend to become increasingly esoteric and difficult to compute for large n. This
is true also for seemingly tame spaces like spheres, for which πn(Sm) in general is highly
irregular when n > m ≥ 2.1 This paper concerns the first computer formalisation of the
classical result that π4(S3) ∼= Z/2Z, a result which is particularly interesting because it gives
the whole first stable stem of homotopy groups of spheres, i.e. πn+1(Sn) for n ≥ 3. The fact
that π4(S3) ∼= Z/2Z was proved already in the 1930’s by Pontryagin using cobordism theory,
but we instead follow the synthetic approach to homotopy theory developed in Homotopy
Type Theory (HoTT) and popularised by the HoTT Book [Uni13]. In this new approach to
homotopy theory, spaces are represented directly as (higher inductive) types and homotopy
groups are computed using Voevodsky’s univalence axiom [Voe10a]. This gives a logical
approach to homotopy theory, suitable for computer formalisation in proof assistants based
on type theory, while also making it possible to interpret results in any suitably structured
(∞, 1)-topos [Shu19].

The basis for our formalisation is the 2016 PhD thesis of Brunerie [Bru16a] which
contains the first synthetic proof in HoTT that π4(S3) ∼= Z/2Z. The proof is one of the
most impressive pieces of synthetic homotopy theory to date and uses advanced machinery
from classical algebraic topology developed synthetically, including the symmetric monoidal
structure of smash products, (integral) cohomology rings, the Mayer-Vietoris and Gysin
sequences, the Hopf invariant, Whitehead products, etc. The formalisation of Brunerie’s
proof has since remained open, primarily due to the highly technical nature of some of the
details. In this paper, we will present such a formalisation in Cubical Agda [VMA21], a
cubical extension of the Agda proof assistant [Agd24] with native support for computational
univalence and higher inductive types (HITs).

In addition to being a very impressive proof in synthetic homotopy theory, Brunerie’s
proof is particularly interesting as it is fully constructive. The proof consists of two parts,
with the first one culminating in Chapter 3 with the definition of a number β : Z such that
π4(S3) ∼= Z/βZ. Since then, this β has been commonly referred to as the Brunerie number.
Brunerie writes the following about it:

This result is quite remarkable in that even though it is a constructive proof, it
is not at all obvious how to actually compute this [β]. At the time of writing,
we still haven’t managed to extract its value from its definition. [Bru16a,
Page 85]

In fact, [Bru16a, Appendix B] contains a complete and concise definition of β as the
image of 1 under a sequence of 12 maps:

Z Ω(S1) Ω2(S2) Ω3(S3)

Ω3(S1 ∗ S1) Ω3(S2) Ω3(S1 ∗ S1) Ω3(S3)

Ω2∥S2∥2 Ω∥Ω(S2)∥1 ∥Ω2(S2)∥0 Ω(S1) Z

n7→loopn ΩφS1 Ω2φS2

Ω3e

Ω3α h Ω3(e−1)

e3

Ωκ2,S2 κ1,ΩS2 e2 e1

1See [Bru16a, Figure 2.1] for a table of πn(Sm) for small n and m.
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By implementing this number in a proof assistant with computational support for
univalence and HITs, one should be able to normalise it using a computer to establish that
β = ±2 and hence that π4(S3) ∼= Z/2Z. In 2016, by the time Brunerie was finishing his
thesis, there were some experimental proof assistants based on the cubical type theory of
[CCHM18], but these were too slow to perform such a complex computation. So, instead of
relying on normalisation, Brunerie spends the second part of the thesis (Chapters 4–6) to
prove, using a lot of the advanced machinery mentioned above, that |β| is propositionally
equal to 2. However, if one were instead able to compute the number automatically in a
proof assistant, this equality would hold definitionally—effectively reducing the complexity
and length of the proof by an order of magnitude.

The intriguing possibility of a computer assisted formal proof made many people
interested and countless attempts to normalise Brunerie’s β have been made using increasingly
powerful computers. However, to date, no one has succeeded and it is still unclear whether
it is normalisable in a reasonable amount of time. In light of this, it is natural to wonder
whether it is possible to simplify Brunerie’s number in order to be able to compute it. For
example, Brunerie’s original definition only involves 1-HITs, as the status of higher HITs was
still quite understudied at the time. With a better understanding of higher HITs developed
in [LS20, CHM18, CH19], one quickly sees that the first 3 maps can be combined into one
sending 1 to the 3-cell of S3 defined as a 3-HIT and not as an iterated suspension as in
Brunerie’s thesis. Unfortunately, simple optimisations like this do not seem to reduce the
complexity of the computation enough and all attempts to run it have thus far failed.

After several unsuccessful attempts at optimising the computation, we instead decided to
formalise the second half of Brunerie’s thesis. However, this is by no means straightforward.
The first issue appears already in the beginning of Chapter 4, a chapter concerning smash
products of spheres. The main result of the section is Proposition 4.1.2, which says that the
smash product is a 1-coherent symmetric monoidal product on pointed types. However, the
proof of this result is just a sketch and Brunerie writes the following about it:

The following result is the main result of this section even though we essentially
admit it. [Bru16a, Page 90]

Unfortunately, this result is then used to construct integral cohomology rings, H∗(X),
whose cup product, ⌣, appears in the definition of the so-called Hopf invariant which
is crucially used to prove that |β| is 2. While one might be convinced that Brunerie’s
informal proof sketch is correct, it is not obvious how one convinces a proof assistant of
this. A complete formalisation would either have to fill in the holes in the sketch or find an
alternative construction which avoids Proposition 4.1.2. In fact, Brunerie tried very hard
to fill these holes using Agda metaprogramming [Bru18]. However, he never managed to
typecheck his computer generated proof of the pentagon identity. Hence, this approach also
seems infeasible with current proof assistant technology.

Luckily, Brunerie, Ljungström and Mörtberg [BLM22] recently gave an alternative
synthetic definition of the cup product on H∗(X) which completely avoids smash products.
This has allowed us to completely skip the problematic Chapter 4 and, in particular,
Proposition 4.1.2, while still following the proofs in Chapters 5 and 6. Having a strategy for
a formal proof, we were then able to embark on able to embark on the ambitious project of
formalising Brunerie’s proof. Even though we do not need any theory about smash products,
there was still a lot left to formalise and our final formalisation closely follows Brunerie’s
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proof, except for various smaller simplifications and adjustments which we discuss in the
paper.

In addition to this, we have also formalised a new proof by Ljungström [Lju22] which
completely circumvents Chapters 4–6. This major simplification builds on manually cal-
culating the image of the element η : π3(S2), corresponding to β under the isomorphism
π3(S2) ∼= Z, by dividing this isomorphism into several maps, tracing η in each step. In
particular, the new proof is completely elementary and does not rely on advanced tools
such as cohomology. The elements that one obtains while tracing η are all new “Brunerie
numbers” that should normalise to ±2. In fact, one of these normalises, in just under 4
seconds on a regular laptop, to −2 in Cubical Agda at the time of writing. So, despite still
not being able to compute the original β, this work can be seen as an alternative solution
to Brunerie’s conjecture about obtaining a computational proof that π4(S3) ∼= Z/2Z which
relies on simplifying the Brunerie number until it becomes effectively computable.

Outline. The paper closely follows the structure of Brunerie’s proof. In section 2, we
discuss key results from HoTT that we will need and their formalisation in Cubical Agda.
section 3, which roughly corresponds to Chapter 2 of Brunerie’s thesis, contains some first
results on homotopy groups of spheres—e.g. the computation of πn(Sm) for n ≤ m. We
then give Brunerie’s definition of β and prove that π4(S3) ∼= Z/βZ, the formalisation of
which involves the James construction and Whitehead products. The remainder of the paper
is then devoted to the formalisation of the different proofs that β = ±2. We first discuss
the formalisation of Chapters 4–6 of Brunerie’s proof in section 5. This involves a lot of
technical machinery like cohomology, the Hopf invariant, etc. We then, in section 6, turn
our attention to the new elementary proof that β = ±2 and the new Brunerie number which
quickly normalises to −2 in Cubical Agda. Here, we also present some result concerning
joins of spheres and the vanishing of Whitehead products. We conclude in section 7 with
a discussion and comparison of the different formal proofs, as well as some directions for
future work.

Compared to the previous publication on which the current paper is based, [LM23], the
main differences are the following.

• Many proofs which were omitted because of page constraints in [LM23] have been added
or extended throughout the paper. In particular, the proofs in [LM23, Section VI] have
been substantially expanded with many details added in subsection 6.3.
• In section 6, many results from [LM23, Section VI] have also been generalised, e.g. the
alternative definition of homotopy groups in terms of joins of spheres, π∗n, is now studied
in general and not just for n = 3.
• As part of the expansion and generalisation of [LM23, Section VI] in section 6, a new
subsection 6.1 on joins and smash products of spheres, a new subsection 6.2 on homotopy
groups in terms of joins and a new subsection 6.4 on the possibility of a stand-alone proof
of Brunerie’s theorem have been added.

Formalisation. All results in the paper have been formalised in Cubical Agda and are part
of the agda/cubical library, available at https://github.com/agda/cubical/. The code
in the paper is mainly literal Agda code taken verbatim from the library, but we have taken
some liberties when typesetting, e.g. shortening notations and omitting some universe levels.
A Cubical Agda summary file linking the formalisation and paper can be found at: https://
github.com/agda/cubical/blob/master/Cubical/Papers/Pi4S3-JournalVersion.agda

https://github.com/agda/cubical/
https://github.com/agda/cubical/blob/master/Cubical/Papers/Pi4S3-JournalVersion.agda
https://github.com/agda/cubical/blob/master/Cubical/Papers/Pi4S3-JournalVersion.agda
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The development typechecks with Agda’s --safe flag, which ensures that there are no ad-
mitted goals or postulates.

2. Homotopy Type Theory in Cubical Agda

In this section, we concisely summarise the key HoTT concepts needed for the proofs and
their formalisation in Cubical Agda. This roughly corresponds to [Bru16a, Chapter 1]. For
a more in-depth introduction, see the HoTT Book [Uni13] which also serves as a reference
for the formal language “Book HoTT”. In this paper, we will present many things with
cubical notations, but almost all of the results also hold with minor changes in Book HoTT
where paths are represented using Martin-Löf’s inductive Id-types [ML75] instead of cubical
path types. In section 7 we discuss in more detail which proofs crucially rely on cubical
features.

All of the results presented in this section were already part of the agda/cubical library
before we began our formalisation and, while useful as a resource for our notations, experts
on HoTT and Cubical Agda can safely skim this section.

2.1. Elementary HoTT notions and Cubical Agda notations. We write (x : A)→ B x
for dependent function types and denote the identity function by idA : A→ A. We write
Σx:A(B x) for the dependent pair type and fst and snd for its projection maps. In what
follows, we mean by a pointed type a dependent pair (A, ⋆A) consisting of a type A and a
fixed basepoint ⋆A : A. For ease of notation, we will often omit the basepoint and simply
write A for the pointed type (A, ⋆A). Given two pointed types A and B, the type of pointed
functions A →⋆ B consists of pairs (f, ⋆f ) where f : A → B and ⋆f : f ⋆A≡ ⋆B witnesses
basepoint preservation. Again, we simply write f : A→⋆ B and take ⋆f implicit.

HoTT supports inductive types, i.e. types inductively generated by their construc-
tors/points. We write Bool for the type of booleans and 1 for the unit/singleton type
with a single point ⋆1. A defining feature of HoTT, as opposed to plain Martin-Löf type
theory [ML84], is the existence of higher inductive types (HITs). This is a generalisation
of inductive types where we are not only allowed to specify the generating points of the
type in question, but also identifications between these points (and possibly identifications
of these identifications, and so on). This is useful for defining quotient types, but also for
defining spaces when working in the types-as-spaces interpretation of HoTT (see e.g. [Uni13,
Table 1] and [AW09]). Cubical Agda natively supports HITs and a type representing the
circle can be defined as follows:

data S1 : Type where

base : S1
loop : base ≡ base

Here, base≡ base denotes the type of identifications of base with itself. This is interpreted
as the type of paths from base to itself when viewing S1 as a space. Hence, the above HIT
captures precisely the representation of the circle as a cell complex with one 0-cell (base) and
one 1-cell (loop). We always take S1 to be pointed by base. In order to discuss the induction
principle for S1, we need to discuss paths in more detail. Cubically, paths correspond to
functions out of the unit interval, just like in traditional topology. In Cubical Agda, there
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is a primitive interval type2 I with endpoints i0 and i1. A path of type x≡ y between two
points x, y : A is a function p : I → A such that p i0 = x and p i1 = y judgmentally. For
instance, refl, the constant path at a point x, is defined by:

refl : (x : A) → x ≡ x

refl x = λ i → x

Note that we use “=” for definitional/judgmental equality and “≡ ” for Cubical Agda’s
path-equality. This can be contrasted with the HoTT Book [Uni13] which uses the opposite
convention where “=” is propositional/typal equality and “≡” definitional/judgmental
equality.

This type of notational conventions is not the only difference between Cubical Agda and
Book HoTT. Many proofs that are complicated in Book HoTT become remarkably direct
using the direct treatment of equality using path types. For instance, function extensionality
and its inverse funExt− are one-liners that just flip the arguments:

funExt : ((x : A) → f x ≡ g x ) → f ≡ g

funExt p i x = p x i

funExt− : f ≡ g → ((x : A) → f x ≡ g x )

funExt− p x i = p i x

In Book HoTT, however, funExt is typically proved as a consequence of the univalence axiom
using a rather ingenious proof [Lic14] while its inverse follows from path induction. Another
elementary example of a proof involving ≡ is cong (called ap in Book HoTT), which
applies a function to a path:

cong : (f : A → B) (p : x ≡ y) → f x ≡ f y

cong f p i = f (p i)

Although the treatment of paths in Cubical Agda differs somewhat from Book HoTT,
we may still prove path induction: for any dependent type B : (y : A) (p : x≡ y)→ Type, all
dependent functions f : (y : A) (p : x≡ y) → B xp are uniquely determined by f x (reflx).
In Book HoTT, this can be used, among other things, to define the notion of a dependent
path, which formalises the situation when two points a : A and b : B are equal up to a path
p : A≡B. In Cubical Agda, however, the type of dependent paths is primitive:

PathP : (A : I → Type) → A i0 → A i1 → Type

In fact, ≡ is just the special case of PathP where the line of paths is constant:

≡ : A → A → Type

x ≡ y = PathP (λ → A) x y

We are now ready to describe the induction principle of S1. A dependent function
f : (x : S1)→ B x is determined by a point b : B base and a loop ℓ : PathP(λi→ B(loop i)) b b.
In Cubical Agda, this would be written using pattern matching, as in the left-most definition
below, which is introduced side-by-side with the way it would commonly be written in
informal HoTT (as in Brunerie’s thesis):

2For technical reasons, this is actually just a “pre-type” in Cubical Agda.
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f base = b

f (loop i) = ℓ i

f(base) = b

apf (loop) = ℓ

2.2. More higher inductive types. Let us now introduce the remaining HITs used in
[Bru16a]. These come equipped with induction principles analogous to that of S1. To define
higher spheres, we need suspensions:

data Susp (A : Type) : Type where

north : Susp A

south : Susp A

merid : A → north ≡ south

We always take suspensions to be pointed by north. We may now define the n-sphere, for
n ≥ 1, by Sn = Suspn−1 S1 where Suspn−1 denotes (n− 1)-fold suspension. We also define
S−1 = ⊥ (the empty type) and S0 = Bool. We remark that we could equivalently have
defined S1 as the suspension of S0 as is done in [Bru16a]. Our reason for not doing so
is that certain functions using S1 appear to compute better with the base/loop definition.
Furthermore, this is the definition used in already existing code in the agda/cubical library.

We may also capture the (homotopy) pushout of a span B
f←− A g−→ C by the HIT:

data Pushout (f : A → B) (g : A → C ) : Type where

inl : B → Pushout f g

inr : C → Pushout f g

push : (a : A) → inl (f a) ≡ inr (g a)

Diagrammatically this corresponds to:

A C

B Pushout f g

f

g

inl

inr⌟

We use pushouts to define the wedge sum of two pointed types, denoted A∨B, the join
of two types, denoted A ∗B, and the cofibre of a map f : A→ B, denoted cofib f :

1 B A×B B A B

A A∨B A A ∗B 1 cofib f

fst

snd f

⌟⌟⌟

Two particularly important functions out of wedge sums are

∇ : A ∨ A → A

∇ (inl x ) = x

∇ (inr x ) = x

∇ (push ⋆1 i) = ⋆A

and

i∨ : A ∨ B → A × B

i∨ (inl a) = (a , ⋆B)
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i∨ (inr b) = (⋆A , b)

i∨ (push ⋆1 i) = (⋆A , ⋆B)

2.3. Truncation levels and n-truncations. An important concept in HoTT is that of
Voevodsky’s h-levels [Voe10b], which gives rise to the notion of an n-type. Since types in
HoTT are interpreted as spaces (or rather, as homotopy types), they are not only determined
by their points but also by which higher paths they may contain. We say that a type A
is an n-type if all (n+ 1)-dimensional structure of A is trivial. Formally, this is captured
by an inductive definition. We say that A is a (−2)-type if it is contractible, i.e. consisting
of a single point, as captured by isContrA = Σa0:A((a : A) → a0≡ a). We inductively say
that A is an (n+ 1)-type if for any x, y : A, the type x≡ y is an n-type. We call (−1)-types
propositions and 0-types sets.

We can turn any type A into an n-type by n-truncation, denoted ∥A ∥n. For instance,
the (−1)-truncation may be directly defined using the following HIT:

data ∥ ∥−1 (A : Type) : Type where

| | : A → ∥ A ∥−1
squash : (x y : ∥ A ∥−1) → x ≡ y

We often use direct definitions like this of (−1)- and 0-truncation in our formalisation, and
similar constructions work for any fixed value of n, but not when n is arbitrary. For higher
n we rely on the hub-and-spoke construction [Uni13, Section 7.3].

data ∥ ∥ (A : Type) (n : N−1) : Type where

| | : A → ∥ A ∥ n
hub : (f : S n → ∥ A ∥ n) → ∥ A ∥ n
spoke : (f : S n → ∥ A ∥ n) (x : S n) → hub f ≡ f x

One caveat with truncations is that a map f : A → B does not, in general, induce a
map f : ∥A ∥n → B. This is, however, the case when B is an n-type. In particular, f always
induces a function ∥ f ∥n : ∥A ∥n → ∥B ∥n.

2.4. Univalence, loop spaces, and H-spaces. In order to introduce Voevodsky’s uni-
valence principle [Voe10a], we need to define the (homotopy) fibre of a function. Given a
function f : A→ B and a point b : B, we define the fibre of f over b by fib f b = Σx:A(f a≡ b).
We say that f : A→ B is an equivalence, written f : A ≃ B, if fib f b is contractible for all
b : B. In order to prove that a function f : A→ B is an equivalence, it suffices to provide
an inverse f− : B → A and two paths f ◦ f−≡ idB and f− ◦ f ≡ idA. If f is also pointed,
we write f : A≃⋆B.

Univalence states that the canonical map A≡B → A ≃ B, defined by path induction,
is an equivalence. In particular, we get a map ua : A ≃ B → A≡B promoting equivalences
to paths. This provides us with a useful method for transferring proofs between equivalent
types which extends to structured types and are then referred to as the structure identity
principle [Uni13, Section 9.8].

Transferring proofs is, however, not the only use case of univalence in HoTT. It can
also be used to characterise loop spaces of HITs. This is often done using the encode-
decode method [Uni13, Section 8.1.4], a type theoretic analogue of proofs by contractibilty
of total spaces of fibrations. In HoTT, we define the loop space of a pointed type A, by
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ΩA = (⋆A≡ ⋆A). This is again pointed by refl ⋆A, so we may iterate this definition to get
the nth loop space of A, denoted ΩnA. Loop spaces belong to a particularly important class
of types called H-spaces. These consist of a pointed type B equipped with a unital magma
structure

µ : B×B → B

µl : (b : B)→ µ(⋆B, b)≡ b
µr : (b : B)→ µ(b, ⋆B)≡ b

satisfying µl ⋆B ≡µr ⋆B. Another particularly important H-space for our purposes is S1, for
which we will use + to denote its binary operation. S1 also comes equipped with a notion of
inversion which we will denote by −. In fact, S1 is a commutative and associative H-space.

3. First results on homotopy groups of spheres

In this section, we cover [Bru16a, Chapter 2], which introduces some elementary results
on the homotopy groups of spheres. All of these results can also be found in the HoTT
Book [Uni13]. Before even stating them, we need homotopy groups:

Definition 3.1 (Homotopy groups). For n : N, we define the nth homotopy group of a
pointed type A by:

πn(A) = ∥ Sn →⋆ A ∥0

The name homotopy group should be taken with a grain of salt: it, in general, only has a
group structure when n ≥ 1 (abelian when n ≥ 2). The structure may be defined, much like
in [BHF18, Section 5], by considering the equivalence (Sn →⋆ A) ≃ (Sn−1 →⋆ ΩA), where
the latter type has a multiplication given by pointwise path composition. An alternative
definition of πn(A) is via loop spaces. There is an equivalence ωn : ΩnA ≃ (Sn →⋆ A) and,
hence, we could equivalently have defined πn(A) by setting πn(A) = ∥ΩnA ∥0. This makes
the group structure on πn(A) more transparent: it is simply path composition. This is the
definition used in the HoTT Book [Uni13]. Brunerie uses both definitions in his thesis and
often passes between the two without comment.

An elementary but crucial result for the computation of homotopy groups is the existence
of the long exact sequence of homotopy groups. Its proof is usually phrased using the loop
space definition of homotopy groups as in e.g. [Uni13, Theorem 8.4.6]. For ease of notation,
let us write fib f for the fibre of a pointed function f : A→⋆ B over the basepoint of B.

Proposition 3.2 (LES of homotopy groups). For any pointed map f : A→⋆ B, there is a
long exact sequence

. . . πn+1(B)

πn(fib f) πn(A) πn(B)

πn−1(fib f) . . .

where the horizontal maps are induced by the functorial action of πn on fst : fib f → A and
f : A→ B.
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Above, we have implicitly taken the kernel and image of a group homomorphism
ϕ : G→ H to be defined by

kerϕ = fibϕ 0H

imϕ = Σh:H∥Σg:G(ϕ(g)≡h) ∥−1

When analysing loop spaces and homotopy groups of suspensions, the following function
is of great importance. It will be used in many constructions to come.

Definition 3.3 (The suspension map). Given a pointed type A, there is a canonical map
σ : A→ Ω (SuspA) given by

σ x = merid x · (merid ⋆A)
−1

This induces a homomorphism on homotopy groups by post-composition:

πn(A)
σ∗−−→ πn(Ω (SuspA))

∼=−→ πn+1(SuspA)

We will often, with some abuse of notation, simply write σ∗ for this composition. We also
define σn : ∥A ∥n → Ω ∥ SuspA ∥n+1 by

σn|x | = cong | | (σ x)
We will soon see the suspension map in action, but first we need the following elementary
result.

Proposition 3.4 (Join of spheres). Sn∗ Sm ≃ Sn+m+1.

In fact, as we will see in section 6, there is more to say about this equivalence. We make
a forwards reference to Proposition 6.4 and the preceding discussion for a detailed account
of its construction.

In particular, Proposition 3.4 gives us an equivalence S1∗ S1 ≃ S3. Using this fact, we
define the following map, which will play a crucial role in the analysis of π4(S3).

Definition 3.5 (Hopf map). We define hopf : S3 → S2 by the composition S3 ∼−→ S1∗ S1 h−→ S2
where h is given by

h : S1 ∗ S1 → S2
h (inl x ) = north

h (inr y) = north

h (push (x , y) i) = σ (y - x ) i

where − is defined using the H-space and inversion structure on S1.

It turns out that the following is true [Uni13, Theorem 8.5.1].

Proposition 3.6 (The fibre of the Hopf map). The fibre of hopf is equivalent to S1, i.e.
fib hopf ≃ S1.

Proposition 3.6 gives us a fibration sequence S1 → S3 → S2 which, in particular, will
allow us to connect homotopy groups of S2 with those of S3 and S1. For this, we need to
introduce the notion of connectedness. We say that a type A is n-connected if ∥A ∥n is
contractible. Similarly, we say that a function f : A→ B is n-connected if all of its fibres are
n-connected. This means, in particular, that the induced function ∥ f ∥n : ∥A ∥n → ∥B ∥n is
an equivalence. The following is an immediate consequence of the definition of n-truncations.
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Lemma 3.7 (Connectedness of spheres). For n ≥ −1, Sn is (n− 1)-connected.

Using Lemma 3.7, we can easily prove the following:

Proposition 3.8 ([Bru16a, Proposition 2.4.1]). For n < m, the group πn(Sm) is trivial.

For the sake of completeness, let us take the liberty of mentioning some results from
[Bru16a, Chapter 3] already here, since they also concern low-dimensional homotopy groups
of spheres. A crucial result is the following theorem [Uni13, Theorem 8.6.4]:

Theorem 3.9 (Freudenthal suspension theorem). Given an n-connected and pointed type
A, the map σ : A→ Ω (SuspA) is 2n-connected.

On can easily deduce from Theorem 3.9 that, in particular, σn : ∥A ∥n → ∥Ω (SuspA) ∥n
is an equivalence. This allows us to prove the following result:

Corollary 3.10. For n ≥ 1, we have πn(Sn) ∼= Z. Furthermore, πn(Sn) is generated by
in = | idSn |.

Proof. The synthetic proof of the classical result that π1(S1) ∼= Z is due to Licata and
Shulman [LS13]. The fact that π2(S2) ∼= π1(S1) is given by the LES associated to the
Hopf fibration combined with Proposition 3.8. The fact that πn+1(Sn+1) ∼= πn(Sn) is an
immediate consequence of Theorem 3.9. The second statement follows by induction on n,
using that suspension is functorial and thereby preserves the identity map.

We have now analysed all homotopy groups πn(Sm) with n ≤ m. This yields the
following:

Proposition 3.11. Post-composition by hopf induces an isomorphism π3(S3) ∼= π3(S2).

Proof. By Proposition 3.2 and Proposition 3.6, we get an exact sequence

π3(S1)→ π3(S3)
hopf∗−−−→ π3(S2)→ π2(S1)

as πn(S1) vanishes for n > 1, hopf∗ is an isomorphism.

Corollary 3.12. There is an isomorphism ψ : π3(S2) ∼= Z. Furthermore, π3(S2) is generated
by hopf.

Proof. By Corollary 3.10 we know that π3(S3) is generated by the identity function on S3.
We know that the isomorphism π3(S3) ∼= π3(S2) is given by post-composition by hopf and
thus the generator of π3(S3) is mapped to hopf.

3.1. Formalisation of Brunerie’s Chapter 2. Most of these results have already been
added to agda/cubical by Mörtberg & Pujet [MP20], Ljungström [Lju20], and Brunerie,
Ljungström & Mörtberg [BLM22]. The Freudenthal suspension theorem was formalised
in Cubical Agda by Cavallo [Cav20], using a direct cubical proof following [Uni13, Theo-
rem 8.6.4]. Corollary 3.10 was given a direct proof, following the computation of cohomology
groups of spheres in [BLM22].

There were some technical difficulties related to the equivalence ωn : ΩnA ≃ (Sn →⋆ A),
which is used to show that the two different definitions of homotopy groups are equivalent.
In several proofs, it is more natural to work on the left-hand-side of ωn. At the same
time, working on the right-hand-side often makes constructing elements easier (compare,
for instance, an explicit description of the generator of i3 : π3(S3) described as a 3-loop in
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S3 to the very compact definition i3 = | idS3 |). This means that we often have to translate
between the two definitions. One particularly important example is the LES of homotopy
groups associated to a function A→⋆ B. On each level, the maps are given as follows:

Ωn (fib f)
Ωn fst−−−−→ ΩnA

Ωn f−−−→ ΩnB

This is then transported to the definition of homotopy groups as maps from spheres via ωn.
For the proof of e.g. Corollary 3.12, we need to know that the maps in the sequence are
given as follows:

πn(fib f)
fst∗−−→ πn(A)

f∗−−→ πn(B)

What we need is then more than just an equivalence ωn : ΩnA ≃ (Sn →⋆ A) – we need to
show that this equivalence is functorial. This is implicitly assumed in Brunerie’s thesis, but,
in Cubical Agda, we need to make it precise. Formalising this fact is not entirely trivial.
First, we need a tractable definition of the equivalence in question. It can be described
inductively with base case ω1 : ΩA→ (S1 →⋆ A) given by:

ω1 p base = ⋆A

ω1 p (loop i) = p i

which we take to be pointed by refl. It is easy to verify that this is an equivalence. We
define ωn+1 by the composition:

Ωn+1A = Ω(ΩnA)
Ωωn−−−→ Ω (Sn →⋆ A)

funExt−⋆−−−−−→ (Sn →⋆ ΩA) −→ (Sn+1 →⋆ A)

where the last arrow comes from the adjunction Susp ⊣ Ω . This is a composition of
equivalences, and hence an equivalence. We then need to verify that the following commutes

ΩnA (Sn →⋆ A)

ΩnB (Sn →⋆ B)

ωn

Ωnf

ωn

f∗

This can be proved inductively. The base case is easy and the inductive step is given by the
following diagram

Ω (Sn →⋆ A)

Ωn+1A (Sn+1 →⋆ A)

Ωn+1B (Sn+1 →⋆ B)

Ω (Sn →⋆ B)

ωn+1

Ωn+1 f

ωn+1

f∗

≃

Ω f∗

≃
Ωωn

Ωωn
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where the commutativity of the outer square comes from the base case paired with the
inductive hypothesis, the triangles from the definition of ωn+1 and the right-most square
from a straightforward argument.

4. The Brunerie number

Here we give an overview of the first half of Brunerie’s proof. This corresponds to [Bru16a,
Chapter 3] and culminates in the isomorphism π4(S3) ∼= Z/βZ for an at this point unknown
“Brunerie number” β : Z. We also discuss the formalisation of this part of the proof and
various simplifications found during the formalisation.

4.1. The James construction. To define β, Brunerie uses the James construction [Jam55],
which he introduced in HoTT and partially formalised in [Bru19].

Proposition 4.1 (James construction). For a (k ≥ 0)-connected pointed type A, there are
types JnA with inclusions

J0A ↪
j0−−→ J1A ↪

j1−−→ J2A ↪
j2−−→ · · ·

such that its sequential colimit J∞A ≃ Ω (SuspA). Furthermore, jn : JnA ↪→ Jn+1A is
(n(k + 1) + (k − 1))-connected.

A consequence of Proposition 4.1 is the following fact

Proposition 4.2. Given a (k ≥ 0)-connected type A, there is a (3k + 1)-connected map
J2A −→ Ω (SuspA).

The proof of Proposition 4.2 uses that J∞A, the sequential colimit of the sequence
in Proposition 4.1, can be shown to be equivalent to Ω (SuspA). This, paired with some
results on the connectivity of sequential colimits, gives the statement. A key consequence of
this is the following result which allows us to express π4(S3) as π3(J2 S2) – a group which
turns out to be quite a bit easier to reason about.

Theorem 4.3. π4(S3) ∼= π3(J2 S2)

Proof. Because S2 is 1-connected, Proposition 4.2 tells us that there is a 4-connected map

J2 S2 → Ω (SuspS2) = Ω (S3)

In particular, it is 3-connected and induces an equivalence ∥ J2 S2 ∥3 ≃ ∥Ω S3 ∥3. We get:

π4(S3) ∼= π3(ΩS3) ∼= π3(J2 S2)
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4.2. Formalisation of the James construction. This is a particularly technical part
of Brunerie’s thesis, primarily due to the high number of higher coherences which need to
be verified in the proof of Proposition 4.1. While this has, subsequent to our efforts, been
formalised in its entirety by Kang [Kan22a], we have taken a shortcut by giving a direct
proof of Theorem 4.3, which means we do not in fact need the full James construction.
Consequently, we instead give direct definitions of JnA for n ≤ 2 for a pointed type A.

Definition 4.4 (Low dimensional James construction). We define J0A = 1 and J1A = A.
The type J2A is defined as the pushout:

A ∨A A

A×A J2A

i∨

∇

⌟

We remark that the construction in Definition 4.4 is not definitionally the same as
Brunerie’s; in his thesis, these constructions are theorems rather than definitions. Here we
take them as definitions. With JnA defined this way, the map j0 : J0A→ J1A is just the
constant pointed map and j1 : J1A→ J2A is inr.

Before we continue, let us temporarily redefine S2 to be the following equivalent HIT.
This will make some of the following constructions more compact.

data S2 : Type where

base : S2
surf : refl base ≡ refl base

The next lemma will be crucial. It is a special case of the Wedge Connectivity
Lemma [Uni13, Lemma 8.6.2], of which we have formalised a version of the proof of the
sphere case in [BLM22, Lemma 8]. From the point of view of formalisation, this proof is
easier to work with since it gives more useful definitional equalities.

Lemma 4.5 (Wedge connectivity for S2). Let P : S2 × S2 → 2-Type. Any function
f : (x : S2×S2)→ P x is induced by the following data:

fl : (x : S2)→ P (x , base)

fr : (y : S2)→ P (base , y)

flr : fl base≡ fr base

Before we discuss the formalisation of Theorem 4.3 stated with the low dimensional
James construction, we first construct the following function. The goal is to define a family
of equivalences fx : ∥ J2 S2 ∥3 ≃ ∥ J2 S2 ∥3 over x : S2. We do this by truncation elimination
and pattern matching on x, starting with the base case:

fbase | inl (x, y) | = | inl (x , y) |
fbase | inr z | = | inl (base , z) |

fbase | push (inlx) i | = | (push (inlx) · push (inr x)−1) i |
fbase | push (inr y) i | = | inl (base , y) |

fbase | push (push y j) i | = . . .

where the omitted step consists of a proof that push (inl base) · push (inr base)−1≡ refl. It is
an easy lemma that fbase is equal to the identity on ∥ J2 S2 ∥3. To complete the definition of
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fx, we need to consider the case when x = surf i j. This amounts to providing a dependent
function:

fsurf : (x : ∥ J2 S2 ∥3)→ Ω2 (∥ J2 S2 ∥3 , fbase x)
To do this, we will, in particular, need to provide a family of fillers

Q(x , y) : refl| inl (x , y) |≡ refl| inl (x , y) |

This is a 1-type, and thus Lemma 4.5 applies. We define:

Q(base , y) i j = | inl (surf i j , y) |
Q(x , base) i j = | inl (x , surf i j) |

The fact that these two constructions agree when both x and y are base is a technical but
relatively straightforward lemma. Thereby, Q(x , y) is defined. We may now define fsurf :

fsurf | inl (x , y) | = Q(x , y)

fsurf | inr z | = Q(base , z)

The higher cases are easy due to the fact that the goal becomes 0-truncated, making it
sufficient to define them for base : S2. Thus, fx is defined for all x : S2.

Lemma 4.6. For x : S2, fx is an automorphism on ∥ J2 S2 ∥3.

Proof. To make coming proofs easier, this is proved by explicitly constructing the inverse
analogously to fx.

f−1
base x = fbase x

f−1
surf x = fsurf−1 x

Proving that these cancel is technical, but direct.

We are now ready to prove the following statement, which is a rephrasing of Theorem 4.3.

Proposition 4.7. Ω ∥ S3 ∥4≃∥ J2 S2 ∥3

Proof. We take S3 = SuspS2, where S2 is defined using base/surf as above. We employ the
encode-decode method and define a family of 3-types over ∥ S3 ∥4. Since the universe of
3-types is a 4-type, we may do so by truncation elimination:

Code : ∥ S3 ∥4 → 3-Type

Code | north | = ∥ J2 S2 ∥3
Code | south | = ∥ J2 S2 ∥3

Code |merid x i | = ua fx i

We now need to define two families of functions

encodex : | north | ≡x→ Codex

decodex : Codex→ | north | ≡x

over x : ∥S3 ∥4. We define encodex by path induction, sending refl to the basepoint in
∥ J2 S2 ∥3. We define decodex by truncation elimination and pattern matching on x. The
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crucial step is defining decode| north | : ∥ J2 S2 ∥3 → Ω ∥ S3 ∥4. On point constructors, it is
given by

decode| north | (inl (x , y)) = σ x ·σ y
decode| north | (inr z) = σ z

which is easily verified to be coherent with the higher constructors. The case decode| south |
is immediately induced by decode| north |, since north≡ south via merid base. The case
decode|merid a i | y amounts to showing that

decode| north |(f
−1
a y) ≡ decode| north | y · (σ | a |)−1

The proof is technical but is greatly aided by Lemma 4.5. The fact that decodex(encodex p)≡ p
for each p : north≡x holds by path induction. Finally, the fact that encodenorth(decodenorth y)≡ y
holds for each y : ∥ J2 S2 ∥3 holds by some technical but simple path algebra. Hence
decode| north | : Ω ∥ S3 ∥4 → ∥ J2 S2 ∥3 is an equivalence.

We get Theorem 4.3 as an immediate corollary of Proposition 4.7 via the same sequence
of isomorphisms as in the proof of Theorem 4.3.

4.3. Definition of the Brunerie number. Brunerie’s goal is now to analyse π3(J2 S2).
The first result needed is the following:

Definition 4.8 (Whitehead map). Given two pointed types A and B, there is a map:

W : A ∗ B → Susp A ∨Susp B

W (inl a) = inr north

W (inr b) = inl north

W (push (a , b) i) = (cong inr (σ b) · push ⋆1 −1 · cong inl (σ a)) i

For our purposes, we only need the case when A = B = S1 (although all of the following
results appear in full generality in Brunerie’s thesis). We get a composite map:

e : S3 ≃−→ S1∗ S1 W−−→ S2 ∨S2

This induces, via pre-composition, a Whitehead product :

π2(S2)×π2(S2)
[−,−]−−−−→ π3(S2)

by

[| f |, | g |] := | ∇ ◦ (f ∨ g) ◦ e |
Recall that we denote by i2 the generator of π2(S2). Brunerie shows, in particular, the
following about its relation to the Whitehead product (see [Bru16a, Proposition 3.4.4.] for
the full statement).

Theorem 4.9. The kernel of the suspension map σ∗ : π3(S2) → π4(S3) is generated by
[i2, i2].

The key technical component in the proof is the Blakers-Massey Theorem, first formalised
in HoTT by Favonia, Finster, Licata & Lumsdaine in [HFLL16]:
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Theorem 4.10 (Blakers-Massey). Consider the diagram

A

P C

B Pushout f g
inl

inr
f

g

f⊔g

⌟

⌟

where P is the pullback along inl and inr, i.e. P = Σ(b,c):B×C(inl b≡ inr c), and f ⊔ g is
defined by

(f ⊔ g) a = (f a , g a , push a)

If f and g are n- respectively m-connected, then f ⊔ g is (n+m)-connected.

Theorem 4.9 is proved by considering the following diagram

S3

P S2

1 J2S2

∇◦W

⌟

⌟
Verifying that the outer square is a pushout square is technical and we refer to Brunerie’s

proof for the details. Above, P is simply the fibre of inr : S2 → J2 S2. The leftmost map is
2-connected since S3 is 2-connected and the top map is 0-connected since S3 and S2 are both
1-connected. Consequently, by Theorem 4.10, we get that the map S3 → P is 2-connected
and thus induces a surjection after application of π3. This gives the diagram:

π3(P ) π3(S2) π3(J2 S2)

π3(S3) π4(S3)

∼=σ∗

where the sequence on the top comes from the long exact sequence of homotopy groups
associated to P . The dashed map sends the generator i3 : π3(S3) to [i2, i2] : π3(S2) by
definition.

Theorem 4.9 motivates the following definition. Recall that we denote by ψ the isomor-
phism π3(S2) ∼= Z.

Definition 4.11 (Brunerie number). We define the Brunerie number β : Z by β = ψ[i2, i2].

We may now prove the main result of [Bru16a, Chapter 3].

Corollary 4.12. π4(S3) ∼= Z/βZ.

Proof. We have a homomorphism σ∗ ◦ψ−1 : Z → π4(S3). This composition is surjective
since ψ is an isomorphism and σ∗ : π3(S2)→ π4(S3) is surjective by Theorem 3.9. Since, by
Theorem 4.9, the kernel of σ∗ is generated by [i2, i2], the kernel of σ∗ ◦ψ−1 is generated by
ψ[i2, i2], i.e. by β. The statement then follows from the first isomorphism theorem.
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4.4. Formalisation of the definition of the Brunerie number. The formalisation of this
part was straightforward. Arguably the most technical result, the Blakers-Massey theorem,
was already available in the library thanks to Kang [Kan22b]. Most of the remaining results
were essentially just diagram chases which, in a proof assistant, can be somewhat technical.
Most work went into verifying that J2 S2 is the cofibre of ∇ ◦W, the proof of which followed
Brunerie’s closely.

In this section we found the only obvious mistake in Brunerie’s thesis. On page 82, in
his definition of the push-case for W, the path component in the middle was not inverted,
making the term ill-typed. Naturally, this was of no mathematical significance and something
Brunerie immediately would have noticed if he would have attempted to provide a computer
formalisation of this construction.

5. Brunerie’s proof that |β| ≡ 2

This section concerns the final three Chapters (4–6) of Brunerie’s thesis. The main goal here
is proving that |β| ≡ 2.

We will not discuss Chapter 4 in much detail. Chapter 4 is devoted to smash products
and, in particular, their symmetric monoidal structure. Brunerie used this in subsequent
chapters to define and prove properties about the cup product, a graded multiplicative
operation on cohomology groups which will be used to show that |β| ≡ 2. This chapter has
turned out to be incredibly difficult to formalise due to the large number of higher coherences
involved in the proofs [Bru18]. In fact, the results of this chapter were proved in detail and
fully formalised only 8 years after the publication of Brunerie’s thesis by Ljungström [Lju24].
We remark that despite the fact that these results have now been made available to us,
they are not needed. While, with these results, Brunerie’s construction of the cup product
appears correct, his use of smash products still leads to some rather cumbersome diagram
chases (with many coherences which still need verification.)

Luckily, it turns out that Chapter 4 can be avoided altogether and that this in fact
makes some difficult proofs later on very direct. For this reason, the results in Chapter 4
were omitted completely from our formalisation. The reason for this is that all results
regarding smash products in Brunerie’s thesis concern, in some way, pointed maps out of
smash products. In this case, we may exploit the adjunction of maps out of smash products
and bi-pointed maps:

(A∧B →⋆ C) ≃ (A→⋆ (B →⋆ C))

Here, B →⋆ C is taken to be pointed by the constant map. As shown by Brunerie et
al. [BLM22], it is arguably easier to define the cup product on the right-hand side of
the adjunction, which effectively means that we never have to work with smash products
when formalising cohomology theory. The usefulness of the approach by Brunerie et
al. [BLM22] is not only witnessed by our work—it has been used by Lamiaux et al. [LLM23]
and Ljungström & Mörtberg [LM24] in the development of cohomology rings and is used
to describe the cup product as an instance of the delooping machinery introduced by
Wärn [Wär23, Section 4.3]. We remark that the same techniques (although independent
from [BLM22]) can be found in the work of Christensen & Scoccola [CS20, Section 2.4]
where it is utilised in a discussion of the magma structure on loop spaces.
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5.1. Cohomology and the Hopf invariant. [Bru16a, Chapter 5] introduces integral
cohomology groups and rings, and gives a construction of the Mayer-Vietoris sequence.
In more detail, Brunerie defines the integral Eilenberg-MacLane spaces by K0 = Z and
Kn = ∥ Sn ∥n for n ≥ 1. This allows for a definition of the (integral) cohomology of X:

Hn(X) = ∥X → Kn ∥0
The fact that ΩKn+1 ≃ Kn follows by a proof completely analogous to that of Corollary 3.10.
Brunerie uses this equivalence to carry over the (commutative) H-space structure on ΩKn+1

to that of Kn. This provides a notion of addition +k : Kn×Kn → Kn which lifts to Hn(X)
by post-composition, thereby endowing Hn(X) with a group structure.

Similarly, Brunerie gives a definition of a cup product ⌣k : Kn ∧Km → Kn+m which
lifts to the usual cup product ⌣ : Hn(X) ×Hm(X)→ Hn+m(X). This is shown to induce a
graded commutative ring structure on H∗(X) using results from Chapter 4.

The synthetic construction of the Mayer-Vietoris sequence concerns the long exact
sequence

H0(D) H0(B)× H0(C) H0(A)

H1(D) . . .

where D denotes the pushout of a span B
f←− A

g−→ C. A direct application gives us,
for n ≥ 1, that Hn(Sm) ∼= Z if n = m and Hn(Sm) ∼= 1 otherwise. This gives, by another
application of the sequence, the following result:

Lemma 5.1. For any f : S3 → S2 we have

Hn(cofib f) ∼=

{
Z n ∈ {0, 2, 4}
1 otherwise

Let us briefly fix f : S3 → S2. Denote by γ2 and γ4 the generators of H2(cofib f) and
H4(cofib f) respectively given by the image of 1 : Z under the isomorphism in Lemma 5.1.
These generators may be used to define an invariant on S3 → S2 called the Hopf invariant.
This is done as follows:

Definition 5.2 (Hopf invariant). The Hopf invariant of f is the unique integer HI f : Z
such that γ2 ⌣ γ2≡HI f · γ4.

We remark that the above definition is given for the more general class of maps
S2n−1 → Sn in Brunerie’s thesis. For our purposes, the above special case suffices. In
particular, we may see HI as a function π3(S2)→ Z. The following turns out to be true:

Proposition 5.3. HI is a homomorphism π3(S2)→ Z.

Proof sketch. We first rephrase f + g : π3(S2) as a composition

S3 −→ S3 ∨S3 f ∨ g−−−→ S2 ∨S2 ∇−→ S2

By analysing the cohomology of cofib (∇◦ (f ∨ g)) and the action on generators of the obvious
maps from cofib (∇◦ (f ∨ g)), cofib f and cofib g into cofib (f + g), one arrives at the result
with some elementary algebra.

Finally, the Hopf invariant of our element of interest [i2, i2] is computed (up to a sign),
using an argument similar to that of the proof of Proposition 5.3.
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Proposition 5.4. |HI [i2, i2]| ≡ 2

We are now almost done: if there is an element f : π3(S2) such that HI f ≡ 1, then HI
is an isomorphism π3(S2) ∼= Z. Since isomorphisms of this type are unique up to a sign,
Proposition 5.4 tells us that also for the standard isomorphism ψ : π3(S2) ∼= Z, we must
have |ψ[i2, i2]| ≡ 2, i.e. |β| ≡ 2. Hence, we have so far shown the following:

Lemma 5.5. If HI f ≡ 1 for some f : π3(S2), then |β| ≡ 2.

The final chapter of Brunerie’s thesis is devoted to proving the antecedent of Lemma 5.5.

5.2. Formalisation of cohomology and the Hopf invariant. This section was largely
covered by Brunerie, Ljungström and Mörtberg in [BLM22] and thus also available in
agda/cubical. We briefly summarise:

• +k : Kn×Kn → Kn was defined explicitly using a direct construction of the Wedge Connec-
tivity for spheres—a generalisation of Lemma 4.5. This construction is of great convenience
to our formalisation due to the fact that e.g. ⋆Kn +k |x | ≡ |x | holds definitionally. In fact,
all of the basic laws governing +k are (trivially) provably path equal to refl at ⋆Kn , which
simplifies a lot of path algebra.
• The cup product is defined via the following lift

Sn (Km →⋆ Kn+m)

Kn

| |
⌣

for n ≥ 1, where the top map may be thought of as being inductively defined via the
equivalence

(Sn+1 →⋆ (Km →⋆ K(n+1)+m))

≃ (Sn →⋆ (Km →⋆ ΩK(n+1)+m))

≃ (Sn →⋆ (Km →⋆ Kn+m))

The lift exists because the type of pointed functions Km →⋆ Kn+m is an n-type. This
construction gives an inductively defined cup product which is remarkably easy to work
with, as showcased in [LLM23] to compute cohomology rings of various classical spaces.
• The Mayer-Vietoris sequence was formalised by directly translating Brunerie’s original
proof.

Hence, what remained to be formalised in Chapter 5 was the Hopf invariant, Proposition 5.3
and Proposition 5.4. The formalisation of these propositions was straightforward and we
were able to translate Brunerie’s proofs in a direct manner. This is not surprising as the
proofs are very algebraic.

For simplicity, we only formalised these propositions as they stand here and not their
generalisations to higher spheres (i.e. as in [Bru16a, Proposition 5.4.3 & 5.4.4]). We remark,
however, that the formalised proofs easily should be rephrasable for the general Hopf invariant
of maps S2n−1 → Sn.
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5.3. The Gysin sequence. This section corresponds to [Bru16a, Chapter 6]. In order to
be able to apply Lemma 5.5, this chapter is devoted to proving that |HI hopf| ≡ 1, where,
recall, hopf : S3 → S2 is the Hopf map—the generator of π3(S2) from Definition 3.5. This
amounts to analysing the cup product on the cohomology of cofib hopf. It is well-known
that cofib hopf is a model of the complex projective plane CP 2 (see e.g. [Hat02, Example
4.45]), so let us simply write CP 2 from now on. We hence have CP 2 defined as the following
pushout:

S3 S2

1 CP 2

hopf

⌟

In order to show that |HI hopf| ≡ 1, it suffices to show that −⌣ γ2 : H
2
(
CP 2

)
→ H4

(
CP 2

)
is an isomorphism for γ2 : H2

(
CP 2

)
a generator. Brunerie does this by constructing the

Gysin sequence.

Proposition 5.6 (The Gysin sequence). Let B be a pointed and 0-connected type and
P : B → Type be a fibration with P ⋆B ≃Sn−1. Let E = Σb:B(P b) be the total space of P .
If there is a family of maps c : (b : B)→ (Susp (P b)→⋆ Kn) with c⋆B a generator of Hn(Sn),
then there is an element en : Hn(B) and a long exact sequence

. . . Hi−1(B)

Hi−1(E) Hi−n(B) Hi(B)

Hi(E) . . .

− ⌣ en

Moreover, c (and also en) exists when B is 1-connected.

In order to make use of this, we need the following result.

Proposition 5.7. There is a fibration P : CP 2 → Type with P ⋆CP 2 ≃S1 and total space
S5.

Proposition 5.7 is a special case of the following result.

Proposition 5.8 (Iterated Hopf construction). Given an associative H-space A, let hA :
A∗A→ SuspA denote the associated Hopf map. There is a fibration cofibhA → Type with
fibre A and total space A ∗A ∗A.

We consider the particular case when A = S1 in Proposition 5.8. In this case, the map
hS1 : S1∗ S1 → S2 corresponds to the usual Hopf map under the equivalence S1∗S1 ≃ S3
and hence cofibhS1 ≃ CP 2. The total space of this is S1∗ S1∗ S1 which is equivalent to S5
by Proposition 3.4 and thus we have proved Proposition 5.7. The associated Gysin sequence
gives us the main result of this section:

Proposition 5.9 (Hopf invariant of the Hopf map). |HI hopf| ≡ 1

Proof. Since CP 2 is 1-connected, Proposition 5.6 combined with Proposition 5.7 gives us an
element e2 : H

2
(
CP 2

)
and a sequence

Hi−1
(
S5
)
→ Hi−2

(
CP 2

) − ⌣ e2−−−−−→ Hi
(
CP 2

)
→ Hi

(
S5
)
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When 1 ≤ i ≤ 4, Hi
(
S5
)
vanishes. Setting i = 2, we get that e2 must be a generator of

H2
(
CP 2

)
, and thus equal to the generator γ2 : H2

(
CP 2

)
up to a sign. Setting i = 4, we get

that −⌣ e2 must be an isomorphism of groups H2
(
CP 2

) ∼= H4
(
CP 2

)
and hence e2 ⌣ e2 is

a generator. Consequently, so is γ2 ⌣ γ2, and thus |HI hopf| ≡ 1.

Proposition 5.9 combined with Lemma 5.5 gives the desired path: |β| ≡ 2. This completes
Brunerie’s proof and Corollary 4.12 gives us the main result:

Theorem 5.10. π4(S3) ∼= Z/2Z

5.4. Formalisation of the Gysin sequence. Formalising the results from Chapter 6 was
more challenging, but was greatly aided by the alternative construction of the cup product
discussed above. The first technical lemma, which is crucial for the construction of the Gysin
sequence is:

Lemma 5.11. Given x : Kn and y : Km, we have

cong (λ a→ a ⌣k y) (σn x)≡σn+m(x ⌣k y)

In Brunerie’s thesis, this lemma relies on a result which in turn requires the symmetric
monoidal structure of the smash product (in particular, it uses the pentagon identity). With
the alternative construction of the cup product, however, this result follows immediately
from the definition of the cup product.

Lemma 5.11 is used to show that the map

gi : Ki → (Sn →⋆ Ki+n)

gi x = λy → x ⌣k ιy

is an equivalence, which is crucially used in the construction of the Gysin sequence. Above,
ι : Sn → Kn is a generator of Hn(Sn). For reference, gi is the map gi⋆B in the proof of

[Bru16a, Proposition 6.1.2]. Brunerie’s proof proceeds by induction on i: the fact that g0

is an equivalence is easy; for the inductive step, it suffices to show that Ω gi+1 : ΩKi+1 →
Ω (Sn →⋆ K(i+1)+n) is an equivalence for reasons of connectedness. This is done by showing
that the following diagram commutes

ΩKi+1 Ω (Sn →⋆ K(i+1)+n)

Ki (Sn →⋆ Ki+n)

Ω gi+1

gi

≃≃

hence getting that Ω gi+1 is an equivalence from the induction hypothesis.
While the general idea of Brunerie’s proof of this statement is correct, it was difficult

to formalise directly. The primary reason for this is that Brunerie does not pay much
attention to the fact that the objects of interest are not just functions, but pointed functions.
In particular, his argument for the commutativity of the diagram above treats gi x as a
plain function rather than a pointed function. Fortunately for us, the whole proof is very
direct with the alternative definition of the cup product. Formalising Brunerie’s proof with
pointedness of functions respected would have been hard, especially without machinery
external to [Bru16a] (e.g. [BLM22, Lemma 14.]).
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After these subtleties were dealt with, the formalisation of the Gysin sequence could
proceed following Brunerie’s proof closely. In our initial formalisation, we made a slight
adjustment to the indexing of the Gysin sequence. This removed some bureaucracy but
happened at the cost of generality.3 This made verifying that Proposition 5.9 slightly less
direct, because we no longer had access to the case

H1
(
S5
)
−→ H0

(
CP 2

) − ⌣ e2−−−−−→ H2
(
CP 2

)
−→ H2

(
S5
)

which is used by Brunerie to show that the element e2 : H2
(
CP 2

)
, for which − ⌣ e2 :

H2
(
CP 2

)
→ H4

(
CP 2

)
is an isomorphism, is indeed a generator. However, in practice, this

is not a big problem. In fact, it provides a nice example of a proof by computation. It is
very direct to manually show that the map i : CP 2 → K2 induced by i(inlx) = |x | is equal
to the underlying map of e2. The fact that i generates H2

(
CP 2

)
can then be verified by

computation: applying the isomorphism H2
(
CP 2

) ∼= Z to | i | returns 1 by normalisation in
Cubical Agda. We stress, for those skeptical of this method, that it also is very direct to
provide a “manual” formalisation of this fact.

The final step of the formalisation was Proposition 5.8, i.e. the iterated Hopf construction.
Although technical, the formalisation could be carried out following Brunerie closely.

6. The simplified proof and normalisation of a Brunerie number

It turns out that not only Chapter 4, but also Chapters 5–6 can be avoided. As conjectured by
Brunerie, it would be possible to do this by simply normalising the Brunerie number. While
we still cannot normalise his original definition of it, we can at least provide a computation of
a substantially simplified Brunerie number. This is defined via a more tractable description
of the isomorphism π3(S2) ∼= Z as a composition of simpler isomorphisms, relying on an
alternative definition of π3 in terms of S1∗S1. The idea is then to trace [i2, i2] : π3(S2) step
by step through these isomorphisms. This gives a sequence of new Brunerie numbers and
one of these normalises to −2 in Cubical Agda in a matter of seconds.

The trick to give a more tractable definition of π3(S2) ∼= Z is to redefine the third
homotopy group of a type A as π∗3(A) = ∥ S1∗ S1 →⋆ A ∥0. This reformulation of π3 can
be given an explicit group structure, such that pre-composition by S1∗S1 ≃ S3 induces an
isomorphism π3(A) ∼= π∗3(A). Let us first set up machinery we need (and a bit more).

6.1. Interlude: joins and smash products of spheres. We have seen that the equivalence
S3≃S1∗ S1 played a crucial role in Brunerie’s original proof. What is less clear, however,
is what this equivalence actually looks like. It turns out that it is closely related to the
multiplication S1 ∧S1 → S2 and, as such, has a rather direct and algebraic description. Let
us therefore briefly study this multiplication and describe its relation to the decomposition
of spheres into joins. Although we only need low-dimensional special cases of these facts, we
take the opportunity to tell the general story.

Remark. In this subsection only, we will use the definition Sn := Suspn Bool. In particular,
this means that we redefine S1 := SuspBool instead of using the base/loop construction. This
is only done for ease of presentation and is not used in the formalisation.

3A more general form of the Gysin sequence using Brunerie’s indexing has later been added to
agda/cubical.
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Let us use the following (explicit) definition of the smash product A∧B.

data ∧ (A B : Pointed) : Type where

⋆∧ : A ∧ B

⟨ ⟩ : A × B → A ∧ B

pushl : (a : A) → ⟨ a , ⋆B ⟩ ≡ ⋆∧
pushr : (b : B) → ⟨ ⋆A , b ⟩ ≡ ⋆∧
pushlr : pushl ⋆A ≡ pushr ⋆B

This construction is well-known and can easily be seen to be (bi-)functorial (see e.g. [Lju24,
Definition 6]), i.e. given pointed maps f : A →⋆ C and g : B →⋆ D, there is a map
f ∧ g : A∧B → C ∧D with (f ∧ g)⟨x , y⟩ := ⟨f x , g y⟩.

The first goal is to define a multiplication Sn ∧Sm → Sn+m. To facilitate future
proofs, we first introduce the following construction which lifts maps A×B → C to maps
(SuspA)×B → SuspB:

ˆ : (A × B → C ) → ((Susp A) × B → Susp C )

(ˆ f ) (north , b) = north

(ˆ f ) (south , b) = north

(ˆ f ) (merid a i , b) = σ (f (a , b)) i

The function ̂f is pointed in the left-argument by construction. It is pointed also in the
right-argument if this is the case for f . Hence, given any function g : A∧B → C, we also
get (with some abuse of notation) ̂g : (SuspA)∧B → SuspC.

Lemma 6.1. For any pointed types A and B, the map ̂ idA∧B : (SuspA)∧B → Susp (A∧B)
is an equivalence.

Proof. The inverse of ̂ idA∧B is induced by the map A×B → Ω ((SuspA)∧B) defined by
mapping (a, b) : A×B to the composite loop given by:

⋆∧ ⟨north, b⟩ ⟨north , b⟩ ⋆∧
pushr

−1 cong ⟨− , b⟩ (σ a) pushr

The fact that these maps cancel follows by some technical but elementary path algebra. For
the details, we refer to the formalisation.

Lemma 6.2. If f : A∧B → C is an equivalence, then so is ̂f : SuspA∧B → Susp A

Proof. Using equivalence induction (see e.g. [Uni13, Corollary 5.8.5]), it is enough to prove
the lemma for C := A∧B and f := idA∧B. In this case, the statement is precisely that
of Lemma 6.1.

These lemmas allow us to define an equivalence ∧n,m : Sn ∧Sm ≃ Sn+m (we borrow
this notation from [Bru16a, Proposition 4.2.2]). We will write ⌣ : Sn×Sm → Sn+m for
the underlying function, i.e. x ⌣ y := ∧n,m⟨x , y⟩. The name ⌣ is suggestive: modulo the
quotient maps S• → K•, it is precisely the cup product; this justifies overloading the symbol.
We define it by induction on n. In the case n = 0, we define it on canonical points ⟨x , y⟩ by
case distinction on x:

false⌣ y = y

true⌣ y = ⋆Sm
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This map induces a map on the full smash product S0 ∧Sm [Bru16a, Section 4.1]. In fact, it
is an equivalence, and thereby ∧0,m is defined. For n > 0 we use the fact that Sn := SuspSn−1

and simply define define ∧n,m := ̂∧n−1,m. By Lemma 6.1, this is an equivalence.
Let us try to transfer this construction from smash products to joins. To begin with,

consider the following map, defined for any two pointed types A and B:

pinch : A ∗ B → Susp (A ∧ B)

pinch (inl a) = north

pinch (inr b) = south

pinch (push (a , b) i) = merid ⟨ a , b ⟩ i

Proposition 6.3. For any two pointed types A and B, the map pinch is an equivalence.

Proof. While we have, in our formalisation, explicitly constructed an inverse of pinch and
proved directly that the two maps cancel, a recent (independent) result by Cagne et
al. [CBKB24] allows us to give a more principled proof. We proceed by noting that for any
pointed type C, we have

(Susp (A∧B)→⋆ C)≃ (A∧B →⋆ ΩC)≃ (A→⋆ (B →⋆ ΩC))≃ (A ∗B →⋆ C)

where the first equivalence comes from the adjunction between Susp and Ω and the second
from the adjunction between smash products and doubly pointed maps. The third equivalence
is [CBKB24, Lemma 6.1]. This shows that Susp (A∧B) and A ∗B have the same elimination
principle, which implies the desired statement.

Let Fn,m : Sn∗ Sm → Sn+m+1 denote the following composition:

Sn∗ Sm pinch−−−→ Susp (Sn ∧Sm)
Susp (∧n,m)−−−−−−−−→ SuspSn+m =: Sn+m+1

Unfolding the definition of Fn,m we see that it has an incredibly compact description:

Fn,m : Sn ∗ Sm → Sn+m+1

Fn,m (inl a) = north

Fn,m (inr b) = north

Fn,m (push (a , b) i) = σ (a ⌣ b) i

Since Fn,m is a composition of two equivalences, we immediately arrive at the following
result.

Proposition 6.4. Fn,m is an equivalence

We have already seen that the special case S1∗S1≃S3 plays an important role in
Brunerie’s proof. Now that we have moved from the rather opaque definition of this
equivalence presented in Brunerie’s thesis to the definition in terms of the very explicit
function Fn,m, we can hope to better understand its role in the definition of the Brunerie
number. Since the only non-trivial component of the construction of Fn,m is ⌣, we may
hope that it inherits some of its properties. We study these now.

Let us first analyse the interaction of ⌣ with inversion. Recall, given a pointed type A
we can define inversion on SuspA by:

- : Susp A → Susp A

- north = north
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- south = north

- (merid a i) = σ a (˜ i)

We get sphere inversion by letting − : Sn → Sn be boolean negation when n := 0 and the
suspension inversion defined above when n > 1.4

Proposition 6.5. The multiplication ⌣ is graded-commutative, i.e. for x : Sn and y : Sm,
we have x ⌣ y≡−nm(y ⌣ x).

For the proof, we refer to [BLM22, Proposition 18] which is the corresponding statement
for the cup product on Kn := ∥ Sn ∥n and whose proof directly applies also in our setting.
Associativity follows, just like in the proof of [BLM22, Proposition 17], by sphere induction:

Proposition 6.6. The multiplication ⌣ is associative.

Proof. Let x : Sn, y : Sm and z : Sk. We show that x ⌣ (y ⌣ z)≡ (x ⌣ y)⌣ z by induction
on n and x. When n = 0, the two equalities

false⌣ (y ⌣ z)≡ (false⌣ y)⌣ z

true⌣ (y ⌣ z)≡ (true⌣ y)⌣ z

hold definitionally. For the inductive step, we use suspension elimination on x : Sn+1. The
two equalities

north⌣ (y ⌣ z)≡ (north⌣ y)⌣ z

south⌣ (y ⌣ z)≡ (south⌣ y)⌣ z

also hold definitionally. So, by inspection of the definition of ⌣, we need to show that

σ(x ⌣ y)≡ cong (−⌣ z) (σ(x ⌣ y))

Using the action of cong on path composition, we can unfold the right-hand side as follows:

cong (−⌣ z) (σ(x ⌣ y))≡ cong (−⌣ z) (merid (x ⌣ y)) · cong (−⌣ z) (merid north)−1

:=σ(x ⌣ y) ·σ(north⌣ y)−1

≡σ(x ⌣ y)

6.2. Homotopy groups in terms of joins. As we have seen in Brunerie’s construction of
the Hopf map, it is often easier to describe maps of type Sn∗ Sm → A than those of type
Sn+m+1 → A. However, the definition of homotopy groups we have relied on so far uses
the latter type. This forces us to translate back and forth whenever we want to use the
definition in terms of joins. The key strategy behind our new calculation of the Brunerie
number is to rephrase homotopy groups in terms of maps out of joins of spheres.

Definition 6.7. Given a pointed type A, we define π∗n+m+1(A) := ∥ Sn∗ Sm →⋆ A ∥0.

Clearly, this is equivalent to the usual definition of πn+m+1(A) via pre-composition
by Fn,m. However, π∗n+m+1(A) can be endowed with an explicit group structure which
Fn,m turns out to respect. In order to construct the group structure on π∗n+m+1(A), let us

4If we prefer to use the base/loop-construction of S1, we may define the inversion map simply by sending
loop to loop−1.
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construct a map ℓ : A×B → Ω (A ∗B) for all pointed types A and B. Recall, we take A ∗B
to be pointed by inl ⋆A. We define ℓ by:

ℓ(a , b) := push (⋆A , ⋆B) · push (a , ⋆B)−1 · push (a , b) · push (⋆A , b)−1

Note that ℓ is pointed in both arguments. Let us also define explicitly (once and for all)
a pointed version of cong taking a pointed functions f : A →⋆ B to a pointed function
cong⋆ f : ΩA→⋆ ΩB. We define it by

cong⋆ f p := ⋆−1
f · cong f p · ⋆f

where, recall, ⋆f : f ⋆A ≡ ⋆B. In other words, cong⋆ is the functorial action of Ω.
We can now add two functions f and g of type A ∗B →⋆ C by

(f+∗ g) : A ∗ B → C

(f+∗ g) (inl a) = ⋆C
(f+∗ g) (inr b) = ⋆C
(f+∗ g) (push (a , b) i) = (cong⋆ f (ℓ (a , b)) · cong⋆ g (ℓ (a , b))) i

We take this function to be pointed by refl. Note that, since ℓ is pointed in both arguments,
both cong (f +∗ g) (push (a , ⋆B)) and cong (f +∗ g) (push (⋆A , b)) vanish. Let us compare
this with the addition on the usual definition homotopy groups. In general, we may add any
two functions f and g of type SuspA→⋆ B by

(f+Susp g) : Susp A → B

(f+Susp g) north = ⋆B
(f+Susp g) south = ⋆B
(f+Susp g) (merid a i) = (cong⋆ f (σ a) · cong⋆ g (σ a)) i

This is precisely the construction used to define the group structure on πn whenever n > 0.
Note that, by construction, we have cong (f +Susp g) (merid ⋆A)≡ refl.

Proposition 6.8. Given f, g : Sn+m+1 →⋆ A, we have

(f +Susp g) ◦Fn,m≡ (f ◦Fn,m)+∗(g ◦Fn,m)

Proof. The two functions agree on inl and inr by refl. Let us consider the action on push(x , y).
We have

cong ((f +Susp g) ◦Fn,m) (push (x , y)) := cong (f +Susp g) (σ(x ⌣ y))

≡ cong (f +Susp g) (merid (x ⌣ y))

· cong (f +Susp g) (merid north)−1

≡ cong (f +Susp g) (merid (x ⌣ y))

which, by definition, unfolds to

cong⋆ f (σ(x ⌣ y)) · cong⋆ g (σ(x ⌣ y)) (6.1)

On the other hand, cong ((f ◦Fn,m)+∗(g ◦Fn,m)) (push (x , y)) unfolds to

cong⋆ f (cong Fn,m (ℓ(x , y))) · cong⋆ g (cong Fn,m (ℓ(x , y))) (6.2)

Hence, comparing (6.1) and (6.2), we see that it is enough to show that

cong Fn,m (ℓ(x , y))≡σ(x⌣y)
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Unfolding ℓ, we get

cong Fn,m (ℓ(x , y))≡σ(⋆Sn ⌣ ⋆Sm) ·σ(x ⌣ ⋆Sm)
−1 ·σ(x ⌣ y) ·σ(⋆Sn ⌣ y)−1

≡σ north ·σ north−1 ·σ(x ⌣ y) ·σ north−1

≡σ(x ⌣ y)

Proposition 6.9. For any pointed type A, the set π∗n+m+1(A) is a group with group structure
induced by +∗. Furthermore, pre-composition (Fn,m)∗ : πn+m+1(A) → π∗n+m+1(A) is an
isomorphism.

Proof. We know that (Fn,m)∗ is an equivalence of types. By Proposition 6.8 and the Structure
Identity Principle [Uni13, Section 9.8], it induces a path

(πn+m+1(A),+
Susp)≡ (π∗n+m+1(A),+

∗)

of raw monoids (i.e. elements of type ΣA:Type(A ×A→ A)). Since the the left-hand side of
this equality can be extended to form a group, so can the right-hand side. This is precisely
what we set out to show.

The following result follows in exactly the same manner.

Proposition 6.10. π∗n+m+1 is functorial with its action on maps being defined by post-
composition.

6.3. The new synthetic proof that π4(S3) ∼= Z/2Z. Let us now return to the new proof.
We will use ⌣ from above in dimensions S1×S1 → S2. We remark that, by Proposition 6.5,
it is anti-commutative in these dimensions. In order to make the following constructions
somewhat more direct, let us return to the base/loop definition of S1. Under the equivalence,
SuspBool≃S1, the multiplication is described by

⌣ : S1 → S1 → S2
base ⌣ y = north

(loop i) ⌣ y = σ y i

In addition to anti-commutativity and associativity, we have the following distributivity-like
fact about ⌣:

Lemma 6.11. For x, y : S1, we have x ⌣ (x+ y)≡x ⌣ y

Proof. We proceed by S1-induction on x. The equality base⌣ (base+ y)≡ base⌣ y holds
by refl, so we are left to verify the equality

cong (x 7→ x ⌣ (x+ y)) loop≡σ y

Simplifying the left-hand side using functoriality of binary cong [LM24, Definition 1], we get

cong (x 7→ x ⌣ (x+ y)) loop≡ cong (x 7→ north⌣ (x+ y)) loop

· cong (x 7→ x ⌣ (north+ y)) loop

:= refl ·σ y≡σ y
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We now redefine π3(S2) ∼= Z via the following decomposition, primarily defined in terms
of post- and pre-composition with F1,1 : S1∗ S1∼=S3 and its inverse. In what follows, let us
simply write F := F1,1 and π∗3(A) := π∗1+1+1(A) := ∥ S1∗S1 →⋆ A ∥0. We also remind the

reader of the map h : S1∗ S1 → S2 from Definition 3.5 for which h∗ is an isomorphism–this
follows from Proposition 3.11.

Definition 6.12. Let θ : π3(S2) ∼= Z be defined by the following sequence of isomorphisms

π3(S2) π∗3(S2) π∗3(S1∗ S1) π∗3(S3) π3(S3) ZF∗ (h∗)−1 F∗ (F−1)∗ ξ

where the last map can be chosen to be any reasonable description of the isomorphism
ξ : π3(S3) ∼= Z sending i3 to 1.

The goal is to trace the image of [i2, i2] : π3(S2) under θ. Let us define the following
three underlying functions of elements η1 : π

∗
3(S2), η2 : π∗3(S1∗ S1) and η3 : π∗3(S3):

η1-fun : S1 ∗ S1 → S2
η1-fun (inl x ) = north

η1-fun (inr y) = north

η1-fun (push (x , y) i) = (σ y · σ x ) i

η2-fun : S1 ∗ S1 → S1 ∗ S1
η2-fun (inl x ) = inr (- x )

η2-fun (inr y) = inr y

η2-fun (push (x , y) i) = (push (y - x , - x ) −1 · push (y - x , y)) i

η3-fun : S1 ∗ S1 → S3
η3-fun (inl x ) = north

η3-fun (inr y) = north

η3-fun (push (x , y) i) = (σ (x ⌣ y) −1 · σ (x ⌣ y) −1) i

The claim is now that the image of [i2, i2] under the chain of isomorphisms can be
described as follows:

[i2, i2] η1 η2 η3 (−2)i3 ±2F∗ (h∗)−1 F∗ (F−1)∗ ξ

Lemma 6.13. F∗ [i2, i2]≡ η1

Proof. The definition of η1 matches that of | ∇ ◦W | : π∗3(S2), and so the statement holds by
construction of the Whitehead product.

Lemma 6.14. (h∗)
−1 η1≡ η2

Proof. Applying h∗ on both sides gives the equation η1≡ h∗ η2. Thus, we are done if we can
show that η1-fun a≡ h (η2-fun a) for a : S1∗ S1. We do it by induction on a. When a is inlx
or inr y, the equality holds by refl. Thus, it remains to show that

cong η1-fun (push (x , y))≡ cong (h ◦ η2-fun) (push (x , y))
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We show the identity by unfolding the right-hand side:

cong (h ◦ η2-fun) (push (x , y)) := cong h (push (y−x ,−x)−1 · push (y−x , y))
≡ cong h (push (y−x ,−x))−1 · cong h (push (y−x , y))
:=σ((−x)− (y−x))−1 ·σ(y− (y−x))
≡σ(− y)−1 ·σ x
≡σ y ·σ x
=: cong η1-fun (push (x , y))

Lemma 6.15. F∗ η2≡ η3
Proof. The identity follows if we can show that F(η2-fun a)≡ η3-fun a for a : S1∗S1. Again,
the identity holds by refl when a is inlx or inr y. So it remains to show that

cong (F ◦ η2-fun) (push (x , y))≡ cong η3-fun (push (x , y))

Just like in the proof of Lemma 6.15, we show this simply by unfolding the definitions of
the, in this case, left-hand side. We get:

cong (F ◦ η2-fun) (push (x , y)) := cong F (push (y−x ,−x)−1 · push (y−x , y))
≡ cong F (push (y−x ,−x))−1 · cong F (push (y−x , y))
:=σ((y−x)⌣ (−x))−1 ·σ((y−x)⌣ y)

≡σ((−x)⌣ ((−x)+ y)) ·σ(y ⌣ (y−x))−1

≡σ((−x)⌣ y) ·σ(y ⌣ (−x))−1

≡σ(x ⌣ y)−1 ·σ(y ⌣ (−x))−1

≡σ(x ⌣ y)−1 ·σ(x ⌣ y)−1

=: cong η3-fun (push (x , y))

where the fourth and seventh equalities come from anti-commutativity and the fifth equality
from Lemma 6.11. The fact that σ commutes with inversion is used throughout.

Theorem 6.16. π4(S3) ∼= Z/2Z
Proof. By uniqueness (up to a sign) of isomorphisms π3(S2) ∼= Z, it suffices, according to
Corollary 4.12, to show that the image of [i2, i2] under θ is ±2. That is:

(ξ ◦ (F−1)∗ ◦ F∗ ◦ (h∗)−1 ◦ F∗)[i2, i2]≡±2
By Lemma 6.13, Lemma 6.14 and Lemma 6.15, it suffices to show that

(ξ ◦ (F−1)∗) η3≡±2
One can easily show that F−1 η3≡ (−2) i3, and hence

(ξ ◦ (F−1)∗) η3≡ (−2) (ξ i3)≡ − 2

In addition to providing a much shorter proof of π4(S3) ∼= Z/2Z, this gives us a sequence
of new Brunerie numbers, β1, β2, β3 : Z, of decreasing complexity:

β1 = (ξ ◦ (F−1)∗ ◦ F∗ ◦ (h∗)−1) η1

β2 = (ξ ◦ (F−1)∗ ◦ F∗) η2
β3 = (ξ ◦ (F−1)∗) η3
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This gives new hope for Brunerie’s conjecture about a proof by normalisation. This may be
captured as follows:

Theorem 6.17 (New Brunerie numbers). If either of β1, β2, β3 : Z normalises to ±2, then
π4(S3) ∼= Z/2Z.

Ideally, we could normalise β1. This, however, turns out to be difficult, as it does not
bypass the main hurdle of computing the inverse of the isomorphism π∗3(S2) ∼= π∗3(S1∗ S1)
induced by the Hopf map, which has a rather indirect construction coming from the LES
of homotopy groups associated to the Hopf fibration. This problem does not apply to β2,
for which the computation does not rely on the problematic inverse. Unfortunately, also β2
fails to normalise in reasonable time in Cubical Agda. This is surprising, as the only maps
playing a fundamental role here are two applications of the equivalence S1∗ S1 ≃ S3, which
is not too involved, and one application of ξ which may be compactly described via

π3(S3)
| |∗−−→ H3

(
S3
) ∼=−→ Z

and computes relatively well if the last isomorphism is constructed as in [BLM22].5 We
have hence, at the time of writing, not been able to normalise even β2, despite many
optimisations of the functions involved. We are, however, able to normalise β3 after some
minor modifications to η3 and the map π∗3(S3)→ Z. This optimised version of β3, normalises
to −2 in Cubical Agda in just under 4 seconds, thereby giving us an at least partially
computer-assisted proof of π4(S3) ∼= Z/2Z.

We emphasise again that β2 is a vastly simplified version of β since the isomorphism
π3(S2) ∼= π3(S3) never has to be computed. Hence, it is rather surprising that computations
break down already at this stage. This tells us that Cubical Agda has a long way to go
before any direct computation of the original β is feasible. We hope that this could be useful
for benchmarking in future optimisations of Cubical Agda and related systems.

Finally, we address the elephant in the room: why is there a minus sign popping up?
In other words, have we really chosen the, in some way, canonical isomorphism? The
isomorphism π3(S3) ∼= Z maps, as expected, i3 to 1, so it can hardly be the culprit. Neither
can the equivalence F : S1∗S1 ≃ S3, since it is applied equally in the constructions of hopf
and of [i2, i2]. We could, however, have defined the push-case for h by

h (push (x , y) i) = σ (x - y) i

in which case θ would have sent [i2, i2] to 2 and hopf to 1 (note that this is only possible
since altering h would alter the definition of θ). The construction of h that we have given
is, however, precisely the one which fell out by unfolding our formalisation Brunerie’s
construction of the corresponding map. If this indeed is what Brunerie intended, we may
also conclude that the original Brunerie number β is equal to −2. We stress that this merely
is a fun fact and of no mathematical importance to Brunerie’s proof or our formalisation.

6.4. A stand-alone proof of Brunerie’s theorem? We saw above that the new proof of
β≡ ± 2 together with Corollary 4.12 implies Brunerie’s theorem. However, what conclusions
can we draw concerning the cardinality of π4(S3) in the absence of Corollary 4.12? In
other words, how self-contained is the new proof? While the fact that β≡ ± 2 does not

5As noted in [Lju20], the Freudenthal suspension theorem should be avoided here as it has a tendency to
lead to very slow computations. This is another way in which we deviate from Brunerie’s β.
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automatically imply that π4(S3)∼=Z/2Z, it does provide all ingredients necessary for a
stand-alone proof of the following fact:

Theorem 6.18. If π4(S3) ̸≃1, then π4(S3)∼=Z/2Z.

Before we prove Theorem 6.18, we need to analyse the action of suspension on Whitehead
products and, in particular, on [i2, i2] : π3(S2). In what follows, let A,B and C be pointed
types and let us fix two pointed functions f : SuspA →⋆ C and g : SuspB →⋆ C. The
Whitehead product of f and g can be understood as the composition

A ∗B W−−→ SuspA∨SuspB f ∨ g−−−→ C ∨C ∇−→ C

We remark that this construction has been independently studied by Cagne et al. [CBKB24,
Definition 6.3] who call it the ‘generalised Whitehead product’. After a bit of massaging,
this function can be given a very simple description:

(f ·w g) : A ∗ B → C

(f ·w g) (inl x ) = ⋆C
(f ·w g) (inr y) = ⋆C
(f ·w g) (push (x , y) i) = (cong⋆ g (σ y) · cong⋆ f (σ x )) i

We remark that this composition gives η1-fun when A = B = S1, C = S2 and f = g = idS2 .
Our aim is to show that f ·w g vanishes under suspension. To this end, let us consider a

function very similar to f ·w g:
γ : A ∗ B → C

γ (inl x ) = ⋆C
γ (inr y) = ⋆C
γ (push (x , y) i) = (cong⋆ f (σ x ) · cong⋆ g (σ y)) i

Despite the similarity of f ·w g and γ, the latter turns out to be trivial.

Lemma 6.19. γ is constant.

Proof. We show that γ a≡ ⋆C for all a : S1∗S1 by induction on a. When a is inlx, the
left-hand side reduces to ⋆C , so we need to provide a path ⋆C ≡ ⋆C . Instead of choosing
the obvious path refl, we provide cong⋆ f (σ x) : ⋆C ≡ ⋆C . When a is inr y, we have the same

goal. This time, we provide the path cong⋆ g (σ y)
−1. For the final step, i.e. the action of γ

on push (x , y), we need to provide a filler of the following square of paths:

⋆C ⋆C

⋆C ⋆C

refl

cong⋆ f (σ x)

cong⋆ f (σ x) · cong⋆ g (σ y)

(cong⋆ g (σ y))−1

Squares of this shape always have a filler by definition of path composition, and thus the
statement holds.

Now, although f ·w g and γ may look similar, it it is now, in light of Lemma 6.19, clear
that they are not the same. This happens because the actions of the functions on push (x , y)
only are the same up to commutation of paths—something which is not always legal in the
possibly non-commutative loop space ΩC. Nevertheless, after suspending the function, the
situation is different:
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Lemma 6.20. The pointed functions Susp (f ·w g),Susp γ : Susp (A ∗B) →⋆ SuspC are
equal.

Proof. Under the adjunction Susp ⊣ Ω, it is enough to show that for every a : A ∗B, we
have an equality of loops in Ω (SuspC):

σ((f ·w g) a)≡σ(γ a)

We proceed by induction on a. When a is inlx or inr y, the equality holds by refl. Thus, it
remains to show that

cong σ (cong (f ·w g) (push (x , y)))≡ cong σ (cong γ (push (x , y)))

As before, this is a simple exercise in unfolding the definitions of each respective function:

cong σ (cong (f ·w g) (push (x , y))) := cong σ (cong⋆ g (σ y) · cong⋆ f (σ x))
≡ cong σ (cong⋆ g (σ y)) · cong σ (cong⋆ f (σ x))

≡ cong σ (cong⋆ f (σ x)) · cong σ (cong⋆ g (σ y)) (EH)

≡ cong σ (cong⋆ f (σ x) · cong⋆ g (σ y))
≡ cong γ (push (x , y))

where the step labelled (EH) is an application of the Eckmann-Hilton argument which says
that path composition in Ω2A is commutative for any pointed type A [Uni13, Theorem
2.1.6]. In particular, since we may interpret cong σ (cong⋆ f (σ x)) and cong σ (cong⋆ g (σ y))
as loops in Ω2 (SuspC), the identity holds.

Proposition 6.21. The pointed function Susp (f ·w g) : Susp (A ∗B)→⋆ SuspC is constant.

Proof. Since γ is constant and constant functions are preserved by suspension, Lemma 6.19
gives us the desired equality of (pointed) functions:

Susp (f ·w g)≡Susp γ≡ constC

As we have seen before, setting A = Sn and B = Sm in the definition of f ·w g,
so that f : Sn+1 →⋆ C and g : Sm+1 →⋆ C we obtain the usual Whitehead product.
[| f |, | g |] : πn+m+1(C), that is

[| f |, | g |]≡ | (f ·w g) ◦F−1
n,m |

Let us translate Proposition 6.21 to a result concerning these maps.

Proposition 6.22. For f : Sn →⋆ C and g : Sm →⋆ C, their Whitehead product
(f ·w g) ◦F−1

n,m vanishes under suspension, i.e.

Susp (| (f ·w g) ◦F−1
n,m |)≡ constC

Proof. The result follows immediately from the fact that the action of suspension Susp :
(X →⋆ Y )→ (SuspX →⋆ SuspY ) is functorial and from Proposition 6.21.

We get the following classically well-known theorem as an immediate corollary:

Theorem 6.23. For any x : πn+1(C) and y : πm+1(C), the Whitehead product [x, y] :
πn+m+1(C) lies in the kernel of the suspension map σ∗ : πn+m+1(C)→ πn+m+2(SuspC)

We now have all that we need in order to prove Theorem 6.18.
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Proof of Theorem 6.18. By the Freudenthal suspension theorem, we know that σ∗ : π3(S2)→
π4(S3) is surjective. Furthermore, we know that the domain of this function is isomorphic to
Z via θ from Definition 6.12 and thus we have a surjection σ∗ ◦ θ−1 : Z→ π4(S3). We know
from the new direct calculation of the Brunerie number that θ−1(−2)≡ [i2, i2] and thus we
have

σ∗(θ
−1(−2))≡σ∗[i2, i2]≡ 0π4(S3)

where the second equality comes from Theorem 6.23. Hence, we have shown that there
exists a surjection from Z onto π4(S3) with −2 in its kernel. This implies the theorem.

Now, with Theorem 6.18 in mind, we seem to be very close to having produced a
remarkably short proof of Brunerie’s theorem. All that remains is showing that π4(S3) is not
trivial. This, however, turns out not to be entirely straightforward. One possible proof uses
the so called Steenrod Squares. This is a cohomology operation which was originally defined
in HoTT by Brunerie [Bru16b] and whose theory was recently made available in HoTT by
Ljungström and Wärn [LW24]. Such an approach, however, can hardly be said to simplify
Brunerie’s original proof, as the Steenrod Squares are rather advanced constructions. A
solution to this problem which would truly be impressive would be a direct construction
of two elements x, y : π4(S3) and a proof that x ̸≡ y. While this appears to be difficult to
do by hand, we can, since we are working constructively, reformulate this problem as a
computational challenge.

Challenge. Construct a function f : π4(S3)→ Bool and an element e : π4(S3) such that

• f 0π4(S3) computes to true and
• f e computes to false.

In fact, such a computation was successfully run by Jack [Jac23] in cubicaltt [CCHM].
Unfortunately, Cubical Agda has not yet been able to perform the computation.

7. Conclusion

In this paper, we have presented three formalisations of π4(S3) ∼= Z/2Z in the Cubical Agda

system. For the different proofs that |β| ≡ 2, the line count is roughly as follows:

(1) Brunerie’s original proof [∼ 9, 000 LOC]
(2) A direct calculation of β [∼ 600 LOC]
(3) A computer-assisted reformulation of (2) [∼ 400 LOC]

As always, the number of lines of code (LOC) should be taken with a grain of salt. First, the
9, 000 LOC in the first formalisation exclude over 8, 000 LOC from [Kan22b, Cav20, BLM22]
which we have imported as libraries. In addition, these numbers also exclude many elementary
results used in the formalisation, including ∼ 9000 LOC for Chapters 1–3. We also stress
that the line count for formalisations (2) and (3) only concern the part of the proof discussed
in section 6.

Formalisation (1), which constituted the bulk of this paper, was a formalisation of
Brunerie’s pen-and-paper proof, taking some convenient shortcuts when possible. The prob-
lem of formalising Brunerie’s proof has been a widely discussed open problem in HoTT/UF,
and we hope that our efforts here provide a satisfactory solution to it. Formalisations (2)
and (3) were of a simplified calculation of the Brunerie number, β. The very similar proofs
(2) and (3) differ in that (3) uses Cubical Agda to carry out part of the computation of
the new Brunerie number automatically. Perhaps equally important, we have seen that (3)
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provides us with new Brunerie numbers β1, β2 : Z which are far simpler than the original
one, but still do not normalise in a reasonable amount of time. Our hope is that these can
prove useful in future optimisations of Cubical Agda and related systems, as they could help
shed some light on where the normalisation of the original Brunerie number breaks down.

We remark that proofs (1) and (2) could be done in Book HoTT and do not use
any cubical machinery in a fundamental way, making them interpretable in any suitably
structured (∞, 1)-topos [Shu19]. We hence claim that, in our formalisations, we do not
crucially rely on computations using univalence and HITs to prove anything that we could
not have proved by hand in Book HoTT. Nevertheless, the Cubical Agda system has been
very helpful in the formalisation, primarily due to its native support for HITs and definitional
computation rules for higher constructors. Formalisation (3), however, is only valid in a
system with computational support for univalence as it crucially relies on normalisation
of proof terms involving univalence. It would be interesting to run this in other cubical
systems, like cubicaltt [CCHM], redtt [Redb], cooltt [Reda], etc.

In addition to the above, we have also taken the opportunity to include some important
constructions and results concerning joins of spheres and Whitehead products. In particular,
we have given a very explicit definition of the decomposition of spheres into joins of spheres,
given a new construction of homotopy groups in terms of maps out of joins of spheres and
shown that Whitehead products vanish under suspension. The vanishing of Whitehead
products allowed us to extend (2) to a stand-alone proof of the fact that π4(S3) is either
trivial or isomorphic to Z/2Z. Interestingly, another direct proof using an entirely different
approach of this very fact was recently announced by Baker [Bak24]. Baker’s argument is
concerned with showing that a certain path constructed via the Eckmann-Hilton argument
generates π3(S2) and then concludes that two times this generator must vanish under
suspension due to the so called syllepsis [SK22]. We leave it to future work to investigate if
anything interesting can be said about the relation between Baker’s proof and ours.

We also remark that our formalisation of Brunerie’s proof does not cover all results of
Brunerie’s thesis in full generality. For instance, we have not developed his proof concerning
Whitehead products in full generality. We leave this generalisation for future work. This
would tie in nicely with another possible direction of future research, namely that of
investigating whether the approach outlined in section 6 can be used to compute other
Whitehead products. In addition, describing their graded quasi-Lie algebra structure is work
in progress.
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