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Abstract—This study presents an adversarial method for
anomaly detection in real-world applications, leveraging the
power of generative adversarial neural networks (GANs) through
cycle consistency in reconstruction error. Previous methods suffer
from the high variance between class-wise accuracy which
leads to not being applicable for all types of anomalies. The
proposed method named RCALAD tries to solve this problem by
introducing a novel discriminator to the structure, which results
in a more efficient training process. Additionally, RCALAD
employs a supplementary distribution in the input space to steer
reconstructions toward the normal data distribution, effectively
separating anomalous samples from their reconstructions and
facilitating more accurate anomaly detection. To further enhance
the performance of the model, two novel anomaly scores are
introduced. The proposed model has been thoroughly evaluated
through extensive experiments on six various datasets, yielding
results that demonstrate its superiority over existing state-of-
the-art models. The code is readily available to the research
community at Github.

Index Terms—Anomaly detection, Generative adversarial net-
work, Cycle consistency, Anomaly score.

I. INTRODUCTION

Discovering dissimilar instances and rare patterns is one of
the most essential tasks in real-world data. Anomaly detection
is the process of finding such samples, which are known
as anomalies [1]. Anomalies are an important aspect of any
dataset and play an important role in a wide range of applica-
tions. For example, an irregular traffic pattern on a computer
network could indicate hacking and data transmission to unau-
thorized places. Abnormalities in credit card transactions may
reveal illicit economic activity [2], or abnormalities in an MRI
image may indicate the existence of a malignant tumor [3].
Despite the existence of statistical and machine learning-based
methods, designing effective models for detecting anomalies
in complex, high-dimensional data spaces is still a major
challenge [4].
Generative adversarial networks (GANs) have shown remark-
able performance in the field of anomaly detection by over-
coming this challenge and modeling the distribution of high-
dimensional, complex real-world data. In GAN, a generator
network is contrasted with a discriminator network; the dis-
criminator attempts to differentiate between the real data and
the data produced by the generator network. The generator
and discriminator are trained simultaneously; the generator
network G records the distribution of the data, and the dis-
criminator D estimates the likelihood whether samples come
from real data distribution or are being generated by G. The

objective function of the generator G is to maximize the error
probability of the network D. This structure leads to a two-
player game like mini-max games [5].
The ability of adversarial neural networks to represent natural
images has previously been demonstrated [6], [7], and their
use in processing speech and text [4], as well as medical
images [8] is growing. This paper proposes an efficient method
for anomaly detection that is based on generative adversarial
networks. Similar to many learning-based algorithms, there
are two main steps: training and testing. Like other adversarial
frameworks, we train the generator and discriminator networks
on normal data throughout the training phase so that both are
updated in succession. In this case, the joint discriminator is
used to make the training of the adversarial structure more
stable. The encoder E is trained along with the discriminator
and generator network to apply the inverse mapping of the
input samples to the latent space.

In order to minimize the distance between input space sam-
ples and their reconstruction and also minimize the distance
between latent space samples (the inputs that are fed to the
generator) and their reconstruction, we proposed a new joint
discriminator named Dxxzz . In order to find an anomalous
sample, the difference between input and its reconstruction
is computed and samples with high differences can be deter-
mined as anomalies. Finding anomalous samples necessitates
an appropriate distance between the input sample and its
reconstruction. To achieve this aim, we also train our network
on some samples that are produced by the proposed supple-
mentary distribution σ(x).In summary, this paper provides the
following contributions:

• A new discriminator Dxxzz in order to provide complete
cycle consistency is proposed.

• A supplementary distribution σ(x) is used in order to bias
network towards normal data manifold.

• Two new anomaly scores are introduced.
The structure of this paper is as follows: In the next section, we
have a summary of previous works. Preliminaries are provided
in Section 3. The proposed model is elaborated in Section 4.
The experiments will be discussed in Section 5. We have a
conclusion in Section 6, and the final section is devoted to
future work.

II. RELATED WORK

Anomaly detection, also known as novelty detection and
outlier detection, has been widely studied, as reviewed in [9]–
[11]. The previous methods used in this field are generally
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divided into two categories: methods based on representation
learning and methods based on generative models.

A representation learning method learns a mapping for
the main characteristics of normal data. One-class support
vector machine finds the marginal boundary around the normal
data [12]. The isolation forest method is one of the classic
machine learning methods. In this method, the tree is built
with randomly chosen features, and the anomaly score is
the average distance to the root [13]. Deep support vector
data description (DSVDD) finds a hypersphere to enclose
the representation of normal samples [14]. Liu and Gryllias
constructed frequency domain features using cyclic spectral
analysis and applied them in the support vector data de-
scription (SVDD) framework. This method has been proven
robust against outliers and can achieve a high detection rate
for detecting anomalies [15]. In [16], researchers presented a
new approach to identify imagery anomalies by training the
model on normal images altered by geometric transformation.
In this model, the classifier calculates the anomaly score using
softmax statistics.

Usually, generative models attempt to learn the recon-
struction of the data and use this reconstruction to identify
anomalous samples [17]. For instance, auto-encoders model
the normal data distribution, and the reconstruction error is
used as the anomaly score [18], [19]. Deep structured energy-
based models (DSEBMs) learn an energy-based model and
map each sample to an energy score [20]. Deep autoencod-
ing Gaussian mixture model (DAGMM) estimates a mixed
Gaussian distribution by using an encoder for normal samples
[21]. A recent line of work on anomaly detection has focused
on adversarial neural networks. For example, this structure
has been used to identify anomalies in medical images [8].
In this work, the inverse mapping into the latent space was
performed using the recursive backpropagation mechanism.
In [22], a continuation of the prior work, the mapping to
the latent space was performed by the encoder in order to
reduce computational complexity. In [23], the proposed model
was based on bidirectional GAN (BiGAN). The encoder was
also responsible for mapping the input data space to the
latent space. Unlike the standard GAN structure, where the
discriminator takes only the real image and the generated
image of the generator network as input, the representation
of these images in the latent space was also considered as
input to the discriminator network.

In the article [4], anomaly detection was performed by
adding a new discriminator in latent space to the adversarial
structure to stabilize the training process. In [24] a gan-based
model is utilized to detect anomalies in time series. In the
context of Mad-gan, the generator is trained on normal time
series to learn the underlying patterns and dependencies. It
then generates synthetic samples that resemble the normal
data distribution. The discriminator is simultaneously trained
to differentiate between real and synthetic samples. DCT-GAN
proposes a novel approach for detecting anomalies in time
series data [25]. The method combines dilated convolutions
and transformer architecture within a Generative Adversarial
Network (GAN) framework. The dilated convolutions cap-
ture long-range dependencies in the time series, while the

transformer module learns the temporal relationships between
different time steps. The generator network generates synthetic
samples, and the discriminator network distinguishes between
real and fake samples. By training the GAN on normal time
series data, it learns to generate realistic normal samples.
Anomalies can be detected by measuring the discrepancy be-
tween real and generated samples using a reconstruction loss.
Experimental results demonstrate that DCT-GAN outperforms
existing methods in terms of anomaly detection accuracy on
various benchmark datasets.

Many existing GAN-based anomaly detection algorithms
have weak robustness, in [26] the authors introduce a tech-
nique called M3gan, which combines a masking strategy with
a mutable filter to diversify the data and improve the robust-
ness of the model. The M3gan approach starts by dividing
the multidimensional data into smaller subsets called cells.
Each cell is then masked by randomly selecting a subset of
its dimensions and replacing their values with noise. This
masking strategy helps in preserving the privacy of sensitive
information while still allowing for accurate anomaly detec-
tion. The deep convolutional autoencoder model is a classic
autoencoder model in which the encoder and decoder have a
convolutional structure. The anomaly score in this model is
the 2-norm of reconstruction errors [27]. In [28] a novel deep
learning framework for semi-supervised anomaly detection
called deep SAD (semi-supervised anomaly detection) has
been proposed. The proposed method, called Deep SAD,
combines the benefits of both supervised and unsupervised
approaches by leveraging a small amount of labeled normal
data and a large amount of unlabeled data. Deep SAD utilizes
an autoencoder-based architecture to learn a low-dimensional
representation of the input data and employs a novel loss func-
tion that encourages the model to assign low reconstruction
errors to normal instances while penalizing anomalies.

In this section, we reviewed and categorized the various
methods used to clarify abnormal data. In section 3 we will
deep into fundamental basis required to deal with proposed
model.

III. PRELIMINARIES

In this section, we briefly elaborate the overall idea of a
generative adversarial network and then concentrate on the
evolution of GAN-based anomaly detection algorithms. The
generative adversarial network was first proposed in 2014 by
Goodfellow et al [5]. The generator and the discriminator are
trained on an M set of

{
χ(i)

}M

i=1
unlabeled samples. The

generator maps selected samples from the latent space z to
the input data space. The discriminator attempts to distinguish
between the real data x(i) and the data produced by the gener-
ator (G). The generator G imitates the input data distribution,
whereas the discriminator differentiates between real samples
and generator data. In the training phase, the generator G
and the discriminator D are alternatively optimized using a
stochastic gradient descent approach.
q(x) is the distribution of the input data, and p(z)

is the distribution of the generator in the latent space.
GAN network training is done by finding a discrimina-
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tor and a generator that can solve the saddle point prob-
lem as minG maxD VGAN (D,G) and the definition of the
VGAN (D,G) function is defined as:

VGAN = Ex∼q(x)[log(D(x))] + Ez∼p(z)[log(1−D(G(z)))]
(1)

Solving this problem concludes that the generator distribu-
tion is equal to the true data distribution. It has been proved
in [5] that the global optimal discriminator will be obtained if
and only if pG(x) = q(x). By pG, we mean the distribution
learned by the generator. Adversarially learned inference (ALI)
[23] attempts to obtain the inverse mapping between input
data space and latent space by modeling the joint distribution
of encoder as q(x, z) = q(x)e(z|x) and the distribution of
generator as p(x, z) = p(z)p(x|z) using the encoder E. Here,
e(z|x) is learned by the encoder. The objective function of the
ALI model is as follows:

min
G,E

max
D

VALI =

Eq(x,z)[logD(x,E(x))] + Ep(x,z)[log(1−D(G(z), z)]]
(2)

where D represents the discriminator, taking x and z as
input, and its output value specifies probability of origination
of the current inputs from the q(x, z) distribution. Encoder,
generator, and discriminator are in their optimal state only if
q(x, z) = p(x, z). This has been proved in [23].

Although p and q distributions are apparent, in practice and
during model training, they are not necessarily converging to
the optimal point. This issue was attributed to the problem of
cycle consistency, which was defined as G(E(x)) ≈ x̂ in [27].
A new framework called ALICE was proposed to solve the
above problem by adding the discriminator Dxx to the ALI
network structure [27]. The objective function of this model
is as follows:

min
E,G

max
Dxz,Dxx

VALICE = VALI+

Ex∼q(x) [logDxx(x, x) + log(1−Dxx(x,G(E(x))))]
(3)

This work demonstrates that using a discriminator Dxx can
achieve the best reconstruction for the input data [29]. In Ad-
versarially Learned Anomaly Detection (ALAD), a conditional
distribution was applied to the baseline ALICE model with the
inclusion of additional discriminator to stabilize the training
process [4]. To deep into the detail, a discriminator Dzz is
added to the model to ensure the cycle consistency in the
latent space, which tries to make the latent space variable and
its reconstruction as analogous as possible. By assembling the
block proposed in [4] in ALICE framework, the cost function
of the ALAD model will finally be as follows:

min
G,E

max
Dxz,Dxx,Dzz,

VALAD = VALICE+

Ez∼p(z) [log (Dzz(z, z))+ Ez∼p(z) [log (1−Dzz(z,G(E(z))))]
(4)

In [4], it is claimed that the training model will be stabilized
by adding Lipschitz constraints to the discriminators of the
GAN model. Moreover, it is shown in practice that with

spectral normalization of the weight parameters, the network’s
performance will be improved [4].

Although the idea of ALAD helps stabilize the cycle,
the latent and input space variables are scrutinized in two
independent spaces, and the inherent dependence between the
variables is ignored. More precisely, the x and its recon-
struction are investigated in a separate process from the z
and its corresponding reconstruction, while the reconstruction
processes of these two pairs of data is along with each other
and affects each other directly. To model this reliance, we
define a complete cycle and a new discriminator that employs
the information contained within the complete cycle.

Another problem with ALAD is that it doesn’t take into ac-
count the need for weak reconstruction for anomalous samples.
In fact, in all of the previous models, it was assumed that if the
model were trained with normal data, it would always have a
poor reconstruction for anomalous data, even though there is
no way to force the model to make weak reconstructions of
anomalous samples. The proposed RCALAD model attempts
to address this issue by employing the supplementary distribu-
tion σ(x), which biases all reconstructions toward the normal
data distribution, and the model attempts to lower the anomaly
score for normal input while increasing it for anomalous input.

IV. PROPOSED MODEL

In this part, we describe our novel adversarial framework for
anomaly detection that overcomes the aforementioned draw-
backs. The problem of a lack of complete cycle consistency
and our corresponding solution will be described first. Then,
the necessity of weak reconstruction will be addressed. At the
end of this section, two new anomaly scores based on the
proposed model are introduced.

A. Complete Cycle Consistency

As mentioned before, in the previous models, the cycle
consistency of the input data and latent space variables is
examined in two independent procedures. This implies that
the reconstruction of the latent space variable ẑ and input
data x̂ are processed separately. In other words, the previous
works tried to resemble x and its reconstruction and z and its
reconstruction in two separate cycles. The inverse mapping of
x was neglected in the z-cycle, and the direct mapping of z
was also ignored in the x-cycle. To tackle this problem, we
introduce a new complete cycle that simultaneously tries to
learn joint distribution, which utilizes neglected parameters in
a complete cycle that contain rich information. It should be
noted that here the variable z is a sample of the Gaussian
distribution given as an input to the generator, and it is not
related to the input mapping in the latent space.

The Complete Cycle Consistency issue (CCC) declares that
for each variable x in the input space if the encoder first
estimates the inverse mapping to the latent space, which
equals E(x) = zx and the obtained representation is entered
into the generator to generate the network reconstruction
from the input variable G (zx) = G(E(x)) = x̂ and the
this reconstruction is given to the encoder network in order
to calculate the reconstruction in the latent space, that is,
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Fig. 1: The information of complete cycle consistency in the
proposed model (left side) and using the variables of input
data space and latent space in the cycle consistency of the
ALAD network (right side).

E(x̂) = E (G (zx)) = ẑx̂, it is logically expected from any
reconstruction-based network that the two variables x and x̂
as well as the two variables ẑx̂ and zx have the least possible
difference. That is, the CCC issue is defined in such a way
that, in any reconstruction-based model, for each input sample
and its mapping in the latent space, the network reconstruction
for both variables should have a minimum error and maximum
similarity.

Without using the CCC, the similarity between the input
data and its reconstruction, as well as the similarity between
z and its reconstruction, were examined independently and in
two separate cycles. It was assumed that they are independent,
but we know that these two cycles are entirely dependent on
each other, and the assumption of independence is not valid
in these two issues. To solve this problem, we proposed to
model the dependency by examining the CCC variables in the
new discriminator Dxxzz and using the information flow in
this chain to improve network training for anomaly detection
in the best possible way. The difference between the input
of Dxxzz and the input of Dzz used in the ALAD model is
represented in Figure 1.

As can be seen in Figure 1, the ALAD model does not
use the information of a complete cycle. In order to use the
available joint information in a complete cycle, a new variable
called ẑx̂ is introduced. To calculate this variable, the inverse
mapping of the input data x is applied to the generator, and
the resulting inverse mapping is calculated again using the
decoder. Hence, complete cycle consistency will be provided
in this model.

In order to ensure the condition of complete cycle con-
sistency, the new Dxxzz discriminator is used with the joint
input. It is noteworthy that the effectiveness of the joint
discriminators has already been proven once in ALIGAN [23].
Actually, when adding the encoder to the GAN framework,
two procedures can be scrutinized. The first one is adding an
independent discriminator to train the encoder, and the second
one is changing the discriminator input from a single input
mode to a joint input mode. It is proven that using a joint
discriminator obtains better results. According to the same
idea, the input of the joint discriminator Dxxzz extracts the
most information for model training.

This discriminator uses the quadruple (x, x, zx, zx) as the
real data and the quadruple of (x,G(E(x)), zx, E (G (zx))) as

the fake data. This discriminator attempts to make the input
x and network reconstruction, as well as the inverse mapping
of the input image in the latent space and its reconstruction
by the encoder, as close as possible to each other so that a
complete stable loop is provided and the model is trained and
stabilized better.

B. Constraint of Weak Reconstruction

In reconstruction-based models, it has always been assumed
that if the training and reconstruction of the normal data are
properly done, the reconstruction of abnormal data will nec-
essarily be weak and different from the input data. However,
experiments indicate that it is not always the case, and some-
times the reconstructed anomalous sample is slightly similar
to the input sample. Hence, it won’t be easy to recognize it as
an abnormal sample. In fact, in none of the previous models,
there was not any obligation or control condition to bias the
model toward producing poor reconstructions for anomalous
samples.

During the training phase, the encoder and generator are
only trained on normal samples. As a result, the appropriate
z space for normal samples and the reconstruction of them is
well modeled. However, because the model has not yet seen
the remainder of the space, including abnormal examples, it
may map it onto an unknown point in the latent space during
the testing phase. In this case, there is no information about
mapping anomalous data to its reconstruction. To solve this
problem, the supplementary distribution called σ(x) is used.
Samples from this distribution will cover the input data space,
which means that we will produce some extra noisy samples
and force the model to generate reconstruction in the normal
data manifold. Here we teach the model to produce output
in a normal data manifold by feeding it with a wider range
of inputs. Through using this distribution, we have further
training with unseen data, and as a result, we could have a
generalization that will help model produce reconstructions in
normal data manifold for a wider range of inputs compare to
the absence of the supplementary distribution. Through this
extra training, the network learns to reconstruct the normal
data class for a relatively more expansive range of inputs.
So an appropriate distance is created between the anomalous
sample and its reconstruction. This distance is regarded as an
appropriate criterion for detecting abnormal samples. Figure 2
illustrates the effect of using σ(x) in training routine.

C. RCALAD Model

In this section, we will introduce our proposed model,
RCALAD, by integrating both ideas, which means employing
the new variable of ẑx̂ in the Dxxzz discriminator and the σ(x)
distribution and adding them to the basic model [4]. In this
network, we attempted to provide a comprehensive, practical,
and compatible framework for all anomaly detection problems
by resolving the aforementioned issues of the complete con-
sistency cycle and the necessity of weak reconstruction. Figure
3 depicts a schematic representation of the proposed model.
As we can see in Figure 3, an encoder and the generator
are trained in the standard structure of the adversarial neural
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Fig. 2: Effect of the presence of supplementary distribution in
the model training process. These figures indicate the trained
models. On the left side, there is no supplementary distribution
in the training phase, and on the right side, we had samples
from supplementary distribution in training. In this figure, X
represents the input data space and Z represents the latent
space. Samples are mapped from the latent space to the input
data space by the generator G, and the encoder E reverses the
mapping. Green circles show normal samples, red crosses rep-
resent abnormal samples, and blue stars represent samples gen-
erated by the supplementary distribution σ(x). The turquoise-
colored line shows the value of the abnormality score. As
can be seen in Figure 2, if samples from the supplementary
distribution σ(x) are not present (on the left side of the figure),
the abnormality score for the abnormal sample is lower than
when these samples(blue stars) are used used (right side). In
other words, when there is no supplementary distribution in
the training process, after training, the model may reconstruct
anomalous samples in a good way, which leads to a small
difference between anomalous sample and its reconstruction,
and as a result, we will have a low anomaly score, but on
the right, the samples from supplementary distribution have
biased the model towards the normal manifold. In this case,
the model tries to reconstruct an anomalous sample near the
normal data manifold, which is far from the anomalous data
manifold that leads to a high anomaly score for abnormal data.

network. The inverse mapping from the input data space to
the latent space is obtained simply by using the encoder E
in the proposed structure and the direct mapping from the
latent space to the input data space is done by the generator
G. Here Dxz is a new name for a standard discriminator
needed for adversarial training of G and E. It is responsible
for discriminating between two pairs: (z,G(z) and (x,E(x)).
Through this discrimination, the encoder E learns the inverse
mapping of input x, and also the generator G learns the direct
mapping from the latent space to the input data space. This
discriminator determines whether an input variable pair is
derived from the input data x distribution and its corresponding
point in the latent space or if it is generated by the generator
G and sampled from the latent space of z. In order to satisfy
the cycle consistency condition in the input and latent space,
Dxx and Dzz discriminators are used, so cycle consistency
in both spaces will be modeled independently. Here, a joint
discriminator called Dxxzz is used to train both generator and
encoder networks simultaneously. The Dxxzz is introduced to
use all the information in a complete cycle. That is, in addition
to examining both variables x and z and their reconstruction

Fig. 3: Overall structure of the RCALAD model.

x̂ and ẑ in the corresponding space, their joint distribution
is used in Dxxzz during the process of detecting anomalous
samples. By using Dxxzz more information is available to
determine whether the input data is anomalous or not. This
network is responsible for determining between quadruple
samples of (x, x, zx, zx) and (x,G(E(x)), zx, E (G (zx))). In
fact, the discriminator Dxxzz tries to maximize the similarity
between x and its reconstruction G(E(x)), and it also attempts
to make the mapping of the input image in the latent space
zx and its reconstruction E(G(zx)) as similar as feasible. To
cover much more of the latent space, the σ(x) block is added
to this model. Using this distribution, new samples are made
from the input data space and then mapped into the latent
space of the normal data. Finally, the objective function of the
proposed model is as follows:

min
G,E

max
Dxxzz,Dxz,Dxx,Dzz

VRCALAD (Dxxzz, Dxz, Dxx, Dzz, E,G) =

VALAD + Ex∼σ(x) [log (1−Dxz(x,E(x)))] +

Ex∼q(x) [logDxxzz(x, x,E(x), E(x))] +

Ex∼q(x) [1− logDxxzz(x,G(E(x)), E(x), E(G(E(x))))]
(5)

D. Anomaly Scores

The main goal of this proposed model is to detect anomalies
based on the accurate reconstruction of normal input data,
whereas abnormal samples are reconstructed in a weak man-
ner. One of the key elements in anomaly detection is the
definition of the anomaly score for calculating the distance
between the input sample and the reconstruction provided by
the network [4]. Some of the anomaly scores that were used
in previous models are as follows:

AL1(x) = ∥x− x̂∥1,
AL2(x) = ∥x− x̂∥2,

ALogits (x) = log (Dxx(x, x̂)) ,

AFeatures (x) = ∥fxx(x, x)− fxx(x, x̂)∥1

(6)

Here, logit means the raw output of the discriminators, while
feature means the output of the layer preceding logit. In our
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proposed model, since the new discriminator Dxxzz offers
the ability of extracting additional information, it is crucial
to specify the new anomaly scores in order to make use
of this information. Therefore, two new anomaly scores are
introduced.

The first anomaly score presented in this paper is called
Afm(x). This score uses the Dxxzz discriminator feature space
to calculate distance between samples and their reconstruction.
For this purpose, the output of the second-to-last layer is used
as features. Our anomaly score is defined as follows:

Afm(x) = ∥fxxzz (x, x, zx, zx)− fxxzz (x, x̂, zx, ẑx̂)∥1 (7)

In this equation, f(.) represents the activation function of
the next to last layer in the Dxxzz discriminator structure.
The concept used in the definition of this score is using the
confidence level of the discriminator on the quality of the
reconstructions provided by the network. In other words, if
reconstruction is performed well, the sample belongs to the
trained normal data of the network. Thus, the higher value of
this criterion means the greater difference in reconstructions
and so higher possibility of input data’s abnormality. The
second point in this article is presented with the aim of
maximizing the use of information in the model for anomaly
detection. In this section, the Aall criterion is defined. The
score is the sum of the outputs of all discriminators, including
Dxx, Dzz and Dxxzz .

In fact, since all the discriminators in the proposed model
are trained only based on the normal samples and the recon-
struction for all the input data space is biased towards the
normal data space, it is expected that the input image data and
its reconstruction will look different, and the discriminators
can easily identify these anomalous inputs. The mathematical
expression of this criterion is given in the following equation:

Aall(x) =
1

3
(Dxxzz (x, x̂, zx, ẑx̂) +Dxx(x, x̂) +Dzz (zx, ẑx̂))

(8)
The criterion Aall tries to utilize all discriminators’ informa-
tion. During the training phase, the discriminators learn to
pay attention to the difference between the pairs of (x, x) and
(x, x̂) as well as the pairs of (zx, zx) and (zx, ẑx̂). It means,
the farther x̂ from x or ẑx̂ from zx, it will be easier for the
discriminators to recognize the data origin. In the proposed
model, by adding the distribution of σ(x) and biasing all
the reconstruction towards the normal data distribution, the
reconstruction error for abnormal data is increased and the
discriminators’ output can be considered as a reliable criterion
for abnormality detection. Finally, the recommended anomaly
scores can be viewed according to the algorithm 1.

V. EXPERIMENTS

This section compares the proposed RCALAD model with
prominent anomaly detection models. To test the models on
a fair basis, the reported outcomes for all the implemented
models are based on tabular data obtained from the average of
ten runs, and for each class of image data, they are based on the
average of three runs. The anomaly score used in tabular data
is Aall score and, for image data, it is Afm score. The reason

Algorithm 1 Process of calculating anomaly scores in Regu-
larized Complete Adverarially Learned Anomaly Detection

Input: x ∼ pxTest (x) , E, G, Dxx, Dzz , Dxxzz , fxxzz %
fxxzz is the feature layer of Dxxzz

Output: Aall(x), Afm(x) % A is the anomaly score
procedure INFERENCE
zx ← E(x) %Encode samples, Construct latent Embedding

x̂← G (zx) %Reconstruct samples
ẑx̂ ← E(x̂) %Reconstruct latent Embedding
Afm(x)← ∥fxxzz (x, x, zx, zx)− fxx (x, x̂, zx, ẑx̂)∥1
Aall(x) ← 1

3 (Dxxzz (x, x̂, zx, ẑx̂) + Dxx(x, x̂) +
Dzz (zx, ẑx̂))
return Aall(x), Afm(x)
end procedure

for choosing these scores based on data type will be discussed
later. Moreover, the ALAD model is implemented and the
results of the best anomaly score AFeatures are reported. For
other models, the available results are adopted from [4], [17] .
In testing phase, anomalous samples and normal samples are
fed to the trained model. We expect that the model produce a
high anomaly scores for anomalous samples and low anomaly
scores for normal samples. We know that for KDDCup99,
arrhythmia, thyroid, and musk datasets 20, 15, 2.5 and 3.2
percent of the data are anomalous samples, respectively, so we
consider the samples with high anomaly scores as anomalous
samples. For the CIFAR-10 and SVHN 90 percent of the data
are anomalous.

A. Datasets

In order to evaluate the performance of the proposed model
and scrutinize its efficiency from different viewpoints, various
datasets with diverse characteristics are used. The proposed
method is tested on the available image and tabular datasets.
For tabular datasets, four datasets, including KDDCup99 [30],
arrhythmia [31], thyroid [32], and musk [33], are used. The
KDDCup99 dataset contains nearly 5000000 samples from
41 dimensions, 34 of which are continuous and 7 of which
are categorical. We then utilized one-hot representation to
encode categorical characteristics, yielding a total of 121
features following this encoding. Arrhythmia is a medical
collection related to cardiac arrhythmia with 16 classes. This
database contains 274 attributes and it has 490 samples. We
applied our methods on raw data. Also, thyroid is a three-class
dataset related to thyroid disease. The “hyperfunction” class,
consisting of 2.5% of the dataset set, is treated as anomaly.It
contains 3772 samples and each sample has 6 continuous
features. The Musk Anomaly Detection dataset was created to
classify six classes of molecular musk. This dataset has 3062
samples with 166 features. These four datasets, 20, 15, 2.5 and
3.2 percent of the data are anomalous samples, respectively.
Hence, in the test phase, after calculating the anomaly score,
the aforementioned proportion of the data that has the highest
anomaly score is classified as an anomaly. In order to assess
the proposed model on these datasets, F1, recall, and precision
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criteria are used. Two datasets, CIFAR-10 [34] and SVHN
[35], are considered for the image datasets. CIFAR-10 consists
of 60,000 32x32 color images containing one of 10 object
classes, with 6000 images per class. SVHN dataset includes
nearly 100000 32x32 labeled real world images of house
numbers taken from Google Street View. Pixels of these two
datasets were scaled to be in range [-1,1]. Both of these
datasets have ten classes, and, like the previous works, one
class is considered as the normal class and the other nine
classes as the abnormal class. The model is trained only on
normal data manifold. As a result, we should train the model
specifically for each class. The criterion used to evaluate the
model on the image dataset is the area under the receiver
operating curve (AUROC). For all the datasets that are used,
80% of the data are used for training, and 20% are used for
testing. Validation data is chosen from 25% of the training
data.

B. Experiments on the Tabular Datasets

Evaluation results of the proposed RCALAD model and
other state-of-the-art models on tabular datasets (KDDCup99,
arrhythmia, thyroid, and musk) are summarized in Table
I. The structures used in the generator, discriminator, and
encoder networks are all fully connected layers with nonlinear
activation functions. It should be noted that, in this step,
N(0, I) distribution is used as σ(x). In comparison to existing
models, the proposed model has a successful performance on
the arrhythmia and musk datasets, as shown in Table I. Our
model is also the best according to F1 criteria on the KDD
dataset, but it takes second place on the thyroid dataset due
to the exceptional performance of the IF model. The reason
for this phenomenon can be attributed to the nature of the
data in this dataset. Since there are various features in this
dataset, only a few of them are informative; therefore, the
results of classic models such as IF, which are based on feature
selection, are better. An idea to improve the proposed model
results on the thyroid dataset is to use models such as IF in
the preprocessing step to select more informative features for
training the model.

C. Experiments on the image Datasets

In this section, the performance of the proposed model on
CIFAR-10 and SVHN image data is scrutinized in two separate
tables. All the experiment are done in one vs. all setting. It
means that we consider one class as normal and the nine others
as anomalies, we train our model only on the normal class.
For each dataset, we train a specific model for each normal
class. We report the results for each class separately, as well
as the average performance for whole classes.

As in Tables II and III, the proposed model has significantly
improved the results on the CIFAR-10 dataset. The results
show that the model performs best in the half of classes and
gets competitive results on others. In addition to being superior
in seven classes on SVHN dataset, the proposed model also
performs the best in the average of all classes. Furthermore
our model decreases class-wise variance on image datasets
that leads to more reliable results. We provide some example

of input images with their reconstruction in 4 and 5. As
you can see our model produces reconstructions in normal
data manifold even for anomalous samples. For example the
proposed model can reconstruct a dog image as a car. In order
to validate the superior performance of the RCALAD model,
we also conducted the Wilcoxon signed-rank test. In Appendix
I, the P-values and statistics are reported.

Fig. 4: Reconstruction of normal and abnormal inputs on
CIFAR-10 dataset. The first row is normal inputs and the
second row is their reconstruction. The third row are anoma-
lies and the fourth row is corresponding reconstruction for
anomalies.

Fig. 5: Reconstruction of normal and abnormal inputs on
SVHN dataset. The first row is normal inputs and the second
row is their reconstruction. The third row are anomalies and
the fourth row is corresponding reconstruction for anomalies.

D. Ablation Studies

In this section, we examine the effectiveness of each com-
ponent added to the basic model on both kinds of datasets.
In these experiments, the average results of the model are
repeated in the presence and absence of the discriminator
Dxxzz and the supplementary distribution σ(x). Through these
experiments, we want to find out how each proposed part
affects the final results.

According to Tables IV and V, the proposed RCALAD
model achieves the best result in the presence of both parts. In
scrutinizing the role of the Dxxzz discriminator, this discrim-
inator has improved the accuracy on the CIFAR-10 dataset to
an optimal level but has not made significant improvement on
the SVHN dataset. In terms of the role of the σ(x) distribution,
it performed well on the CIFAR-10 dataset and enhanced
the AUROC criterion. However, when applied to the SVHN
dataset, it reduced the AUROC criteria by a tiny amount when
compared to the base model. Still, its inclusion in the final
model resulted in the extraction of new information and a
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TABLE I: Output results of the proposed model in comparison with the basic models on the tabular data set.

Model KDDCup Arhythmia Thyroid Musk
Prec. Recall F1 score Prec. Recall F1 score Prec. Recall F1 score Prec. Recall F1 score

IF [36] 92.1 93.7 92.9 51.4 54.6 53.0 70.1 71.4 70.2 47.9 47.7 47.5
OC-SVM [12] 74.5 85.2 79.5 53.9 40.8 45.1 36.3 42.3 38.8 − − −
DSEBMr [20] 85.1 64.7 73.2 15.1 15.1 15.1 4.0 4.03 4.0 − − −
DSEBMe [20] 86.1 64.4 73.9 46.6 45.6 46.0 13.1 13.1 13.1 − − −
AnoGAN [8] 87.8 82.9 88.6 41.1 43.7 42.4 44.1 46.8 45.4 3.0 3.1 3.1
DAGMM [29] 92.9 94.2 93.6 49.0 50.7 49.8 47.6 48.3 47.8 − − −

ALAD [4] 94.2 95.7 95.0 50.0 53.1 51.5 22.9 21.5 22.2 58.1 59.0 58.3
DSVDD [13] 89.8 94.9 92.1 35.3 34.3 34.7 22.2 23.6 23.2 − − −

RCALAD 95.3 95.6 95.4 58.8 62.5 60.6 53.7 51.5 52.6 62.9 63.3 63.1

TABLE II: Output results of the proposed model compared to the basic models on the CIFAR-10 dataset.

Normal DCAE [37] DSEBM [20] DAGMM [29] IF [36] AnoGAN [8] ALAD [4] RCALAD
Airplane 59.1 41.4 56.0 60.1 67.1 64.7 68.4

car 57.4 57.1 56.0 50.8 54.7 45.7 57.2
Bird 48.9 61.9 53.8 49.2 52.9 67.0 69.6
Cat 58.4 50.1 51.2 55.1 54.5 59.2 67.2

Deer 54.0 73.2 52.2 49.8 65.1 72.7 71.9
Dog 62.2 60.5 49.3 58.5 60.3 52.8 65.1
Frog 51.2 68.4 64.9 42.9 58.5 69.5 70.3
Horse 58.6 53.3 55.3 55.1 62.5 44.8 59.6
Ship 76.8 73.9 51.9 74.2 75.8 73.4 70.5

Truck 67.3 63.6 54.2 58.9 66.5 43.2 57.6
Mean 59.4 60.3 54.4 55.5 61.8 59.3 65.7

TABLE III: Output results of the proposed model compared to the basic models on the SVHN dataset.

Normal OCSVM [12] DSEBMr [20] DSEBMe [20] IF [36] AnoGAN [8] ALAD [4] RCALAD
0 52.0 56.1 53.4 53.0 57.3 58.7 60.4
1 48.6 52.3 52.1 51.2 57.0 62.8 59.2
2 49.7 51.9 51.8 52.3 53.1 55.2 54.9
3 50.9 51.8 51.7 52.2 52.6 53.8 55.8
4 48.4 52.5 52.4 49.1 53.9 58.0 58.5
5 51.1 52.4 52.3 52.4 52.8 56.1 56.2
6 50.1 52.1 52.2 51.8 53.2 57.4 59.4
7 49.6 53.4 55.3 52.0 55.0 58.8 58.0
8 45.0 51.9 52.5 52.3 52.2 55.2 56.1
9 52.5 55.8 52.7 53.7 53.1 57.3 58.3

Mean 50.2 52.9 52.4 51.6 54.0 57.3 57.7

more comprehensive view. To sumup, when both Dxxzz and
σ(x) are present in training phase, we can achieve the best
results.

E. Evaluating the Sufficiency of the Dxxzz

By adding the Dxxzz discriminator, is there a need for
Dxx and Dzz discriminators or not? To answer this question
correctly, we performed some experiments, whose results are
summarized in Table VI. In fact, in this section, in addition
to the above-mentioned question, the result of adding Dxxzz

discriminator in basic models such as ALI and ALICE are
investigated.

In Table VI we examine the effects of all discriminators
on different models. According to this table and as expected
from the theoretical results, adding the Dxxzz discriminator to
the general frameworks had the highest efficiency. As a result,
eliminating Dxx has less of an impact on the model because
some of the information it collects is covered by the Dxxzz

discriminator. However, it is apparent that removing Dzz ,
which assesses the similarity of z and its reconstruction in an

independent cycle, decreases the accuracy. As can be seen,
employing these three discriminators is seen to be the most
effective, as the Dxxzz discriminator alone does not cover all
aspects. It is worth noting that this remark applies to both
image and tabular datasets.

F. Scores Evaluation

In this section, the proposed anomaly scores are evaluated
and compared with the anomaly scores presented in previous
work [4]. As shown in Table VII, on tabular data, the raw
output of the Dxxzz discriminator Aall outperforms other
anomaly scores. The performance of the feature-based score
Afm on image data is remarkable, as can be seen in Table
VIII. This difference in the performance of the introduced
scores can be attributed to the difference in the number of
features in these two types of datasets. Given the fact that the
number of features on tabular data is less than those on image
data, the outputs of all discriminators are enough to detect
anomalous data. However, in the image datasets, the output of
the next-to-last layer contains more information to distinguish
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TABLE IV: Effects of the various proposed sections in improving the results of the tabular datasets.

Model Precision Recall F1 score
KDDCup99

Baseline(ALAD) 94.4 95.7 95.0
Baseline + Dxxzz(CALAD) 95.9 95.7 95.8
Baseline + σ(x)(RALAD) 94.3 95.5 94.9
Baseline + Dxxzz + σ(x)(RCALAD) 95.3 95.6 95.4

Arrhythmia
Baseline(ALAD) 50.0 53.1 51.5
Baseline + Dxxzz(CALAD) 57.4 60.5 57.5
Baseline + σ(x)(RALAD) 54.6 56.5 55.5
Baseline + Dxxzz + σ(x)(RCALAD) 58.8 62.5 60.6

Thyroid
Baseline(ALAD) 22.9 21.5 22.2
Baseline + Dxxzz(CALAD) 52.9 51.8 52.3
Baseline + σ(x)(RALAD) 43.1 45.7 44.3
Baseline + Dxxzz + σ(x)(RCALAD) 53.7 51.5 52.6

Musk
Baseline(ALAD) 50.0 53.1 51.5
Baseline + Dxxzz(CALAD) 57.4 60.5 57.5
Baseline + σ(x)(RALAD) 54.6 56.5 55.5
Baseline + Dxxzz + σ(x)(RCALAD) 62.9 63.3 63.1

TABLE V: Effects of the various proposed sections in improving the results of the image datasets.

Model AUROC
CIFAR-10

Baseline(ALAD) 59.3
Baseline + Dxxzz(CALAD) 63.4
Baseline + σ(x)(RALAD) 64.2
Baseline + Dxxzz + σ(x)(RCALAD) 65.7

SVHN
Baseline(ALAD) 57.3
Baseline + Dxxzz(CALAD) 57.6
Baseline + σ(x)(RALAD) 56.8
Baseline + Dxxzz + σ(x)(RCALAD) 57.7

TABLE VI: Assessing the performance of the model in the presence or absence of each of the discriminators.

model Dzz Dxx Dxxzz Precision Recall F1 score
KDDCup99

ALAD yes yes no 94.2 95.7 95.0
ALI + Dxxzz no no yes 93.8 95.1 94.4
ALI + Dzz+ Dxxzz yes no yes 94.6 95.5 95.0
ALICE + Dxxzz no yes yes 94.1 94.5 94.7
CALAD yes yes yes 95.9 95.7 95.8
RCALAD yes yes yes 95.3 95.6 95.4

Arrhythmia
ALAD yes yes no 50.0 53.1 51.5
ALI + Dxxzz no no yes 52.2 52.9 52.5
ALI+ Dzz + Dxxzz yes no yes 57.1 58.2 57.6
ALICE + Dxxzz no yes yes 54.3 56.1 55.1
CALAD yes yes yes 57.4 60.5 57.5
RCALAD yes yes yes 58.8 62.5 60.6

between normal and abnormal data. In this way, the Afm score
excelled on the image datasets, while Aall performed well on
tabular datasets.

G. Choosing appropriate supplementary distribution

In this section, we examine different probability distribu-
tions as σ(x) in order to find the best option and its effect on
the performance of the proposed model. We consider N(0, I),
N(0, 2I), and U(−1,+1) as supplementary distributions. As
we can see in table IX N(0, I) serves the best results.

H. Statistical Test

The Wilcoxon Rank Test [?], also known as the Mann
Whitney U Test, is a non-parametric statistical test used to

compare two independent samples. It is often described as
the non-parametric version of the two-sample t-test. The test
only makes the first two assumptions of independence and
equal variance and does not assume that the data have a
known distribution. The test is used to determine if there is a
significant difference between the two groups being compared.
The research hypothesis is that the proposed method would
have a higher accuracy than the previous methods. The null
hypothesis is that there would be no difference in accuracy
between the proposed method and the previous methods. As
can be seen in Table 1-3, the highest accuracy after the
proposed model belongs to the ALAD model, and for this
reason, this statistical test has been performed with the results
of this model. The result of this test is reported in Table X.
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TABLE VII: Comparing the performance of the proposed anomaly scores with other scores on tabular data

Score Precision Recall F1 score
KDDCup99

AL1 90.8 91.0 90.9
AL2

90.1 90.0 90.0
ALogits 91.6 91.6 91.6
AFeatures 91.2 91.7 91.1
Afm 93.2 93.7 93.0
Aall 92.3 90.0 92.1

Arrhythmia
AL1

35.2 37.5 36.4
AL2 35.2 37.5 36.4
ALogits 55.8 59.3 57.6
AFeatures 23.2 25.0 24.2
Afm 44.1 46.8 45.4
Aall 61.7 65.6 63.7

Thyroid
AL1

49.8 49.0 49.9
AL2

50.1 50.0 50.0
ALogits 49.6 49.7 49.7
Afeatures 51.2 51.7 51.5
Afm 52.2 51.2 51.7
Aall 53.7 51.5 52.6

Musk
AL1 59.7 59.3 59.5
AL2

60.0 60.1 60.1
ALogits 58.6 58.9 58.8
AFeatures 58.2 58.8 58.8
Afm 61.1 61.8 61.4
Aall 62.9 63.3 63.1

TABLE VIII: Comparing the performance of the proposed anomaly scores with other scores on image datasets.

Anomaly Score AUROC
CIFAR-10

AL1 63.4
AL2

63.2
ALogits 62.9
AFeatures 63.1
Afm 65.7
Aall 64.7

SVHN
AL1

57.7
AL2 56.3
ALogits 53.6
AFeatures 57.6
Afm 57.7
Aall 57.6

TABLE IX: Comparing the performance of different supplementary distribution on the RCALAD model.

KDDCUP Arrhythmia
σ(x) Prec. Recall F1 Prec. Recall F1

N (0, I) 0.629 0.633 0.631 0.588 0.625 0.606
N (0, 2I) 0.626 0.633 0.629 0.580 0.629 0.603
U(−1,1) 0.608 0.604 0.606 0.584 0.633 0.607

TABLE X: Result of Wilcoxom Rank Test.

Dataset #run statistics P-value
Arrhythmia 10 0.0 0.00195

KDD99 10 7.0 0.03710
SVHN 30 157.0 0.12413

CIFAR10 30 56.0 0.00011

The results of the Wilcoxon signed-rank test indicate that the
proposed method had a significantly better performance than
the previous methods in three over four datasets. As mentioned

in section 5.1, Dataset SVHN pertains to real images of
the house number. This dataset proved to be particularly
challenging due to the presence of noise. To further investigate
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the performance of the proposed method on the SVHN dataset,
we conduct a follow-up experiment consisting of 10 tests
per class, as opposed to 3 tests described in Section 5. The
results of this extended experiment yield a test statistic value
of 1898.0 and a corresponding p-value of 0.03109, providing
evidence of the superior performance of the proposed method
on the challenging SVHN dataset.

VI. CONCLUSION

This research presents a unique and novel solution for high
variance rate problem in anomaly detection tasks through the
use of generative adversarial neural networks (GANs). The
proposed framework utilizes a generator and an encoder to
learn the mapping between the input data space and latent
space and incorporates two discriminators, Dxx and Dzz , to
improve the stability of the training process and ensure a
consistent cycle. To further enhance the information utilization
of the cycle, a new discriminator, Dxxzz , is introduced.
Experiments reveal that considering cycle consistency for
input data for the latent space variable z as one complete
joint cycle provides additional information for the model that
improves the results. The proposed model also incorporates
a supplementary distribution σ(x) to influence the network
output to align with the normal data distribution, leading
to even more precise anomaly detection. The supplementary
distribution helps the model map unseen data in the normal
data manifold, and as a result, an appropriate distance between
the anomalous sample and its reconstruction will be achieved.
The proposed model outperforms existing models for both
tabular and image datasets in terms of anomaly detection and
reducing class-wise variance in image datasets.

VII. FUTURE WORK

The RCALAD model has yielded promising results in the
field of anomaly detection. However, like other GAN-based
models, it is susceptible to robustness challenges. To address
these issues, existing techniques, as outlined in [38], [39] can
be employed.
In the present study, the anomaly ratio parameter was an
input during test time. A potential avenue for future research
would be to explore methods that can effectively determine
the optimal value for this parameter without requiring it to be
supplied as input.
Further, another potential area for future direction could be
learning importance coefficients for each discriminator based
on the type of data being analyzed (e.g., tabular or imagery
data) and incorporating these coefficients into the cost function
for calculating anomaly scores.
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