
Quasiuniversality from all-in-all-out Weyl quantum criticality in pyrochlore iridates

David J. Moser and Lukas Janssen
Institut für Theoretische Physik and Würzburg-Dresden Cluster of Excellence ct.qmat, TU Dresden, 01062 Dresden, Germany

(Dated: February 20, 2024)

We identify an exotic quasiuniversal behavior near the all-in-all-out Weyl quantum critical point in three-
dimensional Luttinger semimetals, such as the pyrochlore iridates 𝑅2Ir2O7, with 𝑅 a rare-earth element. The
quasiuniversal behavior is characterized by power laws with exponents that vary slowly over several orders
of magnitude in energy or length. However, in contrast to the quasiuniversality discussed in the context of
deconfined criticality, the present case is characterized by a genuinely-universal ultra-low-temperature behavior.
In this limit, the pertinent critical exponents can be computed exactly within a renormalization group analysis.
Experimental implications for the pyrochlore iridates are outlined.

Quasiuniversality refers to a situation in which observables
display apparent critical behavior over several orders of magni-
tude of energy or length, where, however, closer inspections of
the observed power laws reveal slow drifts in the corresponding
exponents [1–3]. Such a situation has recently been intensely
discussed in the context of deconfined quantum criticality be-
tween antiferromagnetic and valence-bond-solid orders in two-
dimensional quantum magnets [4, 5]. In this case, the qua-
siuniversal behavior observed in numerical simulations [6] is
believed to arise from a collision and subsequent annihilation
of the corresponding critical fixed point with another, bicriti-
cal, fixed point, leaving behind a slow renormalization group
flow [1–3, 7]. In this scenario, the ultra-low-temperature be-
havior is ultimately weakly first order, with, however, a large
finite-temperature regime characterized by quasiuniversality.
An alternative interpretation of the numerical data is the pres-
ence of a second divergent length scale at criticality [8]. In this
competing scenario, the low-temperature behavior is genuinely
universal, but requires an adapted scaling ansatz accommodat-
ing the presence of the additional length scale.

In the present work, we identify quasiuniversal behavior
in a three-dimensional model relevant to a class of pyrochlore
iridates with chemical composition 𝑅2Ir2O7, where 𝑅 is a rare-
earth element, e.g., 𝑅 = Pr,Nd. In their metallic phases, these
compounds exhibit an electronic excitation spectrum charac-
terized by quadratic band touching at the Fermi level [9, 10],
and as such fall into the larger class of Luttinger semimet-
als [11, 12]. However, in comparison with the prominent
members of this class, HgTe [13] and𝛼-Sn [14], the pyrochlore
iridates feature a substantially increased effective quasiparti-
cle mass, implying an enhanced role of electronic interac-
tions [15, 16]. If strong enough, these interactions can drive
symmetry-breaking transitions, across which the electronic
spectrum becomes partially or fully gapped out. Many py-
rochlore iridates, such as Nd2Ir2O7 [10, 17], indeed display
a finite-temperature transition, below which the iridium mo-
ments feature all-in-all-out (AIAO) antiferromagnetic order.
This state breaks time reversal but preserves crystal symme-
tries [18]. Pr2Ir2O7, by contrast, appears to remain disordered
up to the lowest accessible temperatures [15, 19]. By vary-
ing the concentration 𝑥 in (Pr𝑥Nd1−𝑥)2Ir2O7 and/or by apply-
ing hydrostatic pressure, the Néel temperature associated with
the onset of AIAO order can be tuned to zero, uncovering

an underlying quantum phase transition [20]. Small AIAO
order converts the quadratic band touching point into eight
symmetry-related linear band crossing points [21–23]. Con-
sequently, the quantum phase transition is expected to sepa-
rate the symmetric Luttinger semimetal from a time-reversal-
broken Weyl semimetal. The presence of gapless fermions at
the transition indicates the possibility of unconventional be-
havior. In fact, previous theoretical work suggested a novel
type of fermionic quantum critical point [24, 25]. Here, we
elucidate the finite-temperature properties of this transition,
relevant for the experiments on the pyrochlore iridates. We
reveal a large finite-temperature regime above the quantum
critical point that is characterized by quasiuniversality, see
Fig. 1. This unusual behavior arises from the presence of
a marginally-irrelevant coupling at the corresponding renor-
malization group fixed point. Importantly, we present an ap-
proach that allows us to identify properties of this fermionic
quantum critical point exactly, including its nontrivial criti-
cal exponents. Our results reveal the AIAO Weyl quantum
critical point in pyrochlore iridates as a unique instance of an
interacting continuous quantum phase transition that is both
experimentally and theoretically accessible. As a side product,
we demonstrate the emergence of strong cubic anisotropy at
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FIG. 1. Schematic finite-temperature phase diagram of pyrochlore
iridates 𝑅2Ir2O7 near the quantum critical point (QCP) between the
Weyl semimetal with all-in-all-out (AIAO) order, sketched in the
inset, and the symmetric Luttinger semimetal. 𝑟 indicates a non-
thermal tuning parameter, such as chemical doping or hydrostatic
pressure. Between the nonuniversal high-temperature regime and
the genuinely-universal ultra-low-temperature regime, there is a large
quasiuniversal regime, characterized by power laws with slowly vary-
ing exponents.
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criticality, thereby resolving an apparent contradiction in the
literature [24, 25].

Model. At the quantum critical point, the system can
be effectively described by a continuum Euclidean action
𝑆 =

∫
d𝜏 d3𝑥 𝐿, with Lagrangian 𝐿 = 𝐿0 + 𝐿𝑎 + 𝐿𝜙 . Here,

𝐿0 describes noninteracting electronic quasiparticles near the
quadratic band touching [26–31],

𝐿0 =
𝑁∑︁
𝑖=1

𝜓†
𝑖

(
𝜕𝜏 +

5∑︁
𝑎=1

(1 + 𝑠𝑎𝛿)𝑑𝑎 (−i∇)𝛾𝑎
)
𝜓𝑖 , (1)

and originates in the Luttinger Hamiltonian [32]. In the above,
𝑁 corresponds to the number of band touching points at the
Fermi level, with 𝑁 = 1 in the case of the pyrochlore iridates,
𝜓𝑖 is a four-component Grassmann field, 𝑠𝑎 B 1 (𝑠𝑎 B −1)
for 𝑎 = 1, 2, 3 (𝑎 = 4, 5), 𝛿 parametrizes the cubic anisotropy
with −1 ≤ 𝛿 ≤ 1, the 4 × 4 matrices 𝛾𝑎 fulfill the Euclidean
Clifford algebra, {𝛾𝑎, 𝛾𝑏} = 2𝛿𝑎𝑏1, and 𝑑𝑎 are proportional
to ℓ = 2 real spherical harmonics, viz. 𝑑1 ( ®𝑝) =

√
3𝑝𝑦 𝑝𝑧 ,

𝑑2 ( ®𝑝) =
√

3𝑝𝑥 𝑝𝑧 , 𝑑3 ( ®𝑝) =
√

3𝑝𝑥 𝑝𝑦 , 𝑑4 ( ®𝑝) =
√

3
2 (𝑝2

𝑥 − 𝑝2
𝑦),

and 𝑑5 ( ®𝑝) = 1
2 (2𝑝2

𝑧 − 𝑝2
𝑥 − 𝑝2

𝑦). Moreover, we account for the
long-range Coulomb interaction ∼ 1/|®𝑥 | via [29, 33, 34]

𝐿𝑎 =
1
2
(∇𝑎)2 + i𝑒𝑎

𝑁∑︁
𝑖=1

𝜓†
𝑖 𝜓𝑖 , (2)

where 𝑎 denotes the scalar Coulomb field, and 𝑒 the effective
charge. Fluctuations corresponding to AIAO ordering on the
pyrochlore lattice are parametrized by an Ising field 𝜙, and
couple to the electronic quasiparticles as [24, 25, 35]

𝐿𝜙 =
1
2
𝜙(𝑟 − ∇2)𝜙 + 𝑔𝜙

𝑁∑︁
𝑖=1

𝜓†
𝑖 𝛾45𝜓𝑖 . (3)

Here, 𝑟 denotes the tuning parameter for the quantum phase
transition, 𝑔 the coupling constant, and 𝛾45 B i𝛾4𝛾5. A term
(𝜕𝜏𝜙)2 can be included in Eq. (3) as well, but is power-counting
irrelevant and as such does not change the critical behavior.
The same is true for bosonic self-interactions, such as a 𝜙4

term. A finite expectation value ⟨𝜙⟩ ≠ 0 breaks time reversal
and splits the quadratic band touching point into four pairs of
Weyl nodes along the [111] and symmetry-related axes in the
cubic basis.

Mean-field analysis. We start by discussing the model on
the level of mean-field theory at zero temperature. Formally,
mean-field theory corresponds to the limit of large number 𝑁
of quadratic band touching points at the Fermi level. This
effectively suppresses fluctuations of the bosonic fields. The
value of the order parameter is then obtained by minimizing
the mean-field energy 𝐸MF (𝜙) = 𝑟

2𝜙
2+∑2

𝑖=1
∫
®𝑝 𝜀

(𝑖)
𝜙 ( ®𝑝), where

𝜀 (1,2)𝜙 denote the two lower-branch eigenvalues of the mean-
field Hamiltonian 𝐻MF =

∑5
𝑎=1 (1+ 𝑠𝑎𝛿)𝑑𝑎 ( ®𝑝)𝛾𝑎 + 𝑔𝜙𝛾45, see

Supplemental Material (SM) for details [36(a)]. The resulting
phase diagram is presented in Fig. 2. We observe two distinct
phases, the paramagnetic Luttinger semimetal phase and the

FIG. 2. Zero-temperature phase diagram of effective model as func-
tion of cubic anisotropy 𝛿 and interaction strength 𝑔2/𝑟, from mean-
field theory. Coloring indicates magnitude of AIAO order parame-
ter ⟨𝜙⟩. With the onset of order, the quadratic band touching point
of the Luttinger semimetal splits into four pairs of Weyl points in
the AIAO Weyl semimetal, see insets. The transition is continuous
(discontinuous) for 𝛿 ≤ 𝛿0 (𝛿 > 𝛿0), with 𝛿0 ≈ 0.0624. Dashed lines
delimit the region in which metastable states exist.

time-reversal-broken Weyl semimetal phase. The former is
located at small coupling below a finite threshold (𝑔2/𝑟)c and
hosts a quadratic band touching point with four-fold degener-
acy at zero momentum. The Weyl semimetal phase, character-
ized by a finite order parameter, is encountered above the phase
boundary. It hosts four pairs of Weyl nodes along the [111]
and symmetry-related axes in the electronic spectrum, and fea-
tures AIAO order on the pyrochlore lattice. For anisotropies
𝛿 ≤ 𝛿0 ≈ 0.0624, we observe a continuous phase transition,
while for 𝛿 > 𝛿0, the phase transition becomes discontinuous.
The latter case gives rise to metastable states in the region
around the transition, delimited by the dashed lines in Fig. 2.
Importantly, ab-initio calculations and photo emission spec-
troscopy experiments in Pr2Ir2O7 [9] suggest 𝛿 < 0, placing
this material into the regime with continuous transition [37].
Note that at strong coupling, a second transition towards a
Mott-insulating phase may be expected [21, 23, 38], which is
not captured by the mean-field theory of our effective model.
However, the presence or not of this strong-coupling phase is
irrelevant for the physics close to the quantum critical point
between Luttinger and AIAO Weyl semimetals, which we will
focus on in the following.

Renormalization group analysis. Note that the partially
bosonized Lagrangian 𝐿 = 𝐿0 + 𝐿𝑎 + 𝐿𝜙 features a unique
upper critical dimension, since both the Yukawa coupling 𝑔
and the effective charge 𝑒 become marginal in 𝑑 = 4 spatial
dimensions. This allows a standard 𝜖 = 4 − 𝑑 expansion.
We start by discussing the results at one-loop order, naively
valid only for small 𝜖 , but will then show that higher-loop
corrections in fact vanish exactly at the AIAO Weyl quantum
critical point. Integrating out modes with momenta 𝑞 in the
thin shell Λ/𝑏 < 𝑞 < Λ, where Λ denotes the ultraviolet
cutoff, and arbitrary frequency, leads to the flow equations at
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FIG. 3. Fixed-point structure for 𝑁 = 1 on the critical hypersurface 𝑟 = 0 in (a) the parameter space spanned by 𝛿, 𝑔2, and 𝑒2, (b) the 𝑔2-𝑒2

plane for fixed 𝛿 = −1, (c) the 𝛿-𝑔2 plane for fixed 𝑒2 = 9𝜖/16, and (d) the 𝛿-𝑒2 plane for fixed 𝑔2 = 0. Black (gray) dots and lines indicate fixed
points and separatrices, respectively, located within (projected onto) the respective planes. Arrows denote flow towards the infrared, with their
coloring indicating the flow velocity. There is a unique quantum critical fixed point at finite coupling, labeled as QCP. It corresponds to the
continuous transition between the symmetric Luttinger semimetal and the AIAO-ordered Weyl semimetal. The symmetric state is described
by the Luttinger-Abrikosov-Beneslavskii fixed point at 𝑔2 = 0, labeled as LAB. The dots labeled as A, A’, QCP0, and G correspond to unstable
interacting and Gaussian, respectively, fixed points, further discussed in the SM.

criticality 𝑟 = 0 as [36(b)]

d𝛿
d ln 𝑏

= − 2
15

(1 − 𝛿2)2 [(𝑔2 + 𝑒2) 𝑓1e + (𝑔2 − 𝑒2) 𝑓1t
]
, (4)

d𝑔2

d ln 𝑏
= (𝜖 − 𝜂𝜙)𝑔2 − 2

15
(1 − 𝛿2) [(1 + 𝛿) (𝑔2 + 𝑒2) 𝑓1e

− (1 − 𝛿) (𝑔2 − 𝑒2) ( 𝑓1t − 3 𝑓2e)
]
𝑔2, (5)

d𝑒2

d ln 𝑏
= (𝜖 − 𝜂𝑎)𝑒2 − 2

15
(1 − 𝛿2) [(1 + 𝛿) (𝑔2 + 𝑒2) 𝑓1e

− (1 − 𝛿) (𝑔2 − 𝑒2) 𝑓1t
]
𝑒2, (6)

where 𝜂𝜙 = 𝑁𝑔2 𝑓𝑔2 and 𝜂𝑎 = 𝑁𝑒2 𝑓𝑒2 . Here, 𝑓𝑖 ≡ 𝑓𝑖 (𝛿) with
𝑖 ∈ {1e, 1t, 2e, 𝑒2} (𝑖 ∈ {𝑔2}) are bounded and continuous
functions of the anisotropy parameter 𝛿 with 𝑓𝑖 > 0 ( 𝑓𝑔2 ≥
−2/3) for 𝛿 ∈ [−1, 1] and 𝑓𝑖 = 1 ( 𝑓𝑔2 = 0) for 𝛿 = 0. Their
definitions and numerical values for 𝛿 ≠ 0 are given in the
SM [36(c)]. In the above flow equations, we have rescaled the
couplings as (𝑔2, 𝑒2)Λ−𝜖 /(2𝜋2) ↦→ (1 − 𝛿2) (𝑔2, 𝑒2), which
turns out convenient to assess the properties of the stable fixed
point. Note that this implies that higher-order loop corrections
to the above equations will involve additional factors of (1 −
𝛿2). Importantly, in the present form, the stable fixed point
associated with AIAO Weyl quantum criticality is located at
finite couplings, as we show next.

Figure 3(a) depicts the fixed-point structure for 𝑁 = 1 on
the critical hypersurface 𝑟 = 0 in the space spanned by the
parameters 𝛿, 𝑔2, and 𝑒2. Notably, both 𝑔2 and 𝑒2 are rele-
vant couplings and flow towards a finite value in the infrared,
Fig. 3(b). For finite 𝑔2, the anisotropy parameter 𝛿 does then
no longer have a fixed point at 𝛿 = 0, and instead flows to-
wards maximal anisotropy 𝛿 = −1, Fig. 3(c). Most impor-
tantly, there is a unique stable fixed point at finite couplings,
located at 𝛿★ = −1 and 𝑔2

★ = 𝑒2
★ = 9𝜖/(16𝑁). This fixed

point, labeled as QCP in Figs. 3(a)–3(c), corresponds to the
continuous quantum phase transition between the symmetric

Luttinger semimetal, described by the Luttinger-Abrikosov-
Beneslavskii fixed point [26–29] in the 𝑔 = 0 plane, Fig. 3(d),
and the AIAO-ordered Weyl semimetal. It is characterized
by finite boson anomalous dimensions 𝜂𝜙 = 𝜂𝑎 = 𝜖 , vanish-
ing fermion anomalous dimension 𝜂𝜓 = 0, and a dynamical
critical exponent 𝑧 = 2. From the flow of the tuning param-
eter 𝑟 , we furthermore obtain the correlation-length exponent
𝜈 = 1/(2 − 𝜖). In the SM, we show that particle-hole sym-
metry becomes emergent at the quantum critical point [36(d)].
The SM also contains a discussion of the other, unstable, fixed
points [36(e)].

The stable fixed point has remarkable properties. First of
all, the fact that it is located at 𝛿★ = −1 implies that higher-
loop corrections to the vertex renormalizations, Eqs. (5) and
(6), vanish at criticality, see SM for details [36(f)]. As a
consequence, we find that our one-loop results 𝑧 = 2, 𝜂𝜙 =
𝜂𝑎 = 4 − 𝑑, and 𝜈 = 1/(𝑑 − 2), hold at all loop orders at the
quantum critical point. The transition between Luttinger and
AIAO Weyl semimetals in the pyrochlore iridates therefore
realizes a rare instance of an interacting fermionic quantum
critical point in a three-dimensional system that allows an exact
determination of its critical properties. With the exact results at
hand, we can resolve an apparent contradiction in the literature
concerning the relevance or not of the cubic anisotropy at
this quantum critical point [24, 25]. While the anisotropy
parameter 𝛿 vanishes at the Luttinger-Abrikosov-Beneslavskii
fixed point, it flows towards 𝛿 = −1 at the quantum critical fixed
point. Technically, the emergence of this maximal anisotropy
at criticality arises from the order-parameter contributions to
the fermion self-energy, which are neglected in the analysis of
Ref. [25].

Quasiuniversality. In the vicinity of the quantum critical
fixed point at 𝛿★ = −1, the flow of the anisotropy parameter
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FIG. 4. Renormalization group flow on the critical hypersurface 𝑟 = 0 from the ultraviolet scale, corresponding to 𝑏−𝜖 = 1, to a deep infrared
scale, corresponding to 𝑏−𝜖 = 10−6, starting from different microscopic parameters. Each curve corresponds to a numerical integration of
the flow equations using the initial conditions (𝛿, 𝑔2, 𝑒2) = (−0.5, 0.7391, 0.9098 + Δ) for 𝑏−𝜖 = 1, with Δ = −0.7,−0.6,−0.4, 0, 0.8, 2.4, 5.6
from purple to red. The starting values of (𝑔2, 𝑒2) have been chosen to satisfy the pseudo-fixed-point conditions for 𝛿 = −0.5 when Δ = 0.
(a) Flow trajectories in the parameter space spanned by 𝛿, 𝑔2, and 𝑒2, illustrating the crossover from the nonuniversal regime, characterized
by independent trajectories, to the quasiuniversal regime, in which these collapse onto a single curve. Deviations of (b) anisotropy parameter
𝛿 and effective exponents (c) 𝜂𝜓 = 2 − 𝑧 and (d) 𝜂𝜙 = 2 − 1/𝜈 from their respective critical values as function of renormalization group scale
𝑏−𝜖 . The quasiuniversal regime emerges at 𝑏−𝜖 ≲ 10−3, as indicated by the dashed line, and manifests itself in (𝑔2, 𝑒2)-independent, but
anisotropy-dependent, drifting exponents. Note that the flow is still significantly away from its ultra-low-energy limit even at 𝑏−𝜖 = 10−6, as
evidenced by the finite deviation 𝛿 − 𝛿★ ≳ 0.1 in (b).

takes the form

d(𝛿 − 𝛿★)
d ln 𝑏

𝑔2
★,𝑒

2
★

= −𝑐𝜖

𝑁
(𝛿 − 𝛿★)2 + O((𝛿 − 𝛿★)3) (7)

with a constant 𝑐 B 3 𝑓1e (−1)/5 ≈ 0.4449. Note the absence
of a linear term∝ (𝛿−𝛿★) in the above equation. The deviation
(𝛿− 𝛿★) corresponds to a marginally irrelevant parameter, im-
plying a logarithmically slow flow towards the critical point,
𝛿(𝑏) − 𝛿★ ≃ 𝑁/(𝑐𝜖 ln 𝑏), for ln 𝑏 ≫ 1. By contrast, the
Yukawa coupling and the effective charge acquire a power-law
flow, 𝑔2 (𝑏) − 𝑔2

★ ∝ 𝑏−𝜖 and 𝑒2 (𝑏) − 𝑒2
★ ∝ 𝑏−𝜖 . This implies a

separation of scales, giving rise to the following three regimes
in energy: In the nonuniversal high-energy regime, the cou-
plings 𝑔2 and 𝑒2 flow from their microscopic values towards
pseudo-fixed-point values 𝑔2∗ (𝛿) and 𝑒2∗ (𝛿), which depend only
on the anisotropy parameter 𝛿. Within this regime, the latter
can be considered approximately constant. Its slow flow be-
comes visible only when several orders of magnitude in energy
are considered. This defines a quasiuniversal intermediate-to-
low-energy regime [2, 6], in which the couplings 𝑔2 and 𝑒2 do
no longer depend on their microscopic values, but solely follow
their pseudo-fixed-point values 𝑔2∗ (𝛿) and 𝑒2∗ (𝛿) with slowly
varying anisotropy parameter 𝛿. In this regime, the correla-
tion length becomes large, such that observables display ap-
proximate power laws with slowly drifting exponents [39, 40].
Finally, the genuinely-universal ultra-low-energy regime will
be reached only after the anisotropy parameter has approached
its ultimate infrared regime, which requires fluctuations on
unusually many energy scales to be integrated out.

This is exemplified in Fig. 4, which shows the numerically-
integrated renormalization group flow for different initial cou-
plings on the critical hypersurface 𝑟 = 0. The couplings 𝑔2

and 𝑒2 first exhibit a fast flow on individual, nonuniversal, tra-
jectories, but then approach a single, quasiuniversal, trajectory

of pseudo-fixed points (𝑔2∗ (𝛿), 𝑒2∗ (𝛿)), along which they only
slowly flow, as a consequence of the slow flow of 𝛿, Fig. 4(a).
In fact, even after six orders of magnitude in 𝑏 𝜖 have been
integrated out, 𝛿 is still significantly away from its ultra-low-
energy value 𝛿★ = −1, Fig. 4(b). There is therefore a large qua-
siuniversal regime characterized by approximate power laws
with effective critical exponents, which are only slowly drift-
ing with energy or length. As shown in the SM [36(b)], the
present model satisfies additional scaling relations between the
different exponent, viz. 𝑧 = 2 − 𝜂𝜓 and 1/𝜈 = 2 − 𝜂𝜙 . There
are therefore only two independent effective exponents. Their
slow drifts as function of scale are depicted in Figs. 4(c) and
(d), illustrating the fact that the genuinely-universal values are
reached, at least for some of the exponents, only in the ultra-
low-energy limit. We emphasize that the slow renormalization
group flow is independent of microscopic parameters and as
such will occur in any given material realization of the all-in-
all-out Weyl quantum critical point in Luttinger semimetals.
In the SM [36(g)], we compare the quasiuniversal flow with a
generic power-law flow of a toy model that does not feature a
marginal coupling, illustrating the unusual behavior observed
in the quasiuniversal regime.

Experiments. The quasiuniversal regime is separated by
crossovers from the nonuniversal regime at the ultraviolet scale
and the genuinely-universal regime in the deep infrared, and
realizes a novel strongly-interacting quantum state of matter.
For the pyrochlore iridates, the relevant energy scale above
which the physics depends on microscopic details of the ma-
terial is around 100 K [18]. Assuming 𝑧 ≃ 2, each order of
magnitude in energy corresponds to only half an order of mag-
nitude in 𝑏 𝜖 , if 𝜖 = 1. The ultra-low-temperature behavior
will therefore be reached only well below the 1 mK regime.
Such regime not only is difficult to access experimentally and
necessitates sufficiently pure crystals that do not cut off the
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required long-range fluctuations: In the case of the pyrochlore
iridates, we also expect new effects in this ultra-low-energy
regime, arising from the weak Kondo coupling of the iridium
electrons to the rare-earth local moments [41, 42]. The ex-
perimentally most easily accessible regime below 100 K, by
contrast, will be governed by quasiuniversal behavior, charac-
terized by approximate power laws with slowly drifting expo-
nents. The specific heat as function of temperature, for in-
stance, is expected to scale as 𝐶 ∼ 𝑇𝑑/𝑧 with drifting exponent
𝑑/𝑧 > 3/2 at around 100 K and 𝑑/𝑧 = 3/2 in the ultra-low-
temperature limit. Observing such drifting exponents, e.g., in
careful thermodynamic and/or transport measurements, would
accomplish the first experimental realization of this new state
of matter.

Conclusions. We have demonstrated the emergence of a
novel quasiuniversal regime, which should be understood as a
new strongly-interacting quantum state of matter, in the finite-
temperature phase diagram of interacting three-dimensional
Luttinger semimetals. While quasiuniversal behavior is usu-
ally associated with a fixed-point annihilation scenario [2, 3],
our results show that the presence of a marginally-irrelevant
operator can lead to the same phenomenology. Our findings
call for new experiments on sufficiently pure samples of py-
rochlore iridates 𝑅2Ir2O7, which search for power laws with
slowly drifting exponents in the intermediate-energy regime
above the Weyl-Luttinger quantum phase transition [20, 43].
In the ultra-low-energy regime, by contrast, the weak Kondo
coupling between the iridium electrons and the rare-earth local
moments might lead to even more intriguing effects, the study
of which represents an excellent direction for future theoretical
work.
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[13] C. Brüne, C. X. Liu, E. G. Novik, E. M. Hankiewicz, H. Buh-
mann, Y. L. Chen, X. L. Qi, Z. X. Shen, S. C. Zhang, and L. W.
Molenkamp, Quantum Hall Effect from the Topological Sur-
face States of Strained Bulk HgTe, Phys. Rev. Lett. 106, 126803
(2011).

[14] A. Barfuss, L. Dudy, M. R. Scholz, H. Roth, P. Höpfner, C. Blu-
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S1. MEAN-FIELD THEORY

In this supplemental section, we discuss technical details
of the mean-field analysis. Formally, the mean-field approx-
imation can be understood as the limit of large number 𝑁
of quadratic band touching points at the Fermi level. In this
limit, fluctuations of the order-parameter field are suppressed.
The mean-field energy is then obtained by integrating out the
fermions, leading to the usual logarithm of the fermion deter-
minant in the effective action for the order parameter. Perform-
ing the frequency integration leads to the mean-field energy

𝐸MF (𝜙) = 𝑟

2
𝜙2 +

∫ Λ

0

d3𝑝

(2𝜋)3

[
𝜀 (1)𝜙 ( ®𝑝) + 𝜀 (2)𝜙 ( ®𝑝)

]
, (S1)

in accordance with Refs. [1, 2]. While the first summand pe-
nalizes the presence of a finite order parameter, the second one
accounts for a lowering of the total energy by AIAO ordering,
arising from the reduction of the low-energy density of states.
The momentum integration is carried out up to an ultraviolet
cutoff Λ, and is performed over the two filled fermionic bands

𝜀 (1,2)𝜙 ( ®𝑝) = −
[
(1 − 𝛿)2𝑝4 + 4𝛿

3∑︁
𝑖=1

𝑑2
𝑖 ( ®𝑝) + (𝑔𝜙)2

±2(1 + 𝛿) |𝑔𝜙|
√√√ 3∑︁

𝑖=1
𝑑2
𝑖 ( ®𝑝)


1/2

,

which are obtained by diagonalizing the mean-field Hamil-
tonian 𝐻MF =

∑5
𝑎=1 (1 + 𝑠𝑎𝛿)𝑑𝑎 ( ®𝑝)𝛾𝑎 + 𝑔𝜙𝛾45. Due to the

non-trivial anisotropy dependence of the integrand, this inte-
gral has to be performed numerically. Minimizing the resulting
mean-field energy yields the phase diagram displayed in Fig. 2
of the main text.

S2. DERIVATION OF FLOW EQUATIONS

In this supplemental section, we give details on the deriva-
tion of the flow equations. In order to generalize our theory to
noninteger spatial dimensions 2 < 𝑑 < 4, we keep the general
counting of dimensions in the couplings, but perform the an-
gular integrations directly in the physical dimension 𝑑 = 3 [3].
This prescription is believed to be the most appropriate choice
for the present type of models [1]. Integrating out fast modes

FIG. S1. Feynman diagrams at the one-loop order contributing to
(a,b) the fermion anomalous dimensions 𝜂1, 𝜂𝜓 and the anisotropy
parameter renormalization Δ𝛿, (c) the order-parameter anomalous
dimension 𝜂𝜙 and the tuning parameter renormalization Δ𝑟 , (d) the
Coulomb anomalous dimension 𝜂𝑎 , and (e)–(h) the vertex renormal-
izations Δ𝑔 and Δ𝑒, respectively. The contributions to the flow of
𝑒2 from (a) and (g), as well as those from (b) and (h), cancel as a
consequence of a Ward identity.

with momenta 𝑞 in the thin shell Λ/𝑏 < 𝑞 < Λ and arbitrary
frequencies 𝜔 ∈ R leads to the renormalized action for the
slow modes as

𝑆< =

∞∫
−∞

d𝜔
2𝜋

Λ/𝑏∫
0

d𝑑𝑞

(2𝜋)𝑑

{
𝑁∑︁
𝑖=1

𝜓†
𝑖

[
𝑏𝜂1 i𝜔

+ 𝑏𝜂𝜓

5∑︁
𝑎=1

𝑑𝑎 ( ®𝑞)𝛾𝑎 + (𝛿 + Δ𝛿)
5∑︁

𝑎=1
𝑠𝑎𝑑𝑎 ( ®𝑞)𝛾𝑎

]
𝜓𝑖

+ 1
2
𝜙

[
𝑏𝜂𝜙𝑞2 + (𝑟 + Δ𝑟)] 𝜙 + 1

2
𝑎𝑏𝜂𝑎𝑞2𝑎

}

+
∞∫

−∞

d𝜔1 d𝜔2

(2𝜋)2

Λ/𝑏∫
0

d𝑑𝑞1 d𝑑𝑞2

(2𝜋)2𝑑

[
(𝑔 + Δ𝑔)𝜙

𝑁∑︁
𝑖=1

𝜓†
𝑖 𝛾45𝜓𝑖

+ i(𝑒 + Δ𝑒)𝑎
𝑁∑︁
𝑖=1

𝜓†
𝑖 𝜓𝑖

]
. (S2)

Figure S1 shows the pertinent diagrams at the one-loop or-
der, giving rise to the anomalous dimensions 𝜂1, 𝜂𝜓 , 𝜂𝜙 , 𝜂𝑎,
the explicit anisotropy parameter renormalization Δ𝛿, and the
vertex renormalizations Δ𝑔, Δ𝑒. We rescale all frequencies
as 𝑏𝑧𝜔 ↦→ 𝜔, with dynamical exponent 𝑧 = 2 + 𝜂1 − 𝜂𝜓 , and
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all momenta as 𝑏 ®𝑞 ↦→ ®𝑞. Further, we renormalize the fields
according to 𝑏−(2+𝑑+𝑧−𝜂𝜓 )/2𝜓 ↦→ 𝜓, 𝑏−(2+𝑑+𝑧−𝜂𝜙 )/2𝜙 ↦→ 𝜙,
and 𝑏−(2+𝑑+𝑧−𝜂𝑎 )/2𝑎 ↦→ 𝑎. The effective action then becomes
of the same form as the original action, but with renormalized
parameters 𝛿, 𝑔, 𝑒, and 𝑟. Performing the loop integration
leads to the flow equations for 𝑟 = 0 as given in Eqs. (4)–(6)
of the main text.

In particular, the one-loop fermion self-energy diagrams
in Figs. S1(a) and (b) are frequency independent, such that
𝜂1 = 0. This leads to the scaling relation 𝑧 = 2 − 𝜂𝜓 , with the
fermion anomalous dimension

𝜂𝜓 =
2
15

(1 − 𝛿2) [(1 − 𝛿) (𝑔2 + 𝑒2) 𝑓1e − (1 + 𝛿) (𝑔2 − 𝑒2) 𝑓1t
]
,

(S3)

where we have rescaled the couplings as in Eqs. (4)–(6) of the
main text. Since there appears to be no fundamental reason for
the cancellation of frequency dependences in the fermion self-
energy diagrams in general, we should expect the above scaling
relation to receive corrections at higher loop orders. At the
quantum critical point at 𝛿★ = −1, however, these higher-loop
corrections vanish, cf. Sec. S6.

By contrast, the self-energy contributions in Figs. S1(a)
and (b) to the flow of 𝑒2 cancel with the explicit charge ver-
tex renormalizations in Figs. S1(g) and (h), respectively, as a
consequence of the Ward identity associated with the gauge
transformation 𝜓 ↦→ ei𝑒𝜆(𝜏 )𝜓, 𝑎 ↦→ 𝑎 − 𝜕𝜏𝜆(𝜏) [4]. The flow
of the effective charge can therefore be written as

d𝑒2

d ln 𝑏
=

(
𝜖 + 𝑧 − 2 − 𝜂𝑎 + 2𝛿

1 − 𝛿2
d𝛿

d ln 𝑏

)
𝑒2, (S4)

where the last term arises from the reparametrization of the
couplings as given as given below Eqs. (4)–(5) in the main text.
Equation (S4) leads to the scaling relation 𝜂𝑎 = 𝜖 + 𝑧−2 at any
charged fixed point in the Luttinger fermion system. As this
scaling relation ultimately arises from a Ward identity, which
holds at all loop orders within the 𝜖 expansion, we expect it to
be exact also at a quantum critical point away from 𝛿★ = −1.

Finally, the flow equation for the tuning parameter 𝑟 reads

d𝑟
d ln 𝑏

= (2 − 𝜂𝜙)𝑟 − 4𝑁
5

(1 − 𝛿) (1 − 𝛿2)𝑔2 𝑓2e , (S5)

where we have rescaled 𝑟Λ−2 ↦→ 𝑟, and 𝑔2 and 𝑒2 as in
Eqs. (4)–(6) of the main text. At the critical point, it de-
termines the correlation-length exponent, leading to another
scaling relation 1/𝜈 = 2 − 𝜂𝜙 . This scaling relation is basi-
cally a consequence of the fact that all bosonic selfinteractions
compatible with the symmetries of the model, such as a 𝜙4

term, are irrelevant in the renormalization group sense. We
therefore expect it also to hold to all loop orders.

S3. SOLID-ANGLE INTEGRALS

In this supplemental section, we provide definitions and
numerical values of the solid-angle integrals 𝑓𝑖 ≡ 𝑓𝑖 (𝛿), with
𝑖 ∈ {1, 1t, 1e, 2, 2t, 2e, 3, 3t, 3e, 3t, 4, 4t, 4e, 4tt, 4tt′, 4ee,

4et, 4tt, 4et, 𝑒2, 𝑔2}, as function of the anisotropy parameter
𝛿, occurring in the loop expansion. These are bounded and
continuous functions of order unity with 𝑓𝑖 > 0 ( 𝑓𝑔2 ≥ −2/3)
for 𝛿 ∈ [−1, 1] and 𝑓𝑖 = 1 ( 𝑓𝑔2 = 0) for 𝛿 = 0. Some of these
have already been defined in Ref. [5], reading

𝑓1 (𝛿) B 1
4𝜋

∫
dΩ

1
�̃�1/2

, (S6)

𝑓1t (𝛿) B 5
4𝜋

∫
dΩ

𝑑2
1

�̃�1/2
, (S7)

𝑓1e (𝛿) B 5
4𝜋

∫
dΩ

𝑑2
4

�̃�1/2
, (S8)

𝑓2 (𝛿) B 1
4𝜋

(1 − 𝛿) (1 + 𝛿)
∫

dΩ
1

�̃�3/2
, (S9)

𝑓2t (𝛿) B 5
4𝜋

(1 + 𝛿)
∫

dΩ
𝑑2

1

�̃�3/2
, (S10)

𝑓2e (𝛿) B 5
4𝜋

(1 − 𝛿)
∫

dΩ
𝑑2

4

�̃�3/2
, (S11)

𝑓3 (𝛿) B 1
4𝜋

(1 − 𝛿)3 (1 + 𝛿)3
∫

dΩ
1

�̃�5/2
, (S12)

𝑓3t (𝛿) B 5
4𝜋

(1 − 𝛿) (1 + 𝛿)3
∫

dΩ
𝑑2

1

�̃�5/2
, (S13)

𝑓3e (𝛿) B 5
4𝜋

(1 − 𝛿)3 (1 + 𝛿)
∫

dΩ
𝑑2

4

�̃�5/2
, (S14)

𝑓3t (𝛿) B
35√
34𝜋

(1 + 𝛿)3
∫

dΩ
𝑑1𝑑2𝑑3

�̃�5/2
, (S15)

where
∫

dΩ B
∫ 𝜋

0 d𝜃 sin 𝜃
∫ 2𝜋

0 d𝜙 denotes the integration

over the solid angle, �̃� (𝜃, 𝜙) B (1 − 𝛿)2 + 12𝛿
∑

𝑖< 𝑗
𝑞2
𝑖

𝑞2
𝑞2
𝑗

𝑞2 ,
and 𝑑𝑎 (𝜃, 𝜙) B 𝑑𝑎 ( ®𝑞)/𝑞2 are the ℓ = 2 real spherical har-
monics. Upon spatial rotations, the latter transform under
the irreducible representation T2g (Eg) of the octahedral point
group Oh for 𝑎 = 1, 2, 3 (𝑎 = 4, 5), and the indices t and e
of the functions 𝑓𝑖 indicate the type of spherical harmonics
involved in the integral. In addition to the above-defined func-
tions, the loop expansion of the order-parameter field theory
[Eqs. (1)–(3) of the main text] gives rise to the following new
solid-angle integrals,

𝑓4 (𝛿) B 1
4𝜋

(1 − 𝛿)5 (1 + 𝛿)5
∫

dΩ
1

�̃�7/2
, (S16)

𝑓4t (𝛿) B 5
4𝜋

(1 − 𝛿)3 (1 + 𝛿)5
∫

dΩ
𝑑2

1

�̃�7/2
, (S17)

𝑓4e (𝛿) B 5
4𝜋

(1 − 𝛿)5 (1 + 𝛿)3
∫

dΩ
𝑑2

4

�̃�7/2
, (S18)

𝑓4tt (𝛿) B 35
12𝜋

(1 − 𝛿) (1 + 𝛿)5
∫

dΩ
𝑑2

1 · 𝑑2
1

�̃�7/2
, (S19)

𝑓4tt′ (𝛿) B 35
4𝜋

(1 − 𝛿) (1 + 𝛿)5
∫

dΩ
𝑑2

1 · 𝑑2
2

�̃�7/2
, (S20)

𝑓4ee (𝛿) B 35
12𝜋

(1 − 𝛿)5 (1 + 𝛿)
∫

dΩ
𝑑2

4 · 𝑑2
4

�̃�7/2
, (S21)
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TABLE I. Values of solid-angle integrals 𝑓𝑖 (𝛿) for limiting cases 𝛿 = ±1 and isotropic case 𝛿 = 0 from, whenever possible, analytical
integration, otherwise determined numerically.

𝑓𝑖 𝑓𝑖 (−1) 𝑓𝑖 (0) 𝑓𝑖 (+1)
𝑓1 1.0942 1 0.8130
𝑓1t 1.3294 1 0.6225
𝑓1e 0.7415 1 1.0987
𝑓2 1 1 1/2
𝑓2t 5/6 1 0.6775
𝑓2e 1.3678 1 5/8
𝑓3 4/3 1 2/3

𝑓𝑖 𝑓𝑖 (−1) 𝑓𝑖 (0) 𝑓𝑖 (+1)
𝑓3t 5/9 1 5/9
𝑓3e 5/3 1 5/12
𝑓3t 35/54 1 0.7262
𝑓4 16/5 1 8/5
𝑓4t 4/3 1 4/9
𝑓4e 4/3 1 1
𝑓4tt 7/27 1 7/9

𝑓𝑖 𝑓𝑖 (−1) 𝑓𝑖 (0) 𝑓𝑖 (+1)
𝑓4tt′ 7/9 1 7/18
𝑓4ee 7/3 1 7/16
𝑓4et 7/9 1 7/24
𝑓4tt 77/162 1 0.8876
𝑓4et 77/108 1 77/144
𝑓𝑒2 16/9 1 4/3
𝑓𝑔2 16/9 0 −2/3

FIG. S2. Graphs of solid-angle integrals 𝑓𝑖 as function of 𝛿. Except for 𝑓𝑔2 , all solid-angle integrals satisfy 𝑓𝑖 > 0 for 𝛿 ∈ [−1, 1] and 𝑓𝑖 = 1
for 𝛿 = 0. Graphs not shown here are given in Ref. [5].

𝑓4et (𝛿) B 35
4𝜋

(1 − 𝛿)3 (1 + 𝛿)3
∫

dΩ
𝑑2

1 · 𝑑2
4

�̃�7/2
, (S22)

𝑓4tt (𝛿) B
385√
312𝜋

(1 + 𝛿)5
∫

dΩ
𝑑2

1 · 𝑑1𝑑2𝑑3

�̃�7/2
, (S23)

𝑓4et (𝛿) B
385√
34𝜋

(1 − 𝛿) (1 + 𝛿)3
∫

dΩ
𝑑2

4 · 𝑑1𝑑2𝑑3

�̃�7/2
. (S24)

For the Coulomb and order-parameter anomalous dimensions,
it is convenient to define two further functions as combinations
of the above-defined ones,

𝑓𝑒2 (𝛿) B 1
3

[
2(1 − 𝛿)2 + 3(1 + 𝛿)2] 𝑓2 (𝛿)

− 2
3

[
2
5
(1 − 𝛿)2 𝑓3e (𝛿) + 3

5
(1 + 𝛿)2 𝑓3t (𝛿)

− 12
5

𝛿2

(1 + 𝛿)2 𝑓3t (𝛿) + 36
35

𝛿2 (1 − 𝛿)
(1 + 𝛿)2 𝑓3t (𝛿)

]
,

(S25)

𝑓𝑔2 (𝛿) B 2(1 − 𝛿)2 − (1 + 𝛿)2

4
𝑓2 (𝛿)

+ 8𝛿2 − 6(1 − 𝛿)2 (1 + 𝛿)2 − 11(1 + 𝛿)4

20(1 + 𝛿)2 𝑓3t (𝛿)

+ 4(1 − 𝛿)2 + 9(1 + 𝛿)2

30
𝑓3e (𝛿) − 6𝛿2 (1 − 𝛿)

35(1 + 𝛿)2 𝑓3t (𝛿)

+
{
(1 − 𝛿)2 [−4(1 − 𝛿)2 + 7(1 + 𝛿)2]

14(1 + 𝛿)2

+ 2𝛿2 [−(1 − 𝛿)2 + 9(1 + 𝛿)2]
7(1 + 𝛿)4

}
𝑓4tt (𝛿)

+
{
(1 − 𝛿)2 [−5(1 − 𝛿)2 + 11(1 + 𝛿)2]

42(1 + 𝛿)2

+ 2𝛿2 [(1 − 𝛿)2 + 18(1 + 𝛿)2]
21(1 + 𝛿)4

}
𝑓4tt′ (𝛿)

− 4(1 − 𝛿)2

21
𝑓4ee (𝛿) + 54𝛿2 (1 − 𝛿)

77(1 + 𝛿)2 𝑓4tt (𝛿)
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− 4𝛿
[(1 − 𝛿)2 + 3(1 + 𝛿)2]

21(1 + 𝛿)2 𝑓4et (𝛿)

− 12𝛿2 (1 − 𝛿)2

77(1 + 𝛿)2 𝑓4et (𝛿). (S26)

We emphasize that all 𝑓𝑖 are bounded from above and below for
all 𝛿 ∈ [−1, 1]; in particular, they remain finite in the limiting
cases 𝛿 = ±1, see Table I. Figure S2 shows the graphs of those
functions 𝑓𝑖 that have not already been defined in Ref. [5].

S4. EMERGENT PARTICLE-HOLE SYMMETRY

In this supplemental section, we demonstrate that particle-
hole symmetry is emergent at the quantum critical point.
To this end, we add to the Lagrangian the perturbation
𝐿𝑥 = −𝑥∑𝑁

𝑖=1 𝜓
†
𝑖 ∇2𝜓𝑖 , with small parameter 𝑥, |𝑥 | ≪ 1. For

𝑥 ≠ 0, 𝐿𝑥 breaks particle-hole symmetry explicitly. The cor-
responding flow equation reads

d𝑥
d ln 𝑏

= −𝜂𝜓𝑥, (S27)

with 𝜂𝜓 given in Eq. (S3). Importantly, 𝜂𝜓 > 0 (𝜂𝜓 = 0) for
𝑔2 > 0, 𝑒2 > 0, and 𝛿 ∈ (−1, 0] (𝛿 = −1), corresponding
to an irrelevant (marginal) particle-hole asymmetry param-
eter 𝑥. Assuming 𝛿 < 0 for the pyrochlore iridates [10],
𝑥 flows to zero towards the infrared, and particle-hole sym-
metry becomes emergent in the quasiuniversal intermediate-
temperature regime. Note that 𝑥 is exactly marginal at the
stable quantum critical fixed point. There is therefore a line
of fixed points at 𝛿 = −1 within a finite interval around 𝑥 = 0.
We have verified, however, that the flow for any small pertur-
bation 𝑥 ≠ 0 and 𝛿 − 𝛿★ > 0 is, in the ultra-low-energy limit,
always towards the particle-hole-symmetric quantum critical
fixed point at 𝑥 = 0.

S5. FIXED-POINT STRUCTURE

In this supplemental section, we give more details of the
fixed-point structure on the critical hypersurface 𝑟 = 0, in-
cluding also the unstable fixed points with infrared relevant
directions.

First of all, vanishing couplings 𝑔2 = 𝑒2 = 0 lead to
zero renormalization group flow for arbitrary values of the
anisotropy parameter 𝛿 ∈ [−1, 1], leading to a line of Gaus-
sian fixed points [thick black line in Fig. 3(a) of the main
text].

For 𝑔2 = 0, but 𝑒2 > 0, the flow equations host three inter-
acting fixed points. One, located at 𝛿 = 0, corresponds to the
well-known Luttinger-Abrikosov-Beneslavskii fixed point [6–
9]. It is stable within the plane 𝑔2 = 0 [see Fig. 3(d) of the
main text], but unstable in the direction perpendicular to it,
as long as 𝑟 is tuned to criticality [Fig. 3(c) of the main text].
Two further unstable fixed points are located at 𝛿 = ±1 and
𝑔2 = 0, both of which have previously been encountered [5],
but are of no great importance to this work, since not only are

they unstable within the 𝑔2 = 0 plane, but also in the direction
perpendicular to it.

For 𝑒2 = 0, but 𝑔2 > 0, we find an additional interacting
fixed point, corresponding to AIAO quantum criticality in the
absence of the long-range Coulomb repulsion, labeled as QCP0
in Figs. 3(a) and 3(b) of the main text. It is stable within the
𝑒2 = 0 plane, but unstable in the direction perpendicular to it.

There is thus a unique stable fixed point on the crit-
ical hypersurface 𝑟 = 0, which is the quantum critical
point discussed in the main text, located at (𝛿★, 𝑔2

★, 𝑒
2
★) =

(−1, 9𝜖/(16𝑁), 9𝜖/(16𝑁)), and labeled as QCP in Figs. 3(a)–
3(c) of the main text.

The fact that no further interacting real fixed point exists at
some other value of 𝛿 > −1 on the critical hypersurface can
also be seen as follows: Assume such a fixed point existed.
The fact that 𝑓𝑔2 (𝛿 = 1) < 0 implies that such additional
fixed point would need to be located at 𝛿 < 1, since any real
fixed point at 𝛿 = 1 is prevented by the fixed-point condition
d𝑔2/(d ln 𝑏) = 0 as long as 𝑔2 > 0, see Eq. (5) of the main text.
For 𝛿 ≠ ±1, however, the fixed-point condition d𝛿/(d ln 𝑏) = 0
can only be satisfied if

𝑔2

𝑒2 =
𝑓1t (𝛿) − 𝑓1e (𝛿)
𝑓1t (𝛿) + 𝑓1e (𝛿) C 𝑟1 (𝛿) . (S28)

A second relation, which simultaneously has to hold at the
putative fixed point, arises from the condition that the coupling
ratio (𝑔2/𝑒2) does not flow, d(𝑔2/𝑒2)/(d ln 𝑏) = 0, which can
be simplified to

𝑔2

𝑒2 =
2(1 − 𝛿)2 (1 + 𝛿) 𝑓2e (𝛿) + 5𝑁 𝑓𝑒2 (𝛿)
2(1 − 𝛿)2 (1 + 𝛿) 𝑓2e (𝛿) + 5𝑁 𝑓𝑔2 (𝛿) C 𝑟2 (𝛿) . (S29)

The right-hand sides of Eqs. (S28) and (S29) define functions
𝑟𝑖 (𝛿), 𝑖 = 1, 2. Figure S3 shows that 𝑟1 ≠ 𝑟2 for all values of
𝛿 ∈ [−1, 1] and any number of quadratic band touching points
𝑁 ∈ N. This implies that the two fixed-point conditions for a
putative interacting fixed point located at 𝛿 ≠ ±1, Eqs. (S28)
and (S29), cannot be simultaneously satisfied. At the one-loop
order, there are therefore no other interacting fixed points; in
particular, the stable quantum critical fixed point discussed in
the main text is unique.

All fixed points on the critical hypersurface 𝑟 = 0, their
locations, and number of infrared relevant directions, are sum-
marized in Table II.

FIG. S3. Right-hand sides of Eqs. (S28) and (S29) as function of
𝛿, showing that 𝑟1 ≠ 𝑟2 for all values of 𝛿 ∈ [−1, 1], preventing the
existence of any interacting fixed point at 𝛿 ≠ ±1 for an arbitrary
number of band touching points 𝑁 ∈ N.
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TABLE II. Fixed points, their locations, and number of relevant directions on the critical hypersurface 𝑟 = 0.

Label 𝑔2𝑁/𝜖 𝑒2𝑁/𝜖 𝛿 Relevant directions Comment
G 0 0 ∈ [−1, 1] 2 Line of Gaussian fixed points
A 0 9/16 −1 2 Unstable fixed point at 𝛿 = −1, observed in [5]
LAB 0 15/19 0 1 Luttinger-Abrikosov-Beneslavskii fixed point, discussed in [6–9]
A’ 0 3/4 1 2 Unstable fixed point at 𝛿 = 1, observed in [5]
QCP0 9/16 0 −1 1 Quantum critical fixed point for uncharged theory 𝑒2 = 0
QCP 9/16 9/16 −1 0 Unique stable fixed point for AIAO Weyl quantum criticality

S6. HIGHER-LOOP CORRECTIONS

In this supplemental section, we substantiate our claim that
the critical behavior at the antiferromagnetic Weyl quantum
critical point is one-loop exact. In particular, we argue that
higher-loop corrections to the critical exponents vanish when
𝛿 approaches the fixed-point value 𝛿★ = −1. We first note
any closed fermion loop in a given diagram leads to a pole
∝ 1/(1 − 𝛿2), while any loop containing at least one inner
boson line leads to only a regular contribution as function of 𝛿.
This implies that the only diagrams that contribute, at a given
loop order, to the critical exponents of a quantum critical point
at 𝛿★ = −1 are those that involve the largest possible number
of closed fermion loops.

To illustrate this point, let us consider the two-loop ver-
tex corrections to the flows of the Yukawa coupling and the
effective charge. The two-loop diagrams with the largest num-
ber of closed fermion loops contributing to the explicit vertex
corrections are given in Fig. S4. These diagrams are most
conveniently evaluated using dimensional regularization. We
start with the correction Γ (2)

𝜙 ∝ 𝑔5 given in Fig. S4(a), which
contributes to the flow of the Yukawa coupling. The evalu-
ation of this diagram involves the one-loop order-parameter

FIG. S4. Vertex corrections with largest possible number of closed
fermion loops at two-loop order, contributing to the renormalization
of (a)–(d) the Yukawa coupling 𝑔 and (e)–(h) the effective charge 𝑒.

self-energy at arbitrary external frequencies and momenta,

Σ (1)
𝜙 (𝜔, ®𝑝) = 2𝑁𝑔2

∫
d𝑑𝑞

(2𝜋)𝑑
(
𝑄2− +𝑄2+

) (
𝑄4

× −𝑄2−𝑄2+
)

𝑄2−𝑄2+
[
𝜔2 + (

𝑄2− +𝑄2+
)2

] .
(S30)

In the above equation, we have already performed the fre-
quency integral, and have used the abbreviations𝑄4± ≡ ∑

𝑎 (1+
𝑠𝑎𝛿)2𝑑2

𝑎 ( ®𝑞± ®𝑝
2 ) and𝑄4

× ≡ ∑
𝑎 𝑠𝑎 (1+𝑠𝑎𝛿)2𝑑𝑎 ( ®𝑞− ®𝑝

2 )𝑑𝑎 ( ®𝑞+ ®𝑝
2 ).

In 𝑑 = 4−𝜖 spatial dimensions, the substitution ®𝑞 ↦→
√︁
|𝜔 | ®𝑞 re-

veals the scaling form for the boson self-energy, Σ (1)
𝜙 (𝜔, ®𝑝) =

𝑁𝑔2 |𝜔 |1− 𝜖
2 F𝜖 , 𝛿 ( ®𝑝/

√︁
|𝜔 |) with scaling function F𝜖 , 𝛿 . It fol-

lows that there is a unique divergent term in the sense of
dimensional regularization, which is frequency independent,

Σ (1)
𝜙 (𝜔, ®𝑝) − Σ (1)

𝜙 (0, 0) = 𝑁𝑔2 𝑓𝑔2 (𝛿)
1 − 𝛿2

𝑝2

𝜖
+ finite terms ,

(S31)

displaying the advertised pole ∝ 1/(1 − 𝛿2) as function of
𝛿. The two-loop correction Γ (2)

𝜙 given in Fig. S4(a) now
can be reduced to an expression involving only the one-loop
correction Γ (1)

𝜙 given in Fig. S1(e), of the form

Γ (2)
𝜙 ∝ 𝑁𝑔2 𝑓𝑔2 (𝛿)

1 − 𝛿2 Γ
(1)
𝜙 , (S32)

with 𝛿-independent prefactors. We observe that the rescaling
of the couplings given below Eqs. (4)–(5) in the main text
precisely cancels the 1/(1 − 𝛿2) divergence caused by the
internal fermion loop, such that the two-loop contribution to
the flow of the Yukawa coupling reads

d𝑔2

d ln 𝑏

����
Fig. S4(a)

=
2
5
𝑁 (1 − 𝛿) (1 − 𝛿2) 𝑓2e (𝛿) 𝑓𝑔2 (𝛿)𝑔6. (S33)

Importantly, for 𝛿 = −1, the two-loop correction is suppressed.
Similar scaling relations and reduction formulas, relating two-
loop vertex corrections with one-loop boson self-energies and
vertex corrections, can be derived for all remaining diagrams
shown in Figs. S4(b)–(h). In particular, the two-loop diagram
depicted in Figs. S4(d) gives rise to a completely analogous
expression as displayed in Eq. (S33). Moreover, the two-
loop contributions in Figs. S4(e,h) turn out to vanish exactly,
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since the corresponding one-loop diagrams are already zero.
Also, the four remaining two-loop vertex corrections given in
Figs. S4(b,c,f,g) are exactly zero, since the closed fermion loop
connected to a photon field and an order-parameter field van-
ishes by symmetry. In sum, the flows of the Yukawa coupling
and the effective charge can be written at the two-loop order
as

d𝑔2

d ln 𝑏
= (𝜖 − 𝜂𝜙)𝑔2 + O(𝛿 − 𝛿★), (S34)

d𝑒2

d ln 𝑏
= (𝜖 − 𝜂𝑎)𝑒2 + O(𝛿 − 𝛿★), (S35)

which implies 𝜂𝜙 = 𝜖 + O(𝜖3) and 𝜂𝑎 = 𝜖 + O(𝜖3) at the
quantum critical point. Analogously, from the flow of the
tuning parameter 𝑟, we can show that 1/𝜈 = 2 − 𝜖 + O(𝜖3) at
the two-loop order. In fact, analogous arguments apply for any
given loop order, since the only diagrams that contribute at 𝛿 =
−1 are those that involve the largest possible number of closed
fermion loops, implying that they can be reduced to products of
one-loop self-energies and vertex corrections. These, however,
will always be suppressed at 𝛿 = −1, implying that 𝜂𝜙 = 4− 𝑑,
𝜂𝑎 = 4−𝑑, 𝑧 = 2, and 1/𝜈 = 𝑑−2 exactly at the quantum critical
point, as stated in the main text. We emphasize that while these
results have been obtained within a particular dimensional
continuation scheme, the above analysis of the higher-loop
corrections can be carried out in an analogous way (although
somewhat less explicitly), without ever specifying the scheme.
Our finding that the flow near the critical fixed point is one-
loop exact and higher-loop corrections vanish at the quantum
critical point, and the resulting critical behavior, is therefore
independent of our particular approach, and continues to hold
for other dimensional continuation schemes.

S7. QUASIUNIVERSAL FLOW VS. GENERIC FLOW

In this supplemental section, we compare the quasiuniversal
flow with a generic power-law flow of a toy model that does not
feature a marginal coupling, illustrating the unusual behavior
observed in the quasiuniversal regime. To construct such a toy
flow, we manually modify the flow equation of the anisotropy
𝛿 in order to remove its “marginality.” To this end, we simply
replace (1+ 𝛿)2 by (1+ 𝛿), giving rise to the toy flow equation

d𝛿
d ln 𝑏

= − 2
15

(1 − 𝛿)2 (1 + 𝛿) [(𝑔2 + 𝑒2) 𝑓1e + (𝑔2 − 𝑒2) 𝑓1t
]
.

(S36)

We leave the flow equations for the Yukawa coupling 𝑔2 and
the effective charge 𝑒2 unchanged. As a consequence, the
system still features an AIAO Weyl quantum critical point at
𝛿★ = −1, characterized by the same leading universal critical
exponents 𝑧 = 2, 𝜂𝜓 = 0, 𝜂𝜙 = 𝜂𝑎 = 𝜖 , and 1/𝜈 = 2 − 𝜖 .
However, the flow towards this fixed point in this toy model

is qualitatively different, since the anisotropy 𝛿 is no longer
marginally irrelevant, but now represents a standard power-
law irrelevant parameter at the quantum critical point. This
can be seen by expanding the above flow equation about the
fixed point, reading

d(𝛿 − 𝛿★)
d ln 𝑏

𝑔2
★,𝑒

2
★

= −𝑐𝜖

𝑁
(𝛿 − 𝛿★) + O((𝛿 − 𝛿★)2), (S37)

with the constant 𝑐 > 0 as given below Eq. (7) in the main
text. Importantly, the above flow equation now features a linear
term∝ (𝛿−𝛿★), indicating the absence of a marginal parameter
in the toy flow. Consequently, the flow on the critical manifold
𝑟 = 0 is of usual power-law behavior towards the infrared stable
fixed point. This qualitatively change manifests itself also in
all flowing exponents. They approach their true infrared values
rapidly and no longer display intermediate drifting behavior.
This is illustrated in Fig. S5, which shows the flowing fermion
anomalous dimension 𝜂𝜓 as function of renormalization group
scale 𝑏−𝜖 . We reiterate that 𝜂𝜓 is related to the dynamical
critical exponent 𝑧 via 𝜂𝜓 = 2 − 𝑧, and as such governs the
behavior of the specific heat 𝐶 ∼ 𝑇𝑑/𝑧 . In the toy model
flow [Fig. S5(a)], 𝜂𝜓 approaches zero already at 𝑏−𝜖 ≃ 10−3.
By contrast, the Luttinger model flow [Fig. S5(b)] features a
wide quasiuniversal regime for 𝑏−𝜖 ≲ 10−3 up to significantly
below 𝑏−𝜖 = 10−6, characterized by a slow drift of 𝜂𝜓 = 2− 𝑧.
We have verified that all other flowing exponents display an
analogous behavior.

FIG. S5. Flowing fermion anomalous dimension 𝜂𝜓 as function
of renormalization group scale 𝑏−𝜖 from the ultraviolet scale, cor-
responding to 𝑏−𝜖 = 1, to a deep infrared scale, corresponding
to 𝑏−𝜖 = 10−6, starting from different microscopic parameters on
the critical hypersurface 𝑟 = 0. Each curve corresponds to a nu-
merical integration of the flow equations using the initial condi-
tions (𝛿, 𝑔2, 𝑒2) = (−0.5, 0.7391, 0.9098 + Δ) for 𝑏−𝜖 = 1, with
Δ = −0.7,−0.6,−0.4, 0, 0.8, 2.4, 5.6 from purple to red, as in Fig. 4
of the main text. Panel (a) shows the toy model flow, in which the
universal regime emerges at 𝑏−𝜖 ≲ 10−3, as indicated by the dashed
line, which manifests itself in constant exponents that are independent
of any microscopic parameters. Panel (b) shows the Luttinger model
flow for comparison [same as Fig. 4(c) of the main text], in which the
quasiuniversal regime emerges at 𝑏−𝜖 ≲ 10−3, as indicated by the
dashed line, which manifests itself in slowly drifting exponents.
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