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Abstract

This paper introduces a novel approach to probabilistic deep learning, kernel den-
sity matrices, which provide a simpler yet effective mechanism for representing
joint probability distributions of both continuous and discrete random variables.
In quantum mechanics, a density matrix is the most general way to describe
the state of a quantum system. This work extends the concept of density matri-
ces by allowing them to be defined in a reproducing kernel Hilbert space. This
abstraction allows the construction of differentiable models for density estima-
tion, inference, and sampling, and enables their integration into end-to-end deep
neural models. In doing so, we provide a versatile representation of marginal and
joint probability distributions that allows us to develop a differentiable, compo-
sitional, and reversible inference procedure that covers a wide range of machine
learning tasks, including density estimation, discriminative learning, and gener-
ative modeling. The broad applicability of the framework is illustrated by two
examples: an image classification model that can be naturally transformed into
a conditional generative model, and a model for learning with label proportions
that demonstrates the framework’s ability to deal with uncertainty in the train-
ing samples. The framework is implemented as a library and is available at:
https://github.com/fagonzalezo/kdm.

Keywords: quantum machine learning, density matrix, kernel methods, probabilistic
deep learning
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1 Introduction

The density matrix is a powerful mathematical tool used in quantum mechanics to
describe the state of a quantum system (Zwiebach, 2022). Unlike the wave function,
which provides a complete description of a quantum system in a pure state, the den-
sity matrix can describe both pure and mixed states. A mixed state occurs when we
have a statistical ensemble (classical uncertainty) of different possible quantum states
(quantum uncertainty), rather than a single known state. A density matrix can be
thought of as a probability distribution that encodes both the classical and quantum
uncertainty of a quantum system. An attractive feature of the density matrix for-
malism is that it provides a convenient and powerful computational framework that
combines probability and linear algebra. For example, by taking the trace of the prod-
uct of the density matrix with an operator, one can determine the expectation value
of that operator.

Formally, a density matrix is a Hermitian operator that is positive semidefinite,
and it acts on a Hilbert space that represents the state space of a quantum sys-
tem (Nielsen and Chuang, 2012). This work introduces an abstraction, the kernel
density matrix (KDM), which extends the notion of density matrix to reproducing
kernel Hilbert spaces (RKHS). This abstraction has several interesting features from
a machine learning perspective: first, it can represent both discrete and continuous
probability distributions; second, it provides efficient kernelized operations for den-
sity computation and inference; third, it can be used to develop models for density
estimation, inference, and sampling that are differentiable. Accordingly, it could be
integrated into end-to-end deep neural models.

The main contributions of this paper are: (i) the extension of the concept of den-
sity matrix to RKHSs in the form of KDMs; (ii) demostrating that KDM is a versatile
mechanism for representing both continuous and discrete probability distributions;
(iii) developing a method for conducting inference using KDMs that is differentiable,
compositional, and reversible; (iv) presenting parametric and non-parametric learn-
ing algorithms for shallow and deep models involving KDMs; and (v) exploring the
framework’s capabilities in diverse learning tasks.

1.1 Related work

The model presented in this work can be regarded as a quantum-inspired machine-
learning method (Schuld and Petruccione, 2018). The majority of quantum machine-
learning methods rely on wave functions that depict pure states (Cerezo et al, 2023).
Density matrices provide an attractive way to represent probability distributions in
machine learning, but there have been few studies exploring their potential appli-
cations in specific machine learning tasks: classification (Tiwari and Melucci, 2019;
Sergioli et al, 2018; Giuntini et al, 2023), clustering (Wolf, 2006), and multimodal
learning (Li et al, 2021) are some examples. The two studies most closely related to
the present one are those by (Srinivasan et al, 2018) and (González et al, 2022) .
Srinivasan et al (2018) use a kernel mean map to embed rank-1 density matrices in
a RKHS. The authors apply their approach to formulate a hidden quantum Markov
model (HQMM) and present an algorithm that is based on two-stage regression to

2



learn the parameters of the HQMM. González et al (2022) combine density matrices
with random Fourier features (RFF) (Rahimi and Recht, 2007) to represent probabil-
ity distributions, perform inference, and integrate them into deep learning models. The
current study presents a more general and efficient formulation than that of (González
et al, 2022), by implicitly defining density matrices in RKHS induced by a kernel, and
introducing kernelized versions of operations over these density matrices. In contrast
to (Srinivasan et al, 2018), the framework presented in this study allows the represen-
tation of arbitrary rank density matrices and introduces learning algorithms that can
be applied to different models including deep end-to-end architectures.

Probabilistic deep learning (PDL) refers to the combination of deep neural net-
works and probabilistic models. PDL can model uncertainty on the input data, the
output predictions and/or the model parameters. Examples of PDL methods include
deep Gaussian processes (DGP) (Damianou and Lawrence, 2013), Bayesian neural
networks (BNN) (Goan and Fookes, 2020), generative adversarial networks (GANs)
(Goodfellow et al, 2020), variational autoencoders (Kingma and Welling, 2013), and
autoregressive models. The different methods present different approaches to PDL.
DGP models the entire training dataset as a stochastic process, while BNN uses a
Bayesian approach to model the neural network parameters. Some methods focus on
a particular task, such as GANs, which are designed for generation, while others are
more versatile and can support a wide range of tasks. Normalizing flows (NF) (Rezende
and Mohamed, 2015; Papamakarios et al, 2021) are an example of the latter and
can be applied to tasks such as density estimation, sampling, variational inference,
clustering, and classification. The framework presented in this paper takes a similar
approach but is based on a different foundation that it shares with quantum mechan-
ics. This provides a new way to think about PDL, presenting original characteristics
and possibilities that we believe deserve further investigation.

2 Density matrices and kernel density matrices

2.1 Density matrices

A wave function, denoted as |ψ⟩, is a complex-valued function that lives in a Hilbert
space, H, and provides a complete description of the state of a ‘pure’ quantum system.
The probability of finding a system in a particular state is given by the square of the
absolute value of the projection of the wave function onto the desired state (also called
the probability amplitude). This is known as the Born rule (Nielsen and Chuang,
2012).

In addition to the quantum uncertainty represented by the wave function, it is
possible for the system to have classical uncertainty. In this case we say that the
system is in a ‘mixed’ state, i.e. a statistical mixture of N different states, |ψi⟩, each
with an associated probability pi, with

∑N
i pi = 1. This is represented by a density

matrix, ρ, which is the more general way to represent the state of a quantum system:

ρ =

N∑
i

pi|ψi⟩⟨ψi| (1)
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where ⟨ψi| represents the conjugate transpose of |ψi⟩. A density matrix is a Her-
mitian, positive-semidefinite matrix with unit trace, defined on the Hilbert space
associated with the quantum system1. The Born rule can be extended to compute the
probability of finding a system with the state represented by ρ in a state |ψ⟩ after a
measurement:

p(|ψ⟩|ρ) = tr(|ψ⟩⟨ψ|ρ) = ⟨ψ|ρ|ψ⟩ =
N∑
i

pi|⟨ψ|ψi⟩|2 (2)

Density matrices are a powerful mechanism to represent quantum probability
distributions and efficiently perform different calculations: outcomes of quantum mea-
surements, expected values, properties of composite systems, and system dynamics,
among others (Nielsen and Chuang, 2012).

The following section introduces the concept of a KDM, which can be thought of
as a density matrix defined in the RKHS induced by a kernel. In this work, KDMs are
used to efficiently represent joint probability distributions and to perform inference,
among other things. The defined operations are differentiable and therefore integrable
into deep learning models.

2.2 Kernel density matrices

Definition 1 (Kernel density matrix) A kernel density matrix over a set X is a triplet

ρ = (C,p, kθ) where C = {x(1), . . . ,x(m)} ⊆ X, p = (p1, . . . , pm) ∈ Rm and kθ : X×X → R,
such that ∀x ∈ X, k(x,x) = 1, ∀i pi ≥ 0 and

∑n
i=1 pi = 1.

The elements of C are the components of the KDM, and the pi value represents the
mixture weight, or probability, of the component xi. If ϕ : Rn → H is the mapping to the
RKHS H associated to the kernel kθ, ρ represents a density matrix defined as in Eq. 1 with
components |ψi⟩ = |ϕ(x(i))⟩. The projection function associated to a KDM ρ is defined as:

fρ(x) =
∑

x(i)∈C

pik
2
θ(x,x

(i)) (3)

If we replace k2θ(x,x
(i)) by |⟨ϕ(x)|ϕ(x(i))⟩|2 in Eq. 3, we get the Born rule equation

Eq. 2. In quantum mechanics it is common to work with complex Hilbert spaces, in this
work we use real-valued kernels over a real domain. This implies that the represented
density matrices live in a real Hilbert space. This framework can be easily extended
to the complex case, but the real case is sufficient for our goal of representing classical
probability distributions.

A central idea in this work is that the projection function in Eq. 3 can be trans-
formed in a probability density function (PDF) by multiplying it by a normalization
constant that depends on the kernel of the KDM:

f̂ρ(x) =Mkfρ(x) (4)

1If the Hilbert space is infinite-dimensional, we use the term ’density operators’ instead of ’density
matrices’.
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Discrete kernel density matrices.

A discrete KDM refers to a KDM in which the corresponding kernel is associated with
a RKHS of finite dimension. In this work we will use X = Rn along with the cosine
kernel (kcos(x,y) =

<x,y>√
<x,x><y,y>

) to represent discrete probability distributions. The

normalization constant for this kernel is Mkcos
= 1. It is possible to use any kernel

that satisfies ∀x ∈ X, k(x,x) = 1 and has an associated RKHS of finite dimension.
The following propositions shows that a KDM ρx = (C,p, kcos) represents a

probability distribution 2 for a random variable x that can take a finite set of values.

Proposition 1 Let ρx = (C,p, kcos) be a KDM over Rn; let X = {b(1), . . . , b(n)} ⊂ Rn be

an orthogonal basis of Rn, then {fρ(b(i))}i=1,...n is a categorical probability distribution for
the random variable x ∈ X.

In particular, if we use the canonical basis X = {e(1), . . . , e(n)}, the function in
Eq. 4, defines a valid categorical PDF over X:

f̂ρx(x) = fρx(x), for x ∈ {e(i)}i=1...n (5)

As an example, consider the discrete probability distribution p = (0.2, 0.3, 0.5). It can
be represented by the KDM ρ0 = ({(1, 0, 0), (0, 1, 0), (0, 0, 1)}, (0.2, 0.3, 0.5), kcos), also,
it can be represented by the KDM ρ1 = ({(

√
0.2,
√
0.3,
√
0.5)}, (1), kcos).

Continuous kernel density matrices.

A continuous KDM is a KDM over Rn with a radial basis kernel k(x, y) = K(x − y)
that satisfies: ∫

K(x)dx = 1∫
xK(x)dx = 0∫
x2K(x)dx > 0

(6)

There are different kernels that satisfies the conditions in Eq. 6, including the
Gaussian, Epanechnikov and tricube kernels (Wasserman et al, 2006). In this work we

will use the Gaussian (or RBF) kernel, krbf,σ(x,y) = e
−||x−y||2

2σ2 .
A KDM ρx = (C,p, krbf) with C ⊆ Rn represents a continuous probability dis-

tribution of a random variable x ∈ Rn with a PDF given by Eq. 4 with normalizing
constantMkrbf

= 1√
(2π)n(

√
2σ)n

. It is not difficult to check that the PDF corresponding

to ρx, f̂ρx, is a valid PDF over Rn. In fact, Eq. 4, with normalizing constantMkrbf
, is

a generalization of the non-parametric estimation approach to density estimation with

2We will use the notation ρx to indicate that the KDM ρ represents a probability distribution for the
random variable x.
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kernels known as kernel density estimation (KDE) (Rosenblatt, 1956; Parzen, 1962).
As shown in the present work, KDMs can be used in wider range of applications and
can be learned using non-parametric and parametric approaches.

2.3 Density estimation with kernel density matrices

Since a KDM extends the notion of kernel density estimator, it is possible to perform
non-parametric density estimation with KDMs. In fact, Equation 4 corresponds to a
KDE density estimator with a Gaussian kernel and a bandwidth parameter

√
2σ. The

following theorem guarantees that the estimator in Eq. 4 converges in probability to
the real PDF:

Theorem 2 (Parzen (1962)) Let D = {x(1), . . . ,x(ℓ)} ⊆ Rn be a set of iid samples drawn
from a probability distribution with PDF f ; let ρℓx = (D,p = { 1

ℓ , . . . ,
1
ℓ }, krbf,σℓ

) be a KDM;

and let f̂ρℓ
x
be defined as in Eq. 4. Assume that f is continuous at x and that σℓ → 0 and

ℓσℓ → ∞ as ℓ→ ∞. Then f̂ρℓ
x
(x)

p−→ f(x).

The following proposition corresponds to the analogous result for categorical
probability distributions.

Proposition 3 Let X = {e(1), . . . , e(n)} be the canonical basis of Rn; let D = {x1, . . . , xℓ} ⊆
Rn be a set of iid samples drawn from X with categorical probability distribution p =
(p1, . . . , pn); let ρ

ℓ
x = (D,p = ( 1ℓ , . . . ,

1
ℓ ), kcos) be a KDM; and let f̂ρℓ

x
(i) be defined as in Eq.

5. Then f̂ρℓ(i) → pi as ℓ→ ∞.

It is also possible to perform parametric density estimation by maximizing the
likelihood of the KDM parameters given a training dataset. Given a KDM with K
components ρ = (C = {c(1), . . . , c(K)},p = {p1, . . . , pK}, kθ), where θ indicate a set
of parameters of the kernel, and a training data set D = {x1, . . . ,xℓ}, solving the
following optimization problem:

max
C,p,θ

ℓ∑
i=1

log f̂ρ(xi) (7)

will find a KDM that maximizes the probability density of the samples in D. For the
cosine or RBF kernels this is equivalent to perform maximum likelihood estimation.3

2.4 Joint densities with kernel density matrices

In quantum mechanics, the state of a bipartite system with subsystems A and B
is represented by a density matrix in the tensor product Hilbert space HA ⊗ HB ,

3The optimization problem in Eq. 7 could be ill-posed, e.g. for the RBF kernel, Eq. 7 could get arbitrary
large values if one sample xi coincides with one of the KDM components and the σ parameter of the kernel
goes to zero. This could be dealt with using techniques such as restricted optimization or regularization.
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where HA and HB are the representation spaces of A and B respectively (Nielsen and
Chuang, 2012). Following the same line of thought, a joint KDM for random variables
x ∈ X and y ∈ Y is defined as follows: ρx,y = (C,p, kX ⊗ kY) where C ⊆ X × Y
, kX and kY are kernels over X and Y respectively, and kX ⊗ kY((x,y), (x

′,y′)) =
kX(x,x

′)kY(y,y
′). If MkX and MkY are the normalizing constants corresponding to

the kernels kX and kY respectively, the normalizing constant for kX ⊗ kY in Eq. 4 is
MkX⊗kY = MkXMkY . It is also possible to easily calculate a marginal KDM from a
joint KDM. Suppose that kX = krbf , then a marginal KDM ρy must satisfy:

f̂ρy(y) =

∫
f̂ρx,y(x,y)dx

=

∫ ∑
i

piMkXMkYk
2
X(x

(i),x)k2Y(y
(i),y)dx

=
∑
i

piMkYk
2
Y(y

(i),y)

(8)

It is not difficult to see that ρy = ({y(i)|(x(i),y(i)) ∈ C},p, kY)satisfies 8. The
same argument applies for defining ρx. For kX = kcos, we replace the integral in Eq. 8
by a sum over a basis (see Proposition 1) to obtain an analogous result.

2.5 Inference with kernel density matrices

Inference aims to estimate unknown output variables from known input variables and a
model’s parameters. A probabilistic approach models the input-output relationship as
a probability distribution, e.g., p(x′,y′), which reflects uncertainty about the training
data-generation process. Additional uncertainty may arise from imprecise input data
during prediction, which can be modeled as a probability distribution over the input
domain, p(x). Note that we use a different random variable, x, to represent a new input
fed to the trained model during prediction, than the random variable used to represent
input training samples, x′ . In general, p(x) ̸=

∫
p(x′,y′ = y)dy. When predicting

output variables, both sources of uncertainty need to be considered and reflected in
the output distribution, p(y). Inference transforms a probability distribution of input
variables, p(x), into a distribution of output variables, p(y), using a joint probability
of inputs and outputs, p(x′,y′).

We will demonstrate how this process can be modeled using KDMs. Each one of the
probability distributions p(x), p(x′,y′) and p(y) are represented by KDMs as follows:

ρx = ({x(i)}i=1...m, (pi)i=1...m, kX) (9)

ρx′,y′ = ({(x′(i),y′(i))}i=1...m′ , (p′i)i=1...m′ , kX ⊗ kY) (10)

ρy = ({y′(i)}i=1...m′ , (p′′i )i=1...m′ , kY) (11)

Notice that if we have a unique input sample x, ρx would have only one component.
In general, we have a probability distribution represented by the KDM ρx with m
components. Also, note that kX in ρx, is the same kernel as in ρx′,y′ . Likewise, kY in
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ρy, is the same kernel as in ρx′,y′ . Also, the y′(i) components of the KDM ρy are same
as the ones of the KDM ρx′,y′ . The probabilities of the inferred ρy KDM are given by
the following expression:

p′′i =

m∑
ℓ=1

pℓp
′
i(kx(x

(ℓ),x′(i)))2∑m′

j=1 p
′
j(kx(x

(ℓ),x′(j)))2
, for i = 1 . . .m′ (12)

Algorithm 1 Inference with kernel density matrices

input: Input KDM ρx = ({x(i)}i=1...m, (pi)i=1...m, kX), joint KDM ρx′,y′ =
({(x′(i),y′(i))}i=1...m′ , (p′i)i=1...m′ , kX ⊗ kY)
1: Cy ← {y′(i)}i=1...m′

2: py ← (p′′k)k=1...m′ where p′′k is calculated using Eq. 12
3: return ρy = (Cy,py, kY)

The time complexity of the inference process (Algorithm 1) based on Eq. 12 is
O(mm′n) where n is the dimension of the input space. This inference procedure is
similar to Nadaraya-Watson kernel regression (NWKR) (Nadaraya, 1964; Watson,
1964), which uses a kernel function to assign local weights to each output training
sample according to the input sample’s similarity with each input training sample.
However, NWKR only produces a point estimate of the output variable, while we
obtain a full probability distribution represented as a KDM.

In addition to its expressiveness and flexibility, KDM-based inference has two
advantages:

• Compositionality. Given two joint KDMs ρx′,y′ and ρy′,z′ and input KDM ρx , we
can infer ρy from (ρx′,y′ , ρx) and then infer ρz from (ρy′,z′ , ρy).

• Reversibility. Thanks to the symmetry of the joint KDMs ρx′,y′ , it can be used to
infer ρx from ρy as well as to infer ρy from ρx .

From the point of view of quantum mechanics, ρx′,y′ is a density matrix repre-
senting the state of a bipartite system, and the inference process corresponds to a
measurement operation that collapses the x subsystem to a state ρx. This collapse
affects the y subsystem whose state is changed to be ρy. With density matrices, this
process corresponds to applying a collapse operator to ρx′,y′ and computing a partial
trace (González et al, 2022). With our KDM representation, this process is efficiently
done by Eq. 12.

The following proposition shows that the probabilities assigned by Eq. 12 generate
a KDM that is equivalent to the one calculated by Bayesian inference.

Proposition 4 Let x′ and y′ be random variables with a joint probability distribution rep-
resented by a KDM ρx′,y′ (Eq. 10), and let ρx be the KDM defined by Eq. 9), then the KDM
ρy (Eq. 11 and Eq. 12) represents a predicted probability distribution with PDF:

f̂ρy (y) =

m∑
ℓ=1

pℓf̂ρx′,y′ (y|x(ℓ)) (13)
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where

• f̂ρx′,y′ (y|x(ℓ)) =
f̂ρ

x′,y′ (x
(ℓ),y)∫

f̂ρ
x′,y′ (x

(ℓ),y)dy
for kY = krbf

• f̂ρx′,y′ (y|x(ℓ)) =
f̂ρ

x′,y′ (x
(ℓ),y)∑n

i=1 f̂ρ
x′,y′ (x

(ℓ),e(i))
for kY = kcos

The parameters of the inference model correspond to the parameters of the KDM
ρx′,y′ . This parameters can be estimated in three different ways:

• Non-parametric. Use the training dataset as the parameters of ρx′,y′ as described
in Sect. 2.3. This leads to a memory-based learning method that may not scale well
to large training datasets.

• Maximum likelihood learning. Estimate the parameters of ρx′,y′ by maximizing
the probability density assigned by ρx′,y′ to the training dataset (Equation 7)
(Algorithm 2).

• Discriminative learning. Use Eq. 12 to perform a forward pass of an input KDM
ρx that can represent an individual sample (no uncertainty) or a distribution over
the input space (uncertainty). Then, we minimize a suitable loss function (such as
cross-entropy for classification or mean squared error for regression) with respect to
the model parameters using gradient descent (Algorithm 3).

For discriminative learning, the loss function depends on the kind of output
variable, which is determined by the kernel kY. Given an output KDM ρy =
({y′(i)}i=1...m′ , (p′′i )i=1...m′ , kY), where kY = kcos, and a real output label y ∈ Rn, with∑n

j=1 yj = 1 we can use, for instance, a cross-entropy loss:

Lxe(ρy,y) = CrossEntropy(π,y), (14)

where

πj =

m′∑
i=1

p′′i (y
(i)
j )2, for j = 1 . . . n (15)

When kY = krbf , we have a regression problem, in this case we can use a loss function
such as mean square error:

Lmse(ρy,y
(i)) = mse(ŷ,y(i)), (16)

where ŷ =
∑m′

j=1 p
′′
i y

′(i)
j .

2.6 Sampling from kernel density matrices

Sampling from a KDM ρx = ({x(i)}i=1...m, (pi)i=1...m, krbf,σ) with x(i) ∈ Rn can
be performed in two steps. First, draw a sample i′ from a categorical distribution
with probabilities (pi)i=1...m. Second, draw a sample from a normal distribution
N (x(i′), 2σIn), where In is the n-dimensional identity matrix.
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Algorithm 2 Maximum likelihood training

input: training dataset D = {(x(i),y(i))}i=1...ℓ, kernels kX and kY, number of
components m′

1: Initialize Cx′y′ = {(x′(i),y′(i))}i=1...m′ with a random sample from D

2: Initialize px′y′ ← ( 1
m′ )i=1...m′

3: ρx′,y′ = (Cx′y′ ,px′y′ , kX ⊗ kY)
4: Use gradient-based optimization to find:

max
Cx′y′ ,px′y′ ,θ

ℓ∑
i=1

log f̂ρx′y′ (x
(i),y(i))

5: return ρx′,y′ = (Cx′y′ ,px′y′ , kX ⊗ kY)

Algorithm 3 Discriminative training

input: training dataset D = {(x(i),y(i))}i=1...ℓ, kernels kX,σ and kY number of
components m′, loss function L
1: Initialize Cx′y′ ← {(x′(i),y′(i))}i=1...m′ with a random sample from D

2: px′y′ ← ( 1
m′ )i=1...m′

3: ρx′,y′ ← (Cx′y′ ,px′y′ , kX,σ ⊗ kY)
4: ρ

(i)
x ← ({x(i)}, (1), kX,σ) for all i = 1 . . . ℓ {create a KDM for each input sample}

5: repeat

6: Calculate ρ
(i)
y using Eq. 12 with parameters ρ(i)(x) and ρ(x′,y′) for all i = 1 . . . ℓ

7: Perform a step of gradient-based method to optimize:

minCx′,y′ ,px′,y′ ,σ

∑n
i=1 L(ρ

(i)
y ,y(i))

8: until stop criteria is met
9: return ρx′,y′ = (Cx′y′ ,px′y′ , kX ⊗ kY)

To sample from a KDM ρx = ({x(i)}i=1...m, (pi)i=1...m, kcos), we draw a sample
from a categorical distribution with probabilities given by (πj)j=1...n, where πj is
defined in the same way as in Eq. 15.

Sampling layers that sample from a KDM can also be included in a deep model.
To maintain differentiability, we can use the Gumbel-softmax reparameterization for
sampling categorical variables, as proposed by (Jang et al, 2017), along with the well-
known reparameterization trick for Gaussian distributions. Another alternative is to
use implicit reparameterization gradients, (Figurnov et al, 2018).

3 Experiments

The purpose of this section is to demonstrate the versatility and flexibility of the
framework with two different learning tasks. Rather than focusing on improving the
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Fig. 1 classification and generation with KDMs. The top part represents a predictive model that
uses an encoder (a) to map input samples into a latent space; the output of the encoder is represented
as a KDM ρx (b) with one component, which is used to infer an output probability distribution of
labels, represented by a KDM ρy (c), using Eq. 12 ; the classifier model has as a parameter a joint
distribution of inputs and outputs, represented by a KDM ρx′,y′ (d), which is learned with algorithm
3. The joint probability can be used to do conditional generation, as depicted in the bottom of the
diagram. In this case, the input is a distribution of labels represented by the KDM ρ′y (e) , which
along with ρx′,y′ (d) is used to infer a predicted KDM ρ′x using Eq. 12; we sample (f) from this KDM
to generate input samples in the latent space which are decoded (g) to the original input space.

performance of state-of-the-art methods, these experiments illustrate the special fea-
tures of the framework and the novel perspective it offers for PDL modeling. First,
we present an example of a classification model based on the framework, highlight-
ing the reversibility of KDM-based inference, which allows the model to function as
both a classification and a conditional generative model. In the second example, we
address the problem of learning from label proportions, where we lack individual train-
ing sample labels and have only the proportions of labels in sample bags. We treat this
problem as an instance of input training sample uncertainty modeled with KDMs.

3.1 Bidirectional classification and generation with kernel
density matrices

Figure 1 shows the task setup and models explored in this subsection. The upper
part shows a classifier that combines a deep encoder, Φθ : X → Rn, and a KDM
inference module. The parameters of the model correspond to the joint KDM ρx′,y′ =
(Cx′y′ ,px′y′ , krbf,σ⊗kcos), which represents the joint probability of the training input
and output samples, and the parameters of the encoder, θ. These parameters, together
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Table 1 Classification accuracy comparison of the models on
the three datasets: KDM classification model (KDM), KDM
model fined-tuned for generation with maximum likelihood
learning (ML-KDM), a baseline model with the same encoder
coupled with a dense layer. Observe that the classification
performance ML-KDM slightly degrades with respect to KDM,
since a more faithful modeling of the input space distribution
impacts the discriminative performance.

Dataset KDM ML-KDM Enc.+Dense

Mnist 0.993± 0.001 0.993± 0.001 0.992± 0.001
FMnist 0.916± 0.004 0.895± 0.004 0.907± 0.005
Cifar-10 0.811± 0.005 0.776± 0.012 0.810± 0.006

with the parameters of the encoder, are learned using an extended version of Algorithm
3 by minimizing the loss given by Eq. 14.

The lower part of Figure 1 shows a conditional-generative model that exploits
the reversibility of the KDM inference process (Eq. 12). Thanks to the symmetry of
ρx′,y′ , it is possible to use it to infer a probability distribution of inputs, ρx, given a
probability distribution of outputs ρy. From this KDM we can draw samples (Subsect.
2.6) in the latent space, which can be mapped to the input space using a decoder
Ψθ′ : Rn → X. To improve the quality of the generated samples, the joint KDM ρx′,y′

is fine-tuned using maximum likelihood learning (see Subsect. 2.5) while keeping the
parameters θ of the encoder fixed. The parameters θ′ of the decoder are independently
learned by training a conventional auto-encoder composed of Φθ and Ψθ′ , with the
encoder parameters θ fixed.

Table 1 shows the performance of the model on three benchmark datasets: MNIST,
Fashion-MNIST and CIFAR-10. All models use a similar encoder architecture: a con-
volutional neural network (3 convolutional layers for MNIST and Fashion-MNIST,
and 6 convolutional layers for CIFAR-10). As a baseline, we have coupled the encoder
with a dense layer with approximately the same number of parameters as the KDM
inference module (Encoder+Dense), so that we can compare KDM with a counter-
part model of similar complexity. We also report the classification performance of
the model before (KDM) and after performing the maximum likelihood fine tuning
(ML-KDM) on the joint KDM ρx′,y′ for improving generation. Hyperparameter tun-
ing of the models was performed using cross-validation on the training partition for
each dataset. Ten experiments were run with the best hyperparameters, and the mean
accuracy is reported along with the 99% confidence interval of a t-test. The results
show that the performance of the KDM based model is on par with a deep model of
comparable complexity.

The main advantage of the KDM-based model is the probabilistic modeling of the
interaction between inputs and outputs, which is exploited by the conditional genera-
tive model. It uses the parameters learned by the ML-KDM to conditionally generate
samples from the inferred probability distribution of the inputs. Some examples of
conditionally generated samples for the three datasets are shown in Figure 2 .
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Fig. 2 Conditional image generation from Mnist, Fashion-Mnist, and Cifar-10 using the KDM con-
ditional generative model, each row corresponds to a different class.

3.2 Classification with label proportions

Learning from label proportions (LLP) is a type of weakly supervised problem (Scott
and Zhang, 2020; Zhang et al, 2022). In this scenario, instead of having explicit class
labels for each training instance, we only have class proportions for subsets of training
instances, called bags. The goal of the learner is to build a classifier that accurately
labels individual instances. A bag of instances with label proportions can be thought
of as a training sample that has uncertainty about the inputs and outputs, as discussed
in Subsection 2.5. This uncertainty can be represented by KDMs as shown in Figure 3.
During training, the model receives as input bags of instances X(i) = (x(i)j)j=1...mi .
The training dataset corresponds to a set of pairs D = (X(i),y(i))i=1...ℓ, where each
y(i) is a vector representing the label proportions of the i-th bag. Each input bag
is represented by a KDM with mi components. The algorithm 3 can be adapted to
handle this bag representation by changing line 4, the resulting algorithm is shown in
(Algorithm 4). The algorithm learns a joint KDM ρx′,y′ . During prediction, the model
receives individual samples, x(∗), which can be seem as bags with only one element.

They are represented by a KDM ρ
(∗)
x = ({x(∗)}, {1}, kX) with a unique component

and uses 12, along with ρx′,y′ , to infer an output KDM ρy.
We compared this approach with a state-of-the-art LLP method based on a mutual

contamination framework (LMMCM) (Scott and Zhang, 2020). We followed the same

13



Fig. 3 KDM model for classification with label proportions. During training, the model receives as
input bags of instances X(i) = (x(i)j)j=1...mi . The training dataset corresponds to a set of pairs

D = (X(i),y(i))i=1...ℓ, where each y(i) is a vector representing the label proportions of the i-th
bag. Each input is represented by a KDM with mi components. The algorithm learns a joint KDM
ρx′,y′ . During prediction, the model receives individual samples, x(∗), (equivalent to bags with only
one element). The algorithm outputs a KDM ρy .

Algorithm 4 Discriminative training with bags of instances

input: training dataset D = {(X(i),y(i))}i=1...ℓ with X(i) = (x(i)j)j=1...mi , kernels
kX,σ and kY number of componentsm′, loss function L
1: Initialize Cx′y′ ← {(x′(i),y′(i))}i=1...m′ with a random sample from D

2: px′y′ ← ( 1
m′ )i=1...m′

3: ρx′,y′ ← (Cx′y′ ,px′y′ , kX,σ ⊗ kY)
4: ρ

(i)
x ← (X(i), ( 1

mi
, . . . , 1

mi
), kX) for all i = 1 . . . ℓ

5: repeat

6: Calculate ρ
(i)
y using Eq. 12 with parameters ρ(i)(x) and ρ(x′,y′) for all i = 1 . . . ℓ

7: Perform a step of gradient-based method to optimize:

minCx′,y′ ,px′,y′ ,σ

∑n
i=1 L(ρ

(i)
y ,y(i))

8: until stop criteria is met
9: return ρx′,y′ = (Cx′y′ ,px′y′ , kX ⊗ kY)

experimental setup as the one used by (Scott and Zhang, 2020), where the authors
built a set of bags of different sizes with the corresponding label proportions from a
conventional classification dataset. The elements of the bags are sampled in such a way
that the label proportions are iid uniform on [0, 12 ] and on [ 12 , 1]. The base datasets
are Adult and MAGIC Gamma Ray Telescope from the UCI repository 4.

4http://archive.ics.uci.edu/ml
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Table 2 shows the evaluation of the LMMCM and the KDM methods using the
area under the ROC curve (AUC) metric. The results are reported for different bag
sizes, the two data sets, and the [0, 12 ] and [ 12 , 1] sampling schemes. The results show
that KDM has a competitive performance equal to that of a state-of-the-art method
explicitly designed for the LLP task. The good performance of KDM method is a
result of its ability to naturally represent the uncertainty of the training samples.

4 Conclusions

The KDM framework presents a simple yet effective mechanism for representing joint
probability distributions of both continuous and discrete random variables, providing
a versatile tool for various machine learning tasks. The exploratory experiments shed
light on the potential of this framework and show how it can be applied to diverse
tasks such as conditional generation and weakly supervised learning. Quantum density
matrices have long been used as the foundation of quantum mechanics, and their
ability to blend linear algebra and probability is very attractive as a tool for machine
learning. This work illustrates how such a formalism can be seamlessly and efficiently
integrated with probabilistic deep learning models, opening up new avenues of research
on the intersection of these fields.
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Appendix A Proofs

Proposition 1 Let ρx = (C,p, kcos) be a KDM over Rn; let X = {b(1), . . . , b(n)} ⊂ Rn be

an orthogonal basis of Rn, then {fρ(b(i))}i=1,...n is a categorical probability distribution for
the random variable x ∈ X.

Proof Let C = {x(j)}j=1...m , then fρx(b
(i)) =

∑m
j=1 pj

⟨b(i),x(j)⟩2
⟨x(j),x(j)⟩ ≥ 0.

n∑
i=1

fρx(b
(i)) =

n∑
i=1

m∑
j=1

pj
⟨b(i),x(j)⟩2

⟨x(j),x(j)⟩

=

m∑
j=1

pj

n∑
i=1

⟨b(i),x(j)⟩2

⟨x(j),x(j)⟩

=

m∑
j=1

pj∥
x(j)

⟨x(j),x(j)⟩
∥2 (X is a basis of Rn)

=

m∑
j=1

pj

= 1

□
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Proposition 3 Let X = {e(1), . . . , e(n)} be the canonical basis of Rn; let D =

{x(1), . . . ,x(ℓ)} ⊆ Rn be a set of iid samples drawn from X with categorical probability dis-
tribution p = (p1, . . . , pn); let ρ

ℓ
x = (D,p = ( 1ℓ , . . . ,

1
ℓ ), kcos) be a KDM; and let f̂ρℓ

x
(x) be

defined as in Eq. 5. Then f̂ρℓ(e
(i)) → pi as ℓ→ ∞.

Proof

fρx(e
(i)) =

ℓ∑
j=1

1

ℓ
k2cos(x

(j), e(i))

=

ℓ∑
j=1

1

ℓ
⟨x(j), e(i)⟩2

=

ℓ∑
j=1

1

ℓ
1(x(j) = e(i))

Because of the large numbers law:

lim
ℓ→∞

fρx(e
(i)) = lim

ℓ→∞

ℓ∑
j=1

1

ℓ
1(x(j) = e(i))

= E[1(x(j) = e(i))]

= pi

(A1)

□

Proposition 4 Let x′ and y′ be random variables with a joint probability distribution rep-
resented by a KDM ρx′,y′ (Eq. 10), and let ρx be the KDM defined by Eq. 9), then the KDM
ρy (Eq. 11 and Eq. 12) represents a predicted probability distribution with PDF:

f̂ρy (y) =

m∑
ℓ=1

pℓf̂ρx′,y′ (y|x(ℓ))

where

• f̂ρx′,y′ (y|x(ℓ)) =
f̂ρ

x′,y′ (x
(ℓ),y)∫

f̂ρ
x′,y′ (x

(ℓ),y)dy
for kY = krbf

• f̂ρx′,y′ (y|x(ℓ)) =
f̂ρ

x′,y′ (x
(ℓ),y)∑n

i=1 f̂ρ
x′,y′ (x

(ℓ),e(i))
for kY = kcos

Proof Step 1. Show that for both kY = krbf and kY = kcos

f̂ρx′,y′ (y|x(ℓ)) =
f̂ρx′,y′ (x

(ℓ),y)

MkX

∑m′

j=1 p
′
jk

2
X(x

(ℓ),x′(j))
(A2)

The case kY = krbf follows from Eq. 8. For the case kY = kcos we have
n∑

i=1

f̂ρx′,y′ (x
(ℓ), e(i))
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=

n∑
i=1

m′∑
j=1

p′jMkXMkcos
k2X(x

(ℓ),x′(j))k2cos(e
(i),y′(j))

=MkX

m′∑
j=1

p′jk
2
X(x

(ℓ),x′(j))
n∑

i=1

k2cos(e
(i),y′(j))

=MkX

m′∑
j=1

p′jk
2
X(x

(ℓ),x′(j))

Step 2, Use the derivation above to prove the main result:

f̂ρy (y)

=MkY

m′∑
i=1

p′′i k
2
Y(y,y

′(i)) (use Eq. 4)

=MkY

m′∑
i=1

m∑
ℓ=1

pℓp
′
ik

2
X(x

(ℓ),x′(i))∑m′

j=1 p
′
jk

2
X(x

(ℓ),x′(j))
k2Y(y,y

′(i)) (use Eq. 12)

=

m∑
ℓ=1

pℓ
MkXMkY

∑m′

i=1 p
′
ik

2
X(x

(ℓ),x′(i))k2Y(y,y
′(i))

MkX

∑m′

j=1 p
′
jk

2
X(x

(ℓ),x′(j))

=

m∑
ℓ=1

pℓ
f̂ρx′,y′ (x

(ℓ),y)

MkX

∑m′

j=1 p
′
jk

2
X(x

(ℓ),x′(j))

=

m∑
ℓ=1

pℓf̂ρx′,y′ (y|x(ℓ)) (use Eq. A2)

□

Appendix B Experimental Setup

In this apendix, we provide a comprehensive description of our experimental setup to
ensure reproducibility.

B.1 Hardware Specifications

Our experiments were conducted using a server that incorporates a 64-core Intel Xeon
Silver 4216 CPU 2.10 GHz processor, 128 GB of RAM, and two NVIDIA RTX A5000
GPUs.

B.2 Classification with kernel density matrices

Three different models were assessed in this experiment as explained in Subsection
3.1: KDM classification model (KDM), KDM model fined-tuned for a generation with
maximum likelihood learning (ML-KDM), and a baseline model with the same encoder
coupled with a dense layer. The encoder model utilized for both MNIST and Fashion-
MNIST datasets was identical. It consisted of the following components:

• Lambda Layer: The initial layer converted each sample into a 32-float number and
subtracted 0.5 from it.
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• Convolutional Layers: Two convolutional layers were appended, each with 32 fil-
ters, 5-kernel size, same padding, and strides 1 and 2, respectively. Subsequently,
two more convolutional layers were added, each with 64 filters, 5-kernel size, same
padding, and strides 1 and 2, respectively. Finally, a convolutional layer with 128
filters, 7-kernel size, and stride 1 was included. All convolutional layers employed
the Gaussian Error Linear Unit (GELU) activation function.

• Flattened Layer: The output from the previous layer was flattened.
• Dropout Layer: A dropout layer with a dropout rate of 0.2 was introduced.
• Dense Layer: The subsequent dense layer’s neuron encoding size was determined
using a grid hyperparameter search in the range of 2i, where i ∈ {1, · · · , 7}.

The decoder architecture consisted of the following components:

• Reshape Layer: The input to the decoder passed through a reshape layer.
• Convolutional Layers: Three convolutional layers were employed, each with 64 filters
and kernel sizes of seven, five, and five, respectively. The strides for these layers
were set to 1, 1, and 2, while the padding was configured as valid, same, and same,
respectively.

• Additional Convolutional Layers: Subsequently, three more convolutional layers
were utilized, each with 32 filters, 5-kernel size, and strides 1, 2, and 1, respectively.
All these layers utilized the Gelu activation function and had padding set to ”same.”

• Final Convolutional Layer: The decoder concluded with a 1-filter convolutional layer
employing same padding.

Similar to the encoder, all layers in the decoder employed the GELU activation
function.

For Cifar-10 a different encoder was used for

• Convolutional Layers: The input tensor is passed through a series of convolutional
layers. Each layer applies a 3x3 kernel to extract features from the input. The
activation function used is the GELU. Padding is set to ’same’. Batch normalization
is applied after each convolutional layer to normalize the activations.

• Max Pooling: After each pair of convolutional layers, max pooling is performed using
a 2x2 pool size.

• Encoding Layer: The feature maps obtained from the previous layers are flattened
into a vector representation using the Flatten layer.

• Dropout: A dropout layer with a dropout rate of 0.2 is added.
• Hidden Layer: A dense layer of variable size is introduced to further transform the
encoded features. The size is search

• Dropout: Another dropout layer with a dropout rate of 0.2 is added after the hidden
layer

The decoder architecture for Cifar-10 consisted of the following components:

• Dense Layer: The input tensor is passed through a dense layer that restores the
tensor to its original size.

• Reshape Layer: The tensor is reshaped to match the spatial dimensions of the
original input using the Reshape layer.
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• Convolutional Transpose Layers: The reshaped tensor undergoes a series of convo-
lutional transpose layers. Each layer applies a 3x3 kernel to upsample the feature
maps. The activation function used is ’gelu’. Padding is set to ’same’ to maintain
the spatial dimensions.

• Batch Normalization: Batch normalization is applied after each convolutional
transpose layer to normalize the activations.

• Upsampling: UpSampling2D layers with a size of (2, 2) are used to increase the
spatial dimensions of the feature maps.

• Final Convolutional Transpose Layer: The last convolutional transpose layer recon-
structs the original number of channels in the input data. Padding is set to
’same’.

• Activation Function: The final output is passed through an activation function,
śigmoid́, to ensure the reconstructed data is within the appropriate range.

The number of components in every dataset for the KDM classification model was
searched in 2i, where i ∈ {2, · · · , 10}. The same for ML-KQM. For the baseline model,
the dense layer was searched using the same number of parameters that the KDM
classification model generates. The best parameters can be found in Table B1.

The results reported in Table 1 were generated by running each algorithm in each
dataset ten times and averaging their results.

B.3 Classification with label proportions

The experimental setup of this experiment is based on the work of Scott et al. Scott
and Zhang (2020). The study utilizes two datasets, namely Adult (T = 8192) and
MAGIC Gamma Ray Telescope (T = 6144), both obtained from the UCI repository.
5. For each dataset, the authors created datasets with bags of instances with different
proportions of LPs. Each dataset has its distribution of label proportions (LPs), and
a bag size parameter, denoted as ’n’. The total number of training instances denoted
as ’T’, is fixed for each dataset, resulting in T/n bags. The LPs for the experiments
are independently and uniformly distributed within the ranges [0, 1/2] and [1/2, 1].
The bag sizes considered are n = {8, 32, 128, and 512}. Consequently, there are a
total of 16 experimental configurations (2 LP distributions x 2 datasets x 4 bag sizes).
For each configuration, 5 different pairs of training and test sets were created. Results
are reported as the average of the AUC over the five test sets of each configuration.
The numerical features in both datasets are standardized to have a mean of 0 and
a variance of 1, while the categorical features are encoded using one-hot encoding.
Hyperparameters are found using a validation subset (10%) of each training set. The
best hyperparameters for each configuration are reported in Table B2

B.4 Code

The code repository at https://github.com/fagonzalezo/kdm for probabilistic DL
experiments provides detailed instructions to reproduce the results presented in this
manuscript.

5http://archive.ics.uci.edu/ml.
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Table B2 Best hyper-parameters for the learning with label
proportion experiment using KDM Model.

Dataset, sample Bag Size Num. Components Learning Rate

Adult, [0, 1
2
] 8 32 0.005

Adult, [0, 1
2
] 32 16 0.001

Adult, [0, 1
2
] 128 512 0.001

Adult, [0, 1
2
] 512 64 0.005

Adult, [ 1
2
, 1] 8 16 0.005

Adult, [ 1
2
, 1] 32 64 0.001

Adult, [ 1
2
, 1] 128 128 0.001

Adult, [ 1
2
, 1] 512 64 0.005

MAGIC, [0, 1
2
] 8 256 0.005

MAGIC, [0, 1
2
] 32 128 0.005

MAGIC, [0, 1
2
] 128 128 0.001

MAGIC, [0, 1
2
] 512 256 0.001

MAGIC, [ 1
2
, 1] 8 16 0.005

MAGIC, [ 1
2
, 1] 32 128 0.005

MAGIC, [ 1
2
, 1] 128 32 0.005

MAGIC, [ 1
2
, 1] 512 128 0.001

For conducting experiments involving learning with label proportions, as men-
tioned above, we have relied on the work of Scott et al. Scott and Zhang (2020).
The authors made the code available at this GitHub repository https://github.com/
Z-Jianxin/Learning-from-Label-Proportions-A-Mutual-Contamination-Framework.
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