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SURJECTIVITY OF POLYNOMIAL MAPS ON MATRICES

SAIKAT PANJA, PRACHI SAINI, AND ANUPAM SINGH

Abstract. For n ≥ 2, we consider the map on Mn(K) given by evaluation of a

polynomial f(X1, . . . , Xm) over the field K. In this article, we explore the image

of the diagonal map given by f = δ1X
k1

1
+ δ2X

k2

2
+ · · · + δmXkm

m in terms of

the solution of certain equations over K. In particular, we show that for m ≥ 2,

the diagonal map is surjective when (a) K = C, (b) K = Fq for large enough q.

Moreover, when K = R and m = 2 it is surjective except when n is odd, k1, k2

are both even, and δ1δ2 > 0 (in that case the image misses negative scalars), and

the map is surjective for m ≥ 3. We further show that on Mn(H) the diagonal

map is surjective for m ≥ 2, where H is the algebra of Hamiltonian quaternions.

1. Introduction

Let A be an associative algebra over a field K. Let f(X1, . . . , Xm) be a poly-

nomial over K in non-commuting variables. Such a polynomial defines a map

ω : Am → A given by evaluation (x1, x2, . . . , xm) 7→ f(x1, . . . , xm). These maps

are called polynomial maps, and a fundamental question is understanding their

image. In recent years this problem has attracted a lot of attention including in

the context of groups, algebras and Lie algebras etc. (e.g. see the articles [10, 14]

). Several deep results have been proved for word maps on finite simple groups

(see the articles [19, 21, 20]). In this article, we look for certain analogous results

for matrix algebras. Here we deal with a particular map, namely given by diagonal

polynomials.

Given integers k1, k2, . . . , km ≥ 1, and δ1, . . . , δm ∈ K all non-zero, we consider

the diagonal polynomial

f(X1, . . . , Xm) = δ1X
k1
1 + δ2X

k2
2 + · · ·+ δmX

km
m (1.1)
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in m-variables. We call the corresponding map ω a diagonal map. The main

question here is to understand how big the image is. In particular, we would like

to see if this map is surjective and find the smallest m with this property. When

k1 = . . . = km = k the Equation 1.1 is a k-form. Such a k-form is said to be

universal on A if the map ω is surjective. Also, the well-known matrix Waring

problem considers δ1 = δ2 = · · · = δm = 1 for a k-form and asks for the smallest m

so that the form is universal, i.,e., ω is surjective. The universality of the quadratic

form (k = 2 case) over a field is a well-studied problem including the arithmetic

aspects (e.g. in the work of Bhargava [3], [4]). Voloch looked at diagonal forms

over function fields in [31]. We are interested in looking at this problem when A is

the matrix algebra Mn(K) and obtain results over certain fields such as K = C,R

and Fq (also over the skew-field H). The Waring problem is well-studied for matrix

algebra see Richman [26], Vaserstein [29], Katre [15], [16], Garge [2], [8], Bresar-

Semrl ([5], [6], [7]) etc. More general problems about the images of polynomial

maps on algebras are being considered by Kanel-Below, Yavich, Kunyavskii, Rowen

etc. (see [1], [11] ,[12], [13], [22], [24]). For a survey of recent results one can look

into [10] and [14].

Motivated by the results obtained for the Waring-like problem in the case of

non-abelian finite simple groups (see [19], [21] and [20]), Larsen asked the question

(see [17]) if every element of Mn(K) can be written as a sum of two k-th powers

for “large enough” K. This question is answered in the affirmative in a series of

two papers [17] and [18] over finite fields Fq. In particular, in [18] it is shown that

(see Theorem 1.1) there exists a constant N (k) (which depends only on k) such

that for all q > N (k) the map given by Xk + Y k is surjective on Mn(Fq).

In this article, we obtain more general results about the image of the diagonal

map ω given by the polynomial in Equation 1.1 on Mn(K) such as when invertible

matrices and nilpotent matrices are in the image depending on if we have solutions

to certain equations (which are usually k-forms) over the underlying field K. These

results are collected in Section 3. With the help of these, we obtain the following

results in Section 4, and 5 over various fields:

Theorem 1.1. Letm be a positive integer and n ≥ 2. Given integers k1, k2, . . . , km ≥
1, and δ1, . . . , δm ∈ K all non-zero, consider the diagonal map ω : Mn(K)m →
Mn(K) for n ≥ 2 given by

ω(x1, . . . , xm) = δ1x
k1
1 + δ2x

k2
2 + · · ·+ δmx

km
m .

Then we have the following:
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(1) When K = C, the map ω is surjective for all m ≥ 2.

(2) When K = Fq and m ≥ 2, there exists a constant N which depends on

k1, . . . , km such that for all q > N the map ω is surjective.

(3) When K = R and m = 2, the map ω is surjective except when n is odd,

δ1δ2 > 0 and k1, k2 are both even (in that case the image misses negative

scalar matrices). It is surjective for m ≥ 3.

(4) On Mn(H) the map ω is surjective for all m ≥ 2.

Since, in general, the power maps need not be surjective, m = 2 is the smallest

possible with the property that ω could be surjective. This clearly generalises the

known results for the Matrix Waring problem in [18] to a more general diagonal

map on one hand, and on the other hand, it generalises the work of Richman [25,

26]. The result on H for δi ∈ R follows quite easily by using the canonical form

theory which we mention in Section 6. We further hope to apply our method to

some more polynomial maps and obtain similar results. Throughout the article

I ∈Mn(K) will denote the n× n identity matrix in Mn(K).

2. Preliminaries

In this section, we set up a method that reduces the problem of finding a solution

to a matrix equation f(X1, . . .Xm) = A for all A ∈ Mn(K) to that of Jordan

Matrices over extensions of K. Recall that an irreducible separable polynomial is

one which does not have repeated roots over an algebraic closure. We will call a

polynomial to be separable if all of its irreducible factors are separable.

2.1. Reduction to Jordan Matrices. Let K be a field and A ∈Mn(K). We are

interested in finding a solution to the equation f(X1, X2, . . . , Xm) = A. That

is, we want to know if A is in the image of the map ω : Am → A given by

(x1, x2, . . . , xm) 7→ f(x1, x2, . . . , xm). For P ∈ GLn(K) we can re-write the equa-

tion as

f(PX1P
−1, PX2P

−1, . . . , PXmP
−1) = PAP−1,

thus it is enough to consider a canonical form of A up to similarity. Further,

if we have a block diagonal matrix A = diag(A1, . . . , Ar), and have a solution

to each f(X1, X2, . . . , Xm) = Ai for 1 ≤ i ≤ r, then we have a solution to

f(X1, X2, . . . , Xm) = A by taking solution as the block diagonal matrices with

blocks being the solutions of the earlier equation.
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Further, let A has its characteristic polynomial separable and is given by
∏r

i=1 pi(x)
si

where pi are irreducible polynomials then a canonical form of A is
r⊕

i=1

ti⊕

j=1

Jpi,si(j),

where {si(1), . . . , si(ti)} is a partition of si. This notation will be abbreviated in the

subsequent discussion by omitting the limits when they are clear from the context.

The notation Jp,l refers to a block matrix with l blocks each of size d = deg(p(x))

and the entries as follows:

Jp,l =








Cp I
Cp I

...
...
...

...
Cp I

Cp








where Cp =







0 0 0 ··· 0 −a0
1 0 0 ··· 0 −a1
0 1 0 0 ··· −a2
...

...
...

...
...

0 ··· 0 1 0 −ad−2

0 0 0 ··· 1 −ad−1







is the companion matrix corresponding to p(x) = xd+ad−1x
d−1+· · ·+a1x+a0. The

matrix Jp,l is also referred to as a Jordan matrix corresponding to p(x) and l. Let

L = K(α) be a field extension that has a root α of p(x). Then, we consider the map

R : Ml(L) → Mld(K) induced by the left-multiplication map by α on L over K.

Clearly, this map is a ring homomorphism and maps the matrix Jα,l to Jp,l. Under

the homomorphism R we can carry forward a solution of f(X1, X2, . . . , Xm) = Jα,l
to that of f(X1, X2, . . . , Xm) = Jp,l. This argument can be used to reduce the

problem of finding the solution to that of Jordan matrices Jα,l for all α in various

extensions of K. We can summarise this as follows:

Proposition 2.1. Let K be a field and A ∈Mn(K) with a separable characteristic

polynomial. Then, the equation f(X1, X2, . . . , Xm) = A in Mn(K) has a solu-

tion if f(X1, X2, . . . , Xm) = Jα,l has a solution in Ml(K(α)) for all α which are

eigenvalues of A over K̄.

We use this to reduce the problem to solve Equation 1.1 to that for Jordan matrices.

We demonstrate this by an example.

Example 2.2. Consider








0 −1 1 0

1 0 0 1

0 −1

1 0








over R with characteristic polynomial

(T 2 + 1)2 which becomes

(

ι 1

ι

)

over C. We can write this as a sum of squares
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over C as follows:
(

ι 1

0 ι

)

=

(

ζ8 ζ−1
8

0 0

)2

+

(

0 0

0 ζ8

)2

where ζ8 = e
2π
8
ι = cos 2π

8
+ ι sin 2π

8
= c+ ιs which gives us








0 −1 1 0

1 0 0 1

0 −1

1 0








=








c −s c s

s c −s c

0 0

0 0








2

+








0 0 0 0

0 0 0 0

c −s
s c








2

.

Our goal is to show Theorem 1.1 which solves Equation 1.1. This requires to

understand if the equation δXk1 + βY k2 = A has a solution in Mn(K) for a given

A ∈Mn(K). We note that without loss of generality, we may assume δ = 1. Thus,

because of Proposition 2.1 our problem gets reduced to the following:

Proposition 2.3. The equation Xk1 + βY k2 = A has a solution in Mn(K) if

the equation Xk1 + βY k2 = Jα,l has a solution in Ml(K(α)) for all α which are

eigenvalues of A over K̄ and l ≥ 1.

In view of this, we will explicitly deal with the equation

Xk1 + βY k2 = A (2.1)

with β 6= 0 in the following two cases for A and n ≥ 1:

• the invertible case when A = Jα,n where α 6= 0, and

• the nilpotent case when A = J0,n

in the Section 3. We further note that A is invertible if and only if none of the pi(x)

(appearing in the factorization of the minimal polynomial) are the polynomial x,

i.e., in the extension fields we need to deal with Jα,n with α 6= 0.

3. Diagonal word

In this section, we look at Equation 2.1. Without loss of generality, we may

assume k1 ≥ k2 ≥ 2. Note that if one of the ki = 1 then the equation always has

a solution.

3.1. Invertible Elements in the image. We begin with considering A = Jα,n,

i.e, if Xk1 + βY k2 = Jα,n with α 6= 0 has a solution in Mn(K). We have the

following:



6 PANJA S., SAINI P., AND SINGH A.

Lemma 3.1. Let k1, k2 be integers and α ∈ K∗. Suppose the equation Xk1+βY k2 =

α has two solutions (a, b) and (c, d) satisfying ak1 6= ck1 and bk2 6= dk2 over K.

Then, the equation Xk1 + βY k2 = Jα,n has a solution in Mn(K)s where Mn(K)s

denotes the set of diagonalisable matrices.

Proof. For n = 1 we are already given the required solution. So, we may assume

n ≥ 2. We have solutions (a, b), (c, d) ∈ K × K such that ak1 6= ck1 and bk2 6= dk2,

α = ak1 + βbk2 and α = ck1 + βdk2. With this in mind, we consider the following

block diagonal matrices,

(1) when n is even Gn =
⊕

n
2

(

ak1 1

0 ck1

)

andHn = (βbk2)
⊕

n−2
2

(

βdk2 1

0 βbk2

)

⊕
(βdk2),

(2) when n is odd Gn =
⊕

n−1
2

(

ak1 1

0 ck1

)

⊕
(ak1) andHn = (βbk2)

⊕

(n−1)
2

(

βdk2 1

0 βbk2

)

.

Thus, we get Jα,n = Gn+Hn. Since a
k1 6= ck1, and bk2 6= dk2, we get that Gn andHn

both are diagonalisable matrices, in fact, similar to diag{ak1, ck1, ak1 , ck1, . . .} and

βdiag{bk2 , dk2, bk2 , dk2 . . .} respectively. Clearly, Gn is similar to a matrix which is

k1-power of a diagonal matrix, and Hn is similar to β times k2-power of a diagonal

matrix. Hence Jα,n = Bk1 + βCk2 where B,C ∈ Mn(K)s. �

We can use Proposition 2.1 with this Lemma to show when invertible elements are

in the image of the diagonal word map. Suppose A ∈ Mn(K) with a separable

characteristic polynomial and each eigenvalue of A over K̄ satisfies the properties

of the Lemma above then A is in the image.

Remark 3.2. We note that the above proof works for α = 0 too as long as we

have required solutions over K.

Here is an example that the image of ω could have nilpotent elements.

Example 3.3. Consider ω : M2(K)s × M2(K)s → M2(K) given by ω(x1, x2) =

x21 + x22. Suppose char(K) 6= 2, and X2 +1 = 0 has a solution in K, say ι, then we

can write

(

0 1

0 0

)

=

(

1 1
2

0 1

)2

+

(

ι 0

0 ι

)2

. In the case char(K) = 2 we can write

(

0 1

0 0

)

=

(

1 0

0 0

)2

+

(

1 1

0 0

)2

.

3.2. Jordan nilpotent elements in the image when n > 2k1. Now we are

interested in getting nilpotent elements in the image of Xk1 + βY k2 . We assume
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k1 ≥ k2. We show that the large-size nilpotents are always in the image. We recall

the notion of the Junction matrix from Section 5 of [18].

Definition 3.4. Let n ≥ 1 be a positive integer. Let (n1, n2, . . . , nk) be partition

of n with 1 ≤ n1 ≤ n2 ≤ . . . ≤ nk. The Junction matrix associated with the given

partition of n is

J(n1,n2,...,nk) := en1,n1+1 + e(n1+n2),(n1+n2+1) + · · ·+ e(n1+n2+...+nk−1),(n1+n2+...+nk−1+1)

where ei,j is the matrix with 1 at ijth place and 0 elsewhere.

We begin with the following:

Lemma 3.5. Suppose n ≥ 2k, and (n1, n2, . . . , nk) be partition of n with all ni ≥ 2.

Then, the junction matrix J(n1,n2,...,nk) = β.Bk for some B ∈Mn(K).

Proof. Let {e1, e2, . . . , en} be the standard basis of Kn and the matrix J(n1,n2,...,nk)

corresponds to a linear transformation given by mapping e(n1+n2+···+ni+1) to e(n1+n2+···+ni)

and others to 0. Reordering the basis elements to

{e1, e2, . . . , eni−1
, eni+2

, . . . , en, en1 , e(n1+1), e(n1+n2), e(n1+n2+1), . . . ,

e(n1+n2+···+nk−1), e(n1+n2+···+nk−1+1)}
gives a conjugate of the junction matrix J(n1,n2,...,nk), say C. The matrix

C =




⊕

n−2(k−1)

J0,1




⊕

(
⊕

k−1

J0,2

)

.

We can also see that C is conjugate to βC as C is a nilpotent matrix. Hence,

J(n1,n2,...,nk) is conjugate to βC. Now consider B =

(

⊕

n−(2k−1)

J0,1

)

⊕
J0,2k−1 and

by Lemma 6.1 of [18], Bk is conjugate to C. Therefore, J(n1,n2,...,nk) is conjugate to

βBk. �

Theorem 3.6. Let k1 ≥ k2 ≥ 2 be positive integers. For n ≥ 2k1 the Jordan

nilpotent matrix J0,n is in the image of f(X, Y ) = Xk1 + βY k2.

Proof. We begin with considering Jk10,n. Let us denote n′ = ⌊ n
k1
⌋ and n′′ = ⌈ n

k1
⌉.

Since n ≥ 2k1, we have n′′ ≥ n′ ≥ 2. We find m such that m ≡ n (mod k1)

and 0 ≤ m ≤ k1. Then, from Miller’s Lemma (Lemma 2 [30]) we get that Jk10,n is

conjugate to

JF (Jk10,n) =

(
⊕

k1−m

J0,n′

)
⊕

(
⊕

m

J0,n′′

)

.
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Now, we consider J = J0,n−JF (Jk10,n). The matrix J is a junction matrix associated

to the following partition of n:



n′, . . . , n′

︸ ︷︷ ︸

k1−m

, n′′, . . . , n′′

︸ ︷︷ ︸
m



. From the Lemma 3.5 it

follows that J is conjugate to βBk2. This completes the proof. �

Thus, all nilpotent matrices of index ≥ 2k1 are in the image.

3.3. Nilpotent elements in the image. Now we develop another method to get

nilpotent matrices in the image depending on the existence of solutions of certain

equations over the base field. Let us begin with the following n-by-n matrix for

n ≥ 3 and ǫ 6= 0 in K,

M =M(ǫ,x,y, z) =

(

ǫJ0,(n−1)
tx

y z

)

over the field K where x = (x1, x2, . . . , xn−1) and y = (y1, y2, . . . , yn−1) are elements

of Kn−1 and tx denotes the transpose of the vector x. Note that ǫJ0,(n−1) is

conjugate to J0,(n−1). The characteristic polynomial of M is

χM(T ) = T n − zT n−1 −
(
n−1∑

i=1

xiyi

)

T n−2 − ǫ

(
n−1∑

i=2

xiyi−1

)

T n−3 − · · · (3.1)

− ǫj−2

(
n−1∑

i=j−1

xiyi−j+2

)

T n−j − · · · − ǫn−3(xn−2y1 + xn−1y2)T − ǫn−2xn−1y1.

We wish to understand whenM is a k power regular semisimple element (i.e., with

distinct diagonal entries). We recall that the elementary symmetric polynomials

are

Ei(X1, . . . , Xn) =
∑

1≤j1<j2<···<ji≤n

Xj1Xj2 · · ·Xji

and
∏n

r=1(T − xr) = T n − E1(x1, . . . , xn)T n−1 + · · ·+ (−1)nEn(x1, . . . , xn).

Definition 3.7. Let K be a field and λ1, . . . , λn be a solution of Xk
1 +Xk

2 + · · ·+
Xk
n = α over K. We say the solution is regular if λki 6= λkj for i 6= j. Further, if

none of the λi are 0 we say the solution is non-zero regular.

Note that if 0 appears in a regular solution then it can appear at most once. We

have the following,

Lemma 3.8. Let n ≥ 3, and µ1, . . . , µn be a regular solution ofXk
1+X

k
2+· · ·+Xk

n =

z over K. Then, for a given y with y1 6= 0 (similarly for a given x with xn−1 6= 0)
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there exists x (respectively y) such that the matrix M(ǫ,x,y, z) is conjugate to the

k power regular semisimple element diag(µk1, . . . , µ
k
n).

Proof. Let us write M = M(ǫ,x,y, z) and we have expression for χM(T ) in the

Equation 3.1. We require χM(T ) = (T − µk1)(T − µk2) · · · (T − µkn) which leads to

having a solution to the following system of equations:

z = E1(µk1, . . . , µkn) =
∑

µki

x1y1 + · · ·+ xn−1yn−1 = −E2(µk1, . . . , µkn)
x2y1 + x3y2 + · · ·+ xn−1yn−2 = ǫ−1E3(µk1, . . . , µkn)

... =
...

xn−2y1 + xn−1y2 = (−1)nǫ−(n−3)En−1(µ
k
1, . . . , µ

k
n)

xn−1y1 = (−1)n+1ǫ−(n−2)En(µk1, . . . , µkn) = (−1)n+1ǫ−(n−2)
∏

µki .

Clearly, the first equation is satisfied. We write the remaining equations in matrix

form as follows:








y1 y2 · · · yn−1

0 y1 · · · yn−2

...
. . .

...

0 0 · · · y1

















x1
x2
...

xn−1









=









−E2(µk1, . . . , µkn)

...

(−1)n+1ǫ−(n−2)µk1 · · ·µkn









.

Since y1 6= 0 the matrix is invertible and we have a solution.

Now, we can also write the above equations taking the bottom one first and

thinking of yi as variables as follows:








xn−1 0 · · · 0

xn−2 xn−1 · · · 0
...

. . .
...

x1 x2 · · · xn−1

















y1

y2
...

yn−1









=









(−1)n+1ǫ−(n−2)µk1 · · ·µkn

...

−E2(µk1, . . . , µkn)









.

Since xn−1 6= 0 we have a solution to this equation. �

Corollary 3.9. Let n ≥ 3, λ1, . . . , λn be a regular solution of Xk
1+X

k
2+· · ·+Xk

n = 1

over K and ǫ ∈ K∗ with ǫ 6= −1. Then, the matrix M(ǫ, (1 + ǫ)en−1,y, 1) is a

k power regular semisimple element where yi = (−1)n−i

(1+ǫ)
En−i+1(λ

k
1, . . . , λ

k
n−1) and

en−1 = (0, . . . , 0, 1).

Corollary 3.10. Let n ≥ 3, µ1, . . . , µn be a regular solution of Xk
1+X

k
2+· · ·+Xk

n =

− 1
β
over K with µn = 0. Then, for a given y with y1 6= 0 there exists x with
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xn−1 = 0 such that the matrix M(1,x,y,−1) is conjugate to β times a k power

regular semisimple element.

Proof. The proof follows along the similar lines as for the Lemma 3.8 by equating

χM(T ) to (T − βµk1) · · · (T − βµkn) by noting that the equation xn−1y1 = 0 will

ensure xn−1 = 0. �

Theorem 3.11. Let n ≥ 3 and K be a field with |K| > 2 and suppose

(1) the equations Xk1
1 +Xk1

2 + · · ·+Xk1
n = 1 has a regular solution, and

(2) in addition, for n ≥ 3, Xk2
1 +Xk2

2 + · · ·+Xk2
n−1 = − 1

β
has a non-zero regular

solution.

Then, the nilpotent matrix J0,n is in the image of f(X, Y ) = Xk1 + βY k2.

Proof. It is enough to show that the Jordan nilpotent matrix J0,n is in the image

of f(X, Y ) = Xk1 + βY k2. Let ǫ ∈ K∗ such that 1 + ǫ 6= 0. We write

M(ǫ, (1 + ǫ)en−1,y, 1) +M(1,x,−y,−1) =

(

(1 + ǫ)J0,(n−1) (1 + ǫ) ten−1 +
tx

0 0

)

where en−1 = (0, . . . , 0, 1) and x = (x1, . . . , xn−2, 0). The matrix on the right-

hand side is conjugate to J0,n. The first matrix on the left side is k1th power of

a diagonalisable matrix (follows from Corollary 3.9). It also ensures y1 6= 0. The

second matrix is β times a k2th power of a diagonalisable matrix (follows from

Corollary 3.10). �

Theorem 3.12. Let K be a field with |K| > 2. Suppose the equation Xk2
1 +Xk2

2 =

− 1
β

has a regular solution. Then, the nilpotent matrix J0,2 is in the image of

f(X, Y ) = Xk1 + βY k2.

Proof. Let (λ1, λ2) be a regular solution of Xk1
1 +Xk1

2 = − 1
β
. We write

(

0 1

0 0

)

=

(

0 0

y 1

)

+ β

(

0 1
β

− y
β

− 1
β

)

.

Now, the first matrix on the right is an idempotent and hence is k1-th power of

itself. For the second matrix to conjugate to diag(λk21 , λ
k2
2 ), we need λk21 +λk22 = − 1

β

and λk21 λ
k2
2 = y

β
. Determining y gives us the desired result. �

4. Image of diagonal polynomial over C and Fq

We use the results obtained in the previous section to obtain some surjectivity

results over particular fields for the diagonal word map.
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4.1. Diagonal polynomial over C. We demonstrate an application of our earlier

results. Note that this result will still hold for any algebraically closed field of

characteristic 0, but we choose to state it for C.

Theorem 4.1. Let K = C and k1, k2 ≥ 1 be integers and β be a non-zero element

in C. Then, the map ω : Mn(C)s ×Mn(C)s → Mn(C) given by ω(x1, x2) = xk11 +

βxk22 , where Mn(C)s is the set of semisimple matrices, is surjective.

Proof. Let A be in Mn(C). Then, the Jordan canonical form of A is the direct

sum of the Jordan matrices Jα,l where α ∈ C. Now, we look at the equation

Xk1 + βY k2 = α over C. Take any a, c ∈ C such that ak1 6= ck1 and consider

the equations βY k2 = α − ak1 and βY k2 = α − ck1. We can easily find solutions

required in the Lemma 3.1, thus Jα,l is in the image. The same argument works

for Jordan nilpotent matrices in the view of remark 3.2 (or alternatively we can

use Theorem 3.11, 3.12 for α = 0 case). This proves the required result. �

Corollary 4.2. Let m ≥ 2, and ω : Mn(C)
m →Mn(C) given by ω(x1, x2, . . . , xm) =

δ1x
k1
1 + δ2x

k2
2 + · · ·+ δmx

km
m . Then, ω(Mn(C)s) =Mn(C). Thus, ω is surjective.

4.2. Over finite field. The result in this section is a generalisation of that in [18].

The proof is along similar lines too thus we keep it short.

The proof relies on having enough solutions of the equation Xk1 +βY k2 = c over

the field Fq, for large enough q. The solution of polynomial equations over finite

fields has a long history with some fundamental results such as the Chevalley-

Warning theorem and Lang-Weil bound etc. We begin with some of these results

regarding the number of solutions which will be used in the main proof. We recall

a version of Lang-Weil theorem [28, Theorem 5A].

Theorem 4.3. Consider the polynomial equation δ1X
k1
1 + · · ·+ δmX

km
m = 1 where

δi ∈ F∗
q and ki > 0 for all i. Then the number of solutions S of this equation in

Fmq satisfies

|S − qm−1| ≤ k1k2 · · · kmq
m−1

2

(

1− 1

q

)−m/2

.

The next lemma is along a similar line as Proposition A.3 [18].

Lemma 4.4. For k1 ≥ k2 ≥ 2 and α, β ∈ F×
q , consider the polynomial

F (X1, X2) = Xk1
1 + βXk2

2 − α.

Then, for q > k41k
4
2, there exists solutions (a, b) and (c, d) to F (X1, X2) = 0 such

that ak1 6= ck1 and bk2 6= dk2.
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Proof. By Theorem 4.3, we have the following inequality about the number of

solutions S of the equation F (X1, X2) = 0 and m = 2,

|S − q| ≤ k1k2
√
q

(
q

q − 1

)

.

Observe that q
q−1

≤ 2 ≤ k1. Therefore, we have |S − q| ≤ k21k2
√
q. Suppose (a, b)

and (c, d) are solutions of F (X1, X2) = 0. If ak1 = ck1, then F (X1, X2) = 0 has at

most k22 solutions as (a, ζk2b) and (c, ζk2d), where ζk2 refers to a root of unity if it

exists, are also the possibility for solutions. Similarly, for bk2 = dk2, there are at

most k21 solutions possible. So, we need to have

S ≥ q − k21k2
√
q ≥ k21 + k22 + 1

i.e., we want
√
q(
√
q−k21k2) ≥ k21+k

2
2+1. For this to be satisfied, it suffices to have

√
q > k21k

2
2. In that case, we get

√
q(
√
q − k21k2) >

√
q > k21k

2
2 ≥ 4k21 ≥ k21 + k22 + 1

as k2 ≥ 2. �

Corollary 4.5. Let k1, k2 ≥ 1 be integers and α ∈ F∗
q. Then, there exist a constant

N1 (depending on k1 and k2 only) such that for all q > N1, the matrix Jα,n ∈
Mn(Fq) can be written as Bk1 +βCk2 for some B,C ∈Mn(Fq) both diagonalisable.

Proof. Using Lemma 4.4, there exists a constant N1 (depending on k1, k2 only)

such that for q > N1, and α ∈ F
×
q , there exist solutions (a, b), (c, d) ∈ F

2
q such that

ak1 6= ck1 and bk2 6= dk2, α = ak1 + βbk2 and α = ck1 + βdk2 for q > N1. Now we

can simply use the Lemma 3.1 to get the required solution. �

Now, we recall Proposition 2.3 from [17] and Proposition A.2 from [18] which

guarantees regular solutions to certain equations over Fq.

Lemma 4.6. Let γ ∈ F∗
q and n ≥ 2 be an integer. Then, there exists a constant N2,

depending on k and n, such that for all q > N2 the equation X
k
1 +X

k
2 +· · ·+Xk

n = γ

has a regular solution over Fq. In fact, it always has a non-zero regular solution

when n ≥ 3.

Proposition 4.7. Let |K| > 2. For every integer k1 ≥ k2 ≥ 1, and β ∈ F∗
q there

exists a constant N3, depending on k1, k2 and n only, such that for all q > N3 the

Jordan nilpotent matrix J0,n is in the image of Xk1 + βY k2.

Proof. In view of Lemma above the required hypothesis of Theorem 3.12 and 3.11

are satisfied if q > N3. Note that N3 is the maximum of the constants required

in the hypothesis of the referred Theorems for various choices of k1 and k2 for

different n. Thus, we have the required result. �
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Now we are ready to prove the main result of this section,

Theorem 4.8. Let k1, k2 ≥ 1 and n ≥ 2 be integers and β be a non-zero element

in the finite field Fq. Consider the map ω : Mn(Fq)×Mn(Fq) → Mn(Fq) given by

ω(x1, x2) = xk11 + βxk22 . Then, there exists a constant N (k1, k2) (which depends

only on k1 and k2) such that for all q > N (k1, k2), the map ω is surjective.

Proof. In the view of Proposition 2.1 the problem is reduced to dealing with Jα,l
for all extensions of Fq where l ≤ n. The case of α 6= 0 is covered by Corollary 4.5

for all q > N1 where N1 depends on k1 and k2 only. The case of J0,l for l > 2k1 is

covered by Theorem 3.6 which works for any q. For the case of J0,l with l ≤ 2k1
we use Proposition 4.7 which works for q > N2 depending on k1, k2 and l as well.

Thus, if we take q > N where N is the maximum of N1 and various N2 for l < 2k1
(which are finitely many) we get the result. Note that N depends on k1 and k2

only. �

Corollary 4.9. For m ≥ 2, there exists a constant N depending only on k1, . . . , km
such that for all q > N the map ω : Mn(Fq)

m →Mn(Fq) given by ω(x1, x2, . . . , xm) 7→
δ1x

k1
1 + δ2x

k2
2 + · · ·+ δmx

km
m is surjective.

5. Image of diagonal word over R

In this section, we consider the diagonal polynomials with coefficients in R and

look at its image over Mn(R). Our main theorems in this section are as follows:

Theorem 5.1. Let K = R, k1 ≥ k2 ≥ k3 ≥ 1 be integers and β, γ be non-zero

elements in R. Then, the map ω : Mn(R)
3 → Mn(R) given by ω(x1, x2, x3) =

xk11 + βxk22 + γxk33 is surjective.

Theorem 5.2. Let K = R, k1 ≥ k2 ≥ 1 be integers and β > 0 in R. Then, the

map ω : Mn(R)×Mn(R) →Mn(R) given by ω(x1, x2) = xk11 + βxk22 is surjective if

and only if one of the following holds

(i) n is even,

(ii) n is odd and one of the k1 or k2 is odd.

Further, when n is odd and k1, k2 both are even the image is Mn(R)\{λIn | λ < 0}.

We may assume that all of the coefficients of the diagonal polynomial are positive.

That is, we are dealing with δ1x
k1
1 + δ2x

k2
2 + · · ·+ δmx

km
m where δi > 0 real for all

i. Because for xk11 + βxk22 with β < 0, following a similar argument as for C in

Section 4.1, the equations required in the Theorem 3.11, 3.12 have solutions over
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R, hence the map given by xk11 + βxk22 would be surjective. In fact, without loss

of generality, we may assume that δi = 1 as δi > 0 has a ki-th root. Thus in what

follows, we will be dealing with the map given by xk11 + xk22 + · · ·+ xkmm . The rest

of the section is devoted to the proof of these statements.

We begin by recalling a result from Richman (see Theorem 6 [25]) which also

uses the work of Griffin and Krusemeyer from [9]:

Theorem 5.3 (Richman, Griffin-Krusemeyer). Let k be a field with characteristic

not equal to 2 and n be odd. Then, a scalar matrix cIn ∈ Mn(K) is a sum of two

squares if and only if c is a sum of two squares in K.

Thus in view of this, we have,

Corollary 5.4. Let n be odd and k1, k2 both even. Suppose β > 0 is a real number.

Then, a scalar matrix λIn ∈ Mn(R) for λ < 0 can not be written as Ak1 + βBk2

where A,B ∈Mn(R).

Proof. If we can write λIn ∈ Mn(R) as Ak1 + βBk2 then λIn ∈ Mn(R) is also a

sum of two squares in Mn(R), and then by the above Theorem of Richman λ is a

sum of two squares. This is not possible for λ < 0. �

The rest of the proof is devoted to essentially showing that these are the only

exceptions. The proof will be divided into three cases:

Case 1: When one of the k1 or k2 is odd.

Case 2: Both k1 and k2 are even and n is even.

Case 3: Both k1 and k2 are even and n is odd.

5.1. Case 1 when one of the k1 or k2 is odd: The proof when k1 or k2 is odd is

simpler. Let A ∈Mn(R). Then, A is conjugate to the direct sum of Jordan blocks

(1) Jα,l where α ≥ 0 in R,

(2) Jα,l where α < 0 in R, and

(3) Jp(x),l where p(x) is degree 2 irreducible polynomial over R.

Using Proposition 2.1 we can realise Jp(x),l of the kind Jλ,l for some λ ∈ C where

we can use Theorem 4.1 to prove the result. Thus, we need to deal with Jα,l where

α ∈ R. We may assume k2 is odd. Note that when α 6= 0, we are done using

Lemma 3.1 as the equation Xk1 + Y k2 = α has required solutions (in the view of

k2 being odd).

When α = 0 we can use Theorem 3.11 and 3.12 to get the result as we have

solutions of required kind over R (once again in view of k2 being odd).
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5.2. Case 2 when n is even and k1, k2 both even: In this case, we wish to show

that the equation p(x1, x2) = xk11 + xk22 = A where A is in Mn(R) and n is even,

always has a solution in Mn(R). Since the equation is closed under conjugation we

may consider A in its canonical form. The blocks appearing in the canonical form

of A will be as follows:

(1) Jα,2m where α ∈ R and m ≥ 1.

(2) Jα1,2m1−1 ⊕ Jα2,2m2−1 for α1, α2 ∈ R and m1, m2 ≥ 1 (because n is even).

(3) Jf(x),m where f is an irreducible polynomial of degree 2 over R, and the

particular case m = 1 refers to the 2× 2 companion matrix Cf .

Denote τm = (τ ⊕ τ ⊕ · · · ⊕ τ)
︸ ︷︷ ︸

m−times

where τ =

(

cos π
k1

− sin π
k1

sin π
k1

cos π
k1

)

then τk1m = −I2m.

Thus, for a real number ξ > 0,
(

ξ
1
k1 τm

)k1
= −ξI2m. Also, we note that for ξ > 0

and η = ξ
1
k2 , the Jordan matrix Jη,s has the property that (Jη,s)

k2 is conjugate to

Jξ,s.

In view of the discussion above we need to deal with the three kinds of blocks.

In each of these cases, we show that the matrix is in the image of ω(x1, x2).

(1) When α > 0, we know Jα,2m has k1-th root, so we are done. When α ≤ 0

pick ψ > 0 such that ψ + α > 0, we write

Jα,2m = −ψI2m + J(α+ψ),2m =
(

ψ
1
k1 Tm

)k1
+ J(α+ψ),2m.

Now, note that Jα+ψ,2m is a k2-th power as it is a conjugate of
(

J k2
√

(α+ψ),2m

)k2
.

(2) In the case of Jα1,2m1−1 ⊕ Jα2,2m2−1 if both α1, α2 are positive it has k1-th

root. Else, we pick ψ > 0 such that ψ + α1 > 0 and ψ + α2 > 0 and write

Jα1,2m1−1 ⊕ Jα2,2m2−1 = −ψI2(m1+m2−1) + (Jα1+ψ,2m1−1 ⊕ Jα2+ψ,2m2−1).

Now, −ψI2(m1+m2−1) is a k1-th root and Jα1+ψ,2m1−1⊕Jα2+ψ,2m2−1 is a k2-th

root.

(3) In this case we can use Lemma 3.1 and go over the extension C where we

can find the solution and realise it over R.

5.3. Case 3 when n is odd and k1, k2 both even: In this case, we wish to

show that the equation p(x1, x2) = xk11 + xk22 = A where A is in Mn(R) and n is

odd, has a solution in Mn(R) except when A is a negative scalar matrix. The fact

that negative scalars are not in the image follows from Corollary 5.4. Since the
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equation is closed under conjugation we can work with the canonical form of A.

The canonical form of A is a direct sum of the following:

(1) Jα1,l1 ⊕ Jα2,l2 ⊕ · · · ⊕ Jαr,lr where αi ∈ R and li even.

(2) Jα1,l1 ⊕ Jα2,l2 ⊕ · · · ⊕ Jαs,ls where αi ∈ R and li odd (s must be odd as n is

odd).

(3) ⊕Jfi(x),m where fi is an irreducible polynomial of degree 2 over R. The

particular case i = 1, m = 1 refers to the 2× 2 companion matrix Cf .

We first prove some Lemma.

Lemma 5.5. Let m ≥ 3. Let d1, d2, . . . , dm be non-negative reals. Consider the

matrix

M =













−d1 1

−d2 1

−d3 1
. . .

. . .

−dm−1 1

−a1 −a2 · · · · · · −am−1 −(dm + 1)













∈ Mm(R).

Then, ajs can be chosen in such a way that the matrix M is k-th power of some

diagonalizable matrix in Mm(R).

Proof. The characteristic polynomial of M is given by χM(T )

=Tm + Tm−1

(

1 +
∑

1≤i≤m

di

)

+ Tm−2

(
∑

1≤i1<i2≤m

di1di2 +
∑

1≤i≤m−1

di + am−1

)

+

Tm−3

(
∑

1≤i1<i2<i3≤m

di1di2di3 +
∑

1≤i1<i2≤m−1

di1di2 + am−1

(
∑

1≤i≤m−2

di

)

+ am−2

)

+

· · ·+ T




∑

1≤i1<i2<i3<...<im−1≤m

di1di2 . . . dim−1 + · · ·+ a3 (d1 + d2) + a2



+

(d1d2 . . . dm−1(dm + 1) + d1d2 . . . dm−2am−1 + . . .+ d1a2 + a1) .

We claim that we can choose λ1, . . . , λm−2 positive reals and λm−1, λm, a pair

of non-real complex conjugates such that χM(T ) = (T − λ1) · · · (T − λm−2)(T −
λm−1)(T − λm) and λi 6= λj for all i 6= j. This will help us ensure that M is

conjugate to a regular semisimple element which is k-th power. For this, we need
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to solve the following system of equations,

∑

1≤i≤m

di + 1 = −E1(λ1, λ2 . . . , λm),
∑

1≤i1<i2≤m

di1di2 +
∑

1≤I≤m−1

di + am−1 = (−1)2E2(λ1, . . . , λm−1, λm),

∑

1≤i1<i2<i3≤m

di1di2di3 +
∑

1≤i1<i2≤m−1

di1di2 + am−1

(
∑

1≤i≤m−2

di

)

+ am−2

= (−1)3E3(λ1, . . . , λm−1, λm),

...
∑

1≤i1<i2<i3<...<im−1≤m

di1di2 . . . dim−1 + . . .+ a3 (d1 + d2) + a2

= (−1)m−1Em−1(λ1, . . . , λm−1, λm),

d1d2 . . . dm + d1d2 . . . dm−1 + . . .+ a2d1 + a1 = (−1)mE(λ1, . . . , λm−1, λm).

Now, we simply pick λ1, . . . , λm−2 positive reals and λm−1, λm a pair of non-real

complex conjugate such that

−
∑

1≤i≤m

di − 1 = E1(λ1, . . . , λm−2, λm−1, λm) =

m−2∑

i=1

λi + λm−1 + λm

and λi 6= λj for all i 6= j. This ensures each λi for 1 ≤ i ≤ m − 2 has a real k-th

root. Further note that when k is even the real part of λm has to be negative and

we will see that the requirement of k-th root forces a pair of complex conjugates.

We note that since λm−1 and λm are a pair of complex conjugate the Ej(λ1, . . . , λm)
are in R. Thus, the above equations determine the value of aj which are real num-

bers. This proves that we can choose aj in such a way that M is conjugate to

M̃ = diag(λ1, . . . , λm−2) ⊕ Cf where λi are positive reals and Cf is companion

matrix of the real polynomial T 2− (λm−1+λm)T +λm−1λm. Clearly, M̃ has a k-th

root in Mm(R) because scalars on the diagonal are positive and the 2 × 2 block

can be thought of as an element in C. Hence M is a k-th power. �

Next we have the following,
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Lemma 5.6. Let n ≥ 3 and d1, . . . , dn be non-negative reals. Consider the matrix

T ∈Mn(R) as follows:

T =














−d1 1

−d2 1
. . .

. . .

. . .
. . .

−dn−1 1

−dn














.

Then, there exist matrices B and C in Mn(R) such that T = Bk1 + Ck2.

Proof. Let us consider a matrix B =






0 0 · · · 0

0 0 · · · 0

a1 a2 · · · an−1 1




 and observe that

Bk1 = B. Now, from Lemma 5.5 we can choose a1, . . . , an−1 such that the matrix

T − B, which is in the required form, is k2-th power, say Ck2 . Thus T = Bk1 +

Ck2. �

Proposition 5.7. Let n be odd and A ∈ Mn(R). Suppose the odd-size Jordan

blocks appearing in the canonical form of A are all of the size ≥ 3. Then, A is in

the image of xk11 + xk22 .

Proof. The Jordan blocks of the kind Jα,2l and Jf(x),l can be taken care of as in the

Subsection 5.2 as they are of even size. For the Jordan blocks of the kind Jα,2l−1

we can use Lemma 5.6 as they are of size ≥ 3. �

Lemma 5.8. All diagonal matrices in Mm(R), when m is even, and the diagonal

matrices with at least 2 distinct diagonals, when m is odd, are in the image of

xk11 + xk22 .

Proof. When m is even the diagonal matrices belonging to the image are covered

in Section 5.2. Now for m odd, we are done if even one of the diagonal entries

is positive. So, we may assume all of the diagonal entries are negative. We need

to deal with diag(λ1, λ2, λ3, . . .) where λi < 0 for all i and λ1 6= λ2. Note that

diag(λ1, λ2, λ3, . . .) is similar to









λ1 1

λ2

λ3
. . .









(because λ1 6= λ2).
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Now, we consider the matrix L =

(

0 0

a1 a0

)

and note that

M :=

(

λ1 1

λ2

)

− Lk1 =

(

λ1 1

−a1ak1−1
0 λ2 − ak10

)

.

We claim that we can choose a0 and a1 such that the characteristic polynomial of

the above matrix M is χM(T ) = (T + λ1)(T − µ) with µ 6= −λ1. For this we need

to have −λ1 + µ = λ1 + λ2 − ak10 and −λ1µ = λ1(λ2 − ak10 ) + a1a
k1−1
0 . The first

equation would require ak10 = 2λ1 + λ2 − µ which can be solved by choosing µ so

that 2λ1 + λ2 −µ > 0 (this means µ < 2λ1 + λ2 < 0 ≤ −λ1). The second equation

gives a1. Thus, we can make M similar to diag(−λ1, µ) with µ 6= −λ1. Hence,

M̃ :=









λ1 1

λ2

λ3
. . .









−






L

0
. . .






k1

is similar to diag(−λ1, µ, λ3, . . .) where −λ1 > 0. Now, M̃ has one of the diagonal

entries positive (and remaining part is even size) so it is a k2-th power by the

earlier argument. This completes the proof. �

Lemma 5.9. Let l > 1 and α, ξ ∈ R. The matrices Jα,2l ⊕ (ξ) and Jf,l ⊕ (ξ) are

in the image of xk11 + xk22 .

Proof. First we deal with Jα,2l ⊕ (ξ). From the argument in Section 5.2 we know

that Jα,2l is in the image of xk11 +xk22 and hence if ξ > 0 (it has roots) we are done.

Thus, we may assume ξ < 0.

Write m = 2l for simplicity and consider w1, w2, . . . , wm ∈ R such that w1 6=
0. Take L to be a matrix with first m − 1 rows 0 and the last row to be

(wm, wm−1, . . . , w1). Then,

Jα,m − Lk1 =











α 1 0 · · · 0

0 α 1 · · · 0
...

...
. . .

. . .
...

... · · · · · · α 1

−wmwk1−1
1 −wm−1w

k1−1
1 · · · · · · α− wk11











.

We claim that we can choose w1, w2, . . . , wm in such a way that the characteristic

polynomial of Jα,m − Lk1 is (X + ξ)m−1(X − λ) with λ 6= −ξ. Following a similar



20 PANJA S., SAINI P., AND SINGH A.

calculation as in the proof of Lemma 5.5, we need to ensure tr(Jα,m − Lk1) =

−(m − 1)ξ + λ, that is, mα − wk11 = −(m − 1)ξ + λ. Thus, we need to have a

solution for wk11 = mα+ (m− 1)ξ − λ which can be insured by choosing λ < 0, in

fact take λ < ξ < 0. This allows us that Jα,m−Lk1 is conjugate toM1⊕ (λ) where

only eigen values of M1 is −ξ which is positive. Thus, M1 = Mk2 for some M .

Now, let us write uk1 = ξ−λ > 0 and λ = −vk1 . Then,
(

Jα,m

ξ

)

−
(

L

u

)k1

=

(

Jα,m − Lk1

ξ − uk1

)

is conjugate to






Mk2

λ

λ




. Now all we need to show

is that λI2 is a k2-th power where λ < 0. Equivalently, enough to show −I2 is a

k2-th power. This can be done using −I =

(

cos π
k2

− sin π
k2

sin π
k2

cos π
k2

)k2

.

Now, let us deal with Jf,l ⊕ (ξ). Once again, from the argument in Section 5.2

we know that Jf,l is in the image of xk11 + xk22 and hence if ξ > 0 we are done. We

need to deal with the case when ξ < 0.

First, we consider the case of l = 1 with f(x) = x2 + b0x + b1 and Cf :=
(

0 −b1
1 −b0

)

∈ M2(R). Let w1, w2 be two real numbers with w1 non-zero. Consider

the matrix L =

(

0 0

w2 w1

)

. Then,

(

Cf

ξ

)

−
(

L

u

)k1

=






0 −b1 0

1− w2w
k1−1
1 −b0 − wk11 0

0 0 ξ − uk1






and we claim that with a choice of w1, w2 and u we can make this a k2-th power.

Note that the characteristic polynomial of Cf − Lk1 is T 2 + (b0 + wk11 )T + b1(1 −
w2w

k1−1
1 ). To make Cf − Lk1 conjugate to a diagonal matrix diag(−ξ, λ) with

λ 6= −ξ we need to equate trace and determinant, i.e, −ξ + λ = −b0 − wk11 and

−ξλ = b1(1 − w2w
k1−1
1 ). We fix, λ < 0 such that ξ − λ > 0 and −b0 + ξ − λ > 0,

which ensures, solution for uk1 = ξ − λ > 0 (to get u) and wk11 = −b0 + uk1. The

second equation gives w2 and with this choice of u, w1 and w2 we get:

(

Cf

ξ

)

−
(

L

u

)k1

=






−ξ
λ

λ




 =:M2.
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Now, −ξ > 0 which has k2-th root and λ < 0 we can use the earlier trick on 2× 2

block by using k2-th root of −I to get the job done.

Now for l > 1, let L be a size 2 matrix as above for some w1 and w2. Consider

Q :=













Cf I

Cf I
. . .

. . .

Cf I

Cf

ξ













−













0 0 0 . . . 0 0

0 0 0 . . . 0 0

0 0 0 . . . 0 0
...

...
...

...
...

...

0 0 0 . . . L 0

0 0 0 . . . 0 u













k1

.

Then, the characteristic polynomial of Q is f(T )l−1(T + ξ)(T − λ)2 equal to the

minimal polynomial and hence Q is similar to Jf,l−1 ⊕M2. Since Jf,m−1 is k2 − th

power and M2 is k2-th power so is Q. This completes the proof. �

5.4. Proof of the Theorem.

Proof of Theorem 5.2. When n is even the proof follows from the argument in

Section 5.1 and 5.2. Now, suppose n ≥ 3 is odd and k1, k2 is both even. The

negative real scalar matrices are not in the image, as follows from Corollary 5.4.

It remains to show that every matrix in Mn(R) is in the image of xk11 + xk22 unless

it is of the form −λIn where λ is a positive real.

Let A ∈ Mn(R). From Proposition 5.7 if all odd-size Jordan blocks appearing

in the canonical form of A are of size ≥ 3 then we are done. So, we may assume

that the odd-size Jordan blocks are of size 1. Since n is odd there has to be at

least one block of size 1. Now we claim that if A has at least 1 even size Jordan

block then A is in the image. For this we can combine one even-size block with a

size 1 block and use Lemma 5.9 and the remaining parts will be even-size blocks.

Thus, we are left with the case when A has no blocks of even size (and no blocks

of odd size ≥ 3). That is, A is a diagonal matrix. Once again if A has at least 2

distinct entries on the diagonal we are done with Lemma 5.8. Thus, A must be a

scalar matrix of the form λIn.

�

Proof of Theorem 5.1. From the proof above all we need to show that λIn
when λ < 0 and n odd is of the form xk11 + xk22 + xk33 . For this we write λIn =

diag(λ, . . . , λ, 0) + diag(0, . . . , 0, λ). Here, the first one is k1-th power using τn−1
2
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from Section 5.2. For the second one again we use the argument from Section 5.2

on

(

0

λ

)

and write it as a sum of k2 and k3 powers. �

6. Images of diagonal polynomial over real quaternions

In this section, we look at the diagonal polynomial over Mn(H) where H is

Hamilton’s real quaternion division algebra. We show that the map ω(x1, x2) =

xk11 + βxk22 is surjective when β 6= 0. This easily implies the surjectivity of the

diagonal map for all m ≥ 2. The result here is surprisingly easy to obtain due

to the canonical form theory for matrices in Mn(H). We begin with the following

result due to Wiegmann and Liping (See [32, Theorem 1], also [23, Lemma 3]).

Lemma 6.1. Every n × n matrix with real quaternion elements is similar under

a matrix transformation with real quaternion elements to a matrix in (complex)

Jordan normal form with diagonal elements of the form a + bi, b ≥ 0. That is to

say if A ∈Mn(H), then A is similar to a matrix of the form

J(A) := Jλ1,n1 ⊕ Jλ2,n2 ⊕ . . .⊕ Jλk ,nk
,

with λk = ak + ibk ∈ C being right eigenvalues of A. Furthermore, bk ∈ R can

be chosen to be non-negative. In this decomposition J(A) is uniquely determined

by A up to the order of Jordan blocks Jλk,nk
, and J(A) is said to be the Jordan

canonical form of A corresponding to maximal subfield C of H.

This Lemma reduces the problem to look for A ∈ Mn(H) as an image of diagonal

polynomial to that of A ∈ Mn(C). We call a matrix A ∈ Mn(H) to be invertible

if there exists B ∈ Mn(H) such that AB = BA = I. Note that any matrix

A ∈Mn(H) has finitely many conjugacy classes of left eigenvalues (i.e. α ∈ H such

that A · v = α · v for some v ∈ Hn). Since the number of conjugacy classes in H

are infinite, given any matrix A ∈ Mn(H), there exists λ ∈ H such that λ is not a

left eigenvalue of A, and consequently A − λ · I is invertible (see [27, Proposition

5.3.4]). Now we are ready to state and prove the final result of this article.

Theorem 6.2. Let 0 6= β ∈ H. Then the map ω(x1, x2) = xk11 + βxk22 is surjective

on Mn(H). In particular, any matrix in Mn(H) can be written as a sum of two

k-th powers.

Proof. If A ∈ Mn(H) is invertible it can be written as Xk1 for some matrix X in

Mn(H), since it is so in Mn(C). Hence A is in the image of ω, by setting x2 to be
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the zero matrix. Next, assume A ∈ Mn(H) is not invertible. Choose λ ∈ H such

that λk2 does not belong to the set of left eigenvalues of A. Fix η ∈ H such that

ηk2 = β. This can be done as η can be conjugated to a complex number, thanks to

Lemma 6.1. Then for x2 = (λ/η) · I, the matrix A− βxk2 is an invertible matrix

(since 0 is not a left eigenvalue of A − βxk2) and hence the map is surjective by

the previous argument. �
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