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Abstract

We perform a resolvent analysis of a compressible turbulent jet, where the opti-
misation domain of the response modes is located in the acoustic field, excluding
the hydrodynamic region, in order to promote acoustically efficient modes. We
examine the properties of the acoustic resolvent and assess its potential for
jet-noise modelling, focusing on the subsonic regime. Resolvent forcing modes,
consistent with previous studies, are found to contain supersonic waves associated
with Mach wave radiation in the response modes. This differs from the standard
resolvent in which hydrodynamic instabilities dominate. We compare resolvent
modes with SPOD modes educed from LES data. Acoustic resolvent response
modes generally have better alignment with acoustic SPOD modes than stan-
dard resolvent response modes. For the optimal mode, the angle of the acoustic
beam is close to that found in SPOD modes for moderate frequencies. However,
there is no significant separation between the singular values of the leading and
sub-optimal modes. Some suboptimal modes are furthermore shown to contain
irrelevant structure for jet noise. Thus, even though it contains essential acoustic
features absent from the standard resolvent approach, the SVD of the acoustic
resolvent alone is insufficient to educe a low-rank model for jet noise. But because
it identifies the prevailing mechanisms of jet noise, it provides valuable guide-
lines in the search of a forcing model (Karban et al. An empirical model of noise
sources in subsonic jets. Journal of Fluid Mechanics (2023): A18).
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1 Introduction

Jet-noise modelling, despite several decades of study, is still an active field of research.
Recent progress in LES computations have made possible accurate comparisons with
experiments (Brès et al., 2012, 2018). But robust low-rank models, useful for extracting
the essential physical mechanisms at play as well as being an efficient tool for indus-
try, remain an important research objective. The apparently disorganised turbulent
jet flow contains coherent structures (Mollo-Christensen, 1967; Crow and Champagne,
1971). These structures, termed wavepackets as they experience growth and decay
within the turbulent mixing layer, play a central role in jet noise (Jordan and Colo-
nius, 2013; Cavalieri et al., 2019). Modelling efforts have therefore been directed to
wavepackets, using different variations of local stability analysis – parallel (Michalke,
1984), WKB (Crighton and Gaster, 1976), PSE (Gudmundsson and Colonius, 2011;
Cavalieri et al., 2013) or OWNS (Rigas et al., 2017). Such approaches are sufficient to
recover a large part of the acoustic field in supersonic jets (Sinha et al., 2014). This is
because Mach wave radiation, in which a supersonic disturbance generates an acous-
tic radiation, is the dominant mechanism of jet noise in this regime (Tam, 1995). As
stability analysis provides a good model of the single-point, second-order statistics of
these supersonic coherent structures, it is sufficient to deduce the associated, coupled
acoustic wave. Subsonic jet noise, however, requires higher-order statistical informa-
tion, and therefore further modelling. In this regime, the phase speed of coherent
structures is subsonic. Only a small fraction of the energy of wavepackets – which is
acoustically matched (Crighton, 1975), is responsible for acoustic radiation. Moreover,
this acoustic radiation is greatly affected by the space-time modulation of wavepack-
ets, termed jitter (Cavalieri et al., 2011; Cavalieri and Agarwal, 2014), and linked to
the stochastic nature of the turbulent flow. By cancelling destructive interferences,
jitter may enhance sound pressure levels up to 30 dB (Cavalieri and Agarwal, 2014;
Jordan et al., 2014). As a result, information of the two-point statistics of these struc-
tures is required, which, in the spectral domain, appears in the cross-spectral density
(CSD) matrix.

Resolvent analysis has recently gained popularity in the turbulence modelling
community. In this approach, an input-output view of the flow dynamics is adopted
(McKeon and Sharma, 2010; Hwang and Cossu, 2010). A linearised Navier-Stokes
operator, through its selective receptivity to forcing input, produces a flow response
that is likely to be statistically prevalent in the turbulent dynamics. This forcing con-
tains the non-linear interactions in the flow. In the presence of strong amplification
mechanisms, its modelling may not be required to obtain coherent structures (Bened-
dine et al., 2016). In this case, the singular value decomposition (SVD) of the resolvent
operator exhibits a large separation between the first and second singular values, and
the first left singular vector alone can provide a good model for coherent structures.
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Resolvent analysis was used to extract hydrodynamic wavepackets in turbulent jets
(Schmidt et al., 2018; Lesshafft et al., 2019; Pickering et al., 2021). This allowed differ-
ent mechanisms to be identified in the frequency range associated with jet noise: the
Orr mechanism was found to be dominant at low frequency while Kelvin-Helmholtz
wavepackets prevail at larger frequencies. Semeraro et al. (2016) and Towne et al.
(2016) furthermore noticed that resolvent analysis could be extended to a stochastic
framework, opening perspectives for the inclusion of jitter. In the stochastic framework,
a correspondence is identified between resolvent modes and spectral proper orthogonal
decomposition (SPOD) modes (Towne et al., 2018) in the case where the forcing field
is spatially uncorrelated. While this “white-noise forcing” hypothesis is not a priori
valid in turbulent flow, it has been found to successfully model the coherent dynam-
ics in a range of different configurations, including flow over a backward-facing step
(Beneddine et al., 2016), certain flames (Kaiser et al., 2019) and, importantly, jets (as
cited above), at least over a significant range of frequencies. The cited examples share
a strong dominance of the Kelvin–Helmholtz instability in free shear layers. Many
counter-examples exist as well, where the nonlinear forcing of the linear resolvent oper-
ator strongly excites sub-optimal response patterns, and the white-noise hypothesis
is therefore unsuccessful in reproducing the SPOD spectrum. This is notably often
observed in wall-bounded shear flows (e.g. Morra et al., 2019, 2021; Symon et al.,
2021).

Cavalieri et al. (2019) pointed out fundamental similarities between resolvent anal-
ysis and acoustic analogies (Lighthill, 1952; Goldstein, 2003). Indeed, the resolvent
operator stems from a reorganisation of the Navier-Stokes equations, resulting in a lin-
ear relation between a forcing and a response; in aeroacoustics, hydrodynamic sources
are similarly associated with an acoustic field, and linked via a linear operator. Sev-
eral authors (Garnaud et al., 2013; Jeun et al., 2016; Pickering et al., 2021) used a
modified version of resolvent analysis that more closely resembles acoustic analogies.
Energy norms associated with the left and right singular vectors (the response and
forcing fields, respectively) can be defined in the SVD of the resolvent operator (Sipp
and Marquet, 2013). By restricting the response norm to the acoustic field – rather
than the whole numerical domain – the SVD is expected to yield resolvent modes
that are acoustically efficient. This framework will be termed acoustic resolvent in this
paper, as opposed to standard resolvent which includes both the hydrodynamic and
acoustic regions in the response norm.

The study of Garnaud et al. (2013), via the acoustic resolvent, was carried out on a
subsonic turbulent jet at Reynolds number Re ≃ 103. The numerical domain included
a nozzle, where the forcing field was constrained to be localised. Good agreements were
found with direct numerical simulation (DNS). The authors noted, however, that most
of the acoustic radiation was produced at the nozzle exit, hindering interpretations
regarding jet noise. Jeun et al. (2016) more extensively analysed the acoustic resolvent
framework in turbulent jets at Re = 106, ranging from subsonic to supersonic Mach
numbers. The SVD was presented, including tens of singular values, showing that a
clear separation of more than one order of magnitude existed between the first and
the second ones in supersonic jets. In subsonic jets, however, singular values were
all found to be of the same order of magnitude. The authors concluded on the need
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to incorporate more than one mode in jet-noise modelling through acoustic resolvent
analysis – even in supersonic jets, where subsequent modes were reported to participate
in side-line noise. Pickering et al. (2021) recently used the acoustic resolvent to propose
a novel modelling approach of jet noise. In order to model the second-order statistics
of the acoustic field, the authors proposed a low-rank model based on the SVD of
the acoustic resolvent, enriched by a model describing the projection of the forcing
field onto the right singular vectors involving two calibration constants. Encouraging
results were obtained for the jet-noise prediction at low angles compared to LES data
at Re ≃ 106.

The aim of the present paper is to examine the properties of the acoustic resolvent
and to assess its potential for jet-noise modelling, focusing on the subsonic regime. In
particular, we aim at identifying and providing a physical interpretation of the funda-
mental differences between the standard and acoustic resolvent approaches. Emphasis
will be put on the physical nature of the resolvent forcing modes in order to get
new insights into the modelling of jet-noise sources. We will discuss the structure and
phase speed of theses modes, which have been overlooked in the subsonic regime so
far. Unphysical modes, not reported in the literature, will furthermore be shown to
arise, and hinder the use of the acoustic resolvent. Comparisons with SPOD modes
extracted from LES calculations will provide valuable insights to this end. The influ-
ence of the nozzle, which can greatly affect jet noise (Brès et al., 2018; Kaplan et al.,
2021), will also be investigated; previous studies on acoustic resolvent (Garnaud et al.,
2013; Jeun et al., 2016; Pickering et al., 2021) did not discuss it. Overall, the strengths,
but also the limitations of the acoustic resolvent approach, will be highlighted. Mean
flows obtained from high-fidelity LES calculations at Re ≃ 106 will be used to carry
out the resolvent analysis.

The paper is organised as follows. The theoretical and numerical framework are
introduced in section 2. Afterwards, a detailed comparison of the SVD of the standard
and acoustic resolvents is presented 3.1. The effect of the nozzle is analysed in section
3.2. The acoustic resolvent modes are then more specifically studied in section 3.3. We
examine their physical features, their alignment with SPOD modes and the effect of
the Mach number. A discussion about the physical interpretation of the SVD of the
acoustic resolvent and its potential for jet-noise modelling follows in section 4, before
concluding the paper in section 5.

2 Resolvent analysis

2.1 Mean flow

Resolvent analysis involves the linearisation of the governing equations around a mean
flow. We use a database obtained from LES calculations using the code ’Charles’;
details about the numerical procedure and the experimental validation can be found
in Brès et al. (2018). In the present work, a statistically steady and axisymmetric
turbulent jet flow is considered (figure 1). The streamwise and radial directions are
noted x and r, respectively. Note that a nozzle flow is included in the numerical
domain. The state vector q is expressed with the primitive variables q = (ν u p)t.
Here, ν is the specific volume, u the velocity vector in cylindrical coordinates and p
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Fig. 1: Mean streamwise velocity at M = 0.9 and Re = 1.01× 106.

the pressure. All physical quantities are made dimensionless using the jet diameter
D and the density and velocity at the nozzle exit along the centre line ρj and Uj.
In the reference case, the Mach and Reynolds numbers are M = Uj/cj = 0.9 and
Re = ρjUjD/µj = 1.01× 106, respectively, where c is the speed of sound and µ is the
molecular viscosity. The Strouhal number will be defined as St = fD/Uj.

2.2 Resolvent matrix

The discretised compressible non-linear Navier-Stokes equations are written as the
following dynamical system:

∂q

∂t
= N(q). (1)

Introducing the classical Reynolds decomposition q(x, t) = q̄(x) + q′(x, t), the
governing equation of the perturbations reads

∂q′

∂t
= Aq′ + f . (2)

The right-hand term has been decomposed such that the Jacobian matrix calculated
around the mean flow q̄,A = ∂N/∂q|q̄, appears. This constitutes the linear part of the
equation while f contains the remaining non-linear terms. The analysis is now carried
out in the frequency domain and restricted to axisymmetric two-dimensional pertur-
bations; the azimuthal wavenumber is always zero and does not enter the problem as
a parameter. The governing equation becomes

iωq̂ = Aq̂+ f̂ , (3)

where ω is the angular frequency . Following the modelling approach of turbulent flows
proposed by McKeon and Sharma (2010) and Hwang and Cossu (2010), the term f̂
represents the intrinsic turbulent background forcing originating from the coupling of
different space and time scales. Then, q̂ can be seen as the linear response to this forc-
ing. Because q̂ contains both energy amplification mechanisms in the hydrodynamic
and acoustic regions, this approach can be used for jet-noise modelling. One can fur-
ther note a strong resemblance with acoustic analogies (Lighthill, 1952; Goldstein,
2003). The resolvent matrix can finally be introduced as the link, in the frequency
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domain, between the forcing and the response fields. Dropping the hat notations for
the rest of the paper, the following relation holds:

q = Rf , (4)

where R = (iωI−A)
−1

and I is the identity matrix.

2.3 Singular value decomposition

The resolvent matrix contains all the information needed to compute the response to a
given forcing in the frequency domain. A singular value decomposition (SVD) can be
performed in order to find a low-rank approximation of this matrix. From a physical
point of view, this amounts to the definition of a gain between the energy of the
response and that of the forcing and an identification of the forcing fields that generate
the largest values of this gain. The motivation behind the approach is to explore if,
with only a few modes, a majority of the fluctuation of the system can be recovered; in
other words, building a low-order model. The approach detailed hereafter introduces
a tailored resolvent framework to study jet noise (Garnaud et al., 2013; Jeun et al.,
2016; Pickering et al., 2021). A measurement matrix B is introduced, such that

f = Bz. (5)

This allows the forcing field to be restricted to a specified region and/or specific
components of the forcing vector. The modified resolvent matrix H = RB provides a
link between the two new variables:

q = Hz. (6)

The gain between the energy of the response and the forcing, noted σ2, is now defined
as

σ2 =
⟨q,q⟩R
⟨z, z⟩F

. (7)

Two scalar products have been introduced. In a discrete framework, they are defined
from weight matrices such that ⟨q,q⟩R = q∗MRq and ⟨z, z⟩F = z∗MFz. The choice
of the norms is detailed in section 2.5. Note that MF has to be a positive-definite
matrix. This is not necessary for MR, which can be positive semi-definite (Garnaud
et al., 2013). From equations (6) and (7), the gain can then be recast as a generalised
Rayleigh product:

σ2 =
z∗H∗MRHz

z∗MFz
. (8)

We now aim at computing the forcing vectors that generate the largest (or optimal)
gain. Following Sipp and Marquet (2013), this problem can be solved as a generalised
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SVD, which reads

H = UΣV∗MF, (9)

U∗MRU = V∗MFV = I. (10)

The matrices V and U contain the right-singular and left-singular vectors vi and ui,
respectively. The vectors vi correspond to the optimal and sub-optimal forcing modes
generating the optimal and sub-optimal gains σ1 > σ2 > ... (equation (7)), which are
contained in the diagonal matrix Σ. The optimal and sub-optimal response modes,
associated with these forcing modes, are the vectors ui, which are readily computed
using U = HVΣ−1.

2.4 Low-rank approximation of the response

Adopting a stochastic approach is relevant to deal with turbulent flows. The second-
order statistics of the system can be modelled within the resolvent framework by
introducing the cross-spectral density (CSD) matrices of the response and the forcing
Pqq and Pzz, respectively. Semeraro et al. (2016) and Towne et al. (2016) showed that

Pqq = HPzzH
∗. (11)

Combined with the SVD of the resolvent in equation (9), Pqq can be expressed as

Pqq = UΣV∗MFPzzM
∗
FVΣU∗. (12)

An interesting simplification occurs under the assumption (M
1/2
F )∗PffM

1/2
F = I.

When MF = I, this assumption means that the forcing field is being modelled as white
noise in space (Semeraro et al., 2016). In this case, because of the orthonormality
properties of the SVD, equation (12) can be rewritten as

Pqq = UΣ2U∗, (13)

which shows that resolvent modes are, in this case, identical to SPOD modes (Towne
et al., 2018). A low-rank approximation of the PSD of the state vector - which lies on
the diagonal of Pqq, can easily be computed as

PSD(q) ≃
nres∑
k=1

σ2
k|uk|2. (14)

where nres the number of resolvent modes retained, i.e. the order of the truncation of
the resolvent basis used to build the response.

2.5 Energy measure

A measure of the energy of the forcing and response fields has to be chosen and
implemented through matricesMF andMR. In compressible flows, it is common to use
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the energy measure introduced by Chu (1965), which provides a measure of the energy
of compressible disturbances that is free of non-physical growth, as shown by George
and Sujith (2011). This energy can be derived for the primitive variables considered
in our study by using the linear relationships between variables, which yields

EChu =
1

2

∫
Ω

(
1

ν̄
|u|2 + γp̄

(γ − 1)ν̄2
ν2 +

2

(γ − 1)ν̄
νp+

1

(γ − 1)p̄
p2
)
rdrdx. (15)

The integration domain Ω, in the physical space (x, r), can be chosen in order to
compute the energy of the response in a specific portion of the numerical domain,
thereby setting the definition of the gain in equation (7). As for the energy of the
forcing, Ω is chosen such that it matches the size of vector z in order to ensure that
the matrix MF is positive-definite.

2.6 Standard and acoustic resolvents: set-up

Two radically different choices of measurement regions of the response energy will be
compared in this paper. These choices are illustrated in figure 2. As seen in section
2.5, the definition of this region is set through Ω. We will call standard resolvent the
approach in which this domain extends over rr/D ∈ [0; 6]. This includes the hydro-
dynamic field (i.e. mixing layer), which is usually the region of interest in resolvent
analysis as it is where large energy growths takes place. We will refer to acoustic
resolvent the calculations set with rr/D ∈ [4; 6], which is located in the near acous-
tic field, away from the hydrodynamic region. The remaining parameters are fixed as
follows. The optimisation region of the response axially extends over xr/D ∈ [0; 20].
The forcing region, set through the control matrix B, extends over xf/D ∈ [0; 20]
and rf/D ∈ [0; 1] in the jet region as well as in the nozzle over xf/D ∈ [−2; 0] and
rf/D ∈ [0; 0.5].

2.7 Numerical method

The resolvent code used to perform our calculation is based on that presented in
Bugeat et al. (2019). This code is formulated from the non-linear compressible Navier-
Stokes written in conservative form. The resolvent matrix is constructed from the
Jacobian matrix, which is obtained via a finite-difference approximation of the numeri-
cal residual of the non-linear equations, as proposed by Mettot et al. (2014). Therefore,
in this approach, the equations are first discretised and then linearised, bypassing the
tedious task of linearising the continuous compressible equations before discretising
them. At this point, the Jacobian matrix is associated with conservative variables. As
we are interested, in particular, in pressure fluctuations in the acoustic field, singular
vectors are expected to be expressed in terms of primitive variables. When turbulent
mean flows are considered, Karban et al. (2020) noted that a particular care is required
in order to deduce the Jacobian matrix associated with a set of variables from that
computed for another set. The authors derived a transformation, which is used in the
present paper in order to switch from conservative to primitive variables; details can
be found in Karban et al. (2020).
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Fig. 2: Locations of the forcing (green dashed line) and response (yellow solid line)
optimisation regions in the standard and acoustic resolvents. Colour map is the same
as in figure 1.

Following Sipp and Marquet (2013), the SVD introduced in equation (9) is solved
as the following eigenvalue problem:

(M−1
F B∗R∗MRRB)︸ ︷︷ ︸

A

v = σ2v. (16)

The eigenvalue σ2 and the eigenvector v (which correspond to the singular value and
right-singular vector of the aforementioned SVD) are solved with the the Krylov-
Schur algorithm, using the SLEPC library (Hernandez et al., 2005). This requires
the eduction of a Krylov subspace of the matrix A. Each vector of this subspace
is computed by sequentially solving two linear systems on the resolvent matrix, one
involving R, the other involving R∗. To this end, a direct LU method is employed
using the PETSc library (Balay et al., 2020). This step constitutes the bottle neck
of the algorithm in terms of both CPU time and RAM. The complete procedure is
detailed in Bugeat et al. (2019).

The numerical domain extends over x/D ∈ [−2.7; 30] and r/D ∈ [0; 30]. This
includes a nozzle flow in the region x/D ∈ [−2.7; 0] and r/D ∈ [0; 0.5]. We use Dirich-
let boundary conditions at the inflow and at the top of the domain, and Neumann
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conditions at the downstream border. Symmetry boundary conditions are used along
the axis of the jet. Along the nozzle wall, adiabatic, no slip conditions are set.

Sponge zones are implemented following Agarwal et al. (2004) and are located at
x/D > 25, r/D > 25 and above the nozzle at x/D < −0.3. Finally, a Cartesian mesh
of size 595 × 285 is used throughout this paper. Grid independence of the results is
shown in appendix A.

3 Results

3.1 Comparison between standard and acoustic resolvents

The first singular values of the standard resolvent are three to four orders of magnitude
larger than those of the acoustic resolvent (figure 3a). This is because the acoustic
approach does not measure the large energy amplification in the mixing layer, which
necessarily decreases the gain defined in equation (7). In the standard approach, higher
frequencies (St ≳ 0.4) exhibit larger values, as also noted by several authors (Garnaud
et al., 2013; Semeraro et al., 2016; Schmidt et al., 2018). These authors showed that
this corresponds to a switch of leading mode: Kelvin-Helmholtz (K-H) wavepackets
here dominate the dynamics of the system whereas the Orr mechanism takes over at
lower frequency. In the acoustic approach, slightly larger singular values are observed
at low frequencies. They remain constant above St = 0.5.

Now focusing on one frequency, St = 0.6, the sub-optimal modes of the SVD are
shown in figure 3(b). In the standard approach, a well known gain separation of about
two orders of magnitude is observed between σ2

1 and σ2
2 . This indicates that the single-

point statistics of the system can be reasonably well modelled using only the first
resolvent mode (Beneddine et al., 2016), which is associated with the K-H instability.
No such gain separation occurs for the acoustic resolvent. Instead, a slow decrease is
observed for the first 18 singular values, after which a quick exponential decay takes
place, as also noted by Jeun et al. (2016). The implication of this result regarding
the construction of a low-rank response from resolvent modes is that several modes
are likely to be required to build a response that recovers the energy in the selected
acoustic domain.

The hydrodynamic field of the first three response modes are shown for both
approaches in figure 4. In the standard approach, mode 1 is solely driven by the
K-H wavepacket (figure 4a). Sub-optimal modes differs from it, featuring structures
developing further downstream with noticeably shorter wavelength, i.e. smaller phase
velocity (figure 4c,e). They are associated with the Orr mechanism (Lesshafft et al.,
2019). As for the acoustic resolvent, a K-H wavepacket now appears in every mode
(figure 4b,d,f). To further examine these wavepackets, the kinetic energy density
profiles along the axial direction, dEk(x) =

∫
1
2 ρ̄|u|

2rdr, are calculated. The K-H
wavepacket in mode 1 grows exponentially immediately at the nozzle exit and reaches
its maximum around x/D ≃ 6 (figure 5a). Sub-optimal modes of the standard resol-
vent exhibit different behaviours as the maximum of each mode is reached at a different
position from one another. In the acoustic approach, however, energy profiles are the
extremely similar for each mode outside of the nozzle (figure 5b). Furthermore, they
are nearly identical to that of mode 1 of the standard resolvent (K-H wavepacket). The
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Fig. 3: Comparison between the SVD of the standard and acoustic resolvents. (a) First
singular value at different frequency. (b) First twenty-six singular values at St = 0.6.

Fig. 4: Real part of the pressure of the three first response modes at St = 0.6. Left:
standard resolvent. Right: acoustic resolvent. The horizontal black line represents the
wall of the nozzle.

following interpretation can be proposed. Sub-optimal response modes do not feature
a K-H wavepacket in the standard approach because of the orthogonality constraint,
which does not allow it. Indeed, resolvent modes are constructed to be orthogonal
to one another with respect to a scalar product defined from a choice of norm and
a selected portion of the domain (section 2.5). The standard approach includes the
mixing layer zone in this domain, preventing the modes from sharing identical compo-
nents. In the acoustic approach, response modes do not have to be orthogonal in this
region, and can therefore share the same behaviour. The flow being linearly unstable,
K-H wavepacket naturally appears if no orthogonality constraints aim at cancelling it.
As a result, it is rather expected to observe K-H wavepackets in all acoustic resolvent
modes.

The acoustic field of the optimal mode is made visible in figure 6. In the stan-
dard resolvent framework, a lot of the energy in the acoustic field results from effects
associated with the nozzle, such as scattering or resonance. In the acoustic approach,
the acoustic field is more organised, featuring a clear directivity. It is very similar to
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Fig. 5: Kinetic energy density profiles of the three first resolvent response modes at
St = 0.6 for the standard (a) and acoustic (b) resolvents. The black dotted line in (b)
is the profile of mode 1 in (a). Each profile is normalised by its maximum value.

Fig. 6: Real part of the pressure of the optimal response mode at St = 0.6 of the
standard (a) and acoustic (b) resolvents. In order to make the acoustic field visible,
the colour bar is capped, in each case, by the maximum absolute value reached over
r/D > 4. Note that these modes are the same as those already shown in figure 4.

the optimal mode obtained by Jeun et al. (2016). It is striking to observe such differ-
ent acoustic radiations while the wavepacket profiles are nearly identical (figure 5b).
This raises questions about the nature of the acoustic sources at play, which will be
discussed in section 4 after having analysed more thoroughly the acoustic resolvent
approach.

12



10
2

10
3

10
4

10
5

10
6

10
7

0 5 10 15 20 25

σ
i

2

i

x
f
/D >-2

x
f
/D >-1

x
f
/D > 0

10
-2

10
-1

10
0

10
1

10
2

0 5 10 15 20 25

i

Fig. 7: Influence of the upstream location of the forcing region on the SVD at St = 0.6.
(a) Standard resolvent. (b) Acoustic resolvent.

3.2 Nozzle influence

The influence of the nozzle flow is investigated as it was not included in previous studies
(Jeun et al., 2016; Schmidt et al., 2018; Pickering et al., 2021). Both standard and
acoustic resolvent approaches are tested using different forcing regions selected through
the control matrix B (equation (5)). In the previous section, this region extended over
xf/D ∈ [−2; 20], recalling that the nozzle is located in the part of the domain where
x < 0. We will now restrict the forcing domain to xf/D ∈ [−1; 20] and xf/D ∈ [0; 20],
the latter meaning that strictly no forcing component is located inside the nozzle. The
influence of this parameter on the singular values is studied at St = 0.6, which lies
in the typical range of frequency of interest for jet noise. In the standard approach,
the first singular value increases as xf is decreased (figure 7a). The following singular
values, however, remain unchanged. This results in significantly larger gain separations
as the forcing region is set more upstream in the nozzle. This supports recent works
that stressed the importance of the nozzle in the amplification of perturbations (Brès
et al., 2018; Lesshafft et al., 2019; Kaplan et al., 2021). In contrast, the singular values
of the acoustic resolvent remain unchanged by the variation of xf (figure 7b).

Examining the structure of the streamwise velocity fields of the standard resolvent
modes can shed light on the behaviour of their associated singular value (figure 8
and 9). It is not surprising that both the forcing and response of the sub-optimal
modes for xf/D > −2 and xf/D > 0 are identical given that their singular values
are the same. Interestingly, the optimal response is the same whether the forcing field
is allowed in the nozzle or not (figure 8b and 9b). Thus, the difference found for
the first singular value must be explained by a change in the forcing mode. In the
xf/D > 0 case, the forcing is concentrated in the mixing layer at the immediate exit
of the nozzle (figure 9a). In the xf/D > −2 case, it is spread in the near-wall region of
the nozzle (figure 8a). Both forcing fields tend to be located as upstream as possible.
This is indeed the most efficient way to promote energy amplification as the growth
of convective instabilities is then experienced over longer distances. Besides, the tilted
forcing structure spreading in the nozzle shows the action of the Orr mechanism in
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Fig. 8: Real part of the streamwise velocity of the three first resolvent modes at
St = 0.6. Left: Forcing. Right: Response. Results are for the standard resolvent only,
using xf/D ∈ [−2; 20].

Fig. 9: Same as figure 8 but using xf/D ∈ [0; 20].

the boundary layer. This non-modal growth occurs all along the nozzle length, further
supporting that a longer nozzle induces larger energy growth. The sub-optimal forcing
modes also feature tilted structures but are mostly located in the jet region rather
than in the nozzle, which explains why the sub-optimal singular values are insensitive
to xf . These modes are purely driven by the Orr mechanism, which is at play in the
mixing layer, as analysed by Lesshafft et al. (2019).

3.3 Focus on the acoustic resolvent

The work presented so far has dealt with highlighting some fundamental differences
between the standard and acoustic resolvents. From now on, we will focus mostly
on the acoustic resolvent. The influence of the forcing region will first be studied.
Afterwards, a detailed analysis of the optimal and sub-optimal modes will be carried
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Cases Forcing pipe Forcing jet Response

Acoustic resolvent F3 [−2; 0]× [0; 0.5] [0; 20]× [0; 3] [0; 20]× [4; 6]
Acoustic resolvent Reference [−2; 0]× [0; 0.5] [0; 20]× [0; 1] [0; 20]× [4; 6]
Acoustic resolvent F04 [−2; 0]× [0; 0.4] [0; 20]× [0; 0.4] [0; 20]× [4; 6]

Table 1: Nomenclature of the different cases studied in section 3.3.1.

out before assessing the potential of the acoustic resolvent to build a low-rank model
of jet noise. The effect of the Mach number will eventually be examined.

3.3.1 Sensitivity to the radial extent of the forcing region

Three forcing regions of different radial extent are considered (see table 1). The optimal
forcing and response modes for each case are presented in figure 10. Each forcing
mode features a streamwise wave structure. In the F3 case, most of the forcing is
located above the mixing layer and has a noticeably shorter wavelength than in the
other cases (figure 10a). The associated response is made of a low-angle acoustic beam
(figure 10d). Without being strictly identical, the reference and F04 cases are similar
to each other, but greatly differ from the F3 set-up. Their optimal response features an
acoustic radiation of larger angle (figure 10e,f). The reference and F04 cases constitute
a more realistic constraint on the forcing (figure 10b,c) compared to the F3 case, given
that the forcing is actually limited within the shear layer as shown by Towne et al.
(2017). The region r ∈ [1, 3] hardly contains any turbulent activity, and hence, forcing.
From a hydrodynamic point of view, the response mode includes a K-H wavepacket
in each case – even in the case rf/D ∈ [0; 0.4], which has a zero-forcing close to the
wall of the nozzle and at the start of the mixing layer. These regions were found to
be the most efficient locations to excite this wavepacket (section 3.2). However, it is
not a necessary condition to force the system in these regions in order to generate this
wavepacket; as mentioned in section 3.1, in the absence of orthogonality constraints in
the mixing layer, these wavepacket will grow regardless of the shape and the precise
location of the upstream forcing as they result from a linear instability of the flow.

3.3.2 Physical features of the acoustic resolvent modes

In this section, we focus on the reference case of the acoustic resolvent and discuss the
first three resolvent modes. Note that hydrodynamic fields have already been shown in
figure 4, where K-H wavepackets were observed in each response mode. Unlike mode
1 (figure 11d), the acoustic radiation in mode 2 is now made of two distinct beams
(figure 11e). This behaviour was also reported by Jeun et al. (2016). This results from
the orthogonality constraint in the acoustic field. The forcing field of mode 2 follows
the same trend (figure 11b): the streamwise wave that is found in mode 1 (figure
11a) is now divided into two portions of space. Mode 3 is very different as the spatial
support of the forcing is essentially located downstream (figure 11c). Moreover, the
wavelength appears shorter. In fact, we will show that the phase velocity is negative:
the forcing field is essentially an upstream-travelling wave. As a result, the associated
acoustic radiation is made of an upstream propagating wave with a clear directivity
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Fig. 10: Real part of the pressure of the first resolvent mode at St = 0.6. Top:
forcing. Bottom: response. Left: F3 case. Centre: reference case. Right: F04 case. The
nomenclature is given in table 1. Colour bars of the response modes are capped as in
figure 6.

Fig. 11: First three modes of the acoustic resolvent (reference case) at St = 0.6.
Top: forcing, real part of the streamwise velocity. Bottom: response, real part of the
pressure is shown. Colour bars of the response modes are capped as in figure 6.

and emitted from x/D ≃ 20 (figure 11f). In addition, each forcing mode contains a
tilted structure near the nozzle, similar to the structure that was found to generate
the optimal hydrodynamic response in the standard resolvent (figure 8a). Even though
it is not dominant – most of the energy of the forcing is located downstream of the
nozzle, this indicates that K-H wavepackets play a role in optimal sound-generation.
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The phase velocity of the forcing field can be computed as cφ = ω/α if we assume
it is a plane wave in the streamwise direction. The wavenumber can then be approxi-
mated by α = ∂θ/∂x where θ is the phase of the complex pressure field. Phase velocity
profiles of the first three forcing modes are shown in figure 12(a). Let us first note
that diverging phase values and spurious oscillations are observed in some portion of
the profiles. This is either caused by additional waves associated with nozzle effects or
because the plane wave assumption does not hold any longer. However, clean phase
velocities are obtained in regions of large forcing, which allows us to comment on the
prevalent forcing mechanisms. Large forcing locations can indeed be detected by plot-
ting the forcing energy density dF (x) (figure 12b), which is defined analogously to the
kinetic energy density in section 3.1. Forcing mode 1 and 2 have a supersonic phase
velocity with cφ/a∞ ≃ 1.6 at the location of maximum energy density, where a∞ is
the speed of sound in the far field. Supersonic waves are promoted by the acoustic
resolvent calculation because they are efficient acoustic sources (Crighton, 1975), max-
imising the acoustic energy for a given energy input. Overall, three waves of different
phase velocities coexist: the supersonic forcing, the K-H wavepacket and the acoustic
radiation. Forcing mode 3 is also slightly supersonic and has a negative phase veloc-
ity. Its energy clearly peaks in the downstream region, where an upstream-travelling
acoustic wave is radiated. Such modes are unphysical in jet noise, as will be discussed
later.

The direct link between the forcing and acoustic fields can be clearly shown by
relating the angle of the radiation θ to the phase velocity of the forcing which, for a

Mach wave, verifies θ = cos−1
(

a∞
cφ

)
. The angle is defined with respect to the centre

axis and a value of 0◦ would correspond to downstream radiation. From the calculation
of the phase velocity at the location of the maximum forcing field, the predicted
angle is θ = 51.3◦. Meanwhile, the acoustic radiation observed in the response mode
is θ ≃ 51◦. While this confirms that the forcing field is directly responsible for the
acoustic radiation, it is unclear why this specific angle θ is selected by the resolvent
analysis. Indeed, the phase velocity of the forcing field could a priori take any values:
introduced as an external body force, it is not constrained by the hydrodynamics. The
comparison with SPOD modes carried out in the next section will shed more light on
this matter.

3.3.3 Comparison with SPOD modes

Calculated from the times series obtained from LES calculations, SPOD modes pro-
vide, for each frequency, an optimal orthogonal basis to represent the acoustic field.
These modes are obtained through the eigendecomposition of the cross-spectral den-
sity (CSD) matrix. Towne et al. (2018) gave a comprehensive presentation of their
calculation and properties. SPOD modes are associated with a norm. The same set-
up as that of the resolvent modes is used: Chu’s energy is calculated over the acoustic
domain of the response. The normalised eigenvalues of the SPOD modes at St = 0.6
are shown in figure 13, indicating the proportion of the total energy that each mode
contains. Contrary to the SVD of the acoustic resolvent (figure 3a), the SPOD is low-
rank. A separation of more than one order of magnitude is observed between the first
and fourth SPOD modes while it took nineteen resolvent modes to achieve such a
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Fig. 13: Eigenvalues of the acoustic SPOD at St = 0.6.

separation. This means that the acoustic field can be described by a low-rank basis,
but that the current resolvent approach does not provide this basis – at least without
further information.

However, the acoustic resolvent contains relevant features that were not present
in the standard resolvent approach. This can be seen by examining the first three
SPOD modes (figure 14). They are made of a clear acoustic radiation which, because
of the orthogonality constraint, is divided into different beams as the rank of the mode
increases. This feature was also found in the two first modes of the acoustic resolvent,
but absent in the standard resolvent decomposition. Moreover, the angle of radiation
of the first mode is about 54◦, close to the value of 51◦ found for the Mach wave in the
first resolvent mode. This indicates that the phase velocity of the forcing at the origin
of this Mach wave must somehow be rooted in the mean flow properties. The structure
of the third SPOD mode confirms that the third mode of the acoustic resolvent modes,
made of an upstream propagating acoustic wave (figure 11f), is indeed not relevant to
the acoustics – even though this mode is optimal in the given resolvent framework, in
which any external forcing is allowed.
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Fig. 14: Three first SPOD modes at St = 0.6, real part of the pressure. Colour bars
are capped as in figure 6.

The alignment between SPOD and resolvent modes can be assessed through a more
global quantity, ϕ, defined as a normalised scalar product between these modes:

ϕ =
⟨qres, qSPOD⟩√

⟨qres, qres⟩⟨qSPOD, qSPOD⟩
. (17)

The scalar product is associated with Chu’s energy taken over the near-acoustic
domain x ∈ [0; 25] and r ∈ [4; 6]. The first SPOD and resolvent modes are considered.
The results are presented for different frequencies in figure 15. The acoustic resolvent
generally produces better alignment with SPOD modes than the standard resolvent,
except at the highest frequencies considered (St ≃ 1). The differences between the two
approaches are not dramatically large but remain significant. Both exhibit a maximum
of alignment around St = 0.3 where the acoustic resolvent reaches a value of ϕ close to
1. A steep decrease is observed above St > 0.4. There, values of ϕ do not drop to zero
but rather stay around 0.1 and 0.4, indicating that some acoustic features may still be
captured by the resolvent decomposition. In order to better apprehend the correspon-
dence between these values of ϕ and the near-acoustic field, the pressure is plotted
along the line r/D = 5 for each mode at three different frequencies (figure 16). Resol-
vent and SPOD modes are compared, and the amplitude of each mode is normalised
by its own maximum value. As expected, the maximum of acoustic radiation is partic-
ularly well predicted at St = 0.3 by the acoustic resolvent (figure 16a). The pressure
profile is particularly well recovered between around x/D = 10 and x/D = 20, where
the signal is the largest. The standard resolvent also performs well but is not as accu-
rate, predicting a peak further downstream than that of the SPOD mode, and a decay
with x that is not as fast as in the SPOD mode. The standard resolvent at St = 0.6,
where ϕ ≃ 0.2, predicts none of the behaviour of the SPOD mode (figure 16b). Con-
versely, with a better alignment at this frequency (ϕ ≃ 0.35), the acoustic resolvent
mode is able to detect the peak of pressure of the SPOD mode but does not correctly
capture its shape. This tempers the above discussion about the angle of the acoustic
beams observed in the SPOD and resolvent response fields. Finally, at St = 1, both
approaches produce poor predictions (figure 16c).

3.3.4 Effect of Mach number

So far, only the case M = 0.9 has been studied. Two additional Mach numbers are
now considered, M = 0.4 and M = 1.5, whose mean flows have also been obtained
by LES calculations. The comparison of the singular values of the acoustic resolvent
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at St = 0.6 for the three Mach numbers is shown in figure 17(a). The supersonic case
has a distinct behaviour as a separation of nearly three orders of magnitude is found
between σ2

1 and σ2
2 , as also noted by Jeun et al. (2016). This results from the existence

of a supersonic instability wave which directly generates a Mach wave: the optimal
forcing is located at the most upstream location (figure 18a) in order to trigger a K-H
wavepacket to which is attached the acoustic radiation (figure 18d). In other words, the
most efficient way to generate acoustic perturbations coincides with the most efficient
way to produce hydrodynamic perturbations. This is different from the subsonic case
previously investigated, in which the Mach wave was dominantly produced by the
supersonic forcing field rather than the response field. Note that the available data from
LES calculation in the supersonic case does not contain a nozzle: the mean flow used
for the resolvent calculation starts at x/D = 0. If it was included, it is very likely that
the optimal forcing would be located upstream in the nozzle as in the M = 0.9 case of
the standard resolvent (figure 8a), and that the gain separation would be even larger.
The second resolvent mode of the M = 1.5 case features two acoustic beams with a
similar angle to that of the first mode (figure 18e). It does not result from an instability
wave, but is rather directly produced by the forcing as in the subsonic case. If the
instability wave was triggered, it would indeed generate the same acoustic radiation
as that of the first mode, hence breaking the orthogonality constraint. Therefore, the
sub-optimal modes cannot contain the supersonic K-H wavepacket. Interestingly, the
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Fig. 18: Same as figure 11 but at M = 1.5 (St = 0.6). Note that the numerical domain
in the supersonic case only starts at x/D = 0, but a larger domain is displayed to ease
comparison with other cases.

third mode does not divide the acoustic field into a third beam (figure 18f), but rather
contains a single radiation of different angle than the two other mode. However, the
structures of sub-optimal modes do not crucially matter in the supersonic regime since,
given the large gain separation, the K-H wavepacket associated with first resolvent
mode is sufficient to model jet noise in this case (Sinha et al., 2014).

The behaviour of the singular values at M = 0.4 case is similar to that of the
M = 0.9 case (figure 17a). The first singular values have a comparable magnitude
before experiencing a quick drop. This drop occurs at a smaller rank than that observed
for M = 0.9. Once again, the forcing modes contain supersonic waves generating Mach
waves (figure 19a,b,c). The first mode is seen to be upstream propagating which, again,
indicates the inability of the acoustic resolvent to produce a hierarchy of relevant
acoustic modes.
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Fig. 19: Same as figure 11 but at M = 0.4 (St = 0.6)

Coming back to the singular values presented in figure 17(a), it can be seen that
a normalisation of σi by M was employed. By doing so, the reference velocity scale
is no longer that at the nozzle exit, but rather the speed of sound in the quiet flow.
This is Helmholtz scaling. This choice of normalisation produces singular values of
similar magnitudes for any Mach numbers. This indicates that these singular values
are associated with the same acoustic mechanism, seen to be linked to the Mach-wave
mechanism. The exception is the previously discussed first singular value at M = 1.5,
associated instead with a K-H wavepacket, and whose magnitude is indeed much larger.
To examine this further, it is then interesting to compare the behaviour of the different
Mach numbers at a constant Helmholtz number, defined as Sta = St × M . In this
case, at Sta = 0.53, the singular values collapse for any Mach numbers (figure 17b),
an observation first made by Jeun et al. (2016). Therefore, the speed of sound is the
relevant velocity scale of the optimisation problem, consistent with the importance
of acoustic matching central to the jet-noise problem (Crighton, 1975). The optimal
response modes at this constant Helmholtz number Sta are presented in figure 20. All
modes now have the same acoustic wave length (λ/D = 1/Sta). At this frequency,
all optimal modes represent downstream-travelling waves. In the supersonic case, the
acoustic radiation is clearly linked to the hydrodynamic wavepacket, both fields being
synchronised. In the subsonic cases, the acoustic wave length is distinct from that of
the wavepacket.

4 Discussion

4.1 Wavepackets

In the subsonic regime, the SVD of the acoustic resolvent identifies planar supersonic
waves as the optimal forcing mode, i.e. the most efficient way to generate energy in
the near acoustic field. While the forcing field varies for each mode, the hydrodynamic
field observed in the response remains nearly identical for each of them (figure 5b),
resulting from the linear convective instability of the flow. In this picture, the role of
hydrodynamic wavepackets, known to be central in jet noise (Jordan and Colonius,
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Fig. 20: Optimal response mode of the acoustic resolvent at three Mach numbers at
constant Helmholtz Sta = 0.53. Colour bars of the response modes are capped as in
figure 6.

2013), becomes unclear as the hydrodynamic properties of the flow appear decorrelated
from the acoustic field. We here propose an interpretation of these observations.

Subsonic jet noise is primarily understood as a result of acoustic matching between
supersonic wavenumbers associated with the spatial envelop of subsonic wavepackets
and the acoustic field (Crighton, 1975). These supersonic components represent a small
fraction of the total energy of the hydrodynamic field: subsonic jet noise is inefficient
in the sense that the ratio between the acoustic and hydrodynamic energies is very
small (in contrast, supersonic instability waves found in supersonic jets are much
more efficient). The supersonic forcing waves promoted by the acoustic resolvent thus
appear consistent with acoustic matching, as it pinpoints the essential mechanism
of jet noise. The fact that wavepackets do not appear as an input (forcing) of our
analysis, but rather as an output (response) along with acoustic radiation, is associated
with the reorganisation of the Navier-Stokes equations in the resolvent framework.
Here, all non-linear terms are seen as an input while the associated output develops
according to linear mechanisms. Wavepackets, which result from a linear amplification,
are thus observed in the output modes. Furthermore, in the resolvent framework,
forcing modes are introduced as an external force acting on the flow; the SVD produces
modes that are not constrained by the intrinsic dynamics of the flow and may thus
take any shape, only aiming at satisfying the optimality constraint that is imposed.
These forcing modes are ultimately interpreted as a basis for the intrinsic non-linear
turbulent interactions in the flow (McKeon and Sharma, 2010; Hwang and Cossu,
2010)). Therefore, the supersonic forcing structures can emerge from wavepackets that
jitter on account of non-linear effects and contain associated supersonic wavenumbers
allowing for acoustic matching.

4.2 Perspectives for resolvent-based modelling of subsonic
jet-noise

A central message to be taken from our analysis is that, when performing resolvent
analysis, the SVD alone should be considered with caution. While in systems exhibiting
a clear gain separation leading modes can give insight into underlying mechanisms, in
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the absence of such gain separation, the resolvent operator and bases must be consid-
ered with circumspection. The jet-noise problem considered is one such case. And the
non-physical, upstream-travelling modes we identify provide an eloquent illustration
of this point.

For problems in which gain separation is lacking—and we here have in mind jet
noise—alternative strategies are required. Two examples are studies of Pickering et al.
(2021) and (Karban et al., 2023). In the former, the characteristics of the forcing
projection into the input space of an acoustic resolvent operator were inferred from
the sound field, and a low-rank model thus obtained. Including eddy viscosity and
restricting the portion of the acoustic field to lower angles (which may prevent the
existence of upstream travelling modes), a rank-1 model was proposed.

A conclusion of the work we report here is that, for jet noise, forcing data is
necessary to provide clarification of underlying mechanisms. Such data is, however,
extremely difficult to obtain from experiment or simulation when the problem con-
sidered involves high Reynolds number, which is the case of interest for jet noise (cf.
Karban et al., 2022a). And when such data is available, interpreting and modelling the
coupling between non-linear scale interaction and sound remains an daunting task.

Having done the work necessary to obtain useable forcing data from a moderately
resolved, high-Re LES in Karban et al. (2022a), a second effort (Karban et al., 2023)
was undertaken to understand how that data might be used to probe the mechanisms
by which non-linear scale interactions drive jet noise. The difficulty of the problem
faced can be appreciated by considering that less than 0.1% of the forcing fluctuation
energy is responsible for the radiated sound. In Karban et al. (2023), dedicated data-
reduction was necessary to first isolate the forcing subspace correlated with the farfield
sound, using the RESPOD technique developed in Karban et al. (2022b). But as this
subspace is dominated by forcing components that are not acoustically matched, it
provides neither clear physical interpretation nor guidance for simplified modelling.

Those goals where achieved thanks to the results of the current paper: both the
acoustic resolvent operator and the input bases were crucial. We provide a brief
explanation in what follows.

Despite the lack of a gain separation in the acoustic resolvent, the shapes of the
modes provide the key to understanding the ‘acoustically matched’ components of the
forcing field: they show how the forcing field filters through the resolvent operator,
and how that filtering operation extracts the acoustically matched components from
the predominantly silent forcing field. The acoustic-resolvent input modes exhibit two
salient traits: supersonic phase speed; almost no radial oscillation (cf. Figure 21-a).
These traits motivated the final processing of the LES forcing data (Figure 21-(b-d))
and led to the elaboration of a rank-1 empirical source model (Figure 21-e). Without
the acoustic resolvent operator we have developed and analysis of its SVD, the model
of Karban et al. (2023) would not have been obtained.

And it is noteworthy that the source model identified in that work is (thanks
to the results of the present paper) characterised by a robustness that permits the
computation of jet-noise over a range of operating conditions, including cases with jets
in forward flight. Indeed it was possible to use the model, coupled with the acoustic
resolvent reported here, in an industry environment. Airbus computed mean fields
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Fig. 21: Diagram showing the modelling steps pursued to obtain the empirical jet
noise model introduced in Karban et al. (2023). Given the constant supersonic wave
structure with constant radial support observed in the optimal acoustic forcing mode
(a), the RESPOD forcing mode (b), which generates ∼ 80% of the total downstream
acoustic energy, is (1) filtered to retain the components with supersonic phase speed
(c), (2) integrated over the radial direction to obtain a line source (d), which is finally
(3) modelled using an empirical model (e).

using industry-standard RANS. They used the code presented in the current paper to
compute acoustic resolvent operators and then performed jet-noise calculations using
the source model of the companion study Karban et al. (2023). The accuracy of the
downstream acoustic predictions across the range of operating conditions considered
was within 2-3 dB.

5 Conclusion

We have carried out an acoustic-oriented resolvent analysis on a compressible turbu-
lent jet. We have termed acoustic resolvent the approach in which the energy of the
response in the SVD is optimised in the near-acoustic field, excluding the hydrody-
namic region. Conversely, the standard resolvent includes the hydrodynamic domain.
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While the SVD of the acoustic resolvent was recently used by different authors (Gar-
naud et al., 2013; Jeun et al., 2016; Pickering et al., 2021), the aim of this paper was to
shed light on physical interpretation of the SVD of the acoustic resolvent, and assess
its potential for jet-noise modelling. Fundamental differences have been pointed out
between the acoustic and standard resolvent analyses. Whereas the latter exhibits a
large gain separation between the first and second singular values, the first singular
values of the former slowly decreases before eventually experiencing a quick exponen-
tial decay. Besides, an organised acoustic radiation with a clear directivity is observed
in the acoustic resolvent modes. This directivity is found similar to that of SPOD
modes. This contrasts with the disorganised, scattered acoustic field found in the lead-
ing mode of the standard resolvent. The influence of the nozzle flow has been studied
for both configurations. The gain separation has been found sensitive to the upstream
location of the forcing modes in the nozzle. This is because the first mode is driven
by a K-H wavepacket which is unstable in the nozzle and beyond, while sub-optimal
modes are associated with the Orr mechanism at play in the jet region. In the case
of the acoustic resolvent, no influence of the nozzle has been reported since acoustic
resolvent modes do not promote instability waves. Instead, the forcing modes contain
supersonic waves that radiate Mach waves in the response modes, which is an effi-
cient way to generate acoustic perturbations. While this complies with the optimality
request underpinning the framework of the acoustic resolvent, not all modes appear
relevant to jet noise. The supersonic waves observed in the forcing modes were dis-
cussed and shown to be in line with acoustic matching, from which jet noise is usually
understood. Finally, while the SVD of the acoustic resolvent alone is deemed insuffi-
cient to provide a model for jet noise, perspectives were discussed, either by improving
this framework (Pickering et al., 2021) or by focusing on forcing models (Karban et al.,
2023).
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Appendix A Mesh convergence

The nomenclature of the different meshes that are used to test the mesh convergence
is given in table A1. Mesh A is the reference mesh used in the paper and is associated
with a numerical domain of height Lr/D = 30. Finer meshes C and D are tested on a
reduced domain Lr/D = 12. To check that Lr had no influence on the results, mesh
B was introduced by simply truncating mesh A to Lr/D = 12. The first six singular

26



Mesh Nx Nr Lr/D

A 595 285 30
B 595 229 12
C 993 229 12
D 595 374 12

Table A1: Nomenclature
of the meshes
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Fig. A1: Mesh convergence of the SVD of the acoustic resolvent at St = 0.6

values of the acoustic resolvent (reference case) are plotted in figure A1. This shows
identical results for all the meshes tested.
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