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Abstract

Let D be a domain. Park determined the necessary and sufficient conditions for which
the ring of integer-valued polynomials Int(D) is a globalized pseudovaluation domain (GPVD).
In this work, we investigate the ring of integer-valued rational functions IntR(D). Since it is
necessary that D be a GPVD for IntR(D) to be a GPVD, we consider IntR(D), where D is a
GPVD. We determine that if D is a pseudosingular GPVD, then IntR(D) is a GPVD. We also
completely characterize when IntR(D) is a GPVD if D is a pseudovaluation domain that is not
a valuation domain.

1 Introduction

The concept of integer-valued polynomials has been studied throughout many different areas of
mathematics. One way to study integer-valued polynomials is to consider a collection of integer-
valued polynomials as a ring. Given a domain D with field of fractions K and E some subset of K,
we can define

Int(D) := {f ∈ K[x] | f(d) ∈ D, ∀d ∈ D} and Int(E,D) := {f ∈ K[x] | f(a) ∈ D, ∀a ∈ E}

the ring of integer-valued polynomials over D and ring of integer-valued polynomials on

E over D, respectively. Note that Int(D,D) = Int(D).
A type of question one can ask about the rings of the form Int(D) starts by fixing a property on

the rings of integer-valued polynomials. Then we investigate what kind of conditions the base ring D
must have. The two papers [Lop98] and [CCF00] give two different classifications of Prüfer domains
of the form Int(D). Furthermore, [CLT00] gives a complete characterization of when Int(D) is a
Prüfer v-multiplication domain (PvMD). The ring-theoretic property we look at in this work is the
property of being a globalized pseudovaluation domain (GPVD). In [Par03], Park gives complete
necessary and sufficient conditions for Int(D) to be a GPVD. To introduce this result, we provide
the definitions surrounding GPVDs.

We can consider a GPVD to be a generalization of a Prüfer domain. We first focus on the
local counterparts. Localizing a Prüfer domain at a prime ideal yields a valuation domain. A way to
generalize a valuation domain is to use a pseudovaluation domain. For references on pseudovaluation
domains, see [HH78a, HH78b].

Definition 1.1. A domain D is a pseudovaluation domain (PVD) if D has a valuation overring
V such that Spec(D) = Spec(V ) as sets. The valuation domain is uniquely determined and is called
the associated valuation domain of D.

Remark 1.2. In particular, a pseudovaluation domain and the associated valuation domain have
the same maximal ideal.
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One way to construct a pseudovaluation domain is to start with a valuation domain V . Let m be
the maximal ideal of V . Consider the canonical projection π : V → V/m. Take a subfield F ⊆ V/m.
Then D := π−1(F ) is a pseudovaluation domain with associated valuation domain V .

We can consider Prüfer domains to be global counterparts of valuation domains. Dobbs and
Fontana studied two global counterparts of pseudovaluation domains called locally pseudovaluation
domains and globalized pseudovaluation domains [DF83]. First, we introduce the definition of a
locally pseudovaluation domain.

Definition 1.3. A domain D is a locally pseudovaluation domain (LPVD) if for every maximal
ideal m of D, the localization Dm is a PVD.

Since there is a valuation domain associated with a pseudovaluation domain, we would like
there to be a Prüfer domain associated with a locally pseudovaluation domain. However, a locally
pseudovaluation domain that is not a PVD or a Prüfer domain does not have a Prüfer overring with
the same prime spectrum [AD80, Proposition 3.3]. Nevertheless, there is a subclass of LPVDs that
does have an associated Prüfer overring which is a unibranched extension.

Definition 1.4. An extension of commutative rings A ⊆ B is unibranched if the contraction map
Spec(B) → Spec(A) is a bijection.

A domain D is a globalized pseudovaluation domain (GPVD) if there exists a Prüfer domain
T containing D such that

• D ⊆ T is a unibranched extension and

• there exists a nonzero radical ideal J common to D and T such that each prime ideal of T
containing J is maximal in T and each prime ideal of D containing J is maximal in D.

The Prüfer domain is uniquely determined and is called the associated Prüfer domain of D.

Remark 1.5. Theorem 3.1 in [DF83] provides an equivalent definition of a GPVD. A domain D is
a GPVD if there exists a Prüfer domain T containing D such that there is a common radical ideal
J where D/J ⊆ T/J is a unibranched extension of Krull dimension zero rings.

Remark 1.6. A GPVD is an LPVD, and a PVD is a GPVD with its associated valuation domain
as its associated Prüfer domain and their common maximal ideal as the common radical ideal in the
definition of a GPVD [DF83].

We return to Park’s characterization of GPVDs of the form Int(D). This characterization uses
the idea of an interpolation domain, which is a domain D such that for every distinct pair a, b ∈ D
there exists f ∈ Int(D) such that f(a) = 0 and f(b) = 1. Park showed that for a domain D that
is not a field, Int(D) is a GPVD if and only if D is GPVD and an interpolation domain [Par03].
Furthermore, when Int(D) is a GPVD, the associated Prüfer domain is Int(D,T ), where T is the
associated Prüfer domain of D.

Now we examine a generalization of the concept of integer-valued polynomials. We will study
integer-valued rational functions. For a domain D with field of fractions K and E some subset of
K, we define

IntR(D) := {ϕ ∈ K(x) | ϕ(d) ∈ D, ∀d ∈ D} and IntR(E,D) := {ϕ ∈ K(x) | ϕ(a) ∈ D, ∀a ∈ E}

the ring of integer-valued rational functions over D and the ring of integer-valued rational

functions on E over D, respectively. Note that IntR(D,D) = IntR(D). We can also define an
ideal of IntR(E,D) using an ideal I of D. One can check that the set

IntR(E, I) := {ϕ ∈ IntR(E,D) | ϕ(a) ∈ I, ∀a ∈ E}

2



is an ideal of IntR(E,D).
We want to explore under what conditions the ring of integer-valued rational functions is a

GPVD. We first provide a necessary condition. As with Prüfer domains, the homomorphic image of
a GPVD is a GPVD [Par03, Lemma 1]. In order to have a ring of integer-valued rational functions
that is a GPVD, we must have a base ring that is a GPVD.

Proposition 1.7. Let D be a domain with E a nonempty subset of the field of fractions of D. If
IntR(E,D) is a GPVD, then D is a GPVD.

Proof. Let a ∈ E be any element and consider the homomorphism IntR(E,D) → D given by
evaluation at a. Then D is the homomorphic image of IntR(E,D) so D is a GPVD.

In Section 2, we introduce the notion of a pseudosingular GPVD, which generalizes the idea of a
singular Prüfer domain. We then show that IntR(E,D) is a GPVD for D a pseudosingular GPVD
and E any subset of the field of fractions of D. We also show that the Prüfer domain associated
with IntR(E,D) is IntR(E, T ), where T is the Prüfer domain associated with D. In Section 3,
we completely classify which PVDs D, which are not valuation domains, make the ring IntR(D) a
GPVD. In Section 4, we give necessary and sufficient conditions under which the ring IntR(K,D)
is a local domain, where D is a PVD that is not a valuation domain and K is the field of fractions
of D. Lastly, Section 5 is dedicated to proving a lemma about rational function mappings between
fields that is used in Section 4.

2 Pseudosingular GPVDs

In this section, we give a family of GPVDs such that their rings of integer-valued rational
functions is also a GPVD. We introduce the notion of a pseudosingular GPVD, generalizing notion
of a singular Prüfer domain. The notion of a singular Prüfer domain is important as it gives a
condition under which the ring IntR(E,D) is a Prüfer domain. The same proof for Theorem 3.5
in [CL98] shows that if D is a singular Prüfer domain, then IntR(E,D) is a Prüfer domain for any
subset E of the field of fractions of D. For this reason, we generalize this notion to give a condition
under which the ring IntR(E,D) is a GPVD.

Definition 2.1. [CL98] Let D be a Prüfer domain. We say D is singular if there exists a family
Λ of maximal ideals of D so that

• D =
⋂

m∈Λ

Dm;

• for each m ∈ Λ, the maximal ideal of Dm is principal, generated by some tm ∈ Dm; and

• there exists some t ∈ D and n ∈ N such that for each m ∈ Λ, we have 0 < vm(t) < nvm(tm),
where vm is a valuation associated with Dm.

Since there is a Prüfer domain associated with a GPVD, we can impose conditions on the
associated Prüfer domain as conditions on the GPVD.

Definition 2.2. Let D be a GPVD. We say that D is pseudosingular if the associated Prüfer
domain T is singular.

Because a GPVD has an associated Prüfer domain that is a unibranched extension, it could be
useful to have a description of the maximal ideals of the ring we suspect is a GPVD in order to prove
that the ring is indeed a GPVD. Some of the maximal ideals of IntR(E,D) can be defined through
maximal ideals of the base ring D.
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Definition 2.3. Let D be a domain and let E be some nonempty subset of the field of fractions of
D. Take m to be a maximal ideal of D and a ∈ E. We define the set

Mm,a := {ϕ ∈ IntR(E,D) | ϕ(a) ∈ m}.

We know that Mm,a is a maximal ideal of IntR(E,D) because it is the kernel of the surjective map
IntR(E,D) → D/m given by evaluation at a modulo m. Maximal ideals of IntR(E,D) of the form
Mm,a are called maximal pointed ideals.

In general, not all of the maximal ideals of IntR(E,D) are maximal pointed ideals. Since there
is a notion of a limit of a family of ideals using filters and ultrafilters, we can use this notion to
potentially describe more maximal ideals of IntR(E,D).

Definition 2.4. Let S be a set. A filter F on S is a collection of subsets of S such that

1. ∅ /∈ F ;

2. if A,B ∈ F , then A ∩B ∈ F ; and

3. if A ∈ F and B ⊆ S is such that A ⊆ B, then B ∈ F .

If U is a filter on S such that for every A ⊆ S, we have A ∈ U or S \ A ∈ U , then we call U an
ultrafilter. Every filter of S is contained in some ultrafilter of S by the Ultrafilter Lemma.

Definition 2.5. Let R be a commutative ring. Take {Iλ}λ∈Λ to be a family of ideals of R. For
each r ∈ R, we define the characteristic set of r on {Iλ} to be

χr = {Iλ | r ∈ Iλ}.

For a filter F on {Iλ}, we define the filter limit of {Iλ} with respect to F as

lim
F
Iλ = {r ∈ R | χr ∈ F}.

If F is an ultrafilter, we call lim
F
Iλ the ultrafilter limit of {Iλ} with respect to F .

Remark 2.6. The filter and ultrafilter limits of a family of ideals are also themselves ideals. If
{pλ}λ∈Λ is a family of prime ideals and U is an ultrafilter of {pλ}, then the ultrafilter limit lim

U
pλ

is also a prime ideal. This gives rise to the ultrafilter topology on Spec(R), which is identical to
the patch topology and the constructible topology on Spec(R) [FL07].

We will now use a description of the maximal ideals using maximal pointed ideals and ultrafilter
limits to show that rings of integer-valued rational functions over pseudosingular GPVDs are also

GPVDs. We will also utilize the rational function θ(x) = t(1+x2n)
(1+txn)(t+xn) , where t and n come from

the definition of a singular Prüfer domain. This rational function played an integral role in showing
that a ring of integer-valued rational functions over a singular Prüfer domain is a Prüfer domain in
[CL98].

Theorem 2.7. Let D be a pseudosingular GPVD. Denote by K the field of fractions of D and let E
be a nonempty subset of K. Suppose that T is the associated Prüfer domain of D. Then IntR(E,D)
is a GPVD with associated Prüfer domain IntR(E, T ).

Proof. Let J denote the nonzero radical ideal common to D and T so that D/J ⊆ T/J is a uni-
branched extension of Krull dimension zero rings. Such an ideal exists since D is a GPVD.

Since D is pseudosingular, we know that T is singular. Therefore, there exists a collection Λ of
maximal ideals of T such that
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• T =
⋂

m∈Λ

Tm,

• for each m ∈ Λ, the maximal ideal of the valuation domain Tm is principally generated by some
tm ∈ Tm, and

• there exists some t ∈ T and n ∈ N such that 0 < vm(t) < nvm(tm) for all m ∈ Λ, where vm is
a valuation associated with Tm.

We fix t and n for the rest of proof, as well as vm for each m ∈ Λ. Furthermore, since we are
considering two rings of integer-valued rational functions at once, we need notation to clarify of
which ring the maximal pointed ideals are ideals. Let a ∈ E and m ∈ Λ. We define MT

m,a :=

{ϕ ∈ IntR(E, T ) | ϕ(a) ∈ m} as an ideal of IntR(E, T ). Let n := m ∩ D. We define MD
n,a := {ϕ ∈

IntR(E,D) | ϕ(a) ∈ n} as an ideal of IntR(E,D).
We first give the statements we want to prove. The proofs of the statements will follow.

1. Every maximal ideal of T is an ultrafilter limit of ideals in Λ. Furthermore, t is in the Jacobson
radical of T .

2. The ideal IntR(E, J) is a nonzero radical ideal of both IntR(E,D) and IntR(E, T ).

3. A prime ideal of IntR(E, T ) containing IntR(E, J) is maximal in IntR(E, T ).

4. A prime ideal of IntR(E,D) containing IntR(E, J) is maximal in IntR(E,D).

5. Every maximal ideal of IntR(E, T ) can be written in the form lim
U

MT
m,a for some ultrafilter U

of {MT
m,a | a ∈ E,m ∈ Λ}.

6. Every maximal ideal of IntR(E,D) can be written in the form lim
U

MD
n,a for some ultrafilter U

of {MD
n,a | a ∈ E,m ∈ Λ, n = m ∩D}.

7. Suppose that U1 and U2 are ultrafilters of {MT
m,a | a ∈ E,m ∈ Λ} such that lim

U1

MT
m,a and

lim
U2

MT
m,a are distinct maximal ideals of IntR(E, T ). Then lim

U1

MT
m,a∩ IntR(E,D) 6= lim

U2

MT
m,a∩

IntR(E,D).

8. The ring IntR(E,D) is a GPVD with associated Prüfer domain IntR(E, T ).

The first four items are to establish that there is a nonzero radical ideal, namely IntR(E, J),
common to IntR(E,D) and IntR(E, T ) such that each prime ideal of IntR(E,D) or IntR(E, T )
containing that common nonzero radical ideal is actually a maximal ideal of the ring to which it
belongs. The next three statements shows that IntR(E,D)/ IntR(E, J) ⊆ IntR(E, T )/ IntR(E, J) is
a unibranched extension. Now we prove the claims.

1. Claim: Every maximal ideal of T is an ultrafilter limit of ideals in Λ. Furthermore, t is in the
Jacobson radical of T .

Since T is a Prüfer domain, every nonzero ideal of T is a t-ideal. In particular, every maximal
ideal of T is a t-ideal. Writing T as T =

⋂

m∈Λ

Tm, we see that every maximal ideal of T is an

ultrafilter limit of ideals in Λ [CLT00, Proposition 2.8].

Now let a be a maximal ideal of T . We know that a is an ultrafilter limit of ideals in Λ. Since
t ∈ m for all m ∈ Λ, we also have that t ∈ a. Since t is in all of the maximal ideas of T , we
can conclude that t is in the Jacobson radical of T .
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2. Claim: The ideal IntR(E, J) is a nonzero radical ideal of both IntR(E,D) and IntR(E, T ).

Since J is a nonzero ideal of both D and T , we know that IntR(E, J) is a nonzero ideal of both
IntR(E,D) and IntR(E, T ). Now suppose that ϕ ∈ IntR(E,D) is such that there exists an
m ∈ N such that ϕm ∈ IntR(E, J). Then for any a ∈ E, we have ϕ(a)m ∈ J . Since ϕ(a) ∈ D
and J is a radical ideal of D, we have that ϕ(a) ∈ J . Thus, ϕ ∈ IntR(E, J). This shows that
√

IntR(E, J) ⊆ IntR(E, J) and therefore IntR(E, J) is a radical ideal of IntR(E,D). The same
argument shows that IntR(E, J) is a radical ideal of IntR(E, T ).

3. Claim: A prime ideal of IntR(E, T ) containing IntR(E, J) is a maximal ideal of IntR(E, T ).

Take P to be a prime ideal of IntR(E, T ) containing IntR(E, J). Then let ϕ ∈ IntR(E, T ) \P.

Set ψ = ϕn

t+ϕ2n . We want to show that ψ ∈ IntR(E, T ). Take an element a ∈ E. Then for each
m ∈ Λ, we have

vm(ψ(a)) =

{

0, if vm(ϕ(a)) = 0,

nvm(ϕ(a)) − vm(t) > 0, if vm(ϕ(a)) > 0.

Since T =
⋂

m∈Λ

Tm, we have that ψ(a) ∈ T . This holds for all a ∈ E, so ψ ∈ IntR(E, T ).

Now we observe that

ϕn(1− ϕnψ) = ϕn ·
t+ ϕ2n − ϕnϕn

t+ ϕ2n
= tψ.

We have that J ⊆ P∩T , so P∩T is a maximal ideal of T . Thus, t ∈ P∩T ⊆ P, and therefore
tψ ∈ P.

We now have that ϕn(1 − ϕnψ) ∈ P. Since ϕ /∈ P, we must have 1 − ϕnψ ∈ P. This means
that ϕ has an inverse modulo P. The previous statement holds for any ϕ ∈ IntR(E, T ) \P,
implying that P is a maximal ideal in IntR(E, T ).

4. Claim: A prime ideal of IntR(E,D) containing IntR(E, J) is a maximal ideal of IntR(E,D).

Take P to be a prime ideal of IntR(E,D) containing IntR(E, J). Then let ϕ ∈ IntR(E,D) \P.

Set ψ = ϕn

t+ϕ2n . We want to show that ψ ∈ IntR(E,D).

Take an element a ∈ E and a maximal ideal a of D. Let a′ be the unique maximal ideal of
T that contracts to a. We know that a′ is an ultrafilter limit of ideals in Λ. For m ∈ Λ, we
have that ψ(a) ∈ m if and only if ϕ(a) ∈ m, as calculated in the third claim. This implies that
ψ(a) ∈ a′ if and only if ϕ(a) ∈ a′.

If ϕ(a) ∈ a′, then ψ(a) ∈ a′ ⊆ a′Ta′ = aDa ⊆ Da.

If ϕ(a) /∈ a′, then we have ϕ(a)2n ∈ D \ a′ ⊆ D×
a and combining with the fact that t ∈ a′ ⊆

a′Ta′ = aDa yields t+ ϕ(a)2n ∈ D×
n . Using the fact that ϕ(a)n ∈ Da if ϕ(a) /∈ a′, we get that

ψ(a) ∈ Da.

No matter if ϕ(a) ∈ a′ or ϕ(a) /∈ a′, we get that ϕ(a) ∈ Da. This holds for all a ∈ E and all
maximal ideals a of D. Thus, ψ ∈ IntR(E,D).

Now we observe that

ϕn(1− ϕnψ) = ϕn ·
t+ ϕ2n − ϕnϕn

t+ ϕ2n
= tψ.

We claim that tψ ∈ P. Let a be a maximal ideal of D. Let a′ be the unique maximal ideal
of T that contracts to a. We know t ∈ aDa and thus t ∈ Da for all maximal ideals a of D.
Thus, t ∈ D. Since P contains IntR(E, J), we have that J ⊆ P ∩ D, so q1 := P ∩ D is a
maximal ideal of D. Let q2 the unique maximal ideal of T that contracts to q1. We know that
t ∈ q2 ⊆ q2Tq2

= q1Dq1
. Now we see that t ∈ q1Dq1

∩D = q1 ⊆ P. Thus, tψ ∈ P.
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We now have that ϕn(1 − ϕnψ) ∈ P. Since ϕ /∈ P, we must have 1 − ϕnψ ∈ P. This means
that ϕ has an inverse modulo P for all ϕ ∈ IntR(E,D)\P, implying that P is a maximal ideal
in IntR(E,D).

5. Claim: Every maximal ideal of IntR(E, T ) is of the form lim
U

MT
m,a for some ultrafilter U of

{MT
m,a | a ∈ E,m ∈ Λ}.

Since T is a singular Prüfer domain, we know that IntR(E, T ) is a Prüfer domain [CL98,
Theorem 3.5]. Then we know every maximal ideal of IntR(E, T ) is a t-ideal. Additionally, we
write

IntR(E, T ) =
⋂

a∈E

⋂

m∈Λ

IntR(E, T )MT
m,a

and then Proposition 2.8 of [CLT00] proves the claim.

6. Claim: Every maximal ideal of IntR(E,D) is of the form lim
U

MD
n,a for some ultrafilter U of

{MD
n,a | a ∈ E,m ∈ Λ, n = m ∩D}.

We will take our characteristic sets with respect to

{MD
n,a | a ∈ E,m ∈ Λ, n = m ∩D}.

Let A ⊆ IntR(E,D) be a proper ideal. We want to show that U := {χϕ | ϕ ∈ A} is closed
under finite intersections.

Take ϕ1, ϕ2 ∈ A. Set

θ(x) =
t(1 + x2n)

(1 + txn)(t+ xn)
.

We claim that θ ∈ IntR(K,D).

Take a ∈ K and let p be a maximal ideal of D. Let p′ be the unique maximal ideal of T
that contracts to p. We know that p is an ultrafilter limit of ideals in Λ with respect to
some ultrafilter U of Λ. Let m ∈ Λ. We have that vm(a) > 0 implies vm

(

an

t

)

> 0, meaning

a ∈ p′ implies an

t
∈ p′. Since a ∈ p′ implies that {m ∈ Λ | a ∈ m} ∈ U , we know that

{m ∈ Λ | a
n

t
∈ m} ∈ U as well. This means that a ∈ p′ implies an

t
∈ p′. Note that t ∈ p′ as

well.

Now we calculate. Denote by v a valuation associated to Tp′ . If v(a) = 0, then v(θ(a)) =
v(t) + v(1 + a2n)− 0− 0 > 0, so θ(a) ∈ p′Tp′ = pDp ⊆ Dp. If v(a) > 0, then

θ(a) =
t(1 + a2n)

(1 + tan)(t+ an)
=

1 + a2n

(1 + tan)(1 + an

t
)
.

We have 1 + a2n ≡ 1 (mod p′) and (1 + tan)(1 + an

t
) ≡ 1 · 1 ≡ 1 (mod p′). This means that

θ(a) ∈ 1 + p′Tp′ ⊆ Dp. Lastly, suppose that v(a) < 0. We calculate that

θ(a) =
t(1 + a2n)

(1 + tan)(t+ an)
=

1
a2n

+ 1

( 1
tan

+ 1)( t
an

+ 1)
.

We see that 1
a2n

+ 1 ≡ 1 (mod p′) and also ( 1
tan

+ 1)( t
an

+ 1) ≡ 1 · 1 ≡ 1 (mod p′). Thus,
θ(a) ∈ 1+ p′Tp′ ⊆ Dp. We now know that θ(a) ∈ Dp for all a ∈ K and maximal ideals p of D,
so θ ∈ IntR(K,D).

Now we consider ρ(x) = ϕ1(x) + θ
(

ϕ1(x)
ϕ2(x)

)

ϕ2(x). Since θ
(

ϕ1(x)
ϕ2(x)

)

∈ IntR(K,D), which is

contained in IntR(E,D), we have that ρ(x) ∈ (ϕ1, ϕ2) ⊆ A.

7



Let a ∈ E. Now let m ∈ Λ. Suppose that vm(ϕ1(a)) = vm(ϕ2(a)). Then vm(ρ(a)) = vm(ϕ1(a)).
If vm(ϕ1(a)) < vm(ϕ2(a))), we have vm(ρ(a)) = vm(ϕ1(a)). If vm(ϕ1(a)) > vm(ϕ2(a)), we have
vm(ρ(a)) = vm(ϕ2(a)). In summary, vm(ρ(a)) = min{vm(ϕ1(a)), vm(ϕ2(a))}. This implies that
χϕ1

∩ χϕ2
= χρ. Thus, U is closed under finite intersections.

Since A is a proper ideal, U does not contain the empty set. We have just shown that U is
closed under finite intersections, so we can deduce that U has the finite intersection property.
We can then extend U to U , an ultrafilter of {MD

n,a | a ∈ E,m ∈ Λ, n = m ∩D}. Then we see

that A ⊆ lim
U

MD
n,a. Thus, all maximal ideals of IntR(E,D) are of the form lim

U
MD

n,a for some

ultrafilter U of {MD
n,a | a ∈ E,m ∈ Λ, n = m ∩D}.

7. Claim: Suppose that U1 and U2 are ultrafilters of {MT
m,a | a ∈ E,m ∈ Λ} such that lim

U1

MT
m,a

and lim
U2

MT
m,a are distinct maximal ideals of IntR(E, T ). Then lim

U1

MT
m,a ∩ IntR(E,D) 6=

lim
U2

MT
m,a ∩ IntR(E,D).

Suppose that U1 and U2 are ultrafilters of {MT
m,a | a ∈ E,m ∈ Λ} such that lim

U1

MT
m,a and

lim
U2

MT
m,a are distinct maximal ideals of IntR(E, T ). Then lim

U1

MT
m,a∩ IntR(E,D) 6= lim

U2

MT
m,a∩

IntR(E,D).

Let ϕ ∈ lim
U2

MT
m,a \ lim

U1

MT
m,a. Consider

ψ(x) =
ϕ(x)

ϕ(x) + θ(ϕ(x))
,

where θ(x) = t(1+x2n)
(1+txn)(t+xn) from Claim 6. Take a maximal ideal p of D. We know that p

is the contraction of some maximal ideal p′ of T . Let v denote a valuation corresponding to
Tp′ . Now take a ∈ E. If v(ϕ(a)) > 0, then v(ψ(a)) = v(ϕ(a)) − v(θ(ϕ(a))) = v(ϕ(a)) > 0,
so ϕ(a) ∈ Dp. If v(ϕ(a)) = 0, then v(θ(ϕ(a))) > 0 so ϕ(a) + θ(ϕ(a)) ∈ ϕ(a) + p′Tp′ ⊆ D×

p .
This shows that ψ(a) ∈ Dp. Thus, ψ(a) ∈ D and therefore ψ ∈ IntR(E,D). From this, we
also see that ϕ(a) ∈ p′ if and only if ψ(a) ∈ p. Thus, ψ is in lim

U2

MT
m,a ∩ IntR(E,D) but not in

lim
U1

MT
m,a ∩ IntR(E,D).

8. Claim: The ring IntR(E,D) is a GPVD with associated Prüfer domain IntR(E, T ).

We know that the ideal IntR(E, J) is a nonzero radical ideal common to both IntR(E,D) and
IntR(E, T ) from Claim 2. Additionally, any prime ideal of IntR(E,D) containing IntR(E, J)
is maximal in IntR(E,D) and any prime ideal of IntR(E, T ) containing IntR(E, J) is maximal
in IntR(E, T ) by Claims 3 and 4. Thus,

dim(IntR(E,D)/ IntR(E, J)) = dim(IntR(E, T )/ IntR(E, J)) = 0.

Next, we need to show that the extension

IntR(E,D)/ IntR(E, J) ⊆ IntR(E, T )/ IntR(E, J)

is unibranched. Every maximal ideal of IntR(E, T ) containing IntR(E, J) is of the form
lim
U

MT
m,a for some ultrafilter U of {MT

m,a | a ∈ E,m ∈ Λ}, and two distinct ideals of this

form contract to two distinct ideals of IntR(E,D) containing IntR(E, J) due to Claim 7.

Now we take a maximal ideal of IntR(E,D) containing IntR(E, J). From Claim 6, we know
that this maximal ideal has the form lim

U
MD

n,a for some ultrafilter U of {MD
n,a | a ∈ E,m ∈
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Λ, n = m ∩D}. We construct the ultrafilter

U ′ := {{MT
m,a | M

D
n,a ∈ S,m ∩D = n} | S ∈ U}

of {MT
m,a | a ∈ E,m ∈ Λ}. We claim that lim

U
MD

n,a = lim
U ′

MT
m,a∩Int

R(E,D). Let ϕ ∈ lim
U

MD
n,a.

Then {MD
n,a | ϕ(a) ∈ n, a ∈ E,m ∈ Λ, n = m ∩ D} ∈ U . Since m ∩ D ⊆ m, we have that

{MT
m,a | ϕ(a) ∈ m, a ∈ E,m ∈ Λ} ∈ U ′. Thus, ϕ ∈ lim

U ′
MT

m,a∩ IntR(E,D). To show the reverse

inclusion, we now suppose that ϕ ∈ lim
U ′

MT
m,a ∩ IntR(E,D). Then {MT

m,a | ϕ(a) ∈ m, a ∈

E,m ∈ Λ} ∈ U ′. Since ϕ is in IntR(E,D) as well, we know for any a ∈ E and m ∈ Λ that
ϕ(a) ∈ m implies that ϕ(a) ∈ m ∩D. Thus, {MD

n,a | ϕ(a) ∈ n, a ∈ E,m ∈ Λ, n = m ∩D} is in

U and therefore ϕ ∈ lim
U

MD
n,a. This implies the contraction map of the prime spectra of the

extension IntR(E,D)/ IntR(E, J) ⊆ IntR(E, T )/ IntR(E, J) is surjective.

Thus, IntR(E,D)/ IntR(E, J) ⊆ IntR(E, T )/ IntR(E, J) is a unibranched extension. This
shows that IntR(E,D) is a GPVD with associated Prüfer domain IntR(E, T ).

3 PVDs with non-singular associated valuation domains

Now that we have seen that rings of integer-valued rational functions over pseudosingular GPVDs
are GPVDs, we investigate rings of integer-valued rational functions over a base ring that is a GPVD
but not a pseudosingular GPVD. We restrict our focus to the base ring being a PVD. A PVD being
not pseudosingular means that its associated valuation overring is not singular, which means that
the maximal ideal of the associated valuation overring is not principal. Thus, we consider the case
where the base ring is a PVD whose associated valuation overring does not have a principal maximal
ideal.

For a PVD, we can make use of the valuation associated with the associated valuation overring.
This allows us to utilize the tool of the minimal valuation function. Here, we view a value group Γ
as being embedded in its divisible closure QΓ := Γ⊗Z Q.

Definition 3.1. [Liu22] Let V be a valuation domain with value group Γ, valuation v, and field of
fractions K. Take a nonzero polynomial f ∈ K[x] and write it as f(x) = anx

n + · · ·+ a1x + a0 for
a0, a1, . . . , an ∈ K. We define the minimum valuation function of f as minvalf : Γ → Γ by

γ 7→ min{v(a0), v(a1) + γ, v(a2) + 2γ, . . . , v(an) + nγ}

for each γ ∈ Γ. We may also think of minvalf as a function from QΓ to QΓ defined as γ 7→
min{v(a0), v(a1) + γ, v(a2) + 2γ, . . . , v(an) + nγ} for each γ ∈ QΓ.

For a nonzero rational function ϕ ∈ K[x], we write ϕ = f
g
for some f, g ∈ K[x]. Then for each

γ ∈ Γ, we define minvalϕ(γ) = minvalf (γ)−minvalg(γ).

The purpose of the minimum valuation function of a rational function is that it can predict the
valuation of the outputs of the rational function most of the time. The minimum valuation function
also has the nice property of being piecewise linear. The following lemma showcases these facts.

Lemma 3.2. [Liu22, Proposition 2.24, Lemma 2.26, Proposition 2.27] Let V be a valuation domain
with value group Γ, valuation v, maximal ideal m, and field of fractions K. For a nonzero ϕ ∈ K(x),
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the function minvalϕ has the following form evaluated at γ ∈ QΓ

minvalϕ(γ) =































c1γ + β1, γ ≤ δ1,

c2γ + β2, δ1 ≤ γ ≤ δ2,
...

ck−1γ + βk−1, δk−2 ≤ γ ≤ δk−1,

ckγ + βk, δk−1 ≤ γ,

where c1, . . . , ck ∈ Z; β1, . . . , βk ∈ Γ; and δ1, . . . , δk−1 ∈ QΓ such that δ1 < · · · < δk−1.
Furthermore, for all but finitely many γ ∈ Γ, we have that v(ϕ(t)) = minvalϕ(v(t)) for all t ∈ K

such that v(t) = γ. If the residue field of V is infinite, then for any ϕ1, . . . , ϕn ∈ K(x) and any
γ ∈ Γ, there exists a ∈ K with v(a) = γ such that minvalϕi

(γ) = v(ϕi(a)) for all i.

The following result of Dobbs and Fontana shows how the common radical ideal helps describe
what the localizations of a GPVD at maximal ideals look like.

Proposition 3.3. [DF83, p. 156] Let D be a GPVD and T the Prüfer domain associated to D. Then
by the equivalent definition of GPVD, there exists a common radical ideal J such that D/J ⊆ T/J
is a unibranched extension of Krull dimension 0 rings. Let n be a maximal ideal of D and m be the
maximal ideal of T contracting to n. Then

• if J 6⊆ m, then Dn = Tm is a valuation domain, and

• if J ⊆ m, then Dn is a PVD with associated valuation domain Tm.

Even when D is a PVD that is not a valuation domain, we can define the prime ideal M∗ of
IntR(D) when the associated valuation domain has infinite residue field or maximal ideal that is
not principal. This is defined analogously to the M∗ prime ideal defined for IntR(V ), where V is
a valuation domain with infinite residue field or maximal ideal that is not principal in [CL98]. We
define

M∗ := {ϕ ∈ IntR(D) | minvalϕ(0) > 0},

where minval is defined using the valuation associated with the associated valuation domain. We
check this is indeed a prime ideal of IntR(D). We will eventually only need this following result in
the case where the maximal ideal of the associated valuation domain is not principal.

Lemma 3.4. Let D be a PVD. Suppose D has infinite residue field or the maximal ideal of the
associated valuation domain is not principal. Then M∗ is a prime ideal of IntR(D).

Proof. We will let V denote the valuation domain associated to D. Also let v be an associated
valuation, m be the maximal ideal of V , and Γ the value group.

Let ϕ, ψ ∈ M∗. We want to show ϕ+ψ ∈ M∗. We consider the case where D has infinite residue
field and the case where m is not principal in V separately.

Suppose that D has infinite residue field. Then there exists some u ∈ D such that v(ϕ(u)) =
minvalϕ(0), v(ψ(u)) = minvalψ(0), and v((ϕ+ψ)(u)) = minvalϕ+ψ(0) by Lemma 3.2. Then we have

minvalϕ+ψ(0) = v((ϕ+ ψ)(u)) ≥ min{v(ϕ(u)), v(ψ(u))}

= min{minvalϕ(0),minvalψ(0)}

> 0.

Therefore, ϕ+ ψ ∈ M∗.
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If m is not principal in V , then there exists ε ∈ Γ with ε > 0 such that for all d ∈ D such that
0 < v(d) < ε, we have minvalϕ(v(d)) = v(ϕ(d)),minvalψ(v(d)) = v(ϕ(d)), and minvalϕ+ψ(v(d)) =
v((ϕ + ψ)(d)) by Lemma 3.2. This implies that

minvalϕ+ψ(γ) ≥ min{minvalϕ(γ),minvalψ(γ)},

for all γ ∈ Γ such that 0 < γ < ε. Thus, the above inequality also holds for γ = 0 by Lemma 3.2,
which leads to minvalϕ+ψ(0) ≥ min{minvalϕ(0),minvalψ(0)} > 0. Thus, ϕ+ ψ ∈ M∗.

Now let ρ ∈ IntR(D) and ϕ ∈ M∗. We can use similar techniques as above to show that
minvalρ(0) ≥ 0. Then minvalρϕ(0) = minvalρ(0) + minvalϕ(0) > 0. This shows that ρϕ ∈ M∗, so
M∗ is an ideal of IntR(D).

Now suppose that ρ, ρ′ ∈ IntR(D) such that ρρ′ ∈ M∗. We see that

minvalρρ′(0) = minvalρ(0) + minvalρ′(0) > 0,

which implies that minvalρ(0) > 0 or minvalρ′(0) > 0 since minvalρ(0) ≥ 0 and minvalρ′(0) ≥ 0.
Thus, M∗ is a prime ideal of IntR(D).

Now we focus on the case where the maximal ideal of the associated valuation domain is not
principal. The following lemma is then analogous to Theorem 6.6 of [CL98].

Lemma 3.5. Let D be a PVD with associated valuation domain V whose maximal ideal is not
principal. Then the prime ideal M∗ is not maximal.

Proof. Denote by v a valuation associated with V and Γ its value group. Let U be a non-principal
ultrafilter of {Mm,a | a ∈ D} containing the family of sets of ideals {{Mm,a | a ∈ m, v(a) < ε} | ε ∈
Γ, ε > 0}. We claim that M∗ ( lim

U
Mm,a.

Let ϕ ∈ M∗. Then there exist ε ∈ Γ with ε > 0, c ∈ Z, and β ∈ Γ such that minvalϕ(γ) = cγ+β
for all γ with 0 < γ < ε and for all d ∈ D such that 0 < v(d) < ε, we have

v(ϕ(d)) = minvalϕ(v(d)).

We can make ε small enough so that cγ+β > 0 for all γ such that 0 < γ < ε since minvalϕ(0) = β > 0.
This shows that ϕ ∈ lim

U
Mm,a.

The containment M∗ ⊆ lim
U

Mm,a is strict since x ∈ lim
U

Mm,a \M∗.

Now we show that for a PVD D that is not a valuation domain and is not pseudosingular, then
IntR(D) is not a GPVD.

Proposition 3.6. Let D be a PVD with associated valuation domain V whose maximal ideal is not
principal and D 6= V . Then the domain IntR(D) is not a GPVD.

Proof. Let m denote the maximal ideal of D. Also let a ∈ D. We first show that IntR(D)Mm,a
is

not a valuation domain. We have that

IntR(D)Mm,a
⊆ {ϕ ∈ K(x) | ϕ(a) ∈ D}.

Intersecting with K yields that IntR(D)Mm,a
∩K ⊆ D. Take d ∈ V \D. Then d, d−1 ∈ V \D, so

neither d nor d−1 is in IntR(D)Mm,a
. Thus, IntR(D)Mm,a

is not a valuation domain.
Now suppose for a contradiction that IntR(D) is a GPVD with associated Prüfer domain T and

common radical ideal J such that IntR(D)/J ⊆ T/J is a unibranched extension of Krull dimension 0
rings. By Proposition 3.3, we see that J ⊆ Mm,a for all a ∈ D, since IntR(D)Mm,a

is not a valuation
domain. Since J ⊆ Mm,a for all a ∈ D, we have J ⊆ IntR(D,m). Together with IntR(D,m) ⊆ M∗,
we get J ⊆ M∗, but by Lemma 3.5, we have a prime ideal of IntR(D) containing J that is not
maximal, contradicting the assumption that IntR(D) is a GPVD.
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The previous proposition required the PVD to be not a valuation domain. If the base ring V is
a valuation domain, we know exactly when IntR(V ) is a Prüfer domain.

Theorem 3.7. [Liu22, Corollary 2.30] Let V be a valuation domain with maximal ideal m. Then
IntR(V ) is a Prüfer domain if and only if V/m is not algebraically closed or m is a principal ideal
of V .

Since a Prüfer domain is a GPVD, we know that if a valuation domain V has a principal maximal
ideal or a residue field that is not algebraically closed, then IntR(V ) is a GPVD. This means that a
valuation domain V can be not (pseudo)singular and IntR(V ) is still a GPVD as long as the residue
field of V is not algebraically closed.

We also know that if V is a valuation domain with algebraically closed residue field and maximal
ideal that is not principal, then IntR(V ) is not a Prüfer domain. We show that if the value group
associated with V is not divisible, then IntR(V ) is also not a GPVD in this case. We show this by
first showing that a domain that is not a Prüfer domain but an essential domain cannot be a GPVD.

Proposition 3.8. Let D be a domain that is not a Prüfer domain with a family of essential maximal
ideals {mλ}λ∈Λ such that

⋂

λ∈Λ

Dmλ
. Then D is also not a GPVD.

Proof. Suppose on the contrary that D is a GPVD. Then D has an associated Prüfer overring T .
Now for all λ ∈ Λ, let nλ be the unique maximal ideal of T that contracts to mλ. Then by Proposition
3.3, we deduce that Dmλ

= Tnλ
because Dmλ

is a valuation domain. Thus,

T ⊆
⋂

λ∈Λ

Tnλ
=
⋂

λ∈Λ

Dmλ
= D,

showing that T = D, but we assumed that D is not Prüfer, so this is a contradiction, meaning D
cannot be a GPVD.

Corollary 3.9. Let D be a domain, K its field of fractions, and E a subset of K. Assume that
IntR(E,D) is not Prüfer, but there is a family of maximal ideals {mλ}λ∈Λ of D such that D =
⋂

λ∈Λ

Dmλ
and each ideal in {Mmλ,a | λ ∈ Λ, a ∈ E} is essential. Then IntR(E,D) is not a GPVD.

Proof. Because IntR(E,D)Mmλ,a
⊆ {ϕ ∈ K(x) | ϕ(a) ∈ Dmλ

} for every λ ∈ Λ and a ∈ E, we know

that IntR(E,D) =
⋂

λ∈Λ

⋂

a∈E

IntR(E,D)Mmλ,a
. Therefore, IntR(E,D) is not a GPVD.

In order to use the previous corollary, we have to show that the maximal pointed ideals are
essential.

Proposition 3.10. [Liu22, Proposition 2.35] Let V be a valuation domain whose value group is not
divisible. Let m be the maximal ideal of V , E be a subset of K, the field of fractions of V , and take
a ∈ E. Then

IntR(E, V )Mm,a
= {ϕ ∈ K(x) | ϕ(a) ∈ V },

a valuation domain.

Corollary 3.11. Suppose that V is a valuation domain such that the maximal ideal is not principal,
the residue field is algebraically closed, and the value group is not divisible. Then IntR(V ) is not a
GPVD.

Proof. We know that IntR(V ) is not a Prüfer domain due to Theorem 3.7. The maximal pointed
ideals of IntR(V ) are essential due to Proposition 3.10. Together, this allows us to apply Corollary
3.9 to show that IntR(V ) is not a GPVD.

12



Let D be a PVD with associated valuation domain V . First suppose that D 6= V . Then
IntR(D) is a GPVD if and only if the maximal ideal is principal. If IntR(D) is a GPVD, then the
associated Prüfer domain is IntR(D,V ). Interestingly, if D 6= V and V has a residue field that is
not algebraically closed, then IntR(D,V ) is a Prüfer domain [CL98, Theorem 3.2], but IntR(D) is
not a GPVD.

Now suppose the base ring is a valuation domain V . If the residue field of V is not algebraically
closed or the maximal ideal is principal, then IntR(V ) is a Prüfer domain and thus a GPVD. If
the residue field of V is algebraically closed, the maximal ideal of V is not principal, and the value
group associated with V is not divisible, then IntR(V ) is not a GPVD. The remaining case is the
case where the residue field of V is algebraically closed and the value group associated with V is
divisible.

4 Local rings of integer-valued rational functions

In this section, we give a family of rings of integer-valued rational functions over PVDs that are
local domains. This uses a result about rational functions as maps between fields. First, we give a
lemma that shows that if we have a valuation that in a sense separates the units and the maximal
ideal of a local domain, then we get a ring of integer-valued rational functions that is local.

Lemma 4.1. [Liu23, Lemma 3.4] Let D be a local domain with maximal ideal m and field of fractions
K. Suppose that there is a valuation overring V of D with a valuation v such that for all d ∈ m,
we have v(d) > 0. Also let Γ be the value group of v. Suppose that for all ϕ ∈ IntR(K,D) that
minvalϕ(γ) = 0 for all γ ∈ Γ or minvalϕ(γ) > 0 for all γ ∈ Γ. Then IntR(K,D) is a local domain
with maximal ideal IntR(K,m).

To create this dichotomy in the minimum valuation function when the base ring is a PVD, we
make use a lemma about rational functions as maps between from a larger field to a smaller field in
a field extension. The field extension of interest here is the one from the residue field of the PVD to
the residue field of the associated valuation domain.

Definition 4.2. Let L/M be a purely inseparable field extension of fields of characteristic p > 0.
We say that L/M is of finite exponent if there exists some e ∈ N such that ap

e

∈M for all a ∈ L.

The proof of the following lemma will be in Section 5.

Lemma 4.3. Let L/M be a field extension that is not purely inseparable of finite exponent. Addi-
tionally, suppose that L is an infinite field. Then there does not exist a nonconstant rational function
ϕ ∈ L(x) such that ϕ(d) ∈M for all but finitely many d ∈ L.

This fact about rational functions as maps between fields will be used alongside the polynomials
that fall out considering the residue fields of the PVD and the associated valuation domain. These
polynomials are called local polynomials.

Definition 4.4. [Liu22] Let V be a valuation domain with an associated valuation v and field of
fractions K. Take f ∈ K[x] be a nonzero polynomial and t ∈ K. We define the local polynomial

of f at t to be

locf,v,t(x) =
f(tx)

adtd
mod m,

where d = max{i ∈ {0, 1, . . . , n} | v(ai) + iv(t) = minvalf (v(t))} and m is the maximal ideal of V .
This is a well-defined monic polynomial with coefficients in V/m.

One utility of the local polynomial is that it can determine the coefficients that appear in the
minimal valuation function.
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Lemma 4.5. [Liu22, Lemma 2.25] Take ϕ ∈ K(x) to be nonzero and α ∈ Γ. There exist ε ∈ QΓ
with ε > 0 small enough, c, c′ ∈ Z, and β, β′ ∈ Γ such that

minvalϕ(γ) =

{

cγ + β, if α− ε < γ < α,

c′γ + β′, if α < γ < α+ ε.

Write ϕ = f
g

for some f, g ∈ K[x]. Take t ∈ K such that v(t) = γ. We can write locf,t =

ai1x
i1 + · · ·+airx

ir and locg,t = bj1x
j1 + · · ·+bjsx

js for some nonzero ai1 , . . . , air , bj1 , . . . , bjs ∈ V/m.
Then

c = ir − js and c′ = i1 − j1.

We now show that the ring of integer-valued rational functions over a PVD on its field of fractions
can be local under certain conditions on the residue fields.

Proposition 4.6. Let D be a PVD with V being the corresponding valuation overring, and m being
the common maximal ideal. Suppose that Γ, the value group of V , is divisible. Let M := D/m and
L := V/m. Suppose further that L/M is not purely inseparable of finite exponent and L is infinite.
Then IntR(K,D) is local with maximal ideal IntR(K,m).

Proof. Let v be a valuation associated with V . Take ϕ ∈ IntR(K,D). Write ϕ = f
g
with f, g ∈ D[x].

Take γ ∈ Γ to be some element and t ∈ K such that v(t) = γ. Then locf,t, locg,t ∈ L[x]. We want

to show that
locf,t
locg,t

maps L to M . Write f =
∑

i

aix
i and g =

∑

j

bjx
j with ai, bj ∈ D. Pick out all

the indices i1 < · · · < ir such that v(ai1 t
i1) = · · · = v(air t

ir ) = minvalf (γ), and similarly pick out
all the indices j1 < · · · < js such that v(bj1t

j1) = · · · = v(bjst
js) = minvalg(γ). We write

bjs
air

tjs−irϕ(tx) =
f(tx)/(air t

ir )

g(tx)/(bjst
js)

=

ai1 t
i1xi1+···+air t

irxir+
∑

i6=i1,...,ir

aix
i

air t
ir

bj1 t
j1xj1+···+bjs t

jsxjs+
∑

j 6=j1 ,...,js

bixj

bjs t
js

.

Let c ∈ L such that c is not a root of neither locf,t nor locg,t. Note that all but finitely many
elements of L satisfy this condition. Take u ∈ V such that u+m = c. Then

f(tu)

air t
ir

mod m =

ai1t
i1ui1 + · · ·+ air t

iruir +
∑

i6=i1,...,ir

aiu
i

air t
ir

mod m = locf,t(c) 6= 0.

Similarly,
g(tu)

bjst
js

mod m = locg,t(c) 6= 0.

Therefore,

ϕ(tu) mod m =

(

air
bjs

tir−js mod m

)

locf,t
locg,t

(c).

Whenever minvalϕ(γ) = 0, we have that v
(

air
bjs
tir−js

)

= 0, so
(

air
bjs
tir−js mod m

)

6= 0. Since

ϕ(tu) ∈ D, we obtain that
(

air
bjs
tir−js mod m

)

locf,t
locg,t

(c) ∈ M . This holds for all but finitely many

c ∈ L, so
(

air
bjs
tir−js mod m

)

locf,t(x)
locg,t(x)

is constant by Lemma 4.3. Moreover,
locf,t(x)
locg,t(x)

is constant.

We claim that this shows that the existence of some γ ∈ Γ such that minvalϕ(γ) = 0 implies that
minvalϕ = 0. If there exist δ, δ′ ∈ Γ such that minvalϕ(δ) = 0 and minvalϕ(δ

′) > 0, we can assume
without loss of generality that δ < δ′. Then there exist α, β, ε ∈ Γ and n ∈ Z \ {0} such that

minvalϕ(γ) =

{

nγ + β, α ≤ γ ≤ α+ ε

0, α− ε ≤ γ ≤ α
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by Lemma 3.2. Note that α ∈ Γ because Γ is divisible. Now take t ∈ K such that v(t) = α. The

fact that
locf,t(x)
locg,t(x)

is constant implies that n− 0 = 0, by Lemma 4.5. This is a contradiction. Thus,

Lemma 4.1 implies that IntR(K,D) is local with maximal ideal IntR(K,m).

Note that IntR(K,D) is not trivial in this case. As an example, for any rational function ϕ ∈
IntR(K,V ) and d ∈ m, we have dϕ ∈ IntR(K,m) ⊆ IntR(K,D).

The following proposition shows that without the conditions on the extension of residue fields of
Proposition 4.6, the ring IntR(K,D) can be not local.

Proposition 4.7. Let D be a PVD with associated valuation domain V 6= D and shared maximal
ideal m. Set M := D/m and L := V/m. Suppose that L is finite or L/M is purely inseparable of
finite exponent. Then IntR(K,D) is not local.

Proof. If L is finite of order q, then xq − x+ 1 maps L to {1} ⊆ M . We claim then that 1
xq−x+1 ∈

IntR(K,D). If a ∈ K with v(a) < 0, then v
(

1
aq−a+1

)

= −qv(a) > 0. If a ∈ K with v(a) ≥ 0, then
1

aq−a+1 ∈ 1 +m, so 1
aq−a+1 ∈ D. We see then that 1

xq−x+1 ∈ Mm,a ⊆ IntR(K,D) for all a ∈ K with

v(a) < 0 and 1
xq−x+1 /∈ Mm,a ⊆ IntR(K,D) for all a ∈ K with v(a) ≥ 0. This means IntR(K,D) is

not local.
Now consider the case when L/M is purely inseparable of finite exponent. This means that

there exists e ∈ N such that ap
e

∈ M for all a ∈ L, where p > 0 is the characteristic of M . Since
V 6= D, we have that L 6= M . Let c ∈ L \M . Then the polynomial xp

e

− c has no roots in L.

Additionally, the polynomial (xp
e

− c)p
e

= xp
2e

− cp
e

also has no roots in L and has coefficients in
M . Consider the rational function 1

xp2e−upe
, where u+m = c. Let a ∈ K such that v(a) < 0. Then

v
(

1
ap

2e
−upe

)

= −p2ev(a) > 0. If a ∈ K is such that v(a) ≥ 0, then since xp
2e

− cp
e

has no roots in L,

we calculate that v
(

1
ap

2e
−upe

)

= 0. Furthermore, ap
2e

− up
e

+m ∈M , so 1
ap

2e
−upe

∈ D. This shows

that 1

xp2e−upe
∈ IntR(K,D). We have 1

xp2e−upe
∈ Mm,a ⊆ IntR(K,D) for all a ∈ K with v(a) < 0

and 1

xp2e−upe
/∈ Mm,a ⊆ IntR(K,D) for all a ∈ K with v(a) ≥ 0. Thus, IntR(K,D) is not local in

this case.

In conclusion, for a PVD D that is not a valuation domain with field of fractions K, we can
determine exactly when IntR(K,D) is a local domain.

Corollary 4.8. Let D be a PVD with associated valuation domain V , maximal ideal m, and field
of fraction K. Suppose that D 6= V and set M := D/m and L := V/m. Then IntR(K,D) is a local
domain if and only if L/M is not purely inseparable of finite exponent and L is infinite.

5 Rational functions as maps between fields

Let L/M be an extension of fields. This section leads up to a lemma showing the nonexistence
of a nonconstant rational function that maps L to M, except if L is finite or L/M is a particular
type of purely inseparable extension. This lemma is used for Proposition 4.6.

First we discuss polynomials with coefficients in the base field.

Lemma 5.1. Let L/M be a field extension that is not purely inseparable of finite exponent. Ad-
ditionally, suppose that L is an infinite field. Then there does not exist a nonconstant polynomial
f ∈M [x] such that f(d) ∈M for all but finitely many d ∈ L.
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Proof. Suppose first that M = {d1, . . . , dk} is finite. Also assume the existence of f ∈ M [x] such
that f maps all but finitely many elements of L to M . Then (f(x)− d1) · · · (f(x)− dk) evaluates to
0 for all but finitely many elements of L, which is infinite, so (f(x) − d1) · · · (f(x) − dk) = 0. This
implies that f is a constant.

Now we suppose that M is infinite. Suppose for a contradiction that there is a nonconstant
polynomial f ∈M [x] such that f(x) ∈M for all but finitely many x ∈ L. Write f(x) = a0 + a1x+
a2x

2 + · · · + amx
m where each ai ∈ M with am 6= 0. Additionally, m ≥ 2 since if m = 1, then

L =M , but then L/M would be purely inseparable of finite exponent.
Let α ∈ L \M such that f(α) ∈ M . Then α is algebraic over M . Suppose α has degree n ≥ 2

over M . For i ∈ N, we can uniquely represent αi =
n−1
∑

j=0

cijα
j , where each cij is in M . Then

f(αx) =

m
∑

i=0

ai(αx)
i =

m
∑

i=0

ai

n−1
∑

j=0

cijα
jxi =

n−1
∑

j=0

(

m
∑

i=0

aicijx
i

)

αj .

Evaluating f(αx) at x = d for all but finitely many d ∈ M gives an M -linear combination of
1, α, α2, . . . , αn−1, which by assumption is in M , so the coefficients of α, α2, . . . , αn−1 must be

0. Since
m
∑

i=0

aicijx
i evaluates to 0 at all but finitely many elements of the infinite field M for

j = 1, . . . , n− 1, we deduce that
m
∑

i=0

aicijx
i = 0 for j = 1, . . . , n− 1. This implies that aicij = 0 for

i = 0, . . . ,m and j = 1, . . . , n − 1. Since am 6= 0, we have cmj = 0 for all j = 1, . . . , n − 1. This
means that αm ∈M . Thus, the polynomial xm maps all but finitely many elements of L to M .

Take f ∈M [x] to be a nonconstant polynomial such that f maps all but finitely many elements
of L to M and f is a polynomial with minimal degree with respect to this property. From above,
we know that xm maps all but finitely many elements of L to M , where m = deg(f). We know that
(x+ 1)m maps all but finitely many elements of L to M as well. This means that (x+ 1)m − xm =
m−1
∑

i=0

(

m
i

)

xi maps all but finitely many elements of L to M . Since m was chosen to be minimal, we

have that deg((x+ 1)m − xm) = 0 and thus
(

m
i

)

= 0 for all i = 1, . . . ,m− 1.

Let p be the characteristic of M . If p = 0, then
(

m
i

)

= 0 cannot happen. Thus, suppose that

p > 0. Since
(

m
1

)

= m = 0, we have that p divides m. Suppose that m 6= pr for any power
r ∈ Z>0. Then when we write the base p expansion m = mkp

k +mk−1p
k−1 + · · ·+m1p+m0 with

0 ≤ mi < p − 1 and mk 6= 0. Also, m0 = 0 since p divides m. Since m 6= pk, we get that mk ≥ 2
or mi 6= 0 for some i = 1, . . . , k − 1. Either way, mi 6= 0 for some i = 1, . . . , k and 0 < pi < m.
Then Lucas’s Theorem says

(

m
pi

)

≡
(

mk

0

)

· · ·
(

mi+1

0

)(

mi

1

)(

mi−1

0

)

· · ·
(

m0

0

)

≡ mi 6≡ 0 (mod p). Thus,
(

m
pi

)

6= 0 ∈M , a contradiction. Thus m = pr for some r ∈ Z>0.

However, this implies that xp
r

maps all but finitely elements of L to M . Let α ∈ L. There exists
some nonzero c ∈ M such that (cα)p

r

because M is infinite. Then cp
r

αp
r

∈ M and thus αp
r

∈ M .
Therefore, xp

r

maps all elements of L to M , meaning that L/M is purely inseparable. If L/M is
not of finite exponent, then there exists d ∈ L such that e[d : M ] > r, contradicting the fact that
xp

r

maps L to M . Thus, a nonconstant polynomial f ∈M [x] cannot map L into M .

Lemma 5.2. Let L/M be a field extension that is not purely inseparable of finite exponent. Addi-
tionally, suppose that L is an infinite field. Then there does not exist a nonconstant rational function
ϕ ∈M(x) such that ϕ(d) ∈M for all but finitely many d ∈ L.

Proof. First, we will handle the case when M = {d1, . . . , dk} is finite. If ϕ ∈M(x) such that ϕ maps
all but finitely many elements of L to M , then (ϕ− d1) · · · (ϕ− dk) evaluates to 0 for all but finitely
element of L, which is infinite. Therefore, (ϕ− d1) · · · (ϕ− dk) = 0, forcing ϕ to be constant.
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Now we assume that M is infinite for here on. Suppose there exists a nonconstant ϕ ∈ M(x)
such that ϕ(d) ∈ M for all but finitely many d ∈ L. Write ϕ = f

g
with f, g ∈ M [x] coprime. Let

d ∈ L. Since M is infinite, there exists an a ∈ M such that ϕ(ad) ∈ M . Since ad is a root of
f(x) − ϕ(ad)g(x) ∈ M [x], we know that ad is algebraic over M and thus d is algebraic over M , or
f(x) − ϕ(ad)g(x) = 0. However, if f(x) − ϕ(ad)g(x) = 0, then ϕ(x) = ϕ(ad), which is impossible
since ϕ is assumed to be nonconstant. This shows that L/M is an algebraic field extension.

Let α ∈ L \M and let n be the degree of α over M . Set ψ(x0, x1, . . . , xn−1) := ϕ(x0 + x1α +

x2α
2 + · · ·+ xn−1α

n−1) = f(x0+x1α+x2α
2+···+xn−1α

n−1)
g(x0+x1α+x2α2+···+xn−1αn−1) , where x0, . . . , xn−1 are indeterminates, and

write
f(x0 + x1α+ x2α

2 + · · ·+ xn−1α
n−1) = f0 + f1α+ f2α

2 + · · ·+ fn−1α
n−1

and
g(x0 + x1α+ x2α

2 + · · ·+ xn−1α
n−1) = g0 + g1α+ g2α

2 + · · ·+ gn−1α
n−1,

where fi, gi ∈ M [x0, x1, . . . , xn−1] since 1, α, α2, . . . , αn−1 are linearly independent over M , so
1, α, α2, . . . , αn−1 are linearly independent over M(x0, x1, . . . , xn−1).

Now we evaluate ψ at a = (a0, . . . , an−1), where a0, . . . , an−1 ∈M . We get that

f0(a) + f1(a)α + · · ·+ fn−1(a)α
n−1

g0(a) + g1(a)α+ · · ·+ gn−1(a)αn−1
= ψ(a) = ϕ(a0 + a1α+ · · ·+ an−1α

n−1) ∈M.

Because ψ(a) is in M and 1, α, . . . , αn−1 are linear independent over M , for each i = 0, 1, . . . , n− 1,
we have fi(a) = ψ(a)gi(a). Then fi−ψgi is a rational function that evaluates to 0 for all but finitely
many a ∈Mn, which means that fi − ψgi = 0. Rearranging yields fi = ψgi for i = 0, 1, . . . , n− 1.

Consider g(x0 + x1α + x2α
2 + · · · + xn−1α

n−1) = g0 + g1α + g2α
2 + · · · + gn−1α

n−1. We
then have g(x) = g0(x, 0, . . . , 0) + g1(x, 0, . . . , 0)α + · · · + gn−1(x, 0, . . . , 0)α

n−1 ∈ M [x]. Thus,
g(x) = g0(x, 0, . . . , 0). In particular, g0 is not identically zero. Using f0 = ψg0 from before, we
conclude that f0

g0
= ψ. This implies that

f0 + f1α+ f2α
2 + · · ·+ fn−1α

n−1

g0 + g1α+ g2α2 + · · ·+ gn−1αn−1
=
f0
g0
.

Cross-multiplying and subtracting yields

(f1g0 − f0g1)α+ · · ·+ (fn−1g0 − f0gn−1)α
n−1 = 0

Suppose for a contradiction that there exists i ∈ {1, 2, . . . , n−1} such that gi 6= 0. Then fig0−f0gi =
0 implies that f0

g0
= fi

gi
. Thus, for all but finitely many d ∈ M , we have ϕ(d) = f0

g0
(d, 0, . . . , 0) =

fi
gi
(d, 0, . . . , 0) = 0. The last equality is due to the fact that f(x) ∈ M [x] implies fj(x, 0, . . . , 0) = 0

for all j ∈ {1, 2, . . . , n− 1}. This forces ϕ = 0, but we assumed that ϕ is nonconstant, so this is a
contradiction. Therefore, g1 = · · · = gn−1 = 0. This means g(x0 + x1α+ x2α

2 + · · ·+ xn−1α
n−1) =

g0(x0, . . . , xn−1) and thus g(d) is a polynomial with coefficients in M such that g(d) ∈M for all but
finitely many d ∈M [α].

If L/M is not purely inseparable, we can choose α ∈ L to be separable so by Lemma 5.1, the
polynomial g is constant. If L/M is purely inseparable of infinite exponent, then g must be constant
as well, since otherwise, deg g > 0 implies that deg g ≥ [M(α) :M ] = pe[α:M ] for each α ∈ L, which
is unbounded. In both cases, ϕ is a polynomial in M [x] such that ϕ(d) ⊆M for all but finitely many
d ∈ L, but applying Lemma 5.1 again shows that ϕ must be constant, a contradiction.

Our goal now is to upgrade the previous lemma to the nonexistence of such a rational function
in L(x).

Proposition 5.3. [CC97, Proposition X.1.4] Let D be a domain with field of fractions K, E be an
infinite subset of K, and L be a field extension of K. If ϕ ∈ L(x) is such that ϕ(E) ⊆ D, then, in
fact, ϕ ∈ K(x).
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The following is a stronger version of Lemma 5.2. When L/M is a field extension that is not
purely inseparable with L being infinite, not only does there not exist a nonconstant rational function
ϕ ∈M(x) such that ϕ(d) ∈M for all but finitely many d ∈ L, but there does not exist such a rational
function in L(x) either.

Lemma 5.4. Let L/M be a field extension that is not purely inseparable of finite exponent. Addi-
tionally, suppose that L is an infinite field. Then there does not exist a nonconstant rational function
ϕ ∈ L(x) such that ϕ(d) ∈M for all but finitely many d ∈ L.

Proof. Proceeding with proof by contradiction, let ϕ ∈ L(x) be a nonconstant rational function such
that ϕ(x) ∈M for all but finitely many x ∈ L.

First, we will handle the case when M = {d1, . . . , dk} is finite. If ϕ ∈ L(x) such that ϕ(L) ⊆M ,
then (ϕ− d1) · · · (ϕ− dk) evaluates to 0 for all but finitely element of L, which is infinite. Therefore,
(ϕ− d1) · · · (ϕ− dk) = 0, forcing ϕ to be constant.

Now we assume that M is infinite. Following the notation in Proposition 5.3, we let D =M and
L = L. Also let E be the set of elements d ∈M such that ϕ(d) ∈M . Note that E is infinite. Then
ϕ(E) ⊆M , so ϕ ∈M(x). However, ϕ ∈M(x) is a rational function such that ϕ(d) ∈M for all but
finitely many d ∈ L, a contradiction of Lemma 5.2.
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