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Abstract

We consider a class of non-local functionals recently introduced by H. Brezis, A. Seeger,
J. Van Schaftingen, and P.-L. Yung, which offers a novel way to characterize functions with
bounded variation.

We give a positive answer to an open question related to these functionals in the case of
functions with bounded variation. Specifically, we prove that in this case the liminf of these
functionals can be estimated from below by a linear combination in which the three terms that
sum up to the total variation (namely the total variation of the absolutely continuous part,
of the jump part and of the Cantor part) appear with different coefficients. We prove also
that this estimate is optimal in the case where the Cantor part vanishes, and we compute the
precise value of the limit in this specific scenario.

In the proof we start by showing the results in dimension one by relying on some measure
theoretic arguments in order to identify sufficiently many disjoint rectangles in which the
difference quotient can be estimated, and then we extend them to higher dimension by a
classical sectioning argument.

Mathematics Subject Classification 2020 (MSC2020): 26B30, 49J45, 49Q20.

Key words: Functions of bounded variation, special functions of bounded variation, non-local
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1 Introduction

In this paper we consider a class of non-local, non-convex functionals related to the total
variation. In order to introduce these functionals, let N ≥ 1 be a positive integer, let Ω ⊂ R

N

be an open set and let γ ∈ R and λ ∈ (0,+∞) be two real parameters.
Let νγ be the measure on R

N ×R
N defined by

νγ(A) :=

∫∫

A
|y − x|γ−N dx dy,

for every measurable subset A ⊆ R
N × R

N .
For every measurable function u : Ω → R let us set

Eγ,λ(u,Ω) :=
{

(x, y) ∈ Ω× Ω : |u(y)− u(x)| > λ|y − x|1+γ
}

.

Now we can set
Fγ,λ(u,Ω) := λνγ(Eγ,λ(u,Ω)). (1.1)

In the case Ω = R
N we simply write Eλ,γ(u) and Fγ,λ(u) instead of Eλ,γ(u,R

N ) and
Fγ,λ(u,R

N ).
The functionals (1.1) were introduced in [11, 12] and generalize some other families of

functionals previously considered in the literature. In particular, in the case γ = −1, the family
{F−1,λ} was first studied in [20, 21] (see also the more recent developments in [3, 4, 5, 8]). The
main results in this case are that

lim
λ→0+

F−1,λ(u) = CN

∫

RN

|∇u(x)| dx = CN‖Du‖M ∀u ∈ C1
c (R

N ),

where

CN :=

∫

SN−1

|x1| dH
N−1(x), (1.2)

and that, quite surprisingly,

Γ− lim
λ→0+

F−1,λ(u) = CN log 2 · ‖Du‖M ∀u ∈ L1(RN ),

where ‖Du‖M denotes the total variation of u, which is intended to be equal to +∞ if u ∈
L1(RN ) \BV (RN ).

On the other hand, in the case γ = N we recover the quantities considered in [9, 10, 22],
since in this case νN is equal to the Lebesgue measure L N and

[

|u(y)− u(x)|

|y − x|1+N

]

L1,∞(Ω)

= sup
λ>0

FN,λ(u,Ω),

where [·]L1,∞(Ω) denotes the weak L1 quasi-norm.
In this paper, motivated by [7, Section 9], we limit ourselves to the case γ > 0. In this

case, it is known (see [12, Theorem 1.4]) that there exist two constants c1(N, γ) and c2(N, γ)
such that

c1(N, γ)‖Du‖M ≤ sup
λ>0

Fγ,λ(u) ≤ c2(N, γ)‖Du‖M, (1.3)

for every u ∈ L1
loc(R

N ). In particular, it follows that

sup
λ>0

Fγ,λ(u) < +∞
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if and only if u belongs to the space ˙BV (RN ) of the functions in L1
loc(R

N ) with globally
bounded variation.

Moreover, for every γ > 0 it holds that (see [12, Theorem 1.1])

lim
λ→+∞

Fγ,λ(u) =
CN

γ

∫

RN

|∇u(x)| dx, (1.4)

for every u in the space Ẇ 1,1(RN ) of functions in L1
loc(R

N ) with ∇u ∈ L1(RN ), where CN is
the constant defined in (1.2).

The extension of (1.4) to the case in which u ∈ ˙BV (RN ) is not straightforward. Indeed,
it was proved in [12, Lemma 3.6] that if u is the characteristic function of a bounded convex
domain with smooth boundary, then for every γ > 0 it holds that

lim
λ→+∞

Fγ,λ(u) =
CN

γ + 1
‖Du‖M <

CN

γ
‖Du‖M. (1.5)

This result suggests that the singular part of the derivative contributes to the limit of
Fγ,λ(u) in a different way with respect to the absolutely continuous part, but anyway it seems
that it does add a positive contribution in the limit.

This led to the following questions, which were raised in [7, Section 9] and in [12, Sec-
tion 7.2].

Question A. Let γ > 0, and let u : RN → R be a measurable function such that

lim inf
λ→+∞

Fγ,λ(u) = 0.

Can we conclude that u is constant (almost everywhere)?

Question B. Let γ > 0. Is there a positive constant c(N, γ) > 0 such that

lim inf
λ→+∞

Fγ,λ(u) ≥ c(N, γ)‖Du‖M,

for every measurable function u : RN → R, with the usual understanding that ‖Du‖M = +∞
if u /∈ ˙BV (RN )?

The main contribution of the present paper is a positive answer to these questions in the
case u ∈ ˙BV (RN ).

Before stating the result, we recall that for a function u ∈ ˙BV (RN ) we can decompose
its distributional derivative Du as the sum of three finite R

N -valued measures, which are
supported on disjoint sets: the absolutely continuous part Dau, the jump part Dju, and the
Cantor part Dcu (see [2, Section 3.9]).

Our first main result is the following.

Theorem 1.1. For every γ > 0 and every u ∈ ˙BV (RN ) it turns out that

lim inf
λ→+∞

Fγ,λ(u) ≥
CN

γ
‖Dau‖M +

CN

1 + γ
‖Dju‖M +

CN (2γ − 1)

γ(1 + γ)22+γ
‖Dcu‖M. (1.6)

Our second main result shows that the constants appearing in front of the absolutely
continuous part and the jump part are optimal, and unifies (1.4) and (1.5) in the case in which
u ∈ ˙SBV (RN ), namely u ∈ ˙BV (RN ) and Dcu = 0.
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Theorem 1.2. For every γ > 0 and every u ∈ ˙SBV (RN ) it turns out that

lim
λ→+∞

Fγ,λ(u) =
CN

γ
‖Dau‖M +

CN

1 + γ
‖Dju‖M.

Remark 1.3. For the sake of simplicity, in this paper we consider only the case in which
Ω = RN . However, it should not be difficult to extend the main results to the case of bounded
regular domains. In particular, in the case of convex domains, this should be almost straight-
forward, since all their one-dimensional sections are just open intervals.

Overview of the technique Let us summarize the main ideas in the proofs of our results, which
are different from those used in [12, 22], since we do not exploit the BBM formula [6, 15].

For both theorems, we first establish the result in the one-dimensional case, and then we
extend it to the case of higher space dimensions by a sectioning argument. This is a standard
but quite effective tool in this kind of problems (see [4, 17]).

The proof of the one-dimensional version of Theorem 1.1 relies on some measure-theoretic
arguments that allow us to find sufficiently many disjoint rectangles inside Eγ,λ on which we
can control the difference quotient of u.

As for Theorem 1.2, in view of Theorem 1.1, it is enough to prove an estimate from above
for the limsup of Fγ,λ(u). To this end we exploit an argument from [12, Section 3.4] which
basically shows that it is enough to prove such an estimate for a class of functions u that is
dense in ˙SBV (RN ) with respect to the strong BV topology. In dimension one such a class is
provided by functions with finitely many jump points that are smooth and Lipschitz continuous
in every interval that does not contain such points. For functions in this class, the limit can
be easily computed.

The case p > 1 The functionals considered in the paper [12] actually depend also on a
parameter p ≥ 1, and can be written as

Fp,γ,λ(u,Ω) := λpνγ(Eγ/p,λ(u,Ω)).

The same is true for the various special cases previously considered in [20, 21, 4, 9, 10, 22].
This higher generality allows to obtain characterizations of the Sobolev spaces W 1,p(RN )

or Ẇ 1,p(RN ), and also for more general types of spaces (see [13, 14, 23, 24]), together with
estimates on their semi-norms.

In this paper we only consider the case p = 1, which is the most challenging, because the
gap between Ẇ 1,1(RN ) and ˙BV (RN ) creates additional difficulties, and we refer to [12] and
to the references therein for the numerous interesting results in the case p > 1.

Recent developments After this work was completed, Lahti in [19] proved with different tech-
niques a sharper version of the estimate (1.6), namely

lim inf
λ→+∞

Fγ,λ(u) ≥
CN

γ
‖Dau‖M +

CN

1 + γ
‖Dju‖M +

CN

1 + γ
‖Dcu‖M, (1.7)

for every u ∈ ˙BV (RN ) and γ > 0.
He also found a Cantor-type function u ∈ BV (0, 1) for which Du = Dcu and

lim inf
λ→+∞

Fγ,λ(u, (0, 1)) =
C1

1 + γ
‖Dcu‖M,
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thus establishing the optimality of the constant in front of the Cantor part in (1.7).
On the other hand, obtaining good estimates from above for functions with non-vanishing

Cantor part (in order to extend Theorem 1.2) is quite complicated, since there is not a nice
class of functions which is strongly dense in ˙BV (R). Indeed, it is not possible to approximate
functions with non-vanishing Cantor part in the strong BV topology with functions without
a Cantor part. It is also conceivable that for some functions the liminf might differ from the
limsup or that different functions might produce different constants in the limit, since these
phenomena occur in some similar contexts (see the pathologies in [8]).

We also mention another very recent development obtained in [18], where it is proved that

Γ− lim inf
λ→+∞

Fγ,λ(u) ≥ CN ·
log 2

2γ+1 − 1
· ‖u‖M,

for every u ∈ L1
loc(R

N ) and γ > 0, thus providing a positive answer to Question A and
Question B also for u ∈ L1

loc(R
N ) \ ˙BV (RN ), in which case the right-hand side is infinite.

Structure of the paper The paper is organized as follows. In Section 2, after recalling some
basic properties of functions of bounded variation in one dimension, we prove the main results
in the one-dimensional case. Then, in Section 3 we show how the problem can be reduced
to the one-dimensional setting by a sectioning argument, and we complete the proofs in the
higher dimensional case.

2 The one-dimensional case

In this section we prove our main results in the one-dimensional case N = 1. We observe that
in this case in (1.2) we have C1 = 2 and that we can rewrite the functional in the following
more convenient way

Fγ,λ(u,Ω) = C1λνγ(E
′
γ,λ(u,Ω)), (2.8)

where
E′

γ,λ(u,Ω) :=
{

(x, y) ∈ Ω× Ω : x < y and |u(y)− u(x)| > λ|y − x|1+γ
}

.

We also recall that functions of bounded variation in one dimension have some special
properties, that we list in the following lemma.

Lemma 2.1. Let u ∈ ˙BV (R). Then we can choose a representative, that we still denote with
u, satisfying the following properties.

• u is differentiable in the classical sense at almost every x ∈ R and Dau = u′ ·L 1, where
L 1 is the one-dimensional Lebesgue measure.

• u admits a left limit u(x−) and a right limit u(x+) at every x ∈ R, and they coincide for
every x outside a set Ju that is at most countable. With these notations, it holds that

Dju =
∑

x∈Ju

(u(x+)− u(x−))δx.

• The Cantor part of the derivative is supported on the set C = C+ ∪ C−, where

C± :=

{

x ∈ R \ Ju : lim
h→0

u(x+ h)− u(x)

h
= ±∞ and lim

h→0+

|Dcu([x, x+ h])|

|Dcu|([x, x+ h])
= 1

}

.
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Proof. The first two properties are classical (see, for example, [2, Theorem 3.28]).
As for the third property, we first observe that, on the real line, Besicovitch differentiation

theorem [2, Theorem 2.22] holds also with one-sided closed intervals instead of closed balls.
Indeed, the proof is based on a covering argument that in the one-dimensional case works also
with one-sided intervals. As a consequence, if µ ⊥ ν are two Radon measures supported on
disjoint sets, it turns out that

lim
h→0+

ν([x, x+ h])

µ([x, x+ h])
= lim

h→0+

ν([x, x+ h))

µ([x, x+ h))
= lim

h→0−

ν([x+ h, x])

µ([x+ h, x])
= lim

h→0−

ν((x+ h, x])

µ((x+ h, x])
= 0

for µ-almost every x ∈ R.
Now let Dc

+u and Dc
−u denote respectively the positive and negative part in the Hahn

decomposition of Dcu. If we take the right continuous representative for u, then for every
x ∈ R \ Ju and h > 0 it holds that

u(x+ h)− u(x)

h
=

Du([x, x+ h])

L 1([x, x+ h])
=

Dc
+u([x, x+ h])

L 1([x, x+ h])

[

1 +
(Dau+Dju−Dc

−u)([x, x + h])

Dc
+u([x, x+ h])

]

,

and

|Dcu([x, x+ h])|

|Dcu|([x, x+ h])
=

|(Dc
+u−Dc

−u)([x, x + h])|

(Dc
+u+Dc

−u)([x, x + h])
=

|1−Dc
−u([x, x + h])/Dc

+u([x, x+ h])|

1 +Dc
−u([x, x + h])/Dc

+u([x, x+ h])
,

while for h < 0 it holds that

u(x+ h)− u(x)

h
=

Du((x+ h, x])

L 1((x+ h, x])
=

Dc
+u((x+ h, x])

L 1((x+ h, x])

[

1 +
(Dau+Dju−Dc

−u)((x + h, x])

Dc
+u((x+ h, x])

]

,

Therefore, Besicovitch differentiation Theorem implies that Dc
+u is supported on C+. With

a similar argument we obtain also that Dc
−u is supported on C−.

In the proof of Theorem 1.2 we also need a density result for piecewise smooth functions
in ˙SBV (R). The precise class of functions that we consider is the following.

Definition 2.2. We denote with X(R) the set of functions u ∈ ˙SBV (R) such that Ju is finite,
Du is compactly supported and u ∈ C∞((a, b)) ∩ Lip((a, b)) for every open interval (a, b) such
that (a, b) ∩ Ju = ∅.

The strong density of X(R) into ˙SBV (R) is provided by the following lemma, which is
elementary in the one-dimensional case (a similar statement in the higher dimensional case is
proved in [16]).

Lemma 2.3. Let u ∈ ˙SBV (R). Then there exists a sequence of functions {un} ⊆ X(R) such
that ‖Dun −Du‖M → 0 as n → +∞.

Proof. By [2, Corollary 3.33] we can write u = ua + uj , where ua ∈ Ẇ 1,1(R) and uj is a
pure jump function, namely Duj =

∑

i∈I αiδxi
, where I is at most countable, δxi

denotes a
Dirac delta in the point xi, and {αi} is a summable sequence (or a finite set) of real numbers.
Therefore, we have that Du = (ua)′L 1 +Duj.

We can approximate separately the function (ua)′ ∈ L1(R) with a sequence {vn} ⊆ C∞
c (R)

and the measure Duj with measures µn =
∑

i∈In
αiδxi

that are finite sums of Dirac masses,
so that ‖vnL 1 + µn − (ua)′L 1 −Duj‖M → 0.

Now it is enough to choose a sequence of functions {un} such that Dun = vnL 1 +µn.
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2.1 Proof of Theorem 1.1 when N = 1

Let J = Ju and C = C+ ∪C− be as in Lemma 2.1 and let us set

A := {x ∈ R : u is differentiable at x and u′(x) 6= 0}.

Approximation of the jump part Let us fix a small positive real number ε > 0, and let
Jε = {s1, . . . , skε} be a finite subset of J such that

|Du|(J \ Jε) ≤ ε. (2.9)

For every i ∈ {1, . . . , kε} let us fix a positive radius ri > 0 in such a way that the following
properties hold.

• [si1 − ri1 , si1 + ri1 ] ∩ [si2 − ri2 , si2 + ri2 ] = ∅ for every 1 ≤ i1 < i2 ≤ kε.

• For every i ∈ {1, . . . , kε} it holds that

|u(y)− u(x)| > (1− ε)|Du|({si}) ∀(x, y) ∈ (si − ri, si)× (si, si + ri).

• If we set

U j
ε :=

kε
⋃

i=1

[si − ri, si + ri],

then it holds that
|Dau|(U j

ε ) + |Dcu|(U j
ε ) ≤ ε.

Now we observe that for every i ∈ {1, . . . , kε} we have that

|u(y)− u(x)| > (1− ε)|Du|({si}) > λ|y − x|1+γ

for every (x, y) ∈ (si − ri, si)× (si, si + ri) such that

|y − x| <

(

(1− ε)|Du|({si})

λ

)
1

1+γ

=: δλ,ε(si).

As a consequence, as soon as λ > λj
ε := max{(1 − ε)|Du|({si})/r

1+γ
i : i ∈ {1, . . . , kε}}, so

that δλ,ε(si) < ri for every i ∈ {1, . . . , kε}, we have that

Jλ,ε :=

kε
⋃

i=1

{(x, y) ∈ (si − δλ,ε(si), si)× (si, si + ri) : y < x+ δλ,ε(si)} ⊆ E′
γ,λ(u) ∩ (U j

ε × U j
ε ).

(2.10)

Approximation of the Cantor part Let us set Cε := C \ U j
ε . We observe that

|Dcu|(Cε) ≥ |Dcu|(C)− |Dcu|(U j
ε ) ≥ ‖Dcu‖M − ε. (2.11)

Since U j
ε is a closed set, we can find a neighborhood U c

ε of Cε such that U j
ε ∩ U c

ε = ∅ and

L
1(U c

ε ) ≤ ε, and |Dau|(U c
ε ) ≤ ε. (2.12)

6



For every λ ≥ 0 and every z ∈ Cε ∩C+ let us set

rλ,ε(z) := sup

{

r > 0 :
u(z + h)− u(z)

h1+γ
≥ 21+γλ and u(z − h) ≤ u(z) ∀h ∈ (0, r),

|Dcu([z, z + r])| ≥ (1− ε)|Dcu|([z, z + r]), [z − r, z + r] ⊆ U c
ε

}

,

and similarly for z ∈ Cε ∩ C− let us set

rλ,ε(z) := sup

{

r > 0 :
u(z + h)− u(z)

h1+γ
≤ −21+γλ and u(z − h) ≥ u(z) ∀h ∈ (0, r),

|Dcu([z, z + r])| ≥ (1− ε)|Dcu|([z, z + r]), [z − r, z + r] ⊆ U c
ε

}

.

We claim that the number rλ,ε(z) that we have defined satisfies the following properties.

• rλ,ε(z) ∈ (0, ε/2] for every x ∈ Cε and every λ ≥ 0.

• The function λ 7→ rλ,ε(z) is nonincreasing on [0,+∞) for every z ∈ Cε and

lim
λ→+∞

rλ,ε(z) = 0 ∀z ∈ Cε.

• If rλ,ε(z) < r0,ε(z) for some z ∈ Cε and some λ > 0, then it holds that

21+γλrλ,ε(z)
1+γ ≥ |Du([z, z + rλ,ε(z)])|. (2.13)

Indeed, we have that rλ,ε(z) > 0 because all the properties in the definition are verified
when r > 0 is sufficiently small, thanks to the definition of C± and the fact that U c

ε is a
neighborhood of Cε, while rλ,ε(z) ≤ ε/2 thanks to (2.12).

The monotonicity of rλ,ε(z) with respect to λ and the limit as λ → +∞ are immediate
consequences of the first condition in the definition of rλ,ε(z), which is also the only one
involving λ.

The third property follows from the supremum property of rλ,ε(z), and the fact that
|Du([z, z + rλ,ε(z)])| = |u((z + rλ,ε(z))+) − u(z)|. In fact all the properties in the defini-
tion of rλ,ε(z) but the first one hold up to r0,ε(z), because they are independent of λ, so if
rλ,ε(z) < r0,ε(z) then it means that the first property fails for a sequence of radii rn ց rλ,ε(z),
and this implies (2.13).

Now let us set Cλ,ε := {z ∈ Cε : rλ,ε(z) < r0,ε(z)}, so that (2.13) holds for every z ∈ Cλ,ε.
From the second property of rλ,ε(z) we deduce that Cλ1,ε ⊆ Cλ2,ε for every 0 < λ1 < λ2

and that
⋃

λ>0

Cλ,ε = Cε.

By [1, Lemma 2.1], for every λ > 0 we can find a finite set {z1, . . . , zmλ,ε
} ⊆ Cλ,ε such that

[zi1 , zi1 + rλ,ε(zi1)] ∩ [zi2 , zi2 + rλ,ε(zi2)] = ∅ ∀1 ≤ i1 < i2 ≤ mλ,ε,

and

|Dcu|

(mλ,ε
⋃

i=1

[zi, zi+ rλ,ε(zi)]

)

≥
1

2 + ε
|Dcu|

(

⋃

z∈Cλ,ε

[z, z+ rλ,ε(z)]

)

≥
1

2 + ε
|Dcu|(Cλ,ε). (2.14)
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Now we observe that if z ∈ Cλ,ε, then for every (x, y) ∈ (z− rλ,ε(z), z)× (z, z + rλ,ε(z)) we
have that

|u(y)− u(x)| ≥ |u(y) − u(z)| ≥ 21+γλ(y − z)1+γ = λ(y − x)1+γ

(

2(y − z)

y − x

)1+γ

.

Therefore, for (x, y) ∈ (z − rλ,ε(z), z) × (z, z + rλ,ε(z)), it holds that

y > 2z − x =⇒
2(y − z)

y − x
> 1 =⇒ (x, y) ∈ E′

γ,λ(u).

This means that

Cλ,ε :=

mλ,ε
⋃

i=1

{(x, y) ∈ (zi − rλ,ε(zi), zi)× (zi, zi + rλ,ε(zi)) : y > 2zi − x}

⊆ E′
γ,λ(u) ∩ (U c

ε × U c
ε ), (2.15)

for every λ > 0.

Approximation of the absolutely continuous part Let us set Aε := A \ (U j
ε ∪U c

ε ). We observe
that

|Dau|(Aε) ≥ ‖Dau‖M − |Dau|(U j
ε )− |Dau|(U c

ε ) ≥ ‖Dau‖M − 2ε. (2.16)

For every λ > 0 let us set

Aλ,ε :=

{

x ∈ Aε :
|u(y)− u(x)|

y − x
> (1− ε)|u′(x)| ∀y ∈

(

x, x+

(

(1− ε)|u′(x)|

λ

)
1
γ

)}

.

We observe that Aλ1,ε ⊆ Aλ2,ε for every 0 < λ1 < λ2 and that

⋃

λ>0

Aλ,ε = Aε.

Moreover, if x ∈ Aλ,ε, then we have that

|u(y)− u(x)| > (1− ε)(y − x)|u′(x)| > λ(y − x)1+γ ,

for every

y ∈

(

x, x+

(

(1− ε)|u′(x)|

λ

)
1
γ

)

.

As a consequence, it turns out that

Aλ,ε :=

{

(x, y) ∈ Aλ,ε × R : y ∈

(

x, x+

(

(1− ε)|u′(x)|

λ

)
1
γ

)}

⊆ E′
γ,λ(u) \ (U

j
ε ∪ U c

ε )× R,

(2.17)
for every λ > 0.
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Computation of the functional in the three parts From (2.8), (2.10), (2.15) and (2.17) we
deduce that

Fγ,λ(u) ≥ C1λ
(

νγ(Jλ,ε) + νγ(Cλ,ε) + νγ(Aλ,ε)
)

, (2.18)

for every λ > λj
ε.

The three addenda in the right-hand side can be computed as follows.

νγ(Jλ,ε) =

kε
∑

i=1

∫ si

si−δλ,ε(si)
dx

∫ x+δλ,ε(si)

si

(y − x)γ−1 dy

=

kε
∑

i=1

δλ,ε(si)
1+γ

1 + γ

=

kε
∑

i=1

(1− ε)|Du|({si})

λ(1 + γ)

=
1− ε

(1 + γ)λ
|Du|(Jε).

Recalling (2.9), we obtain that

νγ(Jλ,ε) ≥
1− ε

(1 + γ)λ
(‖Dju‖M − ε). (2.19)

Now we compute the contribution of the Cantor part.

νγ(Cλ,ε) =

mλ,ε
∑

i=1

∫ zi

zi−rλ,ε(zi)
dx

∫ zi+rλ,ε(zi)

2zi−x
(y − x)γ−1 dy

=

mλ,ε
∑

i=1

∫ zi

zi−rλ,ε(zi)

1

γ
[(zi + rλ,ε(zi)− x)γ − 2γ(zi − x)γ ] dx

=

mλ,ε
∑

i=1

2γ − 1

γ(1 + γ)
rλ,ε(zi)

1+γ .

Recalling (2.13), (2.9) and (2.12) we obtain that

νγ(Cλ,ε) ≥

mλ,ε
∑

i=1

2γ − 1

γ(1 + γ)21+γ

|Du([zi, zi + rλ,ε(zi)])|

λ

≥

mλ,ε
∑

i=1

2γ − 1

γ(1 + γ)21+γ

|Dcu([zi, zi + rλ,ε(zi)])| − |(Dju+Dau)([zi, zi + rλ,ε(zi)])|

λ

≥

[mλ,ε
∑

i=1

2γ − 1

γ(1 + γ)21+γλ
|Dcu([zi, zi + rλ,ε(zi)])|

]

−
|Dju|(R \ Jε)− |Dau|(U c

ε )

λ

≥

[mλ,ε
∑

i=1

2γ − 1

γ(1 + γ)21+γλ
|Dcu([zi, zi + rλ,ε(zi)])|

]

−
2ε

λ
.

From the definition of rλ,ε(z) we deduce that

|Dcu([zi, zi + rλ,ε(zi)])| ≥ (1− ε)|Dcu|([zi, zi + rλ,ε(zi)]),
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for every i ∈ {1, . . . ,mλ,ε}.
As a consequence, from (2.14) we deduce that

νγ(Cλ,ε) ≥
(2γ − 1)(1 − ε)

γ(1 + γ)21+γλ
|Dcu|

(mλ,ε
⋃

i=1

[zi, zi + rλ,ε(zi)]

)

−
2ε

λ

≥
(2γ − 1)(1 − ε)

γ(1 + γ)21+γ(2 + ε)λ
|Dcu|(Cλ,ε)−

2ε

λ
. (2.20)

Finally, we compute the contribution of the absolutely continuous part

νγ(Aλ,ε) =

∫

Aλ,ε

dx

∫ x+
(

(1−ε)|u′(x)|
λ

)

1
γ

x
(y − x)γ−1 dy

=
1− ε

γλ

∫

Aλ,ε

|u′(x)| dx

=
1− ε

γλ
|Dau|(Aλ,ε). (2.21)

Plugging (2.19), (2.20) and (2.21) into (2.18) we obtain that

Fγ,λ(u) ≥

C1

(

1− ε

1 + γ
(‖Dju‖M − ε) +

(2γ − 1)(1 − ε)

γ(1 + γ)21+γ(2 + ε)
|Dcu|(Cλ,ε)− 2ε+

1− ε

γ
|Dau|(Aλ,ε)

)

,

and hence

lim inf
λ→+∞

Fγ,λ(u) ≥

C1

(

1− ε

1 + γ
(‖Dju‖M − ε) +

(2γ − 1)(1− ε)

γ(1 + γ)21+γ(2 + ε)
|Dcu|(Cε)− 2ε+

1− ε

γ
|Dau|(Aε)

)

.

Finally, recalling (2.11) and (2.16) we deduce that

lim inf
λ→+∞

Fγ,λ(u) ≥

C1

(

1− ε

1 + γ
(‖Dju‖M − ε) +

(2γ − 1)(1 − ε)

γ(1 + γ)21+γ(2 + ε)
‖Dcu‖M − 3ε+

1− ε

γ
(‖Dau‖M − 2ε)

)

.

Letting ε → 0+ we obtain (1.6) when N = 1.

2.2 Proof of Theorem 1.2 when N = 1

First of all, we observe that it is enough to show that

lim sup
λ→+∞

Fγ,λ(u) ≤
C1

γ
‖Dau‖M +

C1

γ + 1
‖Dju‖M, (2.22)

because the opposite inequality is provided by Theorem 1.1, that we have already proved in
the case N = 1.

We divide the proof of (2.22) into two steps. First we prove the result for functions
u ∈ X(R), then we exploit Lemma 2.3 to extend the result to all u ∈ ˙SBV (R).
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Step 1: u ∈ X(R) Let s1 < s2 < · · · < sn be the jump points of u, namely the finitely many
elements of Ju, and let (a, b) be an interval such that Du is supported on [a+1, b− 1]. Let us
set s0 := a and sn+1 := b.

With these definitions, we also set Ωi := (si, si+1) for every i ∈ {0, . . . , n},

d0 := min
{

|si+1 − si| : i ∈ {0, . . . , n}
}

, and L := max
{

‖u′‖L∞(Ωi) : i ∈ {0, . . . , n}
}

.

Now we observe that |u(y)− u(x)| ≤ ‖Du‖M for every (x, y) ∈ R
2, and therefore

E′
γ,λ(u) ⊆

{

(x, y) ∈ R
2 : 0 < y − x <

(

‖Du‖M
λ

)
1

1+γ

}

. (2.23)

Let us set

λ0 :=
‖Du‖M

min{d1+γ
0 , 1}

,

so that for every λ > λ0 we have that

(

‖Du‖M
λ

)
1

1+γ

< min{d0, 1}. (2.24)

As a consequence, setting

Ri
λ :=

(

si −

(

‖Du‖M
λ

)
1

1+γ

, si

)

×

(

si, si +

(

‖Du‖M
λ

)
1

1+γ

)

,

for every λ > λ0 we have that

E′
γ,λ(u) ⊆

n
⋃

i=0

Ω2
i ∪

n
⋃

i=1

Ri
λ. (2.25)

We point out that (2.23) and (2.24) imply that points outside [a, b]2 cannot contribute to
Eγ,λ(u) when λ > λ0, because u is constant in (−∞, a+ 1) and in (b− 1,+∞).

Now let us fix ε > 0 and let us set

Ωi
λ,ε :=

{

x ∈ Ωi :
|u(y)− u(x)|

y − x
≤ |u′(x)|+ ε ∀y ∈

(

x, x+

(

‖Du‖M
λ

)
1

1+γ

)

∩Ωi

}

.

We observe that Ωi
λ1,ε

⊆ Ωi
λ2,ε

for every 0 < λ1 < λ2, and that

⋃

λ>0

Ωi
λ,ε ⊇ Ωi.

Moreover, if (x, y) ∈ E′
γ,λ(u) ∩ Ω2

i for some x ∈ Ωi
λ,ε, then we claim that

y < x+

(

|u′(x)|+ ε

λ

)
1
γ

.

Indeed, if this is not the case, then from (2.23) and the definition of Ωi
λ,ε we deduce that

|u(y)− u(x)| ≤ (y − x)(|u′(x)|+ ε) ≤ λ(y − x)1+γ ,
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which contradicts the fact that (x, y) ∈ E′
γ,λ(u).

On the other hand, since u is Lipschitz continuous with Lipschitz constant bounded by L
in each of the intervals Ωi, for every (x, y) ∈ E′

γ,λ(u) ∩ Ω2
i it holds that

y < x+

(

L

λ

)
1
γ

,

otherwise we would have that |u(y)− u(x)| ≤ (y − x)L ≤ λ(y − x)1+γ .
Hence we obtain the following estimate

νγ(E
′
γ,λ(u) ∩ Ω2

i ) ≤

∫

Ωi
λ,ε

dx

∫ x+
(

|u′(x)|+ε

λ

)

1
γ

x
(y − x)γ−1 dy

+

∫

Ωi\Ωi
λ,ε

dx

∫ x+(L
λ )

1
γ

x
(y − x)γ−1 dy

=
1

γλ

[

∫

Ωi
λ,ε

|u′(x)| dx+ εL 1(Ωi
λ,ε) + LL

1(Ωi \Ω
i
λ,ε)

]

. (2.26)

Now we need to estimate the contribution of the rectangles Ri
λ. To this end, let λj

ε > 0 be

a positive number large enough so that for every i ∈ {1, . . . , n} and every λ > λj
ε it holds that

|u(y)− u(x)| ≤ (1 + ε)|Du|({si}) ∀(x, y) ∈ Ri
λ.

Then we have that

|u(y)− u(x)| ≤ (1 + ε)|Du|({si}) ≤ λ(y − x)1+γ ,

for every (x, y) ∈ Ri
λ such that

y ≥ x+

(

(1 + ε)|Du|({si})

λ

)
1

1+γ

.

Therefore we deduce that

E′
γ,λ(u) ∩Ri

λ ⊆

{

(x, y) ∈ R
2 : x ∈

(

si −

(

(1 + ε)|Du|({si})

λ

)
1

1+γ

, si

)

,

y ∈

(

si, x+

(

(1 + ε)|Du|({si})

λ

)
1

1+γ

)}

.

Hence we obtain the following estimate

νγ(E
′
γ,λ(u) ∩Ri

λ) ≤

∫ si

si−
(

(1+ε)|Du|({si})

λ

) 1
1+γ

dx

∫ x+
(

(1+ε)|Du|({si})

λ

) 1
1+γ

si

(y − x)γ−1 dy

=
(1 + ε)|Du|({si})

(1 + γ)λ
. (2.27)
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Finally, combining (2.8), (2.25), (2.26) and (2.27), for every λ > max{λ0, λ
j
ε} we obtain

that

Fγ,λ(u) ≤
n
∑

i=0

C1

γ

[

∫

Ωi
λ,ε

|u′(x)| dx + εL 1(Ωi
λ,ε) + LL

1(Ωi \Ω
i
λ,ε)

]

+

n
∑

i=1

C1(1 + ε)|Du|({si})

(1 + γ)
,

and hence

lim sup
λ→+∞

Fγ,λ(u) ≤
C1

γ
[‖Dau‖M + ε(b− a)] +

C1(1 + ε)‖Dju‖M
(1 + γ)

.

Letting ε → 0+, we obtain (2.22).

Step 2: u ∈ ˙SBV (R) We exploit the very same argument used in [12, Section 3.4] to reduce
the case u ∈ Ẇ 1,1(RN ) to the case in which u is smooth and has compactly supported gradient.

So, given u ∈ ˙SBV (R), let {un} be a sequence provided by Lemma 2.3. By the triangle
inequality for every n ∈ N and every ε ∈ (0, 1) it holds that

E′
γ,λ(u) ⊆ E′

γ,λ(un/(1− ε)) ∪ E′
γ,λ((u− un)/ε).

Recalling (2.8), it follows that

Fγ,λ(u) ≤ Fγ,λ(un/(1 − ε)) + Fγ,λ((u− un)/ε),

and hence

lim sup
λ→+∞

Fγ,λ(u) ≤ lim sup
λ→+∞

Fγ,λ(un/(1− ε)) + sup
λ>0

Fγ,λ((u− un)/ε).

Since un ∈ X(R), by Step 1 and the second inequality in (1.3) we conclude that

lim sup
λ→+∞

Fγ,λ(u) ≤

[

C1

γ

‖Daun‖M
1− ε

+
C1

γ + 1

‖Djun‖M
1− ε

]

+ c2(N, γ)
‖D(u − un)‖M

ε
.

Letting first n → +∞, and then ε → 0+ we obtain (2.22).

3 The higher dimensional case

In this section we extend the results of Section 2 to the case N > 1, thus establishing Theo-
rem 1.1 and Theorem 1.2 in full generality.

The main tool that we exploit is a representation formula for Fγ,λ(u), which allows us to
rewrite this functional in terms of its one-dimensional version computed on all one-dimensional
sections of the function u.

In order to state the formula, let us introduce some notation. For a function u : RN → R,
a unit vector σ ∈ S

N−1 and a point z ∈ σ⊥ let uσ,z : R → R be the one-dimensional function
coinciding with the restriction of u to the line parallel to σ passing through z, namely the
function

uσ,z(t) := u(z + σt) ∀t ∈ R.

The result is the following.
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Lemma 3.1. Let u : RN → R be a measurable function and let us fix γ > 0 and λ > 0.
Then it turns out that

Fγ,λ(u) =
1

C1

∫

SN−1

dσ

∫

σ⊥

Fγ,λ(uσ,z) dz.

Proof. Let χ : RN × R
N → {0, 1} be the characteristic function of the set Eγ,λ(u). Then we

have that

Fγ,λ(u) =

∫

RN

dx

∫

RN

|y − x|γ−Nχ(x, y) dy.

Setting first y = x+σr, with σ ∈ S
N−1 and r ∈ (0,+∞), and then x = z+σt, with z ∈ σ⊥

and t ∈ R, we obtain that

Fγ,λ(u) =

∫

RN

dx

∫

SN−1

dσ

∫ +∞

0
rγ−Nχ(x, x+ σr)rN−1 dr

=

∫

SN−1

dσ

∫

σ⊥

dz

∫

R

dt

∫ +∞

0
rγ−1χ(z + σt, z + σ(t+ r)) dr

=
1

2

∫

SN−1

dσ

∫

σ⊥

dz

∫

R

dt

∫

R

|r|γ−1χ(z + σt, z + σ(t+ r)) dr.

Finally, setting r = s− t and recalling that C1 = 2 we obtain that

Fγ,λ(u) =
1

2

∫

SN−1

dσ

∫

σ⊥

dz

∫

R

dt

∫

R

|s− t|γ−1χ(z + σt, z + σs) ds

=
1

C1

∫

SN−1

dσ

∫

σ⊥

Fγ,λ(uσ,z) dz.

The second result that we need to perform the sectioning argument is the following well-
known lemma, that follows from the results in [2, Section 3.11].

Lemma 3.2. Let u ∈ ˙BV (RN ). Then for every σ ∈ S
N−1 it holds that uσ,z ∈ ˙BV (R) for

almost every z ∈ σ⊥ and
∫

SN−1

dσ

∫

σ⊥

‖Dauσ,z‖M dz = CN‖Dau‖M,

∫

SN−1

dσ

∫

σ⊥

‖Djuσ,z‖M dz = CN‖Dju‖M,

∫

SN−1

dσ

∫

σ⊥

‖Dcuσ,z‖M dz = CN‖Dcu‖M.

We can now extend the proofs of our main results to the case N > 1.

Proof of Theorem 1.1. It is enough to apply consecutively Lemma 3.1, Fatou lemma, the one-
dimensional result and Lemma 3.2, to obtain that

lim inf
λ→+∞

Fγ,λ(u) = lim inf
λ→+∞

1

C1

∫

SN−1

dσ

∫

σ⊥

Fγ,λ(uσ,z) dz

≥

∫

SN−1

dσ

∫

σ⊥

1

C1
lim inf
λ→+∞

Fγ,λ(uσ,z) dz

≥

∫

SN−1

dσ

∫

σ⊥

(

‖Dauσ,z‖M
γ

+
‖Djuσ,z‖M

1 + γ
+

(2γ − 1)‖Dcuσ,z‖M
γ(1 + γ)22+γ

)

dz

=
CN

γ
‖Dau‖M +

CN

1 + γ
‖Dju‖M +

CN (2γ − 1)

γ(1 + γ)22+γ
‖Dcu‖M.
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Proof of Theorem 1.2. From (1.3) and Lemma 3.2 we deduce that
∫

SN−1

dσ

∫

σ⊥

sup
λ>0

Fγ,λ(uσ,z) dz ≤

∫

SN−1

dσ

∫

σ⊥

c2‖Duσ,z‖M dz = c2CN‖Du‖M < +∞.

Therefore, from Lemma 3.1, the dominated convergence theorem, the one-dimensional
result and Lemma 3.2, we deduce that

lim
λ→+∞

Fγ,λ(u) = lim
λ→+∞

1

C1

∫

SN−1

dσ

∫

σ⊥

Fγ,λ(uσ,z) dz

=

∫

SN−1

dσ

∫

σ⊥

1

C1
lim

λ→+∞
Fγ,λ(uσ,z) dz

=

∫

SN−1

dσ

∫

σ⊥

(

‖Dauσ,z‖M
γ

+
‖Djuσ,z‖M

1 + γ

)

dz

=
CN

γ
‖Dau‖M +

CN

1 + γ
‖Dju‖M.
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e le loro Applicazioni” (GNAMPA) of the “Istituto Nazionale di Alta Matematica” (INdAM).

The author acknowledges the MIUR Excellence Department Project awarded to the De-
partment of Mathematics, University of Pisa, CUP I57G22000700001.

References

[1] J. M. Aldaz. A general covering lemma for the real line. Real Anal. Exchange 17
(1991/92), no 1, 394–398.

[2] L. Ambrosio, N. Fusco, D. Pallara. Functions of bounded variation and free discon-
tinuity problems. Oxford Mathematical Monographs, 2000.

[3] C. Antonucci, M. Gobbino, M. Migliorini, N. Picenni. On the shape factor of
interaction laws for a non-local approximation of the Sobolev norm and the total variation.
C. R. Math. Acad. Sci. Paris 356 (2018), no. 8, 859–864.

[4] C. Antonucci, M. Gobbino, M. Migliorini, N. Picenni. Optimal constants for a
nonlocal approximation of Sobolev norms and total variation. Anal. PDE 13 (2020),
no. 2, 595–625.

[5] C. Antonucci, M. Gobbino, N. Picenni. On the gap between the Gamma-limit and
the pointwise limit for a nonlocal approximation of the total variation. Anal. PDE 13
(2020), no. 3, 627–649.

[6] J. Bourgain, H. Brezis, and P. Mironescu. Another look at Sobolev spaces. Optimal
control and partial differential equations, IOS, Amsterdam (2001), 439–455.

15



[7] H. Brezis. Some of my favorite open problems. Atti Accad. Naz. Lincei Rend. Lincei
Mat. Appl. 34 (2023), no. 2, 307–335.

[8] H. Brezis, H.-M. Nguyen. Non-local functionals related to the total variation and
connections with image processing. Ann. PDE 4 (2018), no. 1, 9, 77 pp.

[9] H. Brezis, J. Van Schaftingen, P.-L. Yung. A surprising formula for Sobolev norms.
Proc. Nat. Acad. Sci. USA 118 (2021), no. 8, e2025254118, 6 pp.

[10] H. Brezis, J. Van Schaftingen, P.-L. Yung. Going to Lorentz when fractional
Sobolev, Gagliardo and Nirenberg estimates fail. Calc. Var. Partial Differential Equations
60 (2021), no. 4, 129, 12 pp.

[11] H. Brezis, A. Seeger, J. Van Schaftingen, P.-L. Yung. Sobolev spaces revisited.
Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 33 (2022), no. 2, 413–437.

[12] H. Brezis, A. Seeger, J. Van Schaftingen, P.-L. Yung. Families of functionals
representing Sobolev norms. Anal. PDE, to appear.

[13] F. Dai, X. Lin, D. Yang, W. Yuan, Y. Zhang. Poincaré inequality meets Brezis–Van
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