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Differentially Private and Communication-Efficient

Distributed Nonconvex Optimization Algorithms
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Abstract

This paper studies the privacy-preserving distributed optimization problem under limited commu-

nication, where each agent aims to keep its cost function private while minimizing the sum of all

agents’ cost functions. To this end, we propose two differentially private distributed algorithms under

compressed communication. We show that the proposed algorithms achieve sublinear convergence for

smooth (possibly nonconvex) cost functions and linear convergence when the global cost function

additionally satisfies the Polyak–Łojasiewicz condition, even for a general class of compressors with

bounded relative compression error. Furthermore, we rigorously prove that the proposed algorithms

ensure ǫ-differential privacy. Unlike methods in the literature, the analysis of privacy under the proposed

algorithms do not rely on the specific forms of compressors. Simulations are presented to demonstrate

the effectiveness of our proposed approach.

Index Terms

Distributed nonconvex optimization, linear convergence, compression communication, differential

privacy.

A. Xie, X. Wang, and X. Ren are with the School of Mechatronic Engineering and Automation, Shanghai University, Shanghai,

China. Emails: {xatai, xfwang, xqren}@shu.edu.cn.

X. Yi is with the Lab for Information & Decision Systems, Massachusetts Institute of Technology, Cambridge, MA 02139,

USA. Email: xinleiyi@mit.edu.

M. Cao is with the Faculty of Science and Engineering, University of Groningen, Groningen, the Netherlands. Email:

m.cao@rug.nl.

May 2, 2024 DRAFT

http://arxiv.org/abs/2307.16656v2


2

I. INTRODUCTION

In recent years, distributed optimization in multi-agent systems has emerged as a popular

research topic, playing a fundamental role in areas such as resource allocation [1], control [2],

learning [3], and estimation [4]. In a typical distributed consensus optimization setup, the ob-

jective is for a team of agents connected through a network, each associated with a local cost

function, to cooperatively minimize the sum of local cost functions. Specifically, consider a

network of n agents aiming to solve the following optimization problem:

min
x∈Rd

{
f(x) =

1

n

n∑

i=1

fi(x)

}
, (1)

where fi : R
d 7→ R is private local cost function belong to agent i and x is the global decision

variable.

Numerous distributed optimization algorithms have been reported to solve the problem (1),

such as distributed (sub)gradient descent [5]–[7], gradient tracking methods [8], EXTRA [9],

and distributed Newton methods [10], [11]. However, these algorithms usually assume that the

cost functions fi are convex. In many applications, such as empirical risk minimization [12] and

resource allocation [13], the cost functions are nonconvex. To address this issue, the authors

of [14]–[16] proposed several distributed algorithms that allow each agent to achieve the first-

order stationary point even in the presence of nonconvex cost functions.

To implement the distributed algorithms, agents need to communicate with each other, which is

normally realized by wireless networks. However, wireless networks are vulnerable to malicious

attacks, which can result in eavesdropping of the sensitive information transmitted between

agents. For instance, in the robot rendezvous problem, the decision variables may contain some

private and sensitive location information, as highlighted in [17]. Moreover, recent research [18]

has shown that adversaries can recover private training data through shared gradients, leading to

the risk of exposing confidential information such as medical records and financial transactions.

It is therefore essential to promptly and comprehensively address privacy concerns in distributed

optimization.

To ensure the privacy of each agent in distributed optimization, various privacy-preserving

algorithms have been proposed. Among them, there are two common categories of algorithms.

The first category involves adding noise to the transmitted information to confuse attackers.

The authors of [19]–[22] proposed several distributed optimization algorithms making use of

the notion of differential privacy [23]. For instance, Huang et al. [19] proposed differentially
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private gradient descent method that masks the state by adding Laplace noise. Zhu et al. [20]

extended the above results to time-varying directed networks. However, they only provided the

sublinear convergence analysis. To this end, Ding et al. [21] achieved both linear convergence and

differential privacy by simultaneously adding noise to states and directions and using constant

stepsizes. Notice that, as pointed out in [21], it is impossible to achieve differential privacy and

accurate convergence simultaneously for the problem (1). Similar impossibility results can be

found in [24] as well. Chen et al. [22] further considered the case of directed graphs. To this end,

the authors of [25]–[28] use correlated noise to avoid the loss of accuracy. Mo and Murray [25]

designed a special time-decaying noise sequence. Wang [26] proposed a state-decomposition

method. The intuition of such approaches is to let the noise sum be zero. However, the level of

privacy that can be protected is relatively low due to the correlation between the added noises. The

second category of privacy-preserving distributed optimization algorithms involve encryption.

For example, Lu and Zhu [29] proposed a privacy-preserving distributed optimization method

using homomorphic encryption. Although encryption-based methods can enable the solutions to

converge to the exact optimal, they require a significant amount of computing resources.

Most of the aforementioned approaches investigated the privacy-preserving distributed opti-

mization algorithms under the idealized communication network. In practice, it is necessary to

consider compressed information due to limited communication bandwidth. Alistarh et al. [30]

and Koloskova et al. [31] proposed communication-efficient stochastic gradient descent algo-

rithms by using an unbiased compressor and biased but contractive compressors, respectively.

Liao et al. [32] introduced a general class of compressors with bounded relative compression

error. They point out that their compressors cover the two types of compressors mentioned above.

Kajiyama et al. [33] achieved linear convergence by combining the gradient tracking algorithm

with a compressor with bounded absolute compression errors, and Xiong et al. [34] extended

the approach in [33] to directed graphs. Additionally, the compressed communication algorithms

proposed in [31], [35]–[37] are applicable to nonconvex cost functions.

Due to the advantages of compressed information in saving communication bandwidth, it is

natural to consider the marriage between communication compression and privacy preservation.

However, there are relatively few related works because of the complex coupling between the

compression error and the noise required to achieve privacy. Agarwal et al. [38] considered a

Binomial mechanism and a stochastic quantization in federated learning, which is not suitable

for the decentralized scenario with no central servers. Wang and Başar [39] proposed a dif-

May 2, 2024 DRAFT



4

ferentially private stochastic gradient descent algorithm with compressed communication even

for nonconvex cost functions. Both [38] and [39] pointed out that their algorithms can achieve

strict (ǫ, δ)-differential privacy. None of [38] and [39], however, provided the linear convergence

analysis. Besides, their privacy analysis relies on a specific compressor.

In this paper, we propose compressed, differentially private, distributed, nonconvex optimiza-

tion algorithms, which preserve differential privacy and achieve state-of-the-art linear conver-

gence rates. The main contributions of this work are summarized as follows:

1) For a general class of compressors with bounded relative compression error, we propose

a novel nonconvex differentially Private Gradient Tracking algorithm under Compressed

communication (PGTC). To guarantee the generality of compressors and preserve privacy,

the states will be masked by additional Laplace noises. We show that PGTC converges to

a neighborhood of a stationary point with the rate O(1/T ) in general nonconvex settings

(Theorem 1) and linearly converge to a neighborhood of the global optimum when the

global cost function additionally satisfies the Polyak–Łojasiewicz (P–L) condition (Theo-

rem 2). The size of the neighborhood is determined by the noise added on the gradient.

Compared with [21], PGTC achieves the same convergence rate even for nonconvex cost

functions and bandwidth constrained communication network, and compared with [38],

[39], we establish the linear convergence rate.

2) To further improve communication efficiency, we provide the nonconvex differentially Pri-

vate Primal-Dual algorithm under Compressed communication (PPDC), which has similar

convergence properties of PGTC (Theorem 4 and Theorem 5). Compared to PGTC, each

agent under PPDC only needs to transmit one compressed variable to its neighbors at each

time step. Compared with [37], we further consider the privacy concern. Notice that the

noise will be accumulated over time for PGTC and PPDC, which increases the difficulty

in analyzing the convergence of the algorithms.

3) Theoretically, we show that PGTC and PPDC preserve ǫ-differential privacy for the local

cost function of each agent even as the time goes to infinity (Proposition 1 and 2), but a

strict assumption (Assumption 6) is required. Subsequently, we introduce a more general

assumption, under which the algorithms can only guarantee privacy for a finite time horizon

(Theorem 3 and Theorem 6). Furthermore, different from [38], [39], the privacy under

PGTC and PPDC does not rely on some specific compressors but are effective for a

general class of compressors.
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The remainder of this paper is organized as follows. In Section II, we introduce the pre-

liminaries and formulate the problem. The PGTC algorithm is proposed in Section III, and

its convergence and privacy are then analyzed. Section IV provides the PPDC algorithm and

the corresponding analysis. Some numerical examples are provided in Section V to verify the

theoretical results. The conclusion and proofs are provided in Section VI and Appendix A–G,

respectively.

Notations: R (R+) is the set of (positive) real numbers. Z is the set of integers and N the set

of nature numbers. Rn is the set of n dimensional vectors with real values. The transpose of

a matrix P is denoted by P⊤, and we use [P ]ij to denote the element in its i-th row and j-th

column. The Kronecker product is denoted by ⊗. The n-dimensional all-one and all-zero column

vectors are denoted by 1n and 0n, respectively. The n-dimensional identity matrix is denoted by

In. We then introduce two stacked vectors: for a vector x ∈ R
nd, we denote x̄ = 1

n
(1⊤

n ⊗ Id)x,

x̄ , 1n⊗ x̄. Further, | · |, ‖ · ‖1, ‖ · ‖ denote the absolute value, l1 norm and l2 norm, respectively.

For a matrix W having positive eigenvalues, we use λ̄W and λW to denote its spectral radius

and minimum positive eigenvalue respectively. Furthermore, for any square matrix A and vector

x with suitable dimension, we denote ‖x‖2A = x⊤Ax. For a given constant θ > 0, Lap(θ) is

the Laplace distribution with the probability density function fL(x, θ) =
1
2θ
e−

|x|
θ . For any vector

ξ = [ξ1, . . . , ξd]
⊤ ∈ R

d, we say that ξ ∼ Lapd(θ) if each component ξi ∼ Lap(θ), i = 1, . . . , d.

Furthermore, we use E[·] and P [·] to denote the expectation of a random variable and the

probability of an event, respectively.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Standard Assumptions

For the distributed optimization problem (1), we consider that each agent i maintains a local

estimate xi,k ∈ R
d of x at time step k and use ∇f i(xi,k) to denote the gradient of fi at xi,k. We

make the following assumptions on the local cost functions fi.

Assumption 1. Each local cost function fi is Lf -smooth, for some Lf > 0, namely for any

x, y ∈ R
d,

‖∇f i(x)−∇f i(y)‖ ≤ Lf ‖x− y‖ . (2)
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From (2), we have

|fi(y)− fi(x)− (y − x)⊤∇f i(x)| ≤
Lf

2
‖y − x‖2 . (3)

Assumption 2. Let f ∗ be the minimum function value of the problem (1). We assume f ∗ > −∞.

Assumption 3. (Polyak–Łojasiewicz (P–L) condition [37]) There exists a constant ν > 0 such

that for any x ∈ R
d,

1

2
‖∇f(x)‖2 ≥ ν(f(x)− f ∗). (4)

Remark 1. Assumptions 1–2 are standard in distributed nonconvex optimization, see e.g., [9],

[37], [40]. Furthermore, as point out in [37], the P–L condition is a weaker assumption than

strong convexity and ensures that each stationary point of problem (1) is a global minimizer.

B. Basics of Graph Theory

The exchange of information between the n agents is captured by an undirected graph G(V, E)
of n nodes, where V = {1, 2, . . . , n} is the set of the agents’ indices and E ⊆ V × V is the set

of edges. The edge (i, j) ∈ E if and only if agents i and j can communicate with each other.

Let W = [wij]n×n ∈ R
n×n be the positively weighted adjacency matrix of G, namely wij > 0

if (i, j) ∈ E , and wij = 0, otherwise. Note that wii = 0 due to the self edge (i, i) /∈ E . We use

Ni = {j ∈ V| (i, j) ∈ E} to denote the neighbor set of agent i and use D = diag[d1, d2, · · · , dn]
to denote the degree matrix, where di =

∑n
j wij, ∀i ∈ V . The Laplacian matrix of graph G is

denoted by L = D −W .

Assumption 4. The undirected graph G(V, E) is connected and W is a doubly stochastic matrix,

i.e., 1⊤W = 1⊤ and W1 = 1.

C. Compression Method

To improve the communication efficiency, we consider the situation where agents compress the

information before sending it. More specifically, for any x ∈ R
d, we consider a general class of

stochastic compressors C(x, ̺) and use fc(x, ̺) to denote the corresponding probability density

functions, where ̺ is a random perturbation variable. Furthermore, the compressors C(x, ̺) can

be simplified to C(x) when the distribution of ̺ is given. We then introduce the following

assumption.
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Assumption 5. For some ϕ ∈ (0, 1] and r > 0, the stochastic compressor C(·) : Rd 7→ R
d

satisfies

EC

[∥∥∥∥
C(x)

r
− x

∥∥∥∥
2
]
≤ (1− ϕ) ‖x‖2 , ∀x ∈ R

d, (5)

where EC denotes the expectation over the internal randomness of the stochastic compression

operator C.

From (5) and the Cauchy-Schwarz inequality, one obtains that

EC

[
‖C(x)− x‖2

]
≤ r0 ‖x‖2 , ∀x ∈ R

d. (6)

where r0 = 2r2(1− ϕ) + 2(1− r)2.

Remark 2. Compressors under Assumption 5 are general. As pointed out in [32], the com-

pressors satisfying the Assumption 5 cover a class of unbiased compressors [30], [41] and

biased but contractive compressors [31], [36], [42]. Noting that, the compressors satisfying

Assumption 5 also cover the compressors used in [39]. Furthermore, it is important to note

that EC [‖C(x) − x‖2] = 0 if ϕ = 1, r = 1, which means that the uncompressed case is also

included in Assumption 5. In other words, using compressors satisfying Assumption 5 alone is

not sufficient to ensure privacy,, and we need to introduce additional stochasticity.

D. Differential Privacy

To evaluate the privacy performance, we adopt the notion of ǫ-differential privacy for the

distributed optimization, which has recently been studied in [19], [21]. Specifically, we introduce

the following definitions.

Definition 1. (Adjacency [22]) Two function sets S(1) = {f (1)
i }ni=1 and S(2) = {f (2)

i }ni=1 are said

to be adjacent if there exists some i0 ∈ {1, 2, . . . , n} such that

f
(1)
i = f

(2)
i ∀i 6= i0, and f

(1)
i0

6= f
(2)
i0

.

Given a cost function set S, we denote the randomized mechanism as a mapping M(S, x0) :

x0 7→ H, where x0 and H are the initial state and observation, respectively.
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Definition 2. (Differential privacy [22]) Given ǫ > 0 and a randomized mechanism M, for any

two adjacent function sets S(1) and S(2), any initial state x0 and any observation H ⊆ Range(M),

the randomized mechanism M keeps ǫ-differential privacy if

P{M(S(1), x0) ∈ H} ≤ eǫP{M(S(2), x0) ∈ H}, (7)

where Range(M) denotes the output domain of M.

Definition 2 shows that the randomized mechanism M is ǫ-differential private if for any

pair of adjacent function sets, the probability density functions of their observations are similar.

Intuitively, it is difficult for an adversary to distinguish between two adjacent function sets merely

by observations if the corresponding mechanism M is ǫ-differential private. It is worth noting,

as pointed out in [21], [24], that achieving both accurate convergence and strict ǫ-differential

privacy (see Definition 2) simultaneously for Problem (1) is impossible. Intuitively, privacy is

guaranteed when the perturbation (noise) is large enough, and more details can be found in [21,

Proposition 1] and [24, Theorem 1]. Therefore, in this paper, we are more concerned about the

trade-off between privacy and accuracy.

III. DISTRIBUTED GRADIENT TRACKING ALGORITHM WITH COMPRESSED

COMMUNICATION

In this section, we provide the nonconvex differentially Private Gradient Tracking algorithm

under Compressed communication (PGTC), which is shown in Algorithm 1.

A. Algorithm Description

The proposed PGTC is inspired by the DiaDSP Algorithm [21]. In this paper, we additionally

consider the compressed information and the nonconvex cost functions. We first assume that

each agent i ∈ V maintains an estimate xi,k and an auxiliary variable yi,k for tracking the global

gradient. To guarantee differential privacy, each agent i broadcasts the noisy xa
i,k and yai,k to its

neighbors Ni per step, where

xa
i,k = xi,k + ξxi,k, (8)

yai,k = yi,k + ξyi,k, (9)
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and ξxi,k and ξyi,k are Laplace noises. Similar to the DiaDSP Algorithm [21], we set ξxi,k ∼
Lapd(sξxiq

k
i ) and ξyi,k ∼ Lapd(sξyiq

k
i ), ∀i ∈ V , where sξxi > 0, sξyi > 0, and 0 < qi < 1. After

the information exchange, agent i performs the following updates:

xi,k+1 =
n∑

j=1

wijx
a
j,k − ηyi,k, (10)

yi,k+1 =

n∑

j=1

wijy
a
j,k +∇f i(xi,k+1)−∇f i(xi,k), (11)

where the stepsize η is a constant and the initial value yi,0 = ∇f i(xi,0), ∀i ∈ V . To improve the

communication efficiency, we introduce a general class of compressors C(·) and use the revised

compressed variable x̂i,k, ŷi,k to replace xa
i,k, yai,k, respectively. Noting that if the compressed

variable C(xa
i,k) and C(yai,k) are directly used here, the compression error will be accumulate

and affect the convergence. Then, we design the updates of agent i ∈ V as follows:

xi,k+1 = xa
i,k + γ

n∑

j=1

wij(x̂j,k − x̂i,k)− ηyi,k, (12)

yi,k+1 = yai,k + γ

n∑

j=1

wij(ŷj,k − ŷi,k) +∇f i(xi,k+1)−∇f i(xi,k), (13)

where

x̂j,k = xc
j,k + C(xa

j,k − xc
j,k), (14)

ŷj,k = ycj,k + C(yaj,k − ycj,k), (15)

xc
j,k+1 = (1− αx)x

c
j,k + αxx̂j,k, (16)

ycj,k+1 = (1− αy)y
c
j,k + αy ŷj,k, (17)

with γ, αx, and αy being some positive parameters. We assume that xc
i,0 = 0 and yci,0 = 0, ∀i ∈ V .

Let Wγ , ((1 − γ)In + γW ) ⊗ Id, and then (12) and (13) can be rewritten into the following

compact form

xk+1 = Wγ(xk + ξx,k) + γ(W − In)⊗ Id(x̂k − xk − ξx,k)− ηyk, (18)

yk+1 = Wγ(yk + ξy,k) + γ(W − In)⊗ Id(ŷk − yk − ξy,k) +∇f(xk+1)−∇f(xk), (19)

where xk , [x⊤
1,k, . . . , xn,k⊤]⊤ ∈ R

nd,yk , [y⊤1,k, . . . , y
⊤
n,k]

⊤ ∈ R
nd, x̂k ,

[
x̂⊤
1,k, . . . , x̂

⊤
n,k

]⊤ ∈
R

nd, ŷk , [ŷ⊤1,k, . . . , ŷ
⊤
n,k]

⊤ ∈ R
nd, ∇f(xk) , [∇f1(x1,k)

⊤, . . . , ∇fn(xn,k)
⊤]⊤ ∈ R

nd, ξx,k ,

[ξ⊤x1,k
, . . . , ξ⊤xn,k

]⊤ ∈ R
nd, ξy,k , [ξ⊤y1,k, . . . , ξ

⊤
yn,k

]⊤ ∈ R
nd.
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Algorithm 1 PGTC Algorithm

1: Input: Stopping time K, adjacency matrix W , and positive parameters η, γ, αx, αy, sξxi ,

sξyi , qi, ∀i ∈ V .

2: Initialization: Each i ∈ V chooses arbitrarily xi,0 ∈ R
d, xc

i,0 = 0, yci,0 = 0, and computes

yi,0 = ∇f i(xi,0).

3: for k = 0, 1, . . . , K − 1 do

4: for for i ∈ V in parallel do

5: Generate Laplace noises ξxi,k ∼ Lapd(sξxiq
k
i ) and ξyi,k ∼ Lapd(sξyiq

k
i ).

6: Obtain xa
i,k and yai,k from (8) and (9), respectively.

7: Compute C(xa
i,k − xc

i,k) and C(yai,k − yci,k), then broadcast them to its neighbors Ni.

8: Receive C(xa
j,k − xc

j,k), and C(yaj,k − ycj,k) from j ∈ Ni.

9: Update x̂i,k, ŷi,k, xc
i,k+1, and yci,k+1, ∀j ∈ Ni ∪ {i}, from (14)–(17), respectively.

10: Update xi,k+1 and yi,k+1 from (12) and (13), respectively.

11: end for

12: end for

13: Output: {xi,k}.

B. Convergence Analysis of PGTC

In this section, we will analyze convergence of PGTC under the compressors satisfying

Assumption 5.

Let Θk , [Ωx,k,Ωy,k,Ωσx,k,Ωσy ,k]
⊤, where Ωx,k = ‖xk − x̄k‖2, Ωy,k = ‖yk − ȳk‖2, Ωσx,k =

‖σx,k‖2, and Ωσy ,k = ‖σy,k‖2, with σx,k , [(xc
1,k − xa

1,k)
⊤, . . . , (xc

n,k − xa
n,k)

⊤]⊤ ∈ R
nd, σy,k ,

[(yc1,k − ya1,k)
⊤, . . . , (ycn,k − yan,k)

⊤]⊤ ∈ R
nd. The following lemma constructs a set of linear

inequalities that is related to Θk.

Lemma 1. Suppose Assumptions 1–2 and 4–5 hold. Under Algorithm 1, if αx, αy ∈ (0, 1
r
), we

have the following linear inequalities:

E[Θk+1] � GE[Θk] + ϑ1E[‖ȳk‖2] + ϑ2q̄
2ks̄ξ

2, (20)

where q̄ = maxi{qi}, s̄ξ = maxi{sξxi , sξyi}, the notation � means element-wise less than or

equal to, the matrix G ∈ R
4×4 and vectors ϑ1, ϑ2 ∈ R

4 are given in Appendix A.

Proof. See Appendix A.
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To analyze the convergence of PGTC, we choose the following Lyapunov function

Vk = E[f(x̄k)]− f ∗ +
ζ1L

n
E[Ωx,k] +

ζ2
nL

E[Ωy,k] +
ζ3L

n
E[Ωσx,k] +

ζ4
nL

E[Ωσy ,k],

= E[f(x̄k)]− f ∗ + s⊤E[Θk],

(21)

where x̄k = 1
⊤

n
xk, ζ1–ζ4 are some positive constants that will be given later,

s =

[
ζ1L

n

ζ2ρ
2

nL

ζ3L

n

ζ4ρ
2

nL

]

with ρ = 1 − λ̄
W−11⊤

n

. Since f ∗ is the minimum function value, we know that the Lyapunov

function Vk is well defined.

We now show the convergence results of PGTC.

Theorem 1. Suppose Assumptions 1–2 and 4–5 hold. Under Algorithm 1, assume αx, αy ∈ (0, 1
r
)

and let γ = ζγρϕ1, η = ζηγρ
2/Lf , where 0 < ζγ = ζη ≤ ζ̄1. For any T ∈ N, it holds that

1

T

T∑

k=0

(
E[‖∇f(x̄k)‖2] + E[‖xk − x̄k‖2]

)
≤ κ̄1M1

T
+

4

n
E



∥∥∥∥∥

∞∑

t=0

ξy,t

∥∥∥∥∥

2

 , (22)

where κ̄1, M1, ζ̄1 and ζ1–ζ4 are constants given in Appendix B.

Proof. See Appendix B.

Due to the fact that ξyi,k, ∀i ∈ V, ∀k ∈ N are independent of each other, E ‖∑∞
t=0 ξy,t‖

2
can

be rewritten as
∑∞

t=0 E‖ξy,t‖2. Then we have the following result.

Corollary 1. Under the same assumptions and parameters in Theorem 1. It holds that

1

T

T∑

k=0

(
E[‖∇f(x̄k)‖2] + E[‖xk − x̄k‖2]

)
≤ κ̄1M1

T
+

8ds̄2ξ
1− q̄2

,

where d is the dimension of the state vector x and s̄ξ and q̄ are defined in Lemma 1.

Remark 3. Theorem 1 and Corollary 1 show that PGTC converges to a neighborhood of a

stationary point with the rate O(1/T ) for general nonconvex cost functions. The same conver-

gence rate was achieved by algorithms proposed in [37], [43] under the same assumptions and

cost function. However, they do not consider the privacy concern. Furthermore, since the noise

added to the gradient tracking is accumulative, the convergence is affected by
∑∞

t=0 ξy,t. More

details will be given later. Furthermore, Theorem 1 does not require γ and η to be some fixed

constants due to the fact that 0 < ζγ = ζη ≤ ζ̄1. It is only necessary to select a ζγ = ζη that

satisfies the above condition in the implement.
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Then we provide the linear convergence analysis with the P–L condition.

Theorem 2. Suppose Assumptions 1–5 hold. Under Algorithm 1, if αx, αy ∈ (0, 1
r
) and let

γ = ζγρϕ1, η = ζηγρ
2/Lf , where 0 < ζγ = ζη ≤ ζ̄2. It holds that

E[Vk+1] ≤ (1− ην

2
)E[Vk] + b1q̄

2ks̄ξ
2 +

η

n
E

∥∥∥∥∥

k∑

t=0

ξy,t

∥∥∥∥∥

2

,

where b1 M1, ζ̄2 and ζ1–ζ4 are constants given in Appendices B and C.

Proof. See Appendix C.

Similar to the way we obtained Corollary 1, we have

Corollary 2. Under the same assumptions and parameters in Theorem 2. It holds that

E[Vk+1] ≤ (1− κ̄2)
k+1(E[V0] +

b1s̄ξ
2

1− κ̄2 − q̄2
) +

4ds̄2ξ
(1− q̄2)ν

,

where 0 < κ̄2 < min{ην

2
, 1− q̄2}.

From (21), it can be observed from Theorem 2 and Corollary 2 that E[f(x̄k)]−f ∗+ ζ1L

n
E[Ωx,k] =

O((1 − κ̄2)
k) + O(1), which means PGTC linearly converges to a neighborhood of the global

optimum under P–L condition. However, the size of the neighborhood is determined by the

noise accumulated over time on gradients. This is because the noise on gradients accumulates

over the iterations. More specifically, from (19), we can see that 1
n
(1⊤

n ⊗ Id)yk = 1
n
(1⊤

n ⊗
Id)(∇f(xk) +

∑k−1
t=0 ξy,t). As pointed out in [18], the differential privacy is achieved only when

the noise variance is large enough to affect accuracy. Although there are technical means to

avoid the accumulation of noise, e.g., [34], it is necessary to reserve the the accumulated noise

term for privacy protection. A similar result was also established by DiaDSP proposed in [21].

However, DiaDSP only works for ideal communication network and the authors did not provide

the analysis for nonconvex cost functions. Moreover, DiaDSP demonstrates that the convergence

point x∞ ∈ R
d satisfies the following property when the cost functions are strongly convex and

smooth:
n∑

i=1

∇f i(x
∞) = −

n∑

i=1

∞∑

k=0

ηyi,k. (23)

However, it is important to note that the analysis in Theorem 2 does not yield the same result

due to the limitations of the P–L condition. As shown in Assumption 3, the P–L condition

only establishes the gradient relationship between any point and the optimal point, whereas the
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strongly convex condition used in [21] establishes a similar relationship between any two points.

Nevertheless, under strongly convex cost functions, the convergence point of PGTC coincides

with DiaDSP [21], suggesting that the proposed PGTC achieves a comparable level of accuracy

to the algorithm with idealized communication, assuming the same cost functions. For additional

details, please refer to the our previous work [44].

C. ǫ-Differential privacy

In this section, we show that the differential privacy of all cost functions can be preserved

under PGTC.

We use Hk to denote the information transmitted between agents at time step k, i.e., Hk =

{C(xa
i,k−xc

i,k), C(yai,k−yci,k)| ∀i ∈ V}. Without loss of generality, we assume the adversary aims to

infer the cost function of agent i0. Consider any two adjacent function sets S(1) and S(2), and only

the cost function fi0 is different between the two sets, i.e., f
(1)
i0

6= f
(2)
i0

and f
(1)
i = f

(2)
i , ∀i 6= i0.

Before provide the privacy result, we first introduce the following constrained assumption [21].

Assumption 6. [21] For any x1, x2 ∈ R
d, we have

∇f
(1)
i0
(x1)−∇f

(1)
i0
(x2) = ∇f

(2)
i0
(x1)−∇f

(2)
i0
(x2).

Proposition 1. Suppose Assumptions 1–6 hold. PGTC preserves the ǫi0-differential privacy for

any agent i0’s cost function if η < 1
2Lf

and qi0 ∈ (
ηLf+

√
η2L2

f
+4ηLf

2
, 1), where ǫi0 is given by

ǫi0 =
τi0q

2
i0
δ

q2i0 − ηLf − qi0ηLf

, ∀i0 ∈ V (24)

with τi0 =
η

sξxi0

+ 1
sξyi0

.

Proof. The proof can be obtained in the same way as the proof of Theorem 2 in [44].

Proposition 1 shows that PGTC ensures ǫ-differential privacy even as time goes to infinity but

needs a strict assumption (Assumption 6). From (24), the privacy budget ǫi0 can be arbitrarily

chosen by setting specific values for parameters sξxi0
and sξyi0

. However, higher levels of privacy

also imply worse convergence accuracy. To relax the restrictions of Assumption 6, we consider

the following more general assumption.

Assumption 7. The gradient of all local cost functions are bounded, i.e., there exists a positive

constant M such that ‖∇fi(x)‖ ≤ M , ∀ i ∈ N , x ∈ R
d.
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Remark 4. Assumption 7 is very common used in privacy-preserving distributed optimization

problem, e.g., [19], [20], [22]. It is useful for analyzing differential privacy because it controls

the differences between the gradients of adjacent cost functions. This is also the reason why it

can be used to relax Assumption 6.

Theorem 3. Suppose Assumption 7 holds, given a finite number of iterations K, PGTC preserves

the ǫi0-differential privacy for any agent i0’s cost function if the parameters satisfy

4
√
dM

K∑

k=0

( √
η

sξxi0
qki0

+
1

sξyi0
qki0

)
≤ ǫi0 . (25)

Proof. See Appendix D.

Remark 5. We would like to highlight that, unlike the privacy of the methods in [38], [39], which

only work for specific compressors, PGTC is effective for a class of compressors. Furthermore,

as previously discussed, compared to [21], Theorem 3 establishes weaker privacy but only

requires mild assumptions. More specifically, the condition (25) is difficult to be satisfied when

the iterations K tends to infinity. In other words, under a weaker assumption (Assumption 7),

the PGTC can only preserve the privacy within the interval [0, K] for some finite iterations K.

D. Proof Sketch

We then provide a proof sketch of Theorems 1 and 2. Unlike the ideal communication

algorithm DiaDSP [21], to establish the convergence of PGTC, we need to track the consensus

errors and the extra compressed errors of the state xk and the estimated gradient yk using Θk.

To estimate those errors, we construct a set of linear inequalities, which are stated in Lemma 1.

Recalling inequality (20), due to the accumulation of noise in the gradient tracking term, i.e.

ȳk = ∇f̄(xk) +
k−1∑

t=0

ξ̄y,t. (26)

We know that E[‖ȳk‖2] cannot decrease to zero. To estimate the optimization errors and distin-

guish the redundant parts
∑∞

t=0 ξy,t, we combine the form f(x̄k)− f ∗ and Lf -smooth, and use

the Lyapunov function (21) to achieve the convergence results in Theorems 1 and 2. Notice that

since there are no assumptions of strongly convex or convex cost functions, we do not use the

inequality property associated with convexity in the proofs. Furthermore, compared with [38],

[39], to analyze linear convergence, we introduce the gradient tracking method and use constant
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stepsize in PGTC. However, the gradient tracking method leads to noise accumulation, as we

stated before. Finally, the proof of Theorems 1 and 2 are inspired by the proof of Theorems 4.3

and 4.4 in [43]. However, since this paper considers more general compressors and privacy, we

need to analyze the different compression errors and noise for PGTC.

IV. DISTRIBUTED PRIMAL-DUAL ALGORITHM WITH COMPRESSED COMMUNICATION

It can be seen from the PGTC algorithm that each agent should transmit two compressed vari-

ables in each iteration. To further improve communication efficiency, in this section, we provide

the nonconvex differentially Private Primal-Dual algorithm under Compressed communication

(PPDC), which is shown in Algorithm 2. Compared with PGTC, each agent under PPDC only

needs to transmit one compressed variable to its neighbors in each iteration. This means that

PPDC consumes fewer communication resources.

A. Algorithm Description

To solve the distributed nonconvex optimization problem 1, Yi et al. [45] proposed the

following distributed primal-dual algorithm

xi,k+1 = xi,k − η(γ

n∑

j=1

Lijxj,k + ωvi,k +∇f i(xi,k)), (27)

vi,k+1 = vi,k + ηω
n∑

j=1

Lijxj,k, (28)

where γ, ω are positive parameters, η is stepsize, Lij is the i-th row and j-th column element of

the Laplacian matrix L and vi,k is the auxiliary variable of agent i. Similar to PGTC, to enable

differential privacy, we propose the following algorithm

xi,k+1 = xi,k + ξxi,k − η(γ

n∑

j=1

Lij(xj,k + ξxj ,k) + ωvi,k +∇f i(xi,k)), (29)

vi,k+1 = vi,k + ξvi,k + ηω

n∑

j=1

Lij(xj,k + ξxj ,k), (30)

with ξxi,k and ξvi,k are Laplace noises. Similar to the PGTC, we set ξxi,k ∼ Lapd(sξxiq
k
i ) and

ξvi,k ∼ Lapd(sξviq
k
i ), ∀i ∈ V , where sξxi > 0, sξvi > 0, and 0 < qi < 1. Although vi,k is not

transmitted directly to the neighbors of agent i, both noises ξxi,k and ξvi,k are needed to enable

differential privacy. Specifically, according to Definition 2, differential privacy requires that the

observations under any two adjacent function sets are the same with some positive probability.
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This means that we need to mask the gradient changes with noises. Similarly, to ensure that

the noise is sufficient to protect privacy, we add noise ξvi,k to the dual variable vi,k even if it

does not need to be transmitted. To improve communication efficiency, we use the compressed

variable x̂i,k to replace xa
i,k. The updates for agent i ∈ V can be designed as follows:

xi,k+1 = xi,k + ξxi,k − η(γ
n∑

j=1

Lij x̂j,k + ωvi,k +∇f i(xi,k)), (31)

vi,k+1 = vi,k + ξvi,k + ηω

n∑

j=1

Lij x̂j,k, (32)

where x̂j,k are given in (14).

Algorithm 2 PPDC Algorithm

1: Input: Stopping time K, adjacency matrix W , and positive parameters η, γ, ω, αx, sξxi ,

sξvi , qi, ∀i ∈ V .

2: Initialization: Each i ∈ V chooses arbitrarily xi(0) ∈ R
d, xc

i(0) = 0, vi(0) = 0.

3: for k = 0, 1, . . . , K − 1 do

4: for for i ∈ V in parallel do

5: Generate Laplace noises ξxi,k ∼ Lapd(sξxiq
k
i ) and ξvi,k ∼ Lapd(sξviq

k
i ).

6: Compute C(xi,k + ξxi,k − xc
i,k) and broadcast them to its neighbors Ni.

7: Receive C(xj,k + ξxj,k − xc
j,k)from j ∈ Ni.

8: Update xi,k+1 and vi,k+1 from (31) and (32), respectively.

9: Update xc
i,k from (16).

10: end for

11: end for

12: Output: {xi,k}.

B. Convergence Analysis of PPDC

In this section, we first show the convergence of PPDC with and without P–L condition.

Theorem 4. Suppose Assumptions 1–2 and 4–5 hold, under Algorithm 2, if γ = ζ̃1ω, ω > ζ̃2,

αx ∈ (0, 1
r
), and 0 < η < ζ̃3, for any T ∈ N, it holds that

1

T

T∑

k=0

(
E‖xk − x̄k‖2 + E‖∇f(x̄k)‖2

)
≤ κ̄3M2

T
+ κ̌1E‖

∞∑

t=0

ξ̄v,t‖2, (33)
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where ζ̃1, ζ̃2, ζ̃3, κ̄3, κ̌1 and M2 are positive constants given in Appendix E.

Proof. See Appendix E.

Similarly, we have the following result.

Corollary 3. Under the same assumptions and parameters in Theorem 4. It holds that

1

T

T∑

k=0

(
E‖xk − x̄k‖2 + E‖∇f(x̄k)‖2

)
≤ κ̄3M2

T
+

2dκ̌1s̄
2
ξ,v

1− q̄2
,

where s̄ξ,v = maxi{sξvi}.

Remark 6. Theorem 4 and Corollary 3 shows that PPDC converges to a neighborhood of

a stationary point with the rate O(1/T ) for general nonconvex cost functions, which is the

same as PGTC. Furthermore, from Appendix E, we have κ̄3 ≥ 4
η

and κ12 > η

4
+ 2ηω2. Since

ω > ζ̃2 > ζ̃4 > 1, it holds that nκ̌1 = κ̄3κ12 > 9 > 4. Recall Theorem 1, compared the second

term to the right side of (22) and (33), it can be observed that PPDC seems to be more susceptible

to noise than PGTC. As pointed out in [45], the primal-dual method is equivalent to the EXTRA

algorithm proposed in [9]. However, the EXTRA algorithm uses historical information to correct

the difference between the local gradient and the global gradient. This implies that PPDC may

accumulate additional noise compared with PGTC. Additionally, compared with PGTC, PPDC

preserve stronger privacy, more details can be found in Remark 7.

Then we provide the linear convergence of PPDC with the P–L condition.

Theorem 5. Suppose Assumption 1–5 hold, under Algorithm 2, if γ = ζ̃1ω, ω > ζ̃2, αx ∈ (0, 1
r
),

and 0 < η < ζ̃3, we have

E[‖xk − x̄k‖2 + n(f(x̄k)− f ∗)] ≤ (1− κ̄4)
kM3 +

2dκ̌1s̄
2
ξ,v

1− q̄2
,

where ζ̃1, ζ̃2, ζ̃3, κ̄4, κ̌2 and M3 are positive constants given in Appendix F with 0 < κ̄4 < 1.

Proof. See Appendix F.

It is straightforward to see that PPDC linearly converges to a neighborhood of the optimum

when the global cost function satisfies the P–L condition. By combining Theorems 4 and 5,

we know that PPDC has similar convergence property as PGTC. Furthermore, as we discussed

before, PPDC requires fewer communication resources than PGTC.
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C. Differential privacy

In this section, we show that the differential privacy of all cost functions can be preserved

under PPDC.

Proposition 2. Suppose Assumptions 1–6 hold. PPDC preserves the ǫi0-differential privacy for

any agent i0’s cost function if η < 1
2Lf

and qi0 ∈ (
ηLf+

√
η2L2

f
+4ηLf

2
, 1), where ǫi0 is given by

ǫi0 =
τi0q

2
i0
δ

q2i0 − ηLf − qi0ηLf

, ∀i0 ∈ V (34)

with τi0 =
1

sξxi0

+ 1
ηsξvi0

.

Proof. The proof can be obtained in the same way as the proof of Theorem 2 in [44].

Similarly, we use the same notation in Theorem 3 and provide the following theorem.

Theorem 6. Suppose Assumption 7 holds, given a finite number of iterations K, PPDC preserves

the ǫi0-differential privacy for any agent i0’s cost function if the parameters satisfy

2
√
dM

K∑

k=0

( √
η

sξxi0
qki0

+
2

ωsξvi0
qki0

)
≤ ǫi0 . (35)

Proof. See Appendix G.

Remark 7. Suppose the parameter of noise sξvi = sξyi , since ω > 1, it can be seen that the left

side of (35) is less than or equal to the left side of (25). This means that the condition (35)

holds more easily than (25) for a given ǫi0 . In other words, the privacy under PPDC is more

stronger than PGTC under the same noises parameters.

D. Proof Sketch

We then provide the proof sketch of Theorems 4 and 5. Similar to the proof of PGTC, we

track the compressed errors and consensus errors of state x̄k and dual state v̄k by auxiliary

function Ṽk, which is defined in Appendix E. To estimate those errors, we construct a linear

inequality of Ṽk, which is stated in Lemma 6. Notice that noises also accumulate on the dual

variable, i.e.

v̄k+1 = v̄k +

k∑

t=0

ξ̄v,t. (36)
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Fig. 1: A connected undirected graph consisting of 6 agents.

Similar to PGTC, we distinguish the redundant parts
∑∞

t=0 ξv,t. Then we show that the errors

actually decrease, and provide some sufficient parameters leading to the claimed convergence

results in Theorems 4 and 5. Finally, the proofs of Theorems 4 and 5 are inspired by the proofs

of Theorems 1 and 2 in [37]. However, since this paper considers the privacy, we need to analyze

the noise and deal with the redundant parts (36).

V. SIMULATION

In this section, simulations are given to verify the validity of PGTC and PPDC. We first consider

the following three compressors:

• Greedy (Top-k) quantizer [46]:

C1(x) :=
k∑

is=1

x(is)eis,

where x(is) is the is-th coordinate of x with i1, . . . , ik being the indices of the largest k

coordinates in magnitude of x, and e1, . . . , ed are the standard unit basis vectors in R
d.

• Biased b-bits quantizer [31]:

C2(x) :=
‖x‖
ξ

· sign(x) · 2−(b−1) ◦
⌊
2(b−1)|x|
‖x‖ + u

⌋
,

where ξ = 1+min{ d
22(b−1) ,

√
d

2(b−1) }, u is a random dithering vector uniformly sampled from

[0, 1]d, ◦ is the Hadamard product, and sign(·), | · |, ⌊·⌋ are the element-wise sign, absolute

and floor functions, respectively.
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• Norm-sign compressor [37]:

C3(x) :=
‖x‖∞
2

sign(x).

As pointed out in [31], all of the above three compressors satisfy Assumption 5. Specifically,

we choose k = 2 and b = 2 in the following simulations.

We then consider two distributed nonconvex optimization problem with n = 6 agents and

they communicate on a connected undirected graph, whose topology is shown in Fig. 1. Specif-

ically, we firstly assume the agents aims to slove the following nonconvex distributed binary

classification problem [45], [47], [48]

min
x

f(x) =
1

6

6∑

i=1

fi,

fi (xi) =
1

m

m∑

j=1

log
(
1 + exp

(
−uijx

⊤
i vij

))
+

d∑

s=1

λαx2
i,s

1 + αx2
i,s

. (37)

where vij ∈ R
d is feature vector and randomly generated with standard Gaussian distribution

N(0, 1), uij ∈ {−1, 1} is the label and randomly generated with uniformly distributed pseudo-

random integers taking the values {−1, 1} and xi,s is the s-th coordinate of xi. Specifically, we

assume λ = 0.001, α = 1, m = 200 and the initial value of each agent xi(0) is randomly chosen

in [0, 1]10.

Algorithm Compressor γ ω η sξ q αx αy

PGTC-C1 C1 0.2 — 0.1 100 0.1 0.5 0.5

PGTC-C2 C2 0.2 — 0.1 100 0.1 0.5 0.5

PGTC-C3 C3 0.1 — 0.15 100 0.1 0.5 0.5

DiaDSP — — — 0.15 100 0.1 — —

PPDC-C1 C1 45 5 0.015 100 0.1 0.2 —

PPDC-C2 C2 45 5 0.01 100 0.1 0.2 —

PPDC-C3 C3 25 5 0.01 100 0.1 0.2 —

TABLE I: Parameter setting for different algorithms.

We conduct experiments to verify the convergence rate of PGTC and PPDC using different

compressors. The parameters are set as specified in TABLE I, except for sξ = 0.1 and q = 0.2,

which are consistent across all agents (sξxi = sξyi = sξvi = sξ and qi = q for all i ∈ V).

To evaluate the convergence, we compute the residual defined as Rk , mint≤k ‖xt − x∞‖2,
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Fig. 2: The evolution Rk of residual under PGTC, PPDC, uncompressed method DiaDSP for

distributed binary classification problem (37).
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Fig. 3: The evolution Rk of residual with respect to the transmitted bits under PGTC, PPDC,

uncompressed method DiaDSP for distributed binary classification problem (37).
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Fig. 4: Effect of noise decaying rate on convergence accuracy for distributed binary classification

problem (37).
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Fig. 5: The evolution Rk of residual under PGTC, PPDC, uncompressed method DiaDSP for

distributed nonconvex optimization problem (38).
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where x∞ is the convergence point. Fig. 2 shows that xk linearly converges to the point x∞

under PGTC and PPDC with different constant stepsizes and compressors. Furthermore, the

convergence rate of PGTC can closely match that of DiaDSP [21] with suitable parameters

and compressors. Fig. 3 illustrates that, compared with DiaDSP, most of our algorithms re-

quire less number of bits. This means our methods are more efficient. We then simulate the

effect of the noise decaying rate on convergence accuracy. We use ‖∇f(x∞)‖ to measure the

convergence accuracy of different algorithms. We set sξ = 0.1 and other parameters are the

same as TABLE I. The relation between accuracy and decaying rate q is shown in Fig. 4, where

q = 0.18, 0.26, 0.34, 0.42, 0.5, 0.58, 0.66, 0.74, 0.82, 0.9. It can be seen that the accuracy of PGTC

is nearly the same as that of DiaDSP and the accuracy is only noise dependent and not related

to stepsize, γ, and compressors. Compared with PGTC, it can also be seen that the convergence

accuracy of PPDC is more affected by noise.

We further consider the following nonconvex problem [49]

min
x

f(x) =
1

6

6∑

i=1

fi,

fi(x) = x⊤x+ 3sin(x)⊤sin(x) +mix
⊤cos(x), (38)

where mi ∈ R is constant. In this example, the parameter mi is randomly generated and such

that
∑6

i=1mi = 0, mi 6= 0, ∀i ∈ V . The initial value of each agent xi(0) is randomly chosen

in [0, 1]10.

Similar to Fig. 2, we then verify the convergence rate of PGTC and PPDC with different

compressors for distributed nonconvex optimization problem (38), the parameters of different

algorithms are given in TABLE I. Fig. 5 shows that xk linearly converges to the point x∞ under

PGTC and PPDC with different constant stepsize and compressors for problem (38). As shown

in Fig. 5, due to the primal-dual method causes more noise redundancy (details can be fond in

Remark 6), the PPDC is generally slower than PGTC. Fig. 6 shows that compared with the ideal

communication method, our algorithms converge to the same accuracy with much fewer bits

transmitted. In addition, even from the perspective of transmitted bit, the PPDC still generally

slower than PGTC. We then simulate the effect of the noise decaying rate on convergence

accuracy for distributed nonconvex optimization problem (38). Similar to the Fig. 4, let sξ = 5

and other parameters be the same as TABLE I. The relation between accuracy and decaying rate
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Fig. 6: The evolution Rk of residual with respect to the transmitted bits under PGTC, PPDC,

uncompressed method DiaDSP for distributed nonconvex optimization problem (38).

q is shown in Fig. 7. It can be seen that the accuracy of our methods is only noise dependent

and PPDC is more susceptible to noise compared to PGTC. This also verifies the Remark 6.

VI. CONCLUSION

In this paper, we investigated differentially private distributed nonconvex optimization under

limited communication. Specifically, we proposed two algorithms under compressed communica-

tion. We established sublinear convergence for smooth (possibly nonconvex) cost functions and

linear convergence when the global cost functions additionally satisfy the Polyak-Łojasiewicz

condition even for a general class of compressors with bounded relative compression error.

Furthermore, we observed that the proposed algorithms achieve similar accuracy to the algorithm

with idealized communication. Importantly, compared with existing literature, our proposed

algorithms preserve a more rigorous ǫ-differential privacy for the local cost function of each agent

and are suitable for a general class of compressors. Future work includes extending the study to

directed graphs and exploring the relationship between compressors and privacy performance.
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Fig. 7: Effect of noise decaying rate on convergence accuracy for distributed nonconvex

optimization problem (38).

APPENDIX A

THE PROOF OF LEMMA 1

A. Supporting Lemmas

We first introduce some useful vector and matrix inequalities.

Lemma 2. For u, v ∈ R
d, and ∀s > 0 we have

u⊤v ≤ s

2
‖u‖2 + 1

2s
‖v‖2, (39)

‖u+ v‖2 ≤ (1 + s)‖u‖2 + (1 +
1

s
)‖v‖2. (40)

Lemma 3. [32] Suppose Assumption 4 holds. For γ ∈ (0, 1] and any ω ∈ R
nd, we have

‖Wγω − ω̄‖ ≤ λ̂ ‖ω − ω̄‖, where λ̂ = 1− γ(1− ρw) with ρw = λ̄
W−11⊤

n

.

Lemma 4. Suppose an random variable x ∼ Lap(θ), we have E[x2] = 2θ2 and E[|x|] = θ.
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B. The proof of Lemma 1

Denote H = 1
n
(1n1

⊤
n ⊗Id), K = Kn⊗Id = Ind−H . We then prove Lemma 1 by constructing

the upper bounds of E[Ωx,k+1], E[Ωy,k+1], E[Ωσx,k+1], and E[Ωσy ,k+1], respectively.

(a) According to (18), we obtain

E[Ωx,k+1] = E[‖Wγxk − x̄k +Wγξx,k − ξ̄x,k

+ γ(W − In)⊗ Id(x̂k − xk − ξx,k)− η(yk − ȳk)‖2]

≤ (1 + s)(1− γρ)E[Ωx,k]+(1 +
1

s
)(3λ̄2

W−Iγ
2r0E[Ωσx,k]

+ 3η2E[Ωy,k] + 3λ̂2
E[‖ξx,k − ξ̄x,k‖2])

≤ (1− γρ

2
)E[Ωx,k] +

9λ̄2
W−Iγr0
ρ

E[Ωσx ,k] +
9η2

γρ
E[Ωy,k] + µ1,k, (41)

where µ1,k =
9λ̂2

γρ
E[‖ξx,k− ξ̄x,k‖2]; the first inequality holds comes from (6), (40), and Lemma 3,

and denoting ρ = 1− ρw; the second inequality holds by choosing s = γρ/2 and γ ≤ 1, ρ ≤ 1.

Then we constructed the relationship between E[Ωx,k+1] and E[Ωx,k].

(b) From (19), we have

E[Ωy,k+1] = E[‖Wγyk − ȳk +Wγξy,k − ξ̄y,k

+ γ(W − In)⊗ Id(ŷk − yk − ξy,k)

+K(∇f(xk+1)−∇f(xk))‖2]

≤ (1− γρ

2
)E[Ωy,k] +

9λ̄2
W−Iγr0
ρ

E[Ωσy ,k]

+
9L2

f

γρ
E[‖xk+1 − xk‖2] +

9λ̂2

γρ
E[‖ξy,k − ξ̄y,k‖2], (42)

where the first inequality due to (6), λ̄K = 1, Assumption 1, and Lemma 3. By (12), it holds

that

E[‖xk+1 − xk‖2] = E[‖ξx,k + γ(W − In)⊗ Idx̂k − ηyk‖2]

≤ E[‖γ(W − In)⊗ Id(x̂k − xk − ξx,k)

+ γ(W − In)⊗ Id(xk − x̄k) +Wγξx,k − ηyk‖2]

≤ 4γ2λ̄2
W−Ir0E[Ωσx,k] + 4γ2λ̄2

W−IE[Ωx,k]

+ 4η2E[Ωy,k] + 4η2E[‖ȳk‖2] + 4λ̂2
E[‖ξx,k‖2]. (43)
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where the second inequality holds due to (6) and the fact that ‖y‖2 = ‖y− ȳ‖2 + ‖ȳ‖2 for any

vector y ∈ R
nd. Combining (42)–(43), one obtains that

E[Ωy,k+1] ≤ (1− γρ

2
+

36η2L2
f

γρ
)E[Ωy,k]

+
9λ̄2

W−Iγr0

ρ
E[Ωσy ,k] +

36γλ̄2
W−IL

2
f

ρ
E[Ωx,k]

+
36γλ̄2

W−IL
2
f

ρ
E[Ωσx,k] +

36η2L2
f

γρ
E[‖ȳk‖2] + µ2,k, (44)

where µ2,k =
36λ̂2L2

f

γρ
E[‖ξx,k‖2] + 9λ̂2

γρ
E[‖ξy,k − ξ̄y,k‖2]. Then we constructed the relationship

between E[Ωy,k+1] and E[Ωy,k].

(c) We have

E[Ωσx,k+1] = E[‖xc
k+1 − xk+1 − ξx,k+1‖2]

= E[‖xk − xk+1 + ξx,k − ξx,k+1 + xc
k − xk − ξx,k

+ αxr
1

r
C(xk + ξx,k − xc

k)‖2]

≤ (1 + s)(αxr(1− ϕ) + (1− αxr))E[Ωσx,k]

+ (1 +
1

s
)(2E[‖xk+1 − xk‖2] + 2E[‖ξx,k+1 − ξx,k‖2])

≤ (1− ϕ1

2
)E[Ωσx,k] +

4

ϕ1
E[‖xk+1 − xk‖2]

+
4

ϕ1

E[‖ξx,k+1 − ξx,k‖2]

≤ (1− ϕ1

2
+

16γ2λ̄2
W−Ir0
ϕ1

)E[Ωσx ,k]

+
16γ2λ̄2

W−I

ϕ1

E[Ωx,k] +
16η2

ϕ1

E[Ωy,k] +
16η2

ϕ1

E[‖ȳk‖2] + µ3,k, (45)

where µ3,k =
16λ̂2

ϕ1
E[‖ξx,k‖2]+ 4

ϕ1
E[‖ξx,k+1−ξx,k‖2]; the second equality comes from (14) and (16);

the first inequality comes from Lemma 2 and Jensen’s inequality; the second inequality follows

by denoting ϕ1 = min{αxrϕ, αyrϕ}, choosing s = ϕ1

2−2ϕ1
, and αxr < 1. Then we constructed

the relationship between E[Ωσx,k+1] and E[Ωσx,k].

(d) Similar to (45), we have

E[Ωσy ,k+1] ≤ (1− ϕ1

2
)E[Ωσy ,k] +

4

ϕ1
E[‖yk+1 − yk‖2]

+
4

ϕ1
E[‖ξy,k+1 − ξy,k‖2]. (46)
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From (13), it holds that

E[‖yk+1 − yk‖2] = E[‖ξy,k + γ(W − In)⊗ Idŷk

+∇f(xk+1)−∇f(xk)‖2]

≤ E[‖γ(W − In)⊗ Id(ŷk − yk − ξy,k)

+ γ(W − In)⊗ Id(yk − ȳk) +Wγξy,k +∇f(xk+1)

−∇f(xk)‖2]

≤ 4γ2λ̄2
W−Ir0E[Ωσy ,k] + (4γ2λ̄2

W−I + 16η2L2
f )E[Ωy,k]

+ 16γ2λ̄2
W−IL

2
fr0E[Ωσx,k] + 16γ2λ̄2

W−IL
2
fE[Ωx,k]

+ 16η2L2
fE[‖ȳk‖2] + 16λ̂2

E[‖ξx,k‖2] + 4λ̂2
E[‖ξy,k‖2]. (47)

where the first inequality holds due to the fact that (W − In)⊗ Idȳ = 0. Combining (46)–(47),

one obtains that

E[Ωσy,k+1] ≤ (1− ϕ1

2
+

16γ2λ̄2
W−Ir0

ϕ1
)E[Ωσy ,k]

+
16γ2λ̄2

W−I + 64η2L2
f

ϕ1
E[Ωy,k]

+
64γ2λ̄2

W−IL
2
fr0

ϕ1

E[Ωσx,k] +
64γ2λ̄2

W−IL
2
f

ϕ1

E[Ωx,k]

+
64η2L2

f

ϕ1
E[‖ȳk‖2] + µ4,k, (48)

where µ4,k =
64λ̄2

W−I

ϕ1
E[‖ξx,k‖2]+ 16λ̄2

W−I

ϕ1
E[‖ξy,k‖2]+ 4

ϕ1
E[‖ξy,k+1−ξy,k‖2]. Then we construct the

relationship between E[Ωσy ,k+1] and E[Ωσy ,k]. Let µk, [µ1,k, µ2,k, µ3,k, µ4,k]
⊤, combining (41), (44), (45),

and (48), we have

E[Θk+1] � GE[Θk] + ϑ1E[‖ȳk‖]2 + µk,

where the elements of the matrix G ∈ R
4×4 and vectors ϑ1,∈ R

4 correspond to the coefficients

in (41), (44), (45), and (48). Since ξxi
∼ Lapd(sξxiq

k
i ) and ξyi ∼ Lapd(sξyiq

k
i ), we have µk �

ϑ2q̄
2ks̄ξ

2, where ϑ2 is given by

ϑ2 =

{
9λ̂2

γρ
,
36λ̂2L2

f

γρ
+

9λ̂2

γρ
,
16(λ̂2 + 1)

ϕ1
,

64λ̄2
W−I + 16(λ̄2

W−I + 1)

ϕ1

}
2nd.

(49)

Then we know that (20) holds.
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APPENDIX B

THE PROOF OF THEOREM 1

For simplicity of the proof, we also denote some notations.

ζ̄1 = min{ 1

8λ̄W−I

√
r0
,

n

2Lf (
n

2L2
f

+ 930)
,

1
2+18n
Lf

+ 576
,

1
2+72nr0

Lf
+ 576 + 1024r0

,
1

2
Lf

+ 144r0
,

1

2ϕ1 + 176
},

κ̄1 =
4

η
, M1 = E[V0] +

∞∑

k=0

(b1q̄
2ks̄ξ

2),

b1 = s⊤ϑ2 + (
1

η
+ Lf)n.

We first construct a upper bound of E[f(x̄k+1)]− f ∗.

E[f(x̄k+1)]− f ∗ ≤

E[f(x̄k)]− f ∗ + E[∇f(x̄k)
⊤(

1

n
(1⊤

n ⊗ Id)(ξx,k

− ηyk))] +
Lf

2
E[‖ 1

n
(1⊤

n ⊗ Id)(ξx,k − ηyk)‖2]

≤ E[f(x̄k)]− f ∗ − η

2
E[‖∇f(x̄k)‖2]−

η

2
E[‖ȳk‖2]

+
η

2
E[‖∇f (x̄k)− ȳ‖2] + η

4
E[‖∇f(x̄k)‖2]

+
1

η
E[‖ 1

n
(1⊤

n ⊗ Id)ξx,k‖2]

+
Lf

2
E[‖ 1

n
(1⊤

n ⊗ Id)(ξx,k − ηyk)‖2]. (50)

From (19), we introduce a key property of PGTC, i.e., for k ≥ 0,

nȳk = n∇f̄(xk) + (1⊤
n ⊗ Id)

k−1∑

t=0

ξy,t. (51)

Then (50) can be rewritten as

E[f(x̄k+1)]− f ∗ ≤ E[f(x̄k)]− f ∗ − η

4
E[‖∇f(x̄k)‖2]

− η

2
E[‖ȳk‖2] +

η

2
E[‖∇f(x̄k)−∇f̄(xk)

− 1

n
(1⊤ ⊗ Id)

k−1∑

t=0

ξy,t‖2] +
1

η
E[‖ 1

n
(1⊤ ⊗ Id)ξx,k‖2]

+ LfE[‖
1

n
(1⊤ ⊗ Id)ξx,k‖2] + η2LfE[‖ȳk‖2]
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≤ E[f(x̄k)]− f ∗ − η

4
E[‖∇f(x̄k)‖2]

− 1

n
(
η

2
− η2Lf )E[‖ȳk‖2]

+
ηL2

f

n
E[‖x̄k − xk‖2] +

η

n
E[‖

k−1∑

t=0

ξy,t‖2]

+
1

n
(
1

η
+ Lf )E[‖ξx,k‖2], (52)

where the second inequality holds due to Assumption 1 and Jensen’s inequality. From (21), (52),

and Lemma 1, we have

E[Vk+1] ≤ E[Vk]−
η

4
E[‖∇f(x̄k)‖2]−

ζ1Lfη

2n
E[Ωx,k]

+ (s⊤G− (1− η

2
)s⊤ + c⊤)E[Θk]

− 1

n
(
η

2
− η2Lf − s⊤ϑ1)E[‖ȳk‖2] + b1q̄

2ks̄ξ
2

+
η

n
E



∥∥∥∥∥

k∑

t=0

ξy,t

∥∥∥∥∥

2



where

c =
[
ηL2

f

n
0 0 0

]
.

Then the Theorem 1 can be proved if there exists some positive constants ζ1–ζ4 such that the

following inequalities hold.

((1− η

2
)I −G⊤)s− c � 0, (53)

1

n
(
η

2
− η2Lf − s⊤ϑ1) ≥ 0. (54)

Since ζγ = ζη ≤ ζ̄1, we have ζγ ≤ 1
8λ̄W−I

√
r0

, ζη ≤ 1
2ϕ1+176

< 1
12

. From γ = ζγρϕ1, η =

ζηγρ
2/Lf , and ρ ≤ 1, we have

1− γρ

2
+

36η2L2
f

γρ
≤ 1− γρ

4
,

1− ϕ1

2
+

16γ2λ̄2
W−Ir0

ϕ1

< 1− ϕ1

4
.

Then (53)–(54) can be transfer to the following inequality
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


γρLf
2n

−
ζηγρ2

2n
−

36λ̄2
W−IγρLf

n
−

16ζγ λ̄2
W−IγρLf

n
−

64ζγ λ̄2
W−Iγρ3Lf

n

−
9ζ2ηγρ3

nLf

γρ3

4nLf
−

ζηγρ4

2nL2
f

−
16ζ2ηζγγρ5

nLf
−

16ζγγρ3(λ̄2
W−I

+4ζ2ηρ4)

nLf

−
9ζγ λ̄2

W−I
r0ϕ1Lf

n
−

36ζγ λ̄2
W−I

ρ2ϕ1Lf

n

ϕ1Lf
4n

−
ζηζγρ3ϕ1

2n
−

64ζ2γ λ̄2
W−I

ρ4r0ϕ1Lf

n

0 −
9ζγ λ̄2

W−I
r0ϕ1ρ2

nLf
0

ϕ1ρ2

4nLf
−

ζηζγρ5ϕ1

2nL2
f

0 −
36ζ2ηγρ5

nLf
−

16ζ2ηζγγρ5

nLf
−

36ζ2ηζγγρ7

nLf







ζ1

ζ2

ζ3

ζ4



 �




ζηγρ2Lf
n

0

0

0

1
n
(−

ζηγρ2

2Lf
+

ζ2ηζγγρ5ϕ1
Lf

)


 ,

(55)

which can be rewritten as



1− ζηρ

Lf
−72λ̄2

W−I −32ζγλ̄
2

W−I −128ζγλ̄
2

W−Iρ
2

−36ζ2η 1− 2ζηρ

Lf
−64ζ2ηζγρ

2 −64ζγ(λ̄
2

W−I + 4ζ2ηρ
4)

−36ζγλ̄
2

W−Ir0 −144ζγλ̄
2

W−Iρ
2 1− 2ζηζγρ

3

Lf
−256ζ2γλ̄

2

W−Iρ
4r0

0 −36ζγλ̄
2

W−Ir0 0 1− 2ζηζγρ
3

Lf

0 −72ζηρ
3 −32ζηζγρ

3 −72ζηζγρ
5







ζ1

ζ2

ζ3

ζ4



�




2ζηρ

0

0

0

−1 + 2ζηζγρ
3ϕ1



.

(56)

Since ϕ1 < 1, ρ ≤ 1, and λ̄2
W−I ≤ 4, it is easy to verify that (56) holds if ζη = ζγ ≤ ζ̄1,

ζ1 =
n

2Lf
, ζ3 = 1, and ζ2 = ζ4 = ζη. Then we have (53)–(54) hold, which means

1

T

T∑

k=0

(
E[‖∇f(x̄k‖2] + E[‖xk − x̄k‖2]

)

≤ κ̄1M1

T
+

4

n
E




∥∥∥∥∥

∞∑

t=0

ξy,t

∥∥∥∥∥

2


 .

APPENDIX C

THE PROOF OF THEOREM 2

In this proof, in addition to the notations used in the proof of Theorem 1, we also denote

ζ̄2 = min{ 1

8λ̄W−I

√
r0
,

n

2Lf(
nν
2L2

f

+ 930)
,

1
2ν+18n

Lf
+ 576

,

1
2ν+72nr0

Lf
+ 576 + 1024r0

,
1

2ν
Lf

+ 144r0
,

1

2ϕ1 + 176
}.

From (52) and Assumption 3, we have

E[f(x̄k+1)]− f ∗

≤ (1− ην

2
)(E[f(x̄k)]− f ∗)− 1

n
(
η

2
− η2Lf)E[‖ȳk‖2]

+
ηL2

f

n
E[‖x̄k − xk‖2] +

η

n
E[‖

k−1∑

t=0

ξy,t‖2]
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+
1

n
(
1

η
+ Lf )E[‖ξx,k‖2], (57)

From (21), (57), and Lemma 1, we have

E[Vk+1] ≤ (1− ην

2
)E[Vk] +(s⊤G− (1− ην

2
)s⊤+ c⊤)E[Θk]

− 1

n
(
η

2
− η2Lf − s⊤ϑ1)E[‖ȳk‖2] + b1q̄

2ks̄ξ
2

+
η

n
E



∥∥∥∥∥

k∑

t=0

ξy,t

∥∥∥∥∥

2



Then the Theorem 2 can be proved if there exists some positive constants ζ1–ζ4 such that the

following inequalities hold.

((1− ην

2
)I −G⊤)s− c � 0, (58)

1

n
(
η

2
− η2Lf − s⊤ϑ1) ≥ 0. (59)

Similar to the proof of Theorem 1, we complete the proof if ζη = ζγ ≤ ζ̄2, ζ1 = n
2Lf

, ζ3 = 1,

and ζ2 = ζ4 = ζη.

APPENDIX D

THE PROOF OF THEOREM 3

From PGTC, it is clear that the observation sequence H = {Hk}∞k=0 is uniquely determined

by the noise sequences ξx = {ξx,k}∞k=0, ξy = {ξy,k}∞k=0, and random sequence ̺ = {̺k}∞k=0,

where ̺k ∈ R
nd is a vector and its element [̺k]ij is the compression perturbation of xa

ij,k−xc
ij,k.

We use function ZF to denote the relation, i.e., H = ZF(ξx, ξy, ̺), where F = {x(0),W,S}.

From Definition 2, to show the differential privacy of the cost function fi0 , we need to show

that the following inequality holds for any observation H ⊆ Range(C) and any pair of adjacent

cost function sets S(1) and S(2),

P{(ξx, ξy,̺) ∈ Ψ|ZF(1)(ξx, ξy, ̺) ∈ H}

≤ eǫP{(ξx, ξy, ̺) ∈ Ψ|ZF(2)(ξx, ξy, ̺) ∈ H},

where F (l)={x(0),W,S(l)}, l=1, 2, and Ψ denotes the sample space. Then it is indispensable

to guarantee ZF(1)(ξx, ξy, ̺) = ZF(2)(ξx, ξy, ̺), i.e.,

C(x
a−c,(1)
i,k , ̺k) = C(x

a−c,(2)
i,k , ̺k), (60)
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C(y
a−c,(1)
i,k , ̺k) = C(y

a−c,(2)
i,k , ̺k), (61)

for ∀i ∈ V and any k ≥ 0, where

x
a−c,(1)
i,k = x

a,(1)
i,k − x

c,(1)
i,k−1,

y
a−c,(1)
i,k = y

a,(1)
i,k − y

c,(1)
i,k−1.

Since x
c,(1)
i,0 = y

c,(1)
i,0 = 0, l = 1, 2, from (14)–(17) and (60)–(61), we have

x
c,(1)
i,k = x

c,(2)
i,k , y

c,(1)
i,k = y

c,(2)
i,k , k = 0, . . . ,∞.

Then one obtains that

fc(x
a−c,(1)
i,k , ̺k) = fc(x

a−c,(2)
i,k , ̺k),

fc(y
a−c,(1)
i,k , ̺k) = fc(y

a−c,(2)
i,k , ̺k),

(62)

if x
a,(1)
i,k = x

a,(2)
i,k and y

a,(1)
i,k = y

a,(2)
i,k , for ∀i ∈ V . Then due to the property of conditional

probability, we have

P{(ξx, ξy, ̺) ∈ Ψ|ZF(1)(ξx, ξy, ̺) ∈ H}
P{(ξx, ξy, ̺) ∈ Ψ|ZF(2)(ξx, ξy, ̺) ∈ H}

≤ P{(ξx, ξy) ∈ Ψ|ZF(1)(ξx, ξy) ∈ H}
P{(ξx, ξy) ∈ Ψ|ZF(2)(ξx, ξy) ∈ H, E1}

,

(63)

where E1 = ∪∞
k=0{xa,(2)

i,k = x
a,(1)
i,k , y

a,(2)
i,k = y

a,(1)
i,k , ∀i ∈ V} is an event. We then analyze the right

side of the inequality (63). Since event E1 holds, one obtains that

ξ
(1)
xi,k

= ξ
(2)
xi,k

, ξ
(1)
yi,k

= ξ
(2)
yi,k

∀ k ∈ N, ∀i 6= i0. (64)

From (12)–(13), the noises with respect to agent i0 should satisfy

∆ξxi0
,k = −∆xi0,k, (65)

∆ξyi0 ,k = −∆yi0,k, (66)

∆xi0,k+1 = −η∆yi0,k, (67)

∆yi0,k+1 = ∆fi0,k+1 −∆fi0,k, (68)

where ∆ξxi0
,k , ξ

(1)
xi0

,k−ξ
(2)
xi0

,k, ∆ξyi0 ,k , ξ
(1)
yi0 ,k

−ξ
(2)
yi0 ,k

, ∆xi0,k , x
(1)
i0,k

−x
(2)
i0,k

, ∆yi0,k , y
(1)
i0,k

−y
(2)
i0,k

,

and ∆fi0,k = ∇f
(1)
i0
(x

(1)
i0,k

) − ∇f
(2)
i0
(x

(2)
i0,k

). From (64)–(68), we know for any pair (ξ
(1)
x , ξ

(1)
y ),

there exist a unique pair (ξ
(2)
x , ξ

(2)
y ) = (ξ

(1)
x + ∆ξx, ξ

(1)
y + ∆ξy) such that ZF(1)(ξ

(1)
x , ξ

(1)
y ) =

ZF(1)(ξ
(2)
x , ξ

(2)
y ). Let I(l) = {(ξ(l)x , ξ

(l)
y )|ZF(l)(ξ

(l)
x , ξ

(l)
y ) ∈ H}, l = 1, 2. Then we have

P{(ξx, ξy) ∈ Ψ|ZF(1)(ξx, ξy) ∈ H}
P{(ξx, ξy) ∈ Ψ|ZF(2)(ξx, ξy) ∈ H, E1}
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=
P{(ξ(1)x , ξ

(1)
y ) ∈ I(1)}

P{(ξ(2)x , ξ
(2)
y ) ∈ I(2)}

=

∫
I(1) fξ

(
ξ
(1)
x , ξ

(1)
y

)
dξ

(1)
x ξ

(1)
y

∫
I(1) fξ

(
ξ
(1)
x +∆ξx, ξ

(1)
y +∆ξy

)
dξ

(1)
x ξ

(1)
y

, (69)

where

fξ
(
ξ(l)x , ξ(l)y

)
=

K∏

k=0

n∏

i=1

d∏

r=1

fL

(
[ξ

(l)
xi,k

]r, sξxiq
k
i

)

fL

(
[ξ

(l)
yi,k

]r, sξyiq
k
i

)
.

Then (69) can be rewritten as

fξ

(
ξ
(1)
x , ξ

(1)
y

)

fξ

(
ξ
(1)
x +∆ξx, ξ

(1)
y +∆ξy

)

=

K∏

k=0

n∏

i=1

d∏

r=1

fL

(
[ξ

(1)
xi,k

]r, sξxiq
k
i

)

fL

(
[ξ

(1)
xi,k

+∆ξxi,k]r, sξxiq
k
i

)

fL

(
[ξ

(1)
yi,k

]r, sξyiq
k
i

)

fL

(
[ξ

(1)
yi,k

+∆ξyi,k]r, sξyiq
k
i

)

≤ exp

(
K∑

k=0

‖∆ξxi0
‖1

sξxi0
qki0

+
‖∆ξyi0‖1
sξyi0

qki0

)
.

From (65)–(68), we have

‖∆ξyi0‖1 ≤ 4
√
dM, ‖∆ξxi0

‖1 ≤ 4
√
dηM,

Then we complete the proof.

APPENDIX E

THE PROOF OF THEOREM 4

A. Supporting Lemmas

Lemma 5. (Lemma 2 in [37]) Suppose Assumption 4 holds, let L be the Laplacian matrix

of the graph G and Kn = In − 1
n
1n1

⊤
n . Then L and Kn are positive semi-definite, L ≤ λ̄LIn,

λ̄Kn
= 1,

KnL = LKn = L, (70)
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0 ≤ λLKn ≤ L ≤ λ̄LKn. (71)

Moreover, there exists an orthogonal matrix [r R] ∈ R
n×n with r = 1√

n
1n and R ∈ R

n×(n−1)

such that

PL = LP = Kn, (72)

λ̄−1
L In ≤ P ≤ λ−1

L In, (73)

where

P =
[
r R

]


λ
−1
n 0

0 Λ−1
1







 r
⊤

R⊤



 ,

with Λ1 = diag([λ2, . . . , λn]) and 0 ≤ λ2 ≤ · · · ≤ λn being the nonzero eigenvalues of L.

Denote f̃(xk) =
∑n

i=1 fi(xi,k), L = L ⊗ Id, P = P ⊗ Id, gk = ∇f̃(xk), ḡk = Hgk,

gb
k = ∇f̃(x̄k), ḡ

b
k = Hgb

k = 1n ⊗∇f(x̄k).

Before proving Theorem 5, we provide the inequality regarding with two state values by using

the following lemma.

Lemma 6. Suppose Assumptions 1–2 and 4–5 hold. Under PPDC, if αx, αy ∈ (0, 1
r
), we have

Ṽk+1 ≤ Ṽk − ‖xk‖2(κ1−κ2η)ηK − ‖vk +
1

ω
gb
k‖2(κ3−κ4η)ηP

− (κ5 − κ6η)η‖ḡk‖2 − (κ7 − κ8η − κ9η
2)‖xk

+ ξx,k − xc
k‖2 −

η

4
‖ḡb

k‖2 + κ10‖ξx,k‖2 + κ11‖ξv,k‖2

+ κ12‖
k∑

t=0

ξ̄v,t‖2, (74)

where

Ṽk =
1

2
‖xk‖2K +

1

2
‖vk +

1

ω
gb
k‖2P+ γ

ω
P
+ x⊤

k KP(vk +
1

ω
gb
k)

+ ‖xk + ξx,k − xc
k‖2 + n(f(x̄k)− f ∗),

κ1 =
γλL

2
− 1

4
(7 + 9L2

f + 13ω),

κ2 =
5L2

f

2
+

6(2 + αxrϕ)

αxrϕ
(γ2λ̄2

L + L2
f ) + 6γ2λ̄2

L

+
9ω2 + 3γ2

2
λ̄L + 3ω2 +

3

2
,

May 2, 2024 DRAFT



36

κ3 =
ω

4
− 3

λL

− (
1

2
+

1

2ω
)(1 +

γ

ω
),

κ4 =
1

λL

+
ω2λ̄L

2
+ 2ω2λ̄L + 6(1 +

2

αxrϕ
)ω2λL,

κ5 =
1

4
− (

L2
f

ωλL

+
γL2

f

ω2λL

+
L2
f

ω2λ2
L

),

κ6 =
2L2

f

ω2λL

+
2L2

f

ω3λL

+
L2
f

ω2λ2
L

+
3L2

f

2
+ Lf ,

κ7 =
αxrϕ

2
(1 + αxrϕ),

κ8 =
1

2
(γ + 4ω)λ̄L + 3ωr0

κ9 = 6γ2λ̄2
Lr0(1 +

2

αxrϕ
) + r0(6γ

2λ̄2
L +

9ω2 + 3γ2

2
λ̄L

+ 3ω2 +
3

2
),

κ10 = 4(
L2
f

ω2λL

+
γL2

f

ω3λL

+
L2
f

2ηωλL

+
γL2

f

2ηω2λL

+
(1 + 2η)L2

f

2ηω2λ2
L

+
3L2

f

4
+

1

2η
+

Lf

2
) +

λ̄2
Ind+ηγL

η

+ 10 + (
1

2
+ 3ω + 2ωλ̄L)η + (

1

ηω
+

1

2
)
1

λL

+
12

αxrϕ

+ 6λ̄2
ηγL−I

(1 +
2

αxrϕ
) + η2(6γ2λ̄2

L +
9ω2 + 3γ2

2
λ̄L

+ 3ω2 +
3

2
),

κ11 = λ−1
L (

1

2η
+

γ

2ηω
+

5

2
+

3γ

2ω
+ ηω +

λ−1
L

η
),

κ12 = 4η2ω2(
L2
f

ω2λL

+
γL2

f

ω3λL

+
L2
f

2ηωλL

+
γL2

f

2ηω2λL

+
(1 + 2η)L2

f

2ηω2λ2
L

+
3L2

f

4
+

1

2η
+

Lf

2
) +

η

4
.

B. The proof of Lemma 6

(i) For simplicity of the proof, we first provide some useful properties. The update equa-

tions (31), (32), (14), and (15) can be rewritten as the following compact form

xk+1 = xk + ξx,k − η(γLx̂k + ωvk +∇f̃(xk)), (75)

vk+1 = vk + ξv,k + ηωLx̂k, (76)
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x̂k = xc
k + C(xa

k − xc
k), (77)

xc
k+1 = (1− αx)x

c
k + αxx̂k, (78)

From (76), the propoerty of Laplacian matrix, and the fact that
∑n

i=1 vi,0 = 0d, we have

v̄k+1 =

k∑

t=0

ξ̄v,t. (79)

Then from (75) and (79), one obtains that

x̄k+1 = x̄k + ξ̄x,k − ηḡk − ηω

k∑

t=0

ξ̄v,t. (80)

Furthermore, we have following useful equations

‖gb
k − gk‖2 ≤ L2

f‖x̄k − xk‖2 ≤ L2
f‖xk‖2K, (81)

‖ḡb
k − ḡk‖2 = ‖H(gb

k − gk)‖2 ≤ L2
f‖xk‖2K, (82)

‖gb
k+1 − gb

k‖2 ≤ L2
f‖x̄k+1 − x̄k‖2

≤ L2
f‖ξ̄x,k − ηḡk − ηω

k∑

t=0

ξ̄v,t‖2, (83)

where the first inequality comes from Assumption 1 and λ̄K = 1; the second inequality comes

from (81) and λ̄H = 1; the last inequality comes from Assumption 1 and (80).

(ii) The proof of Lemma 6. We first provide the upper bound of 1
2
‖xk+1‖2K

1

2
‖xk+1‖2K =

1

2
‖xk + ξx,k − η(γLx̂k + ωvk + gk)‖2K

=
1

2
‖xk + ξx,k − ηγLx̂k‖2K

− ηω(xk + ξx,k − ηγLx̂k)
⊤K(vk +

1

ω
gk)

+ ‖vk +
1

ω
gk‖2η2ω2

2
K

≤ 1

2
‖xk‖2K +

1

2
‖ξx,k − ηγLx̂k‖2K

+ x⊤
k K((Ind + ηγL)ξx,k − ηγL(x̂k − ξx,k))

− ηω(xk + ξx,k − ηγLx̂k)
⊤K

(
vk +

1

ω
gb
k

)

+
η

2
‖xk‖2K +

η

2
‖gk − gb

k‖2 + ‖x̂k‖2η2γ2
2

L2

+
η2

2
‖gk − gb

k‖2 +
η

2
‖ξx,k‖2K +

η

2
‖gk − gb

k‖2
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+ ‖vk +
1

ω
gb
k +

1

ω
gk −

1

ω
gb
k‖2η2ω2

2
K

≤ 1

2
‖xk‖2K − ηγx⊤

k L(x̂k + ξx,k) +
η

4
‖xk‖2K

+
1

η
‖(Ind + ηγL)ξx,k‖2K + ‖ξx,k‖2K

+ ‖x̂k‖2η2γ2L2 − ηω(xk)
⊤K

(
vk +

1

ω
gb
k

)

+
1

2
‖ξx,k‖2K +

η2ω2

2
‖vk +

1

ω
gb
k‖2K

+ ‖x̂k‖2η2γ2
2

L2
+

η2ω2

2
‖vk +

1

ω
gb
k‖2K

+
η

2
‖xk‖2K + η‖gk − gb

k‖2 + ‖x̂k‖2η2γ2
2

L2

+
3η2

2
‖gk − gb

k‖2 +
η

2
‖ξx,k‖2K

+ η2ω2‖vk +
1

ω
gb
k‖2K

≤ 1

2
‖xk‖2K − ‖xk‖2ηγL + ‖x̂k + ξx,k − xk‖2ηγL

2

+ ‖xk‖2ηγL
2

+
3η

4
‖xk‖2K

+ ‖ξx,k‖2
(
λ̄2
Ind+ηγL

η
+ 3

2
+ η

2
)K

+ ‖x̂k‖22η2γ2L2

+ η(
3η

2
+ 1)‖gk − gb

k‖2+‖vk +
1

ω
gb
k‖22η2ω2K

−ηω(x̂k+xk−x̂k+ξx,k−ξx,k)
⊤K(vk+

1

ω
gb
k)

≤ 1

2
‖xk‖2K − ‖xk‖2ηγL

2
−( 3η

4
+η( 3η

2
+1)L2

f
)K

+ ‖x̂k‖22η2γ2L2

+ ‖x̂k + ξx,k − xk‖2η
2
(γL+4ωλ̄LK)

+ ‖ξx,k‖2
(
λ̄2
Ind+ηγL

η
+ 3

2
+ η

2
+2ηωλ̄L)K

+ ‖vk +
1

ω
gb
k‖2

2η2ω2+
ηωλ̄

−1
L

4

− ηω(x̂k)
⊤K

(
vk+

1

ω
gb
k

)
, (84)

where the first and second equalities comes from (75); the first, second, and third inequalities

comes from (39) and (70); the last inequality comes from (39), (81), and λ̄K = 1.
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We then provide the upper bound of 1
2
‖vk+1 +

1
ω
gb
k+1‖2P+ γ

ω
P

.

1

2
‖vk+1 +

1

ω
gb
k+1‖2P+ γ

ω
P

=
1

2
‖vk+

1

ω
gb
k+ξv,k+ηωLx̂k+

1

ω
(gb

k+1 − gb
k)‖2P+ γ

ω
P

≤ 1

2
‖vk +

1

ω
gb
k‖2P+ γ

ω
P
+ η(γ + ω)x̂⊤

k K

(
vk +

1

ω
gb
k

)

+ ξv,k
⊤(P+

γ

ω
P)

(
vk +

1

ω
gb
k

)

+
1

ω
(gb

k+1 − gb
k)

⊤(P+
γ

ω
P)

(
vk +

1

ω
gb
k

)

+ ηx̂⊤
k (K+

γ

ω
K)(gb

k+1 − gb
k) +

3

2
‖ξv,k‖2P+ γ

ω
P

+ ‖x̂k‖2η2ω(γ+ω)L +
1

ω2
‖gb

k+1 − gb
k‖2P+ γ

ω
P

≤ 1

2
‖vk +

1

ω
gb
k‖2P+ γ

ω
P
+ η(γ + ω)x̂⊤

k K

(
vk +

1

ω
gb
k

)

+
1

2η
‖ξv,k‖2P+ γ

ω
P
+

η

2
‖vk +

1

ω
gb
k‖2P+ γ

ω
P

+
1

2ηω
‖gb

k+1 − gb
k‖2P+ γ

ω
P
+

η

2ω
‖vk +

1

ω
gb
k‖2P+ γ

ω
P

+ ‖x̂k‖2η2
2
K
+
1

2
‖gb

k+1 − gb
k‖2+

ηγ

ω
x̂⊤
k K(gb

k+1 − gb
k)

+
3

2
‖ξv,k‖2P+ γ

ω
P
+ ‖x̂k‖2η2ω(γ+ω)L

+
1

ω2
‖gb

k+1 − gb
k‖2P+ γ

ω
P

=
1

2
‖vk +

1

ω
gb
k‖2P+ γ

ω
P
+ η(γ + ω)x̂⊤

k K

(
vk +

1

ω
gb
k

)

+ ‖x̂k‖2
η2ω(γ+ω)L+ η2

2
K
+ ‖vk +

1

ω
gb
k‖2(η

2
+ η

2ω
)(P+ γ

ω
P)

+ ‖gb
k+1 − gb

k‖2( 1
ω2+

1
2ηω

)(P+ γ
ω
P)+ 1

2
I

+
ηγ

ω
x̂⊤
k K(gb

k+1 − gb
k) + (

1

2η
+

3

2
)‖ξv,k‖2P+ γ

ω
P

≤ 1

2
‖vk +

1

ω
gb
k‖2P+ γ

ω
P
+ η(γ + ω)x̂⊤

k K

(
vk +

1

ω
gb
k

)

+ ‖x̂k‖2
η2ω(γ+ω)L+ η2

2
K
+ ‖vk +

1

ω
gb
k‖2(η

2
+ η

2ω
)(P+ γ

ω
P)

+ 2b̃1η
2L2

f‖ḡk‖2 + 4b̃1L
2
f‖ξ̄x,k‖2
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+ 4b̃1η
2ω2L2

f‖
k∑

t=0

ξ̄v,t‖2 +
ηγ

ω
x̂⊤
k K(gb

k+1 − gb
k)

+ (
1

2η
+

3

2
)‖ξv,k‖2P+ γ

ω
P
, (85)

where b̃1 = ( 1
ω2 +

1
2ηω

)(1+ γ

ω
) 1
λL

+ 1
2
; the first equality comes from (76); the first inequality comes

from (40) and (72); the second inequality holds due to (39), (40), and (72); the last inequality

comes from (40), (73), and (83).

We then provide the upper bound of x⊤
k+1KP(vk+1 +

1
ω
gb
k+1)

x⊤
k+1KP(vk+1 +

1

ω
gb
k+1)

= (xk + ξx,k − η(γLx̂k + ωvk + gb
k + gk − gb

k))
⊤

KP(vk + ξv,k +
1

ω
gb
k + ηωLx̂k +

1

ω
(gb

k+1 − gb
k))

= (xk − η(γLx̂k + ωvk + gb
k + gk − gb

k))
⊤KP(vk

+
1

ω
gb
k + ηωLx̂k +

1

ω
(gb

k+1 − gb
k))

+ ξx,k
⊤KP(vk + ξv,k +

1

ω
gb
k + ηωLx̂k

+
1

ω
(gb

k+1 − gb
k)) + ξv,k

⊤KP(xk − η(γLx̂k + ωvk

+ gb
k + gk − gb

k))

≤ (x⊤
k KP− η(γ + ηω2)x̂⊤

k K)(vk +
1

ω
gb
k)

+ ηωx⊤
k Kx̂k − ‖x̂k‖2η2γωL + (x⊤

k KP− ηγx̂⊤
k K)(

gb
k+1 − gb

k)− η(ωvk+gb
k +gk−gb

k−
k∑

t=0

ξ̄v,t − ḡk)
⊤

P(vk +
1

ω
gb
k)− η(vk +

1

ω
gb
k)

⊤PK(gb
k+1 − gb

k)

− η(gk − gb
k)

⊤(ηωKx̂k +
1

ω
KP(gb

k+1 − gb
k))

+ ξx,k
⊤KP(vk + ξv,k +

1

ω
gb
k + ηωLx̂k

+
1

ω
(gb

k+1 − gb
k)) + ξv,k

⊤PK(xk − η(γLx̂k + ωvk

+ gb
k + gk − gb

k))

≤ (x⊤
k KP− ηγx̂⊤

k K)(vk +
1

ω
gb
k) + ‖x̂k‖2η2ω2

2
K
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+ ‖vk +
1

ω
gb
k‖2η2ω2

2
K
+ ‖xk‖2ηω

4
K
+ ‖x̂k‖2ηω(K−ηγL)

+ ‖xk‖2η
2
K
+ ‖gb

k+1 − gb
k‖2 1

2ηω2 P
2

− ηγ

ω
x̂⊤
k K(gb

k+1 − gb
k)− ‖vk +

1

ω
gb
k‖2ηωP

+
η

4
‖gk − gb

k‖2 +
η

4
‖

k∑

t=0

ξ̄v,t‖2 +
η

4
‖ḡk‖2

+ ‖vk +
1

ω
gb
k‖23ηP2 + ‖vk +

1

ω
gb
k‖2η2P2

+
1

4
‖gb

k+1 − gb
k‖2 +

η2

2
‖gk − gb

k‖2 + ‖x̂k‖2η2ω2

2
K

+
η2

2
‖gk − gb

k‖2 + ‖gb
k+1 − gb

k‖2 1
2ω2P

2

+
ηω

4
‖vk +

1

ω
gb
k‖2P +

1

ηω
‖ξx,k‖2P + ‖x̂k‖2η2ω2

2
L

+ ‖ξx,k‖21
2
KP

+ ‖gb
k+1 − gb

k‖2 1
2ω2 KP2 + ‖ξx,k‖21

2
K

+ ‖ξv,k‖21
2
KP

+ ‖ξx,k‖21
2
KP

+
η

2
‖xk‖2K

+
1

2η
‖ξv,k‖2P2K

+ ‖x̂k‖2η2γ2
2

L
+ ‖ξv,k‖21

2
PK

+ ‖vk +
1

ω
gb
k‖2ηω

4
PK

+ ‖ξv,k‖2ηωPK
+

η

2
‖gk − gb

k‖2

+ ‖ξv,k‖21
2η

P2K2

≤ x⊤
k KP(vk +

1

ω
gb
k)− ηγx̂⊤

k K(vk +
1

ω
gb
k)

+ ‖x̂‖2
ηωK+η2(ω2K−ωγL+ω2+γ2

2
L)

+ ‖x‖2η(ω+4)
4

K

+ η(
3

4
+ η)‖gk − gb

k‖2 + ‖gb
k+1 − gb

k‖21+2η

2ηω2 P
2+ 1

4
Ind

− ηγ

ω
x̂⊤
k K(gb

k+1 − gb
k) +

η

4
‖ḡk‖2

− ‖vk +
1

ω
gb
k‖2ηω

2
P−3ηP2−η2P2− η2ω2

2
K

+ ‖ξx,k‖2( 1
ηω

+ 1
2
)P+ 1

2
K
+ ‖ξv,k‖21

η
P2+P+ηωP

+
η

4
‖

k∑

t=0

ξ̄v,t‖2

≤ x⊤
k KP(vk +

1

ω
gb
k)− ηγx̂⊤

k K(vk +
1

ω
gb
k)

May 2, 2024 DRAFT



42

+ ‖x̂‖2
ηωK+η2(ω2K−ωγL+ω2+γ2

2
L)

+ ‖x‖2η(ω+4)
4

K+η( 3
4
+η)L2

f
K
+ (2b̃2η

2L2
f +

η

4
)‖ḡk‖2

− ηγ

ω
x̂⊤
k K(gb

k+1 − gb
k)

− ‖vk +
1

ω
gb
k‖2

η(ω
2
− 3

λL
)P−η2( 1

λL
+

ω2λ̄L
2

)P

+ ‖ξx,k‖2( 1
ηω

+ 1
2
)P+ 1

2
K+4b̃2L2

f
Ind

+‖ξv,k‖21
η
P2+P+ηωP

+ (
η

4
+ 4b̃2η

2ω2L2
f)‖

k∑

t=0

ξ̄v,t‖2, (86)

where the first and second equalities comes from (75) and (76); the first inequality comes

from (39) and (72) and the fact that K = I−H; the second and third inequalities holds due to (39),

(40), (72), and λ̄K = 1; the last inequality comes from (73), (81), and (83); b̃2 =
1+2η

2ηω2λ2
L

+ 1
4
.

We then provide the upper bound of n(f(x̄k+1 − f ∗)).

n(f(x̄k+1)− f ∗) = f̃(x̄k)− nf ∗ + f̃(x̄k+1)− f̃(x̄k)

≤ f̃(x̄k)− nf ∗ − η(ḡk + ω

k∑

t=0

ξ̄v,t −
ξ̄x,k
η

)⊤ḡb
k

+
Lf

2
‖ξ̄x,k − ηḡk − ηω

k∑

t=0

ξ̄v,t‖2

≤ f̃(x̄k)− nf ∗ − η

2
‖ḡk‖2 −

η

2
‖ḡb

k‖2

+
η

2
‖ḡk − ḡb

k‖2 − η(ω

k∑

t=0

ξ̄v,t −
ξ̄x,k
η

)⊤ḡb
k

+ η2Lf‖ḡk‖2 + 2η2Lfω
2‖

k∑

t=0

ξ̄v,t‖2

+ 2Lf‖ξx,k‖2

≤ f̃(x̄k)− nf ∗ − η

2
(1− 2ηLf)‖ḡk‖2 −

η

4
‖ḡb

k‖2

+ ‖xk‖2η
2
L2
f
K
+ 2η2ω2(

1

η
+ Lf )‖

k∑

t=0

ξ̄v,t‖2

+ 2(
1

η
+ Lf)‖ξx,k‖2, (87)

where the first inequality comes from (80), Assumption 1, and the fact that H = HH; the second
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and third inequalities hold due to (40); the last inequality comes from (39), (40), and (82).

‖xk+1+ξx,k+1 − xc
k+1‖2

= ‖xk+1 + ξx,k+1 − xk − ξx,k + xk + ξx,k

− xc
k − αxr

C

r
(xk + ξx,k − xc

k)‖2

≤ (1 + s)(αxr(1− ϕ) + (1− αxr))‖xk

+ ξx,k − xc
k‖2

+ (1 +
1

s
)‖xk+1 + ξx,k+1 − xk − ξx,k‖2

≤ (1− ϕ2 −
ϕ2
2

2
)‖xk + ξx,k − xc

k‖2

+ (1 +
2

ϕ2
)‖xk+1 + ξx,k+1 − xk − ξx,k‖2, (88)

where the first equality comes from (14), (16); the first inequality comes from (39); the second

inequality follows by denoting ϕ2 = αxrϕ, choosing s = ϕ2

2
, and αxr < 1. We have

‖xk+1 + ξx,k+1 − xk − ξx,k‖2

= ‖η(γL(x̂k − xk − ξx,k) + γLxk + ωvk + gb
k

+ gk − gb
k) + ξx,k+1 + (ηγL− I)ξx,k‖2

≤ 6η2(‖γL(x̂k − xk − ξx,k)‖2 + ‖ωvk + gb
k‖2

+ ‖γLxk‖2 + ‖gk − gb
k‖2) + 6‖ξx,k+1‖2

+ 6‖(ηγL− I)ξx,k‖2

≤ 6η2(γ2λ̄2
Lr0‖xc

k − xk − ξx,k‖2+‖vk+
1

ω
gb
k‖2ω2λLP

+ ‖xk‖2(γ2λ̄2
L
+L2

f
)K) + 6‖ξx,k+1‖2

+ 6λ̄2
ηγL−I

‖ξx,k‖2, (89)

where the first equality holds due to (75); the first inequality holds due to Jensen’s inequality;

the last inequality holds due to (6), (14), (71), (73), and (82). Combining (88)–(89), one obtains

that

‖xk+1+ξx,k+1 − xc
k+1‖2

≤ (1− ϕ2

2
− ϕ2

2

2
+ 6η2γ2λ̄2

Lr0(1 +
2

ϕ2

))‖xk
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+ ξx,k − xc
k‖2 + ‖xk‖26η2(1+ 2

ϕ2
)(γ2λ̄2

L
+L2

f
)K

+ ‖vk +
1

ω
gb
k‖26η2(1+ 2

ϕ2
)ω2λLP

+ 6(1 +
2

ϕ2

)‖ξx,k+1‖2

+ 6λ̄2
ηγL−I

(1 +
2

ϕ2
)‖ξx,k‖2, (90)

From λ̄K = 1, (73), (84)–(87), and (90), we have

Ṽk+1 ≤ Ṽk − ‖xk‖2B1η
+ ‖x̂k‖2B2η

− ‖vk +
1

ω
gb
k‖2(κ3−κ4η)ηP

− (κ5 − κ6η)η‖ḡk‖2

− b̃3‖xk + ξx,k − xc
k‖2 −

η

4
‖ḡb

k‖2 + b̃4‖ξx,k‖2

+ κ11‖ξv,k‖2 + κ12‖
k∑

t=0

ξ̄v,t‖2, (91)

where

B1 =
γL

2
− 1

4
(7 + 9L2

f + ω)K− η(
5L2

f

2

+ 6(1 +
2

ϕ2
)(γ2λ̄2

L + L2
f )K),

B2 = ωK+ η(2γ2L2 +
3ω2 + γ2

2
L + (ω2 +

1

2
)K),

b̃3 =
ϕ2

2
+

ϕ2
2

2
− 6η2γ2λ̄2

Lr0(1 +
2

ϕ2

)− η

2
(γ + 4ω)λ̄L,

b̃4 = 4(
L2
f

ω2λL

+
γL2

f

ω3λL

+
L2
f

2ηωλL

+
γL2

f

2ηω2λL

+
(1 + 2η)L2

f

2ηω2λ2
L

+
3L2

f

4
+

1

2η
+

Lf

2
) +

λ̄2
Ind+ηγL

η

+ 10 +
η

2
+ 2ηωλ̄L + (

1

ηω
+

1

2
)
1

λL

+
12

αxrϕ

+ 6λ̄2
ηγL−I

(1 +
2

ϕ2

).

Since Jensen’s inequality and λ̄K = 1, it holds that

‖x̂k‖2K = ‖x̂k − xk − ξx,k + xk + ξx,k‖2K
≤ 3r0‖xk + ξx,k − xc

k‖2 + 3‖xk‖2K + 3‖ξx,k‖2. (92)

Combining (91)–(92), we have (74). Then the proof is completed.
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C. The proof of Theorem 4

For simplicity of the proof, we also denote some notations and a useful auxiliary function

ζ̃1 ≥ max{13 + ζ̃4
2λL

, 1}, ζ̃2 = max{ζ̃4, ζ̃5},

ζ̃3 = min{κ1

κ2
,
κ3

κ4
,
κ5

κ6
,

√
κ2
8 + 4κ7κ9 − κ8

2κ9
},

ζ̃4 =
6

λL

+ 1 + ζ̃1 + 2

√
(
3

λL

+
1

2
(1 + ζ̃1))2 +

1

2ω
(1 + ζ̃1),

ζ̃5 = 2
L2
f + ζ̃1L

2
f

λL

+ 2

√

(
L2
f + ζ̃1L2

f

λL

)2 +
L2
f

ω2λ2
L

,

κ13 =
γλL − ω

2γλL

κ̄3 = max{4
η
,

1

(κ1 − κ2η)η
},

M2 =
1

n
E[Ṽ0] + (κ10 + κ11)

∞∑

k=0

(2dq̄2ks̄2ξ),

Ũk = ‖xk‖2K + ‖vk +
1

ω
gb
k‖2P + ‖xk + ξx,k − xc

k‖2

+ n(f(x̄k)− f ∗).

From (39), we have

Ṽk ≥
1

2
‖xk‖2K +

1

2
(1 +

γ

ω
)‖vk +

1

ω
gb
k‖2P − ω

2γλL

‖xk‖2K

− γ

2ω
‖vk +

1

ω
gb
k‖2P + ‖xk + ξx,k − xc

k‖2

+ n(f(x̄k)− f ∗)

≥ κ13Ũk ≥ 0, (93)

We then verify κ1 − κ2η, κ3 − κ4η, κ5 − κ6η, κ7 − κ8η − κ9η
2 are positive. Since γ = ζ̃1ω,

ζ̃1 ≥ 13+ζ̃4
2λL

, ζ̃4 > 0, and ω > ζ̃2 >
7+9L2

f

ζ̃4
, it holds that

κ1 >
ζ̃1ωλL

2
− 1

4
(ζ̃2ω + 13ω) > 0.

From γ = ζ̃1ω, ζ̃2 > ζ̃4 and ω > 0, we have

κ3 =
ω

4
− 3

λL

− 1

2
(1 + ζ̃1)−

1

2ω
(1 + ζ̃1) > 0.
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From γ = ζ̃1ω, ζ̃2 > ζ̃5 and ω > 0, we have

κ5 =
1

4
− 1

ω

L2
f + ζ̃1L

2
f

λL

− L2
f

ω2λ2
L

> 0.

From 0 < η < ζ̃3, we can verify κ1 − κ2η, κ3 − κ4η, κ5 − κ6η, κ7 − κ8η − κ9η
2 are positive.

From Lemma 6, we have

Ṽk+1 ≤ Ṽk − ‖xk‖2(κ1−κ2η)ηK
− η

4
‖ḡb

k‖2 + κ10‖ξx,k‖2

+ κ11‖ξv,k‖2 + κ12‖
k∑

t=0

ξ̄v,t‖2.

Then, one obtains that

T∑

k=0

(
(κ1 − κ2η)η‖xk‖2K +

η

4
‖ḡb

k‖2
)
≤ Ṽ0 +

T∑

k=0

(
κ10‖ξx,k‖2

+ κ11‖ξv,k‖2 + κ12‖
k∑

t=0

ξ̄v,t‖2
)
,

which can be rewritten as

1

T

T∑

k=0

(
E‖xk − x̄k‖2 + E‖∇f(x̄k‖2

)
≤ κ̄3M2

T

+
κ̄3κ12

n
E‖

∞∑

t=0

ξ̄v,t‖2.

APPENDIX F

THE PROOF OF THEOREM 5

In this proof, in addition to the notations used in the proof of Theorem 4, we also denote

κ14 = max{1
2
+

γ

ω
,
γλL + ω

2γλL

},

κ15 = ηmin{κ1 − κ2η, κ3 − κ4η,
ν

2
,
κ7

η
− κ8 − κ9η}

0 < κ̄4 < min{κ15

κ14
, 1− q̄2}.

From Lemma 6 and Assumption 3, one obtains that

Ṽk+1 ≤ Ṽk − ‖xk‖2(κ1−κ2η)ηK
− ‖vk +

1

ω
gb
k‖2(κ3−κ4η)ηP

− (κ5 − κ6η)η‖ḡk‖2 − (κ7 − κ8η − κ2
9η

2)‖xk

+ ξx,k − xc
k‖2 −

ηνn

2
(f(x̄k)− f ∗) + κ10‖ξx,k‖2
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+ κ11‖ξv,k‖2 + κ12‖
k∑

t=0

ξ̄v,t‖2. (94)

From (39), we have

Ṽk ≤ 1

2
‖xk‖2K +

1

2
(1 +

γ

ω
)‖vk +

1

ω
gb
k‖2P +

ω

2γλL

‖xk‖2K

+
γ

2ω
‖vk +

1

ω
gb
k‖2P + ‖xk + ξx,k − xc

k‖2

+ n(f(x̄k)− f ∗)

≤ κ14Ũk, (95)

Combining (94) and (95), we have

E[Ṽk+1] ≤ E[Ṽk]−
κ15

κ14

E[Ṽk] + κ10E[‖ξx,k‖2] + κ11E[‖ξv,k‖2]

+ κ12E[‖
k∑

t=0

ξ̄v,t‖2]

≤ (1− κ̄4)
k+1

E[Ṽ0]

+ (κ10 + κ11)n
2s̄ξ

2
k∑

t=0

(1− κ̄4)
k−tq̄2t

+ κ12

k∑

t=0

(1− κ̄4)
k−t

E[‖
t∑

m=0

ξ̄v,m‖2]

≤ (1− κ̄4)
k+1(E[Ṽ0] +

(κ10 + κ11)n
2s̄ξ

2

1− κ̄4 − q̄2
)

+ κ12
1

κ̄
E[‖

∞∑

k=0

ξv,k‖2]. (96)

Noting that 0 < κ̄4 < 1 since q̄ < 1 and κ15

κ14
≤ 2κ7

3
= αxrϕ+(αxrϕ)2

3
< 1. Combining (93) and (96),

we complete the proof.

APPENDIX G

THE PROOF OF THEOREM 6

Similar to the proof of Theorem 3, we know that the Theorem 6 can be proved if the following

inequality holds for any observation H ⊆ Range(C) and any pair of adjacent cost function sets

S(1) and S(2),

P{(ξx, ξv,̺) ∈ Ψ|ZF(1)(ξx, ξv, ̺) ∈ H}
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≤ eǫP{(ξx, ξv, ̺) ∈ Ψ|ZF(2)(ξx, ξv, ̺) ∈ H},

where F (l)={x(0),W,S(l)}, l=1, 2, and Ψ denotes the sample space. Then it is indispensable

to guarantee ZF(1)(ξx, ξy, ̺) = ZF(2)(ξx, ξy, ̺), i.e.,

C(x
a−c,(1)
i,k , ̺k) = C(x

a−c,(2)
i,k , ̺k),

for ∀i ∈ V and any k ≥ 0, where

x
a−c,(l)
i,k = x

a,(l)
i,k − x

c,(l)
i,k−1, l = 1, 2.

Similar to (63), we have

P{(ξx, ξv, ̺) ∈ Ψ|ZF(1)(ξx, ξv, ̺) ∈ H}
P{(ξx, ξv, ̺) ∈ Ψ|ZF(2)(ξx, ξv, ̺) ∈ H}

≤ P{(ξx, ξv, ̺) ∈ Ψ|ZF(1)(ξx, ξv, ̺) ∈ H}
P{(ξx, ξv, ̺) ∈ Ψ|ZF(2)(ξx, ξv, ̺) ∈ H, E2}

,

(97)

where E2 = ∪∞
k=0{xa,(2)

i0,k
= x

a,(1)
i0,k

} is an event. From (75) and (76), we have

x
(1)
i0,k+1 − x

(2)
i0,k+1 = −η(ωv

(1)
i0,k

− ωv
(2)
i0,k

+∇f
(1)
i0

(x
(1)
i0,k

)

−∇f
(2)
i0

(x
(2)
i0,k

)), (98)

v
(1)
i0,k+1 − v

(2)
i0,k+1 = v

(1)
i0,k

− v
(2)
i0,k

+ ξ
(1)
vi0 ,k

− ξ
(2)
vi0 ,k

. (99)

We then denote the following map by B(·), i.e., (ξ
(2)
xi0

, ξ
(2)
vi0
) = B(ξ(1)xi0

, ξ
(1)
vi0
).

ξ
(2)
xi0

,0 = ξ
(1)
xi0

,0,

ξ
(2)
xi0

,1 = ξ
(1)
xi0

,1 − η(∇f
(1)
i0

(x
(1)
i0,0

)−∇f
(2)
i0

(x
(2)
i0,0

)),

ξ
(2)
xi0

,k+1 = ξ
(1)
xi0

,k+1 − η(∇f
(1)
i0

(x
(1)
i0,k

)−∇f
(2)
i0

(x
(2)
i0,k

)

−∇f
(1)
i0

(x
(1)
i0,k−1) +∇f

(2)
i0

(x
(2)
i0,k−1)), ∀k ≥ 1,

ξ
(2)
vi0 ,0

= ξ
(1)
vi0 ,0

,

ξ
(2)
vi0 ,1

= ξ
(1)
vi0 ,1

+
1

ω
(∇f

(1)
i0

(x
(1)
i0,0

)−∇f
(2)
i0

(x
(2)
i0,0

)),

ξ
(2)
vi0 ,k+1 = ξ

(1)
vi0 ,k+1 +

1

ω
(∇f

(1)
i0

(∇f
(1)
i0

(x
(1)
i0,k

)−∇f
(2)
i0

(x
(2)
i0,k

)

−∇f
(1)
i0

(x
(1)
i0,k−1) +∇f

(2)
i0

(x
(2)
i0,k−1)), ∀k ≥ 1.
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From (98), (99), and B(·), it is easy to verify that x
a,(2)
i0,k

= x
a,(1)
i0,k

, ∀k ≥ 0 holds. Then

combining (97), we have

P{(ξx, ξv, ̺) ∈ Ψ|ZF(1)(ξx, ξv, ̺) ∈ H}
P{(ξx, ξv, ̺) ∈ Ψ|ZF(2)(ξx, ξv, ̺) ∈ H}

≤ P{(ξx, ξv, ̺) ∈ Ψ|ZF(1)(ξx, ξv, ̺) ∈ H}
P{(ξx, ξv, ̺) ∈ Ψ|ZF(2)(B(ξx, ξv), ̺) ∈ H}, E2

.

(100)

Thus, from (100), the proof can be completed in the same way as the proof of Theorem 3.
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