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Abstract

Estimating causal effects from randomized experiments is only feasible if participants agree to
reveal their potentially sensitive responses. Of the many ways of ensuring privacy, label differen-
tial privacy is a widely used measure of an algorithm’s privacy guarantee, which might encourage
participants to share responses without running the risk of de-anonymization. Many differen-
tially private mechanisms inject noise into the original data-set to achieve this privacy guarantee,
which increases the variance of most statistical estimators and makes the precise measurement
of causal effects difficult: there exists a fundamental privacy-variance trade-off to performing
causal analyses from differentially private data. With the aim of achieving lower variance for
stronger privacy guarantees, we suggest a new differential privacy mechanism, Cluster-DP,
which leverages any given cluster structure of the data while still allowing for the estimation of
causal effects. We show that, depending on an intuitive measure of cluster quality, we can im-
prove the variance loss while maintaining our privacy guarantees. We compare its performance,
theoretically and empirically, to that of its unclustered version and a more extreme uniform-
prior version which does not use any of the original response distribution, both of which are
special cases of the Cluster-DP algorithm.

1 Introduction

Measurement and experimentation are essential tools to improve any user-facing product. Tech-
nology companies routinely run randomized experiments (Imbens and Rubin, 2015), also known
as A/B tests, to compare the performance of a new product or iteration (the treatment) to some
well-chosen baseline (the control). Randomized experiments are also used to evaluate the impact
of new drugs, in the form of clinical trials, or to inform public policy. Measuring causal effects
from these randomized experiments assumes that participants are willing to share their potentially
sensitive or private response to treatment. This assumption is constantly challenged by the rise
of privacy concerns and regulations for protecting individuals’ online data. Many participants and
regulatory guidelines agree with sharing some degree of information, as long as there is so-called
plausible deniability, meaning no response can be tracked to any individual user, by sharing only
aggregated data for example. However, data aggregation is often not sufficient to entirely prevent
the risk of de-anonymization (Sweeney, 2000; Narayanan and Shmatikov, 2008).
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Differential privacy is one possible framework which has emerged as a solid contender under
which user outcomes might be shared while diminishing the risk of deanonymization. It formalizes
the notion that two privatized datasets are unlikely to differ in any measurable way if the true
responses differ by a single point. Ensuring such a privacy guarantee often comes at the risk of
adding additional noise into the original dataset, which increases the variance of statistical estima-
tors. This privacy-variance trade-off is crucial for causal inference applications, since randomized
experiments aim to obtain the most precise measurements possible of a causal effect.

Our paper has two main objectives: (a) to mathematically analyze the privacy-variance tradeoff
for an intuitive set of algorithms that allow for the estimation of causal effects from differentially
private data; and (b) to develop a novel mechanism Cluster-DP that enhances this privacy-
variance trade-off by leveraging non-sensitive cluster information about the dataset.

Many of the algorithms we consider assume the existence of a central unit that observes all
outcomes, and computes and shares a privatized dataset on which causal inference analyses can be
run by a third-party. Furthermore, our suggested Cluster-DP mechanism assumes that outcomes
exhibit some cluster structure, such as geographic regions or broad demographic classes. Notably,
these clusters need not satisfy specific cardinality or quality constraints, and can include singleton
clusters, random clusters, or even a single cluster containing all units. We do show however that
our results improve when the clusters exhibit a measure of cluster quality that we define.

In Section 2, we motivate and define the differential privacy setting and causal objective of
our work. In Section 3, we consider several intuitive mechanisms for privatizing a dataset while
allowing for unbiased and consistent estimation of the average treatment effect. In particular, we
consider the Uniform-Prior-DP mechanism which samples responses with some probability at
random from the space of possible outcomes. In Section 4, we introduce our novel private-and-
causal Cluster-DP mechanism, and its special case when all units belong to the same cluster, the
Cluster-Free DP mechanism. We evaluate their privacy guarantees and their variance gap to
their non-differentially-private counterparts. We conclude in Section 5 with numerical experiments
on simulated and real graphs to validate our claims and compare the empirical performance of each
algorithm.

1.1 Related works

There are different approaches to preserving the privacy of user data regardless of any downstream
analysis of it. A popular approach involves anonymizing data by removing, aggregating, or ran-
domizing identifying details in some way before releasing the data to the public, in the hope of
making ‘re-identification’ of users difficult. Several privacy measures have been proposed under
this approach, including k-anonymity (Sweeney, 2002, 2000), ℓ-diversity (Machanavajjhala et al.,
2007), and t-closeness (Li et al., 2006). While providing a layer of privacy protection, there are well-
documented cases where de-identified data has been combined with other data sources to uniquely
re-identify large proportion of users (Narayanan and Shmatikov, 2008; Sweeney, 2000).

In this work, we consider the differential privacy measure, which is a property of a data process-
ing algorithm, rather than of a data set (Dwork et al., 2006a,b). Differential privacy is widely used
and extensively covered. In this work, we will focus primarily on label differential privacy, intro-
duced by Chaudhuri and Hsu (2011). The literature on label differential privacy is mostly dedicated
to classification and regression tasks with the goal of improving excess risk while offering protection
for labels (Beimel et al., 2013; Bassily et al., 2018; Wang and Xu, 2019). More recently, there have
been several papers improving utility-privacy tradeoffs of label DP algorithms (Esfandiari et al.,
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2022; Ghazi et al., 2021, 2022). Our mechanism is inspired by a technique by (Esfandiari et al.,
2022), which we adapt to the estimation of causal effects. We further provide privacy-variance
tradeoffs and a tighter analysis of the privacy guarantee than the proof methodology of (Esfandiari
et al., 2022), which we extend to an (ε, δ)-type guarantee (See Theorem 4.1).

Panigrahi et al. (2022) study the problem of treatment effect estimation after adjusting for
potential confounders from different independent studies. Using a Lasso estimator, a parsimonious
model is selected in each study and an unbiased estimator is constructed by aggregating simple
summary statistics. While sharing only the summary statistics provides some layer of protection,
this work does not provide any differential privacy guarantees.

Closer to our work, Kancharla and Kang (2021) also study the problem of average treatment
effect estimation from a randomized control trial, where outcomes have been privatized using a
differentially private mechanism. Specifically, they consider a binary outcome space and a mech-
anism, which for any given true response yi, either returns ỹi = 0 with probability r0, ỹi = 1
with probability r1, or the true outcome ỹi = yi with probability 1 − r0 − r1 for some choice of
probabilities r0, r1 ∈ (0, 1). Our setting and results differ significantly in that (1) we go beyond
binary responses and consider a general discrete outcome space; (2) our mechanism leverages a
clustering structure of responses to improve the privacy-variance trade-off, and we quantify the
impact of cluster quality on the variance of the estimator. In fact, their proposed procedure does
not account for the empirical distribution of responses, such that an extension of their algorithm to
a general discrete outcome space would be closer to the Uniform-Prior DP mechanism, which
we consider along with other baselines in Section 3. In the absence of non-compliers, the procedure
in (Kancharla and Kang, 2021) can be viewed as a special case of ours, for binary outcomes and
assuming no-cluster structure (see Equation 7 for further detail).

Betlei et al. (2021) focus on the randomized control trial set-up and propose a differentially
private method, called ADUM, to learn uplift models from data aggregated along a given partition
of the feature space. The privacy-utility trade-off is studied by computing the mean-squared error
of the estimator and its dependence on the underlying partition size and privacy budget. The
analysis is for uni-dimensional feature spaces and makes the assumption that every bin has the same
number of treated and controlled units. The ADUM mechanism adds Laplace noise to the count
and the sum of responses from treated and controlled groups within each bin, and uses the (noisy)
aggregate responses to estimate the conditional average treatment effect (CATE). While the bins
can be thought of as clusters based on the features, their work does not use this clustering structure
to reduce the variance of the estimator resulting from the added noise to achieve differential privacy.
The ADUM mechanism is very similar to the noisy Horvitz-Thompson estimator baseline discussed
in Section 3, with the difference that ADUM adds noise to the count and the sum of responses,
while the noisy Horvitz-Thompson estimator baseline adds noise directly to the average response
of treated and controlled groups in each cluster (cf. Equation (1)).

Niu et al. (2022) propose a meta-algorithm for multi-stage learning under privacy constraints
and apply that to CATE estimation. The methodology relies on multiple sample-splittings where
different parts of the sample are used to estimate different components of the estimator. The
approach uses DP-EBMs (Nori et al., 2021) as the base learner, and conducts a privacy analysis
using the sample splitting structure of the algorithm and the parallel composition property of
differential privacy. They study the privacy-accuracy trade-off empirically. This framework goes
beyond randomized control trials and allows for heterogeneous causal effects. However, they do
not leverage the cluster structure of the data to improve the variance-privacy tradeoff, nor do
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they provide private ‘unit-level’ data to the experimenters; instead their work aims to estimate the
propensity model and the outcome model in a differentially-private way.

2 Causal Objective and Privacy Setting

We are motivated by the real-world scenario of a technology company in the business of selling
advertising space to advertisers. Its clients, the advertisers, wish to measure the effectiveness of
their advertising campaigns by running A/B tests, but do not want to rely on this technology
company to provide their causal estimates. Instead, they would like access to user-level data, such
as whether a user clicked on their ad, as well as any meaningful covariates about that user, so
that they can conduct these analyses themselves. One reason for this might be that advertisers
wish to run their own covariate-adjustment methods, or they would like to investigate proprietary
sub-slices of users. On the other hand, this technology company seeks to protect the privacy of
its users, and does not wish to share sensitive information about its users. Hence it must act as a
central unit which privatizes its datasets before passing them on to advertisers for them to perform
their own causal inference analyses on. We now introduce the formal causal objective and privacy
setting. To guide the reader through abundant notation, we include a glossary at the beginning of
the Appendix.

Causal Objective. We consider a fixed population of n users, henceforth units, where we can
assume the Stable Unit Treatment Value Assumption (Imbens and Rubin, 2015). Let yi(0) be the
potential outcome of unit i if it is controlled, and yi(1) if it is treated. These potential outcomes
are sampled from a finite response space Y of cardinality K = |Y|. While finite response spaces are
common in many advertising settings (e.g. number of clicks or impressions), we suggest binning
when outcomes are continuous, as illustrated in Section 5.

For our Cluster-DP algorithm, we will further assume that there is some known clustered
structure of these units into C = |C| non-overlapping clusters of size nc, and let ci ∈ C be the cluster
membership of unit i. These clusters may be geographic regions or broad demographic groups the
units belong to. We do not make any assumptions on the number of clusters or their size. In
particular, our results hold for a single cluster or all singleton clusters. The strength of our results,
however, improve with a specific measure of cluster quality, introduced in Section 4.

While we focus on the common finite sample setting, we can easily extend our results to their
super-population equivalents. For this purpose, we will sometimes denote by xi ∈ Rd the covariate
vector of each unit i such that each (xi, yi(0), yi(1), ci) is drawn from some joint distribution P .
Our causal estimand is the average treatment effect estimand defined in the finite sample regime
by

τ =
1

n

n∑
i=1

(yi(1)− yi(0)) .

Let zi correspond to the treatment assignment of unit i, zi = 1 if treated and zi = 0 if controlled.
Let n1 be the total number of treated units and n0 to be the total number of controlled units across
units. Treatment and control are assigned completely at random. When a clustering of the data
is available, the treatment assignment is sampled in a completely randomized way over clusters: a
fixed number of n1,c (resp n0,c) units is chosen uniformly at random to be treated (resp. controlled)
within each cluster C, with nc = n1,c + n0,c the total number of units in cluster c.
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Privacy Setting. In the real-world advertising setting presented above, it is assumed that a
central unit privatizes the dataset before sharing it externally. Some of the mechanisms we explore
also work without the presence of this central unit, a setting known as local differential privacy,
but this is not a requirement for our framework.

Furthermore, an important question is which variables (treatment assignment, outcome, cluster
assignment and/or covariates if available) are sensitive and should be privatized. In our advertising
setting, a unit’s treatment assignment is assigned purely at random; it is therefore not sensitive,
and can be shared as-is. Outcomes are clearly sensitive and should be privatized. Finally, of the
mechanisms we present, only our proposed Cluster-DP mechanism uses clusters—or covariates
to form these clusters—to improve its privacy-variance tradeoff. While not all covariates may be
sensitive (e.g. broad geographic regions), we can decouple the privacy protection of covariates from
that of outcomes. In particular, by virtue of the composition property of differential privacy, we
can allocate ε1 privacy loss for the first step (forming clusters from covariates) and ε2 privacy loss
for the second step (computing the estimator). The end-to-end process will be ε(= ε1 + ε2)-DP.
There already exists a rich literature on DP-clustering algorithms, see e.g., Nissim et al. (2007);
Feldman et al. (2009, 2017); Stemmer and Kaplan (2018); Cohen et al. (2021). We focus therefore on
the second step, namely estimating average treatment effect from differentially private outcomes,
assuming a given cluster structure. This more restricted setting is known as label-differential
privacy, introduced by Chaudhuri and Hsu (2011) and (re-)defined formally below. In this context,
a unit’s “label” refers to its observed outcome; we use the words outcome and label interchangeably.

Definition 2.1. (Label Differential Privacy) Consider a randomized mechanism M : D → O that
takes as input a dataset D and outputs into O. Let ε, δ ∈ R≥0. A mechanism M is called (ε, δ)-
label differentially private—or (ε, δ)-label DP—if for any two datasets (D,D′) that differ in the label
(outcome) of a single example and any subset O ⊆ O we have P[M(D) ∈ O] ≤ eεP[M(D′) ∈ O]+δ ,
where ε is the privacy budget and δ is the failure probability. If δ = 0, then M is said to be ε-label
differentially private, or ε-label DP.

Achieving label-differential privacy implies that the output of a mechanism does not change
too much if a single label in the input dataset is changed. The privacy loss ε controls the size of
the possible change, and δ is the failure probability in providing such a guarantee. In other words,
(ε, 0)-differential privacy ensures that, for every run of the mechanism M , the observed output is
(almost) equally likely to be observed on every other neighboring dataset, simultaneously. The
(ε, δ)-differential privacy property relaxes this constraint and states only that it is unlikely that
the observed value M(D) has a much higher or lower chance to be generated under a dataset D
compared to a neighboring dataset D′. Differential privacy can also be viewed from a statistical
hypothesis testing framework, where an attacker aims to distinguish D from D′ based on the
output of the mechanism. This viewpoint has been put forward by Wasserman and Zhou (2010)
and Kairouz et al. (2015), who show that, by using the output of an (ε, δ)-DP mechanism, the
power of any test with significance level α ∈ [0, 1] is bounded by eεα + δ. For small enough (ε, δ),
this bound is only slightly larger than α, and so any test which aims to distinguishing D from D′

is powerless.

5



3 Aggregation-based baselines and the Uniform-Prior-DP mech-
anism

In this section, we introduce three differentially private algorithms that still allow for the estimation
of causal effects. These will serve as important baselines to our proposed Cluster-DP algorithm,
which will be introduced later in Section 4.

3.1 Two aggregation-based baselines

The simplest approach to sharing a differentially private estimate of the average treatment effect is
for the central unit to compute some unbiased estimator based on the original responses yi and add
noise to the estimate before sharing it externally. We provide an example in Algorithm 1, written
in the broadest generality when a clustering is available. When no clustering is available, we can
simply assume that all units belong to the same cluster.

Algorithm 1: noisy Horvitz-Thompson mechanism

Input: Individual responses y1, . . . , yn, (optional) cluster memberships c1, . . . , cn
Output: Privatized estimate τ̂

Return τ̂ :=
∑
c∈C

nc

n

{∑
i∈c

(
yizi
n1,c
− yi(1− zi)

n0,c

)
+ wc

}
, wc ∼ Laplace(ηc) . (1)

The variances of the noise parameters ηc determine both the privacy guarantee ε and additional
estimator variance of the Noisy Horvitz-Thompson algorithm. To compute its privacy guarantee,
we apply (Dwork et al., 2014, Theorem 3.6) and consider the sensitivity ∆c of the inner function
1/n1,cyizi − 1/n0,cyi(1 − zi), defined as the maximum change in its value when changing only one
label in the data set. The variance of τ̂ can be expressed easily as a function of the variance of its
non-differentially-private equivalent, the Horvitz-Thompson estimator without the Laplace noise:

τ̂No-DP :=
∑
c∈C

nc

n

∑
i∈c

(
yizi
n1,c
− yi(1− zi)

n0,c

)
. (2)

Proposition 3.1. The noisy Horvitz-Thompson estimator τ̂ is ε-DP when setting ηc = ∆c/ε for
every cluster, where ∆c = min{n0,c, n1,c}−1×maxy∈Y |y|. Furthermore, its variance with respect to
the treatment assignment z and the Laplace noise (DP ) is given by

VarDP,z[τ̂ ] = Varz[τ̂No-DP] + 2
∑
c∈C

(
nc

n

∆c

ε

)2

,

where τ̂No-DP is the non-differentially-private stratified Horvitz-Thompson estimator defined in
Eq. 2, and Varz[τ̂No-DP] is its variance with respect to the treatment assignment z.

Because these results hold for any clustering, they also hold when no clustering is available; in
that case, we consider all units to be part of the same cluster. We refer the reader to the appendix
for the well-known closed-form expression of Varz[τ̂No-DP].
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A second and slightly more sophisticated approach would be for the central unit to add noise
to the frequency of responses in each cluster before sharing the histogram externally, since the
estimated treatment effect depends only on the histogram of responses of treated and controlled
units in each cluster. We provide an example in Algorithm 2, written in the broadest generality
when a clustering is available.

Algorithm 2: noisy histogram mechanism

Input: Individual responses y1, . . . , yn, (optional) cluster memberships c1, . . . , cn
Output: Privatized estimate τ̂
Compute the empirical distribution p̂a(y|c) of treated (a = 1) and controlled (a = 0) units
within cluster c.

Return τ̂ :=
∑
c∈C

nc

n

∑
y∈Y

y × (p̂1(y|c) + w1,c,y − p̂0(y|c)− w0,c,y) , wa,c,y ∼ Laplace(ηa,c) .

(3)

Since the K bins corresponding to the K elements of Y are disjoint, and the sensitivity of the
value of each histogram bin is n−1

a,c, the central unit can share the histogram privately by adding
independent draws from Laplace((na,cε)

−1) to the frequency of each value. Furthermore, we can
compute in closed form the variance gap of the Noisy Histogram mechanism compared to its non-
private Horvitz-Thompson counterpart.

Proposition 3.2. The noisy Histogram mechanism τ̂ is ε-DP when setting ηa,c = (na,cε)
−1 for

every cluster. Furthermore, its variance with respect to the treatment assignment z and the Laplace
noise (DP ) is given by

VarDP,z[τ̂ ] = Varz[τ̂No-DP] +
2

ε2

∑
y∈Y

y2

∑
c∈C

(nc

n

)2( 1

n2
0,c

+
1

n2
1,c

)
,

where τ̂No-DP is the non-differentially-private stratified Horvitz-Thompson estimator defined in
Eq. 2, and Varz[τ̂No-DP] is its variance with respect to the treatment assignment z.

For the same privacy guarantee, the Noisy-Horvitz-Thompson mechanism has a smaller
variance gap than the Noisy-Histogram mechanism, since ∥y∥∞ ≤ ∥y∥2 and min(n0,c, n1,c)

−2 ≤
min(n0,c, n1,c)

−2 +max(n0,c, n1,c)
−2 = n−2

0,c + n−2
1,c .

Limitations These aggregation-based approaches have two drawbacks in the real-world setting
of Section 2. First, advertisers expect user-level data even if privatized. Perhaps this is because
they wish to analyse their own slices of the user population or perhaps they wish to apply their
own proprietary covariate-adjustment method to measure campaign effectiveness. Second, the level
of noise in Algorithm 1 is averaged over the number of clusters C; in Algorithm 2, it is averaged
over the number of possible outcomes K. The next mechanisms that we introduce will privatize
user-level responses, and the noise level therein is averaged over n samples, the number of users.
This becomes an important competitive advantage of user-level methods in the case of one-shot
communication between the central unit and the advertisers. In particular, a user-level privatizing
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scheme achieves lower finite-sample conditional bias than the prior two aggregation baselines when
n≫ K and n≫ C, when we condition on the randomness of the DP mechanism and consider the
bias with respect to the randomization in the sub-population. We will illustrate this point further
in Experiment 5 of Section 5.

3.2 The Uniform-prior DP mechanism

Unlike the two prior mechanisms, the next mechanism we consider provides user-level outcomes.
Formalized in Algorithm 3, it reports the true outcome with some probability, and otherwise reports
an outcome sampled uniformly at random from the space of possible outcomes. We refer to it as the
uniform-prior-DP mechanism because it does not leverage any information about the empirical
distribution of outcomes beyond its support.

Algorithm 3: uniform-prior-DP mechanism

Input: Individual responses y1, . . . , yn
Output: Privatized responses ỹ1, . . . , ỹn
for i ∈ {1, . . . n} do

ỹi ←

{
y0i ∼ U(Y) with probability λ // U is the uniform distribution

yi with probability 1− λ

Return privatized responses {ỹ1, . . . , ỹn}.

The uniform-prior-DP mechanism is a generalization of the mechanism proposed by Kan-
charla and Kang (2021) in the binary-outcome setting, when there are no non-compliers. In the
broadest generality when a clustering is available, the following stratified estimator is unbiased for
the average treatment effect:

τ̂λ =
1

1− λ

∑
c∈C

nc

n

∑
i∈c

(
ỹizi
n1,c
− ỹi(1− zi)

n0,c

)
. (4)

Proposition 3.3. The conditional expectation of the estimator τ̂λ defined in Eq. (4), with respect
to the DP mechanism, is equal to the non-differentially private Horvitz-Thompson estimator. It is
therefore unbiased for the average treatment effect τ over z and the DP mechanism.

EDP [τ̂λ|z] = τ̂No-DP and EDP,z[τ̂λ] = τ

Having an unbiased estimator for causal inference is an important but not entirely surprising
result. In fact, many differentially private mechanisms can recover true labels in expectation;
Kancharla and Kang (2021) also propose an unbiased differentially private estimator in the setting
of binary potential outcomes yi ∈ {0, 1}. Instead, the main difficulty is to minimize the variance gap
with non-differentially-private estimators. To state the variance of τ̂ under the uniform-prior-
DP mechanism, we consider the following notation: ȳ := 1/|Y|

∑
y∈Y y and y2 := 1/|Y|

∑
y∈Y y2

over all possible outcomes. For a ∈ {0, 1}, we also define yc(a) := 1/nc

∑
i∈c yi(a) and y2c (a) :=

1/nc

∑
i∈c y

2
i (a) over the units of cluster c.

Theorem 3.4. For any ε̃ > 0, the uniform-prior-DP mechanism is (ε̃, δ)-label DP when we

set δ = max(0, 1 − λ + λ
K (1 − eε̃)) . In particular, it is ε-label DP with ε = log

(
1 + (1−λ)K

λ

)
.
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Furthermore, the variance of estimator τ̂λ in (4) under the uniform-prior-DP mechanism and
the treatment assignment z is given by

VarDP,z[τ̂λ] = Varz[τ̂No-DP] +
∑
c∈C

n2
c

n2

(
1

n0,c
+

1

n1,c

)
λy2 − λ2ȳ2

(1− λ)2

+
∑
c∈C

n2
c

n2

[
λ

1− λ

(
y2c (0)

n0,c
+

y2c (1)

n1,c

)
− 2λȳ

1− λ

(
yc(0)

n0,c
+

yc(1)

n1,c

)]
, (5)

As the sampling probability grows small λ → 0, we recover the non-private variance formula
VarDP,z(τ̂) → Varz[τ̂No-DP], but the ε-DP guarantee goes to infinity. Since the uniform-prior-
DP mechanism itself does not depend on the clusters, the privacy guarantee does not depend on
the clustering properties of the data, if any. The dependence on the clustering in Equation (5) is
only due to the definition of the stratified estimator. When a good clustering is not available, the
above estimator can be simplified to its unstratified version τ̂u by considering that all units belong
to the same cluster:

τ̂u =
1

1− λ

n∑
i=1

(
ỹizi
n1
− ỹi(1− zi)

n0

)
. (6)

The following variance result is a direct corollary of Theorem 3.4.

Corollary 3.5. Under the uniform-prior-DP mechanism, the variance of the unstratified esti-
mator τ̂u defined in Eq. 6 is given by

VarDP,z[τ̂
u] = Varz[τ̂

u
No-DP] +

n

n1n0

λy2 − λ2ȳ2

(1− λ)2
+

λ

1− λ

(
y2(0)

n0
+

y2(1)

n1

)
− 2λȳ

1− λ

(
y(0)

n0
+

y(1)

n1

)

where Varz[τ̂
u
No-DP] denotes the variance of its non-private equivalent τ̂uNo-DP. Its differential pri-

vacy guarantees are the same as those in Theorem 3.4.

We refer the reader to the appendix for the well-known closed form formula of Varz[τ̂
u
No-DP]. The

special case of the unstratified estimator τ̂u in (6) for binary outcomes Y = {0, 1} was previously
proposed by Kancharla and Kang (2021), in which case the variance of the estimator can be further
simplified:

VarDP,z[τ̂
u] = Varz[τ̂

u
No-DP] +

n

n0n1

λ
2 (1−

λ
2 )

(1− λ)2
. (7)

The first two aggregation-based mechanisms in Section 3.1 assumed that a trusted data curator
(e.g. a technology company, in the motivating example in Section 2) has access to the true outcomes
and computes a differentially private estimate or empirical distribution of these responses. In
contrast, the Uniform-prior-DP mechanism can be implemented without such a curator: each
user can privatize their response before sharing it with the experimenter. In other words, the
Uniform-prior-DP mechanism provides a local DP guarantee, defined by Kasiviswanathan et al.
(2011), which is stronger than a DP guarantee. That said, in our motivating example, assuming the
existence of a trusted curator—the technology company—is more natural than putting the burden
of privatizing responses on each individual user.
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4 The Cluster-DP and Cluster-Free-DP mechanisms

We now introduce our main differentially private mechanism, Cluster-DP, which not only pro-
vides user-level privatized outcomes, but also leverages information about the empirical distribution
of outcomes within each cluster to improve its privacy-tradeoff. When no good clustering is avail-
able, we consider its special case when all units can be considered part of the same cluster, the
Cluster-Free-DP mechanism.

Algorithm 4: Our suggested differential privacy mechanism: Cluster-DP

Parameters: threshold γ ∈ [0, 1/K]; noise scale σ ≥ 0; re-sampling probability λ ∈ [0, 1]
Input: Individual responses y1, . . . , yn, treatment assignments z1, . . . , zn.
Output: Privatized responses ỹ1, . . . , ỹn
// Compute noisy response distribution per cluster and treatment group
for c ∈ C do

for a ∈ {0, 1} do
// Add noise to each empirical probability distribution p̂a(y|c) and truncate
for y ∈ Y do

qa(y|c)← max{γ,min{1, p̂a(y|c) + w}} , where w ∼ Laplace(σ/na,c)

for a ∈ {0, 1} do
// Renormalize each distribution
for y ∈ Y do

if
∑

y qa(y|c) > 1 then ζy ← qa(y|c)− γ;

else ζy ← 1− qa(y|c)
for y ∈ Y do

q̃a(y|c)← qa(y|c) + ζy∑
y′ ζy′

(
1−

∑
y qa(y|c)

)
// Randomize responses
for i ∈ {1, . . . n} do

ỹi ←

{
y0i ∼ q̃zi(·|ci) with probability λ

yi with probability 1− λ

Return privatized responses {ỹ1, . . . , ỹn}.

Formalized in Algorithm 4, our proposed mechanism deals with each cluster individually and
independently of other clusters, handling treated and controlled groups separately. It returns a
privatized potential outcome ỹi for each unit, which is either the true outcome with some probability
or sampled from a transformed empirical distribution of responses from units in the same cluster.
The transformation is inspired from a mechanism in Esfandiari et al. (2022). For the sake of
exposition, we focus on the controlled units of a cluster c ∈ C.

(1) Compute the empirical response distribution of the controlled units in the cluster p̂0(y|c).

(2) Add noise drawn from a Laplace distribution with parameter (σ/n0,c) to each response prob-
ability. Recall that n0,c is the number of controlled units in cluster c.

(3) Truncate the response probabilities to be within the interval [γ, 1], with γ ≤ 1/K .
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(4) Renormalize the response probabilities to form a distribution. We follow a specific renormal-
ization so that the resulting response probabilities remain in [γ, 1], and add up to one.

(5) With probability λ, each original response is replaced by a random sample from the distribu-
tion constructed in the previous step.

4.1 Privacy guarantees

The following theorem and its corollary state the differential privacy guarantee of our proposed
Cluster-DP mechanism.

Theorem 4.1. Let ε̃ > 0 and δ := max(0, 1 − λ + λγ(1 − eε̃)) . The Cluster-DP mechanism

described in Algorithm 4 is (ε, δ)-label DP with ε = min
(

1
σ ,

2
γ

)
+ ε̃ . By setting ε̃ = log(1+ 1−λ

λγ ), we

have δ = 0, and therefore the Cluster-DP mechanism is also ε-label DP, with ε = min
(

1
σ ,

2
γ

)
+

log
(
1 + 1−λ

λγ

)
.

We refer the reader to the Appendix for a full proof of Theorem 4.1 and provide here some
intuition for its stated privacy loss ε. The first term min (1/σ, 2/γ) is the privacy budget used to pri-
vately estimate the empirical response distribution q̃a(·|c) for each cluster. Fixing the transformed
empirical distributions q̃a(·|c), the log term is the privacy budget used to generate the privatized
responses ỹi. By the composition theorem for differential privacy (Dwork et al., 2014, Theorem
B.1), the total privacy loss is given by the sum of these two losses. As expected, when the resam-
pling probability goes to zero (λ → 0), the privacy loss grows large (ε → +∞). Similarly, as the
Laplace noise σ and truncation parameter γ grow large, the privacy guarantee improves (ε→ 0).

Because these privacy guarantees do not depend on the size, cardinality, or quality of the
clusters, Theorem 4.1 also holds for the special case where there is no cluster structure to the
data, in which case we can repeat the same mechanism as if all units belong to the same large
cluster. Known as the Cluster-Free-DP mechanism, it has the same privacy guarantee as the
Cluster-DP mechanism. We will show the benefit that clusters may have in the following section
on the variance gap.

Similarity with uniform-prior-DP The careful reader may have noticed similarities between
the privacy guarantees in Theorem 3.4 and Theorem 4.1. In fact, our cluster-DP mechanism is a
generalization of the uniform-prior-DP mechanism with the right choice of parameters, and by
extension also a generalization of the mechanism proposed by Kancharla and Kang (2021) with no
non-compliers. To prove this, we observe that the distributions q̃a(y|c) constructed in the cluster-
DP mechanism obey the following properties: q̃a(y|c) ≥ γ for all y ∈ Y , and

∑
y q̃a(y|c) = 1 .

When setting the truncation parameter γ = 1/K, these distributions reduce to uniform distributions
over the space of all outcomes, in which case the cluster-DP mechanism amounts to the simpler
uniform-prior-DP mechanism, regardless of the value of the Laplace noise variance σ2.

4.2 Estimation and variance guarantees

We now consider estimating causal effects from the privatized outcomes provided by our suggested
Cluster-DP mechanism. For each cluster c ∈ C and each value a ∈ {0, 1} of treatment, we
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Figure 1: Illustration of Cluster-DP mechanism with a central unit computing the (clustered) privatized
outcomes for valid causal inference.

construct the response randomization matrix Qc,a ∈ RK×K :

Qc,a[y
′, y] := (1− λ)I(y′ = y) + λq̃a(y

′|c) . (8)

Conditional on its true outcome yi, treatment assignment zi, and cluster assignment ci, the pri-
vatized response ỹi of unit i is distributed according to Qci,zi [ỹi, yi]; in other words, ∀y′, P (ỹi =
y′|ci, zi, yi) = Qci,zi [y

′, yi].
We use the inverse of the response randomization matrix to debias the privatized responses.

Recall the notation y to represent in vector form the space of all possible potential outcomes, with
similar ordering of rows and columns as Qci,zi . With a small abuse of notation, we write the
index ỹi of the vector y

TQ−1
c,zi as y

TQ−1
c,zi [ỹi] and show that it is an unbiased estimate for yi over the

randomness of Algorithm 4. As a result, by reweighting each privatized outcome by the inverse of its
conditional probability of occurring Qci,zi [ỹi, yi], we propose the following Horvitz-Thompson-like
estimator for the average treatment effect:

τ̂Q :=
∑
c∈C

nc

n

∑
i∈c

(
yTQ−1

c,zi [ỹi]
zi
n1,c
− yTQ−1

c,zi [ỹi]
1− zi
n0,c

)
. (9)

A proof of the following theorem can be found in the Appendix.

Theorem 4.2. Conditionally on the randomness of the treatment assignment, τ̂Q is equal in expec-
tation over the randomness of the DP mechanism to the stratified difference-in-means estimator,
such that τ̂Q is an unbiased and consistent estimator of τ .

EDP [τ̂Q|z] =
∑
c∈C

nc

n

(
n∑

i=1

yi(1)
zi
n1,c
−

n∑
i=1

yi(0)
1− zi
n0,c

)
= τ̂No-DP and EDP,z[τ̂Q] = τ

For the third parties to compute this estimator themselves, the central unit must pass along
the cluster assignment, the treatment assignment, the privatized response ỹi, as well as the vector
of probabilities yTQ−1

c,zi , as illustrated in Figure 1. Since q̃a(·|c) and the responses ỹi are ε-DP, by
the post-processing property of differential privacy (Dwork et al., 2014, Proposition 2.1), all the
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information passed to the third-party, as well as any estimation based on this information, is also
ε-DP.

Our goal for Algorithm 4 is to make the gap between the variance of our differentially-private
estimator τ̂ and its non-differentially private counterpart τ̂No-DP as small as possible for a given
privacy guarantee. While all our results hold for any given clustering, they are greatly improved
when clusters are homogeneous, as defined below.

Definition 4.3 (Cluster homogeneity). For a ∈ {0, 1}, define a clustering’s homogeneity as the
average intra-cluster variance of outcomes ϕa ≥ 0, defined as

ϕa :=
∑
c∈C

n2
c

n2

S2(y⃗c(a))

na,c
,

where for any vector u⃗ ∈ Rd , S2(u⃗) := 1
d−1

∑
u∈u⃗(u− ū)2 and ū := 1

d

∑
u∈u⃗ u .

The quantity ϕa has a natural super-population interpretation when taking its expectation of
over the distribution P: ϕa = E[Var(y(a)|c)] = Var(y(a))− Var(E[y(a)|c]) > 0. Holding Var(y(a))
constant, lower values of ϕa implies that clusters are better separated. For ϕa = 0, the outcome
values of each clusters are contained within a singleton set. On the other hand, if ϕa is high,
clusters contain a wide range of responses, up to the variation of outcomes of the entire population.
The following theorem provides a bound on the variance of our estimator τ̂Q, with respect to the
randomness of Algorithm 4 and the random assignment z, as a function of Varz[τ̂No-DP] and ϕa.

Theorem 4.4. The variance of the estimator τ̂ defined in (9) is bounded by

0 ≤ VarDP,z[τ̂Q]−Varz[τ̂No-DP] ≤
(

1

(1− λ)2
− 1

) ∑
a∈{0,1}

ϕa +
∑

a∈{0,1}

∑
c∈C

n2
c

n2

A(na,c)

na,c
,

where ϕa is the measure of cluster homogeneity defined in Definition 4.3, and for any x,

A(x) := 2K

[
3∥y∥2∞ + (λ

√
K + 1)2 + ∥y∥22(1− λ(K − 1)γ)

(1− λ)2
+ 2∥y∥2∞

] [
γ +

σ

x

(
e−γx/σ − e−x/σ

)]
,

with K the number of possible potential outcomes and y ∈ {Y}K the vector of all possible outcomes.

Theorem 4.1 and Theorem 4.4 together allow us to capture the privacy-variance trade-off of
our proposed mechanism. Recall that the privacy guarantee of Theorem 4.1 is agnostic to the
clustering. On the other hand, the variance gap in Theorem 4.4 depends first on the homogeneity
of clusters, as defined in Definition 4.3, and a second term that is agnostic to the clustering. As a
result, more homogeneous clusters—those with low ϕa—result in a smaller variance gap with equal
privacy guarantees, leading to a better privacy-variance trade-off than less homogeneous clusters,
all else being equal.

We now provide some intuition for the second term A(x). By choosing γ and σ to be arbitrarily
small, we can make this second term arbitrarily small. As expected, the privacy guarantees of
Theorem 4.1 suffer in that regime. When setting λ = 0, our Cluster-DP mechanism always
outputs the true outcome, and we no longer produce privatized outcomes. In that case, we can set
the truncation parameter γ and the Laplace noise σ to be zero with no consequence to recover the
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trivial equality VarDP,z(τ̂) = Varz[τ̂No-DP] from our bound above. Naturally, the more interesting
setting from a privacy perspective is λ ∈ (0, 1).

As discussed previously, the privacy guarantee in Theorem 4.1 for the Cluster-DP and Clus-
ter free-DP mechanisms reduces to the guarantee of the uniform-prior-DP mechanism in
Theorem 3.4 when setting the truncation parameter γ = 1/K and σ = ∞. Yet, because both
Cluster-DP and Cluster-free-DP mechanisms use data-dependent priors, there may exist
choices of (σ, γ, λ) which result in better privacy-variance trade-offs than the latter for certain out-
come distributions. Rather than computing the variance gaps of each mechanism in closed-form, we
encourage practitioners to compute their performance empirically for different values of each mech-
anism’s parameters, and to keep track of the resulting privacy guarantee. In the following section,
we conduct empirical evaluations of the privacy-variance trade-off of the different mechanisms.

5 Numerical experiments

In this section, we perform a series of simulated experiments to validate the theoretical claims
we make in the paper and to illustrate their usefulness. Except for Experiment 5, we focus our
attention on the Uniform-prior DP, Cluster-Free-DP, and Cluster-DP mechanisms, due
to the strong limitations of the aggregation-based baselines in our real-world setting compared to
these three user-level privatization schemes.

We start by considering a Gaussian Mixture Model setting where for every unit i in cluster c,
a continuous quantity y′i is given by

∀i ∈ c, y′i =
√
βµc +

√
v − βwi , (10)

where µc and wi are drawn from the standard normal distribution. The coefficient β ∈ [0, v]
measures the dependence of the response on the cluster center. This specific parameterization is
chosen to fix the variance of the response, equal to v, as β varies. Since the proposed mechanism
is for discrete outcome spaces, we quantize the response in the following way:

yi(1) = yi(0) + τ and yi(0) =


K ′ if y′i > 2

√
v

−K ′ if y′i < −2
√
v

[y/∆] otherwise

where ∆ := 2
√
v/K ′ and [x] denotes the rounding of x to the nearest integer. The treatment effect

is an additive τ term on the potential outcome under control. We fix τ = 1, such that the outcomes
take values in the set Y = {−K ′, . . . , 0, . . . ,K ′,K ′ + 1}. We denote by K := 2(K ′ + 1) the size of
outcome space.

Unless otherwise specified, and with no particular reason to fix parameters one way or another,
we take K ′ = 5, v = 5, and β = 4.5. We consider C = 3 clusters of sizes 500, 103, 2 × 103 with
an equal number of controlled and treated units in each cluster. To display confidence intervals
around certain results, we consider a super-population of three clusters of sizes 2.5× 103, 5× 103,
and 104 units, and repeatedly draw uniformly at random sub-populations of three clusters from
these original clusters.

For any given sub-population, we compute the variance VarDP,z[τ̂Q] by empirically computing
the variance (or histogram) of τ̂Q empirically over 500 realizations of the randomness in the corre-
sponding DP mechanism (e.g. Laplace noise and response randomization), as well as the treatment
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Figure 2: histogram of τ̂ − τ
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Figure 3: qq-plot of τ̂ − τ

assignments, which are done by choosing balanced set of treated and controlled units uniformly
at random within each cluster. Unless otherwise specified, for the Cluster-DP mechanism, we
set the truncation parameter γ = 0.02, the Laplace noise σ = 10, and the resampling probability
λ = 0.8.

Experiment 1. (Bias and Gaussianity) We first verify that our Cluster-DP estimator
τ̂Q, given by (9), is unbiased and admits an asymptotically Gaussian distribution by plotting the
histogram and the qq-plot of τ̂ − τ in Figures 2 and 3.

Experiment 2. (Privacy-variance trade-off) We next compare the privacy-variance trade-off
of our suggested Cluster-DP mechanism with that of the Cluster-Free-DP mechanism, as well
as the stratified and unstratified versions of the Uniform-prior-DP mechanism. We observe that
the Cluster-DP can have significantly lower variance for its estimator, compared to the other
mechanisms, for the same privacy loss (ε, δ).

In Figure 4, we aim to fix the privacy loss to ε = 0.2 and δ = 10−4 for all three mechanisms.
For the Cluster-DP and Cluster-Free-DP, we set the Laplace parameter to σ = 10, and vary
the truncation parameter γ ∈ [0.1/K, 1/K]. Following Theorem 4.1, we first choose ε̃ so that the
corresponding privacy ε, is equal to its target ε = 0.2, and then choose the re-sampling probability
λ to obtain the failure probability δ = 10−4. Likewise, for the Uniform-prior-DP, we set the
re-sampling probability λ according to Theorem 3.4, such that ε = 0.2 and δ = 10−4. In summary,
as the truncation parameter γ varies, we compare the three mechanisms at the same privacy loss.
As we observe in Figure 4, for small values of γ, the Cluster-DP achieves significantly lower
variance compared to to the other mechanisms. When γ = 1/K and σ =∞, the theory tells us that
Cluster-DP reduces to uniform-prior-DP (stratified) and the Cluster free-DP reduces
to uniform-prior-DP (unstratified). However, since we have set σ = 10, we observe that the
variance for the uniform-prior-DP becomes lower than the other mechanisms for γ = 1/K. The
error-bars here correspond to 50 independent draws of the sub-population.

In Figure 5, we plot the variance of the estimators versus the privacy loss ε, as we fix δ =
10−4. Here, we optimize the choice of Laplace parameter σ ∈ {10, 20,∞} and the truncation
parameter γ ∈ {0.01/K, 0.1/K, 1/K}. We observe that both Cluster-DP and Cluster free-DP

15



0 0.2 0.4 0.6 0.8 1
0.8

1

1.2

1.4

1.6

1.8

2

uniform-prior(unstratified)
uniform-prior(stratified)
cluster DP
cluster-free DP

Figure 4: Variances for the DP mechanisms, as we
vary the truncation level γ ∈ [0.1/K, 1/K], under
the setting of Experiment 2. The privacy loss is
fixed at ε = 0.2 and δ = 10−4.
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Figure 5: Privacy-variance trade-off for the four DP
mechanisms under the setting of Experiment 2. We
fix the failure probability in DP guarantee to δ =
10−4, and optimize the choice of σ and γ in the sets
σ ∈ {10, 20,∞} and γ ∈ {0.01/K, 0.1/K, 1/K}.

estimators, which use data-dependent priors achieve a better trade-off than either version of the
Uniform-prior-DPmechanism. Furthermore, the Cluster-DPmechanism, which also leverages
the clustering structure, showcases an even better trade-off compared to the Cluster free-DP
mechanism.

Experiment 3. (Role of clustering quality) In this experiment we show that, as the clustering
quality improves, the variance of the estimator for the cluster-DP mechanism decreases when
compared to the variance of the estimator for the cluster free-DP mechanism, without affecting
their privacy guarantees, since these are agnostic to the clustering according to Theorem 4.1. Under
our specified potential outcome model (10), the cluster homogeneity ϕa, as defined in Definition 4.3,
is given by ϕ0 = E(Var(yi(0)|c)) ∝ v − β = ϕ1, hence our clusters become more homogeneous as
β increases. From Theorem 4.4, the clustering structure reduces the variance of the estimator at
more homogeneous clusters, i.e. lower values of ϕ0, ϕ1, and λ. We verify this in Figure 6, which
plots the ratio of the variances for two values of λ ∈ {0.5, 0.8} as we vary β . As β grows, we
observe a stronger reduction in the variance using the clustering structure of data. This effect is
stronger at smaller values of λ.

Experiment 4. (Validation of theoretical bound) In Theorem 4.4, we bounded the excess
variance of the private estimator (9) compared to the non-private estimator (2). The bound had
two additive terms. The first one depends on the cluster structure of data, namely the cluster
homogeneity quantities ϕ0, ϕ1, and the second term did not depend on the clusters, capturing
instead an increase in the variance due to the randomness of the Cluster-DP mechanism. In
Figure 7, we compute the gap VarDP,z[τ̂ ]−Varz[τ̂No-DP] empirically, by averaging over 500 different
realizations of the randomness in the DP mechanism and the treatment assignments in the same
setting as the previous experiment. We plot this gap as we vary β, along with a shaded region
whose upper boundary corresponds to the upper bound given in Theorem 4.4 and its lower boundary
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Figure 6: Ratio of the variance of the estimators under the cluster-DP and cluster free-DPmechanisms
in Experiment 3. The benefit of cluster-DP mechanism is stronger at larger β and smaller value of λ.
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Figure 7: The variance gap between the private estimator τ̂Q, given by (9), and the non-private estimator
τ̂No-DP in the setting of Experiment 4. The upper boundary of the shaded area corresponds to the upper
bound derived in Theorem 4.4, and it lower boundary corresponds to the the first term in that bound. As
we see the gap remains between the two boundaries.

corresponds to only the first term in that bound. We observe that the variance gap remains in the
shaded area which validates the theoretical upper bound given by Theorem 4.4, and shows that
the derived bound is tight, up to the second term.

Experiment 5. (Comparisons with aggregation-based baselines) We next compare the
privacy-variance trade-off of the estimator based on the cluster-DP mechanism with the other
baselines discussed in Section 3, namely the noisy Horvitz-Thompson estimator and the noisy
histogram estimator. The goal of this experiment is to show that in the case of one-shot commu-
nication between the central unit and the advertisers, the cluster-DP estimator achieves lower
finite-sample conditional bias than the other two baselines. To demonstrate this point, we fix the
noise and randomization in each DP mechanisms for the super-population and compute the bias
of each estimator with respect to random draws from the super-population and of the treatment
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Figure 8: Bias of the cluster-DP, noisy Horvitz-Thompson and noisy histogram estimators under one shot
communication between the central unit and the advertisers in the setting of Experiment 5.

assignments. Specifically we compute the expectation of the treatment effect estimator over 500
sub-populations, each consisting of 500, 1000, 2000 units from each cluster, uniformly at random
with a balanced number of treated and controlled units in each cluster. The bias is then computed
as the difference between the expectation of the estimator and the true treatment effect. As we see
in Figure 8, Cluster-DP estimator achieves a lower conditional bias compared to the other two
baselines, as we vary the privacy loss ε. The error bars are obtained by considering 50 different
realizations of the noise/randomization in the DP mechanisms.

5.1 Simulation on the Youtube social network

We now use a subset of the Youtube social network to replicate two experiment results in a setting
with natural clusters. First, we demonstrate that the proposed stratified estimator combined with
the Cluster-DPmechanism is unbiased and admits a Gaussian distribution, replicating the results
of Experiment 1. We then compare the variance of our suggested estimator for the Cluster-DP
mechanism with its variance when using the Cluster free-DP mechanism to show the benefit of
leveraging the clustering structure, replicating the results of Experiment 2.

The Youtube social network dataset (Leskovec and Krevl, 2014) contains the friendship links
of a set of users on Youtube, and the ground-truth clusters correspond to groups created by users.
We form a smaller dataset, by considering only the 50 largest communities, which includes a total
of 22,179 users with a minimum cluster size of 199. We generate the potential outcomes for the
users as follows:

yi(0) = xTi β + wi , yi(1) = yi(0) + τ ,

with wi ∼ N(0, v2) capturing individual i’s effect and the xTi β term capturing the cluster-level
effect. We follow a similar model as in (Zhou et al., 2020) and consider a four-dimensional feature
vector xi, with xi1 being the number of nodes in cluster ci (the cluster of user i), xi2 the number
of edges in ci, xi3 the number of edges in ci with other clusters, and xi4 the density of cluster ci.
Recall that for a cluster with n nodes and e edges, its density is defined as e×

(
n
2

)−1
.

Since the proposed mechanism is for discrete outcome spaces, we quantize the responses into
K = 8 levels. We standardize the features by making each of the four features zero mean and unit
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Figure 9: qqplot of τ̂ − τ , with τ̂ the Cluster-DP
estimator using 500 realizations of randomness in
the outcomes and the DP mechanism.
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Figure 10: Privacy-variance trade-off of the
Cluster-DP and Cluster free-DP stratified es-
timators. The dotted line represents the variance of
the non-private stratified estimator.

norm across clusters, and setting the standard deviation of the Gaussian noise wi to v = 0.1. In
our experiments, we set β = (1, 1, 1, 1)T and τ = 1. In the Cluster-DP mechanism, we set the
truncation threshold to γ = 0.1/K and the Laplace noise level to σ = 5.

Figure 9 shows the qqplot of τ̂ − τ with τ̂ being the Cluster-DP mechanism, using 500
realizations of the randomness in the outcomes and the DP mechanism. As the plot demonstrates
τ̂ is an unbiased and Gaussian estimator. In Figure 10, we plot the privacy-variance trade-off for
the Cluster-DP and the Cluster free-DP mechanisms, along with the variance of the non-
private stratified estimator, finding once again that the Cluster-DP mechanism achieves a better
trade-off by leveraging the natural cluster structure of the Youtube users.
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A Appendix

A.1 Notation and common formulas

We recall here all the notations used in the paper and in the proofs:

• n: total number of units.

• n0 (resp n1): total number of controlled (resp. treated) units.

• zi ∈ {0, 1}: the treatment assignment of unit i. zi = 1 (resp. 0) implies unit i is treated
(resp. controlled).

• Y: response space of cardinality K = |Y| <∞.

• yi(z) ∈ Y: the potential treatment outcome of unit i under treatment assignment value z.

• ỹi ∈ Y: privatized outcome of unit i returned by the DP mechanism.

• y = (y)y∈Y : vector notation of the entire response space.

• C: set of all clusters of cardinality C = |C| <∞.

• ci: cluster of unit i.

• nc = |{i ∈ [n] : ci = c}|: number of units in cluster c.

• Oa,c := {i : cxi = c, zi = a} : units belonging to cluster c and treatment assignment zi = a.

• Oc := {i : ci = c} : units belonging to cluster c

• na,c = |Oa,c| for a ∈ {0, 1}.

• γ ∈ [0, 1/K]: minimum of clipped empirical distribution

• σ: noise scale

• 1− λ ∈ [0, 1]: true response sampling probability

• pa(y|x) = P(Y (a) = y|X = x): true distribution for treated (a = 1) and controlled (a = 0)
units.

• pa(y|c) = P(Y (a) = y|cX = c): true distribution for treated (a = 1) and controlled (a = 0)
units within cluster c.

• p̂a(y|c) =
|{i : cxi = c, zi = a, yi = y}|
|{i : cxi = c, zi = a}|

: empirical distribution for treated (a = 1) and con-

trolled (a = 0) units within cluster c.

• When the context is clear, we sometimes adopt this lightened notation:

– p̂ℓ =
1

n0,c
|{i ∈ O0,c : yi = ℓ}| : empirical probability of outcome ℓ for the controlled units

in cluster c
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– p̂ = [p̂l]l∈Y ∈ RK×1: empirical distribution of outcomes of the controlled units in cluster
c, arranged into a K-dimensional vector, with coordinates p̂ℓ.

• ϕa = Var(E[Y (a)|cX ]): clustering quality

• Qc,a[y
′, y] = (1− λ)I(y′ = y) + λq̃a(y

′|c) : response randomization matrix

• When the context is clear, we sometimes adopt this lightened notation

– Q = Qc,0

– Qa,b = Qc,0[a, b],

– Q−1
a,b = Q−1

c,0 [a, b],

– Q−T = (Q−1)T.

– q̃ = [q̃0(y|c)]y∈Y ∈ RK×1 the distribution constructed in the DP mechanism (after adding
noise to empirical distribution p̂0,D, truncation and normalization)

– q̃l: coordinate l of vector q̃.

• ua,c :=
∑

i∈Oa,c

∑
y′∈Y Q−1

ci,a[y
′, ỹi]y

′ .

• y⃗a,c := {yi(a) : i ∈ Oa,c}, for a ∈ {0, 1}. Note that y⃗a,c is observed by the experimenter.

• y⃗c(a) := {yi(a) : ci = c}. Note that y⃗c(a) contains unobserved values.

• eℓ ∈ RK×1 with 1 at the ℓ-th position and zero everywhere else

• A(x) = 2K
{
B2
(

3
(1−λ)2

+ 2
)
+ (λ

√
K+1)2

(1−λ)2
∥Y∥2(1 − λ(K − 1)γ)

}[
γ + σ

x

(
e−γx/σ − e−x/σ

)]
:

recurring expression in variance bounds.

We now state the well-known expression for the variance of the stratified Horvitz-Thompson
estimator, which we recall below:

τ̂No-DP :=
∑
c∈C

nc

n

∑
i∈c

(
yizi
n1,c
− yi(1− zi)

n0,c

)
.

Let y⃗c := {yi : ci = c} ∈ Ync be the vector of outcomes of units in cluster c, and τ⃗c := y⃗c(1)− y⃗c(0)
be the vector of the differences between each unit’s potential outcome in treatment and in control.
The variance of τ̂No-DP is given by

Varz[τ̂No-DP] =
∑
c∈C

n2
c

n2

(
S2(y⃗c(1))

n1,c
+

S2(y⃗c(0))

n0,c
− S2(τ⃗c)

nc

)
,

where, for any vector u ∈ Rd , S2(u⃗) := 1
d−1

∑
u∈u⃗(u − ū)2 and ū := 1

d

∑
u∈u⃗ u . The formula for

Varz[τ̂
u
No-DP] can be obtained from the formula above where all units belong to a single cluster

|C| = 1 and nc = n.
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A.2 Proof of Proposition 3.1 and 3.2

We start by proving Proposition 3.1. Recall the noisy Horvitz-Thompson estimator τ̂ given by (1):

τ̂ :=
∑
c∈C

nc

n

{∑
i∈c

(
yizi
n1,c
− yi(1− zi)

n0,c

)
+ wc

}
, wc ∼ Laplace(ηc) .

To show its privacy guarantee, we apply (Dwork et al., 2014, Theorem 3.6). Consider the sensitivity
∆c of the inner function 1/n1,cyizi − 1/n0,cyi(1 − zi), defined as the maximum change in its value
when changing only one label in the data set. Since the assignments are not private, we keep
them intact in computing the sensitivity. Therefore, changing only on label will change the inner
function by at most ∆c = min{n0,c, n1,c}−1 ×maxy∈Y |y|. By using (Dwork et al., 2014, Theorem
3.6), adding Laplace noise with parameter ∆c/ε will make each of the inner terms ε-DP and by the
post-processing property (Dwork et al., 2014, Proposition 2.1 ), τ̂ is also ε-DP.

For the variance, recall the non-differentially-private Horvitz-Thompson estimator τ̂No-DP from (2),
by which we can write

τ̂ = τ̂No-DP +
∑
c∈C

nc

n
wc .

Since wc are drawn independently from each other and also independent from the assignments
zi, we have

VarDP,z[τ̂ ] = VarDP,z[τ̂No-DP] +
∑
c∈C

(nc

n

)2
Var[wc]

= VarDP,z[τ̂No-DP] + 2
∑
c∈C

(
nc

n

∆c

ε

)2

,

where the last step holds because wc ∼ Laplace(ηc) with ηc = ∆c/ε.
We next proceed with proving Proposition 3.2. Its privacy guarantee follows easily from the

fact that p̂a(y|c) has sensitivity 1/na,c (histogram queries) and therefore adding independent draws
from Laplace((na,cε)

−1) to the frequency of each value will make the histogram ε-DP. To prove the
claim on its variance, we note that the non-private Horvitz-Thompson estimator can be written as

τ̂No-DP =
∑
c∈C

nc

n

∑
y∈Y

yp̂1(y|c)−
∑
y∈Y

yp̂0(y|c)

 .

Therefore, we can write the noisy Histogram estimator (3) as

τ̂ =
∑
c∈C

nc

n

∑
y∈Y

y(p̂1(y|c) + w1,c,y − p0(y|c)− w0,c,y)

= τ̂No-DP +
∑
c∈C

nc

n

∑
y∈Y

y(w1,c,y − w0,c,y) .
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Since wa,c,y are independent from each other and wa,c,y ∼ Laplace(ηa,c), we get

VarDP,z[τ̂ ] = VarDP,z[τ̂No-DP] +
∑
c∈C

∑
y∈Y

(nc

n
y
)2

(Var[w1,c,y] + Var[w0,c,y])

= VarDP,z[τ̂No-DP] +

∑
y∈Y

y2

∑
c∈C

(nc

n

)2
(2η21,c + 2η20,c)

= VarDP,z[τ̂No-DP] +
2

ε2

∑
y∈Y

y2

∑
c∈C

(nc

n

)2( 1

n2
1,c

+
1

n2
0,c

)
.

This completes the proof of Proposition 3.2.

A.3 Proof of Theorem 3.4

Because the Uniform-Prior DP mechanism is a special case of the Cluster-DP mechanism, we
follow the proof of Theorem 4.4, which is detailed below and which the reader might prefer reading
first. In this special case, we can obtain an exact form for the variance gap. Hence, we continue
from (27), which in the case that there is no Laplace noise added, reads as

VarDP (u0,c|z,P) = n0,cy
TQ−1diag(Qp̂)Q−Ty −

∑
i∈O0,c

y2i (0) . (11)

Note that we are using the lightened notation p̂ to indicate the empirical distribution of outcomes
of the controlled units in cluster c.

In the mechanism described by Algorithm 4, q̃ is data-dependent and so correlated to p̂. In
that case, we analyzed the first term via the decomposition diag(Qp̂) = diag(Qq̃)+diag(Q(p̂− q̃))
and bounding ∥q̃− p̂∥1. In the current case that q̃ is the uniform distribution, this approach is not
tight as ∥q̃ − p̂∥1 would be large. However, since q̃ (and therefore Q) is data-independent we can
directly analyze the first term as follows:

yTQ−1diag(Qp̂)Q−Ty

=
1

(1− λ)2
yT
(
I − λ

K
11T

)
diag

(
(1− λ)p̂+

λ

K
1

)(
I − λ

K
11T

)
y

= yT
{ 1

(1− λ)
diag(p̂) +

λ

K(1− λ)2
diag(1)− 2λ

K(1− λ)
1p̂T − λ2

K2(1− λ)2
11T

}
y

=
y2
0,c

(1− λ)
+

λy2

(1− λ)2
− 2λȳ

(1− λ)
y0,c −

λ2ȳ2

(1− λ)2

=
y2
0,c

(1− λ)
+

λy2 − λ2ȳ2

(1− λ)2
− 2λȳ

(1− λ)
y0,c , (12)

where we use the shorthand

y2
0,c =

1

n0,c

∑
i∈O0,c

y2i (0) , y0,c =
1

n0,c

∑
i∈O0,c

yi(0) .
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Using (12) in (11), we arrive at

VarDP (u0,c|z,P) = n0,c

[
y2
0,c

(1− λ)
+

λy2 − λ2ȳ2

(1− λ)2
− 2λȳ

(1− λ)
y0,c

]
− n0,cy⃗20,c

= n0,c

[
λ

1− λ
y2
0,c +

λy2 − λ2ȳ2

(1− λ)2
− 2λȳ

(1− λ)
y0,c

]
.

Invoking (23), the above characterization yields the following:

VarDP (τ̂ |z,P) =
∑
c∈C

n2
c

n2

[
λ

1− λ

(
y2
0,c

n0,c
+

y2
1,c

n1,c

)
− 2λȳ

(1− λ)

(
y0,c

n0,c
+

y1,c

n1,c

)]

+
∑
c∈C

n2
c

n2

(
1

n0,c
+

1

n1,c

)
λy2 − λ2ȳ2

(1− λ)2
. (13)

We next compute Ez[VarDP (τ̂ |z,P)]. Since we are fixing na,c for each cluster, we have P(zi = a) =
na,c

nc
for i ∈ Oc and a ∈ {0, 1}. We therefore have

Ez[ya,c] = Ez

[
1

na,c

∑
i∈Oc

I(zi = a)yi(a)

]
=

1

nc

∑
i∈Oc

yi(a) = y⃗c(a) .

Likewise we have Ez[y2
a,c] = y⃗2c (a). Using this identities in (13), we obtain

Ez[VarDP (τ̂ |z,P)] =
∑
c∈C

n2
c

n2

[
λ

1− λ

(
y2
c (0)

n0,c
+

y2
c (1)

n1,c

)
− 2λȳ

(1− λ)

(
yc(0)

n0,c
+

yc(1)

n1,c

)]

+
∑
c∈C

n2
c

n2

(
1

n0,c
+

1

n1,c

)
λy2 − λ2ȳ2

(1− λ)2
.

We next recall (22):

Varz[EDP (τ̂ |z,P)] =
∑
c∈C

n2
c

n2

(
S2(y⃗c(1))

n1,c
+

S2(y⃗c(0))

n0,c
− S2(τ⃗c)

nc

)
,

which is the variance of the typical estimator with no-differential-privacy and so was written as
Varz[τ̂No-DP]. Finally, from the law of total variance, we have:

Var(τ̂ |n0, n1,P) = Ez[VarDP (τ̂ |z, n0, n1,P)] + Varz[EDP (τ̂ |z, n0, n1,P)]
= Ez[VarDP (τ̂ |z,P)] + Varz[EDP (τ̂ |z,P)]

= Varz[τ̂No-DP] +
∑
c∈C

n2
c

n2

(
1

n0,c
+

1

n1,c

)
λy2 − λ2ȳ2

(1− λ)2

+
∑
c∈C

n2
c

n2

[
λ

1− λ

(
y2
c (0)

n0,c
+

y2
c (1)

n1,c

)
− 2λȳ

(1− λ)

(
yc(0)

n0,c
+

yc(1)

n1,c

)]
.

26



A.4 Proof of Theorem 4.1

The Cluster-DP mechanism randomizes the labels using the empirical probability of units with
the same treatment status (treated or controlled) within the same cluster, so we can focus on the
controlled units within one cluster, and drop the index a, c from our notation, unless needed for
clarification. With slight abuse of notation, suppose that there are n controlled units in the cluster
and denote by M the mechanism described in Algorithm 4.

We can think ofM as composition of two mechanismsM1 andM2 withM(D) = M2(D,M1(D)),
where M1(D) represents the mechanism that returns the noisy cluster label distribution q̃, and
M2(D, q̃) represents the mechanism which uses q̃ to re-sample the labels and use them to form the
average treatment effect estimator τ̂ . By composition theorem for (ε, δ)-DP (see e.g. (Dwork et al.,
2014, Theorem B.1)), if M1 is (ε1, δ1)-DP and M2 is (ε2, δ2)-DP, then M is (ε1 + ε2, δ1 + δ2)-DP.

After adding noise terms wy,c to empirical distributions p̂0,D(y|c) and p̂1,D(y|c), the dataset D
is not accessed anymore. Furthermore, the empirical distributions have sensitivity 1/nc and the
Laplace noise used in M1 is of scale σ/nc, which imply that M1 is (1/σ, 0)-DP (see e.g. (Dwork
et al., 2014, Theorem 3.6) for an argument).

For mechanism M2, note that it is a randomization per label mechanism (using perturbed
distribution q̃), followed by post-processing (computing average treatment effect estimator). We
next show that M2 is (ε̃, δ)-DP. Note that for all y ∈ Y, we have

P(ỹi = y|yi = y) = 1− λ+ λq̃(y), P(ỹi = y|yi ̸= y) = λq̃(y) .

Since P(ỹi = y|yi ̸= y) is independent of yi and P(ỹi = y|yi ̸= y) < P(ỹi = y|yi = y), the only
condition we need to verify is the following:

P(ỹi = y|yi = y) ≤ eε̃P(ỹi = y|yi ̸= y) + δ .

By substituting for the events probabilities and δ, the above condition becomes equivalent to

0 ≤ λ(γ − q̃(y))(1− eε̃) ,

which holds since ε̃ > 0 and γ ≤ q̃(y). To summarize, by applying composition theorem for
(ε, δ)-DP, we obtain that M is (ε′, δ)-label DP, with ε′ = 1/σ + ε̃.

We next show that M is (ε′′, δ)-label DP, with ε′′ = 2/γ + σ, which along with the previous
result gives the claim of Theorem 4.1. Let Y1:n be the random vector denoting the labels of the
units. We need to show that for any two neighboring data sets D = (y1:n, x1:n) and D′ = (y′1:n, x1:n)
(where y1:n and y′1:n differ only in one entry) we have

P(M(y1:n) ∈ O) ≤ eε
′′
P(M(y′1:n) ∈ O) + δ , (14)

for any set O ∈ Yn. Proof of this part requires more effort. Let W1:K be the random vector
representing the noise values added to the set of possible labels in the data set. We then have

P(M(y1:n) ∈ O) =
∑
w1:K

P(M(y1:n) ∈ O)|Y1:n = y1:n,W1:K = w1:K) P(W1:K = w1:K) ,

P(M(y′1:n) ∈ O) =
∑
w1:K

P(M(y′1:n) ∈ O)|Y1:n = y′1:n,W1:K = w1:K) P(W1:K = w1:K) .
(15)
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It suffices to show that for any value of w1:K , we have

P(M(y1:n) ∈ O)|Y1:n = y1:n,W1:K = w1:K) ≤ eε
′′
P(M(y′1:n) ∈ O)|Y1:n = y′1:n,W1:K = w1:K) + δ .

(16)

By multiplying both sides of the above equation with P(W1:K = w1:K), and summing over w1:K ,
and using that

∑
w1:K

P(W1:K = w1:K) = 1, we get the desired bound in (14).
Let q̃ and q̃′ be the empirical distributions of the DP mechanism, as defined in Algorithm 4. we

continue by establishing a lemma on ∥q̃ − q̃′∥∞, proven in the next section.

Lemma A.1. For all y ∈ Y, |q̃(y)− q̃′(y)| ≤ 2
n .

Define the shorthand R := M(y1:n) and R′ := M(y′1:n). In order to prove (16), it suffices to
show that for all o1:n ∈ Yn, we have

P(R = o1:n|Y1:n = y1:n,W1:K = w1:K) ≤ eε
′′
P(R′ = o1:n|Y1:n = y′1:n,W1:K = w1:K) + δ . (17)

By the definition of the mechanism M we have

P(R = o1:n|Y1:n = y1:n,W1:K = w1:K) = P(R = o1:n|Y1:n = y1:n, q̃(·)) =
n∏

i=1

P(Ri = oi|Yi = yi, q̃(·))

P(R′ = o1:n|Y1:n = y′1:n,W1:K = w1:K) = P(R = o1:n|Y1:n = y′1:n, q̃
′(·)) =

n∏
i=1

P(R′
i = oi|Y ′

i = y′i, q̃
′(·))

For ease in presentation, we adopt the shorthand

Ai := P(Ri = oi|Yi = yi, q̃(·)), Bi := P(R′
i = oi|Y ′

i = y′i, q̃
′(·)) ,

for i = 1, . . . , n. Our next lemma bounds the event probability Ai in terms of the event probability
Bi. Proof of Lemma A.2 is deferred to Section A.4.

Lemma A.2. Let ε̃ > 0 and define δ := (1 − λ + λγ(1 − eε̃))+ < 1. Without loss of generality
suppose that the neighboring label sets y1:n and y′1:n differs in the first coordinate. We then have

A1 ≤ eε̃
(
1 +

2

γn

)
B1 + δ, (18)

Ai ≤ Bi

(
1 +

2

γn

)
, for i = 2, . . . , n. (19)
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We are now ready to prove inequality (17). Using Lemma A.2, we write

P(R = o1:n|Y1:n = y1:n,W1:K = w1:K) =
n∏

i=1

Ai

= A1min

{
1,

n∏
i=2

Ai

}

≤
[
eε̃
(
1 +

2

γn

)
B1 + δ

]
min

{
1,

(
1 +

2

γn

)n−1 n∏
i=2

Bi

}

≤ eε̃
(
1 +

2

γn

)n n∏
i=1

Bi + δ

≤ eε̃+2/γ
n∏

i=1

Bi + δ

= eε
′′
P(R′ = o1:n|Y1:n = y′1:n,W1:K = w1:K) + δ .

where the second equality holds since Ai ≤ 1, for all i.

Proof of Lemma A.1

Recall the notation of Theorem 4.1. We consider two neighboring datasets D = (y1:n, x1:n) and
D′ = (y′1:n, x1:n), where y1:n and y′1:n differ only in one entry. Define the function fγ as follows:

fγ(x) = max{γ,min{1, x}} =


γ, x ≤ γ

x, γ ≤ x ≤ 1

1, x > 1

We consider q(y) := fγ(p̂(y)+wy) and q′(y) := fγ(p̂
′(y)+wy), where p̂ and p̂′ respectively denote

the empirical distribution of y1:n and y′1:n and wy indicates the component of w1:K corresponding
to label y. We wish to bound the difference between distributions q̃(y) and q̃′(y), defined in
Algorithm 4, and recalled below:

q̃(y) = q(y) +
ζy∑
y′ ζy′

∆ , q̃′(y) = q′(y) +
ζ ′y∑
y′ ζ

′
y′
∆′ ,

where ∆ = 1 −
∑

y q(y) and ∆′ = 1 −
∑

y q
′(y). To achieve this, we will need a bound on

|q(y)− q′(y)| and on a bound on |∆−∆′|.

• Since fγ is 1-Lipschitz, we have for any y ∈ Y

|q(y)− q′(y)| = |fγ(p̂(y) + wy)− fγ(p̂
′(y) + wy)| ≤ |p̂(y)− p̂′(y)| ≤ 1

n
,

where the last inequality holds because the datasets D and D′ differ in only one label.
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• We now show that |∆ − ∆′| ≤ 1/n. Without loss of generality, we can assume that the
neighboring label sets y1:n and y′1:n differ in the first coordinate, with y1 = ℓ, y′1 = ℓ′ for
ℓ, ℓ′ ∈ Y, such that

p̂(ℓ) = p̂′(ℓ) +
1

n
, p̂(ℓ′) = p̂′(ℓ′)− 1

n
.

It follows that

∆′ −∆ =
∑
y

q(y)−
∑
y

q′(y)

= fγ(p̂(ℓ) + wℓ) + fγ(p̂(ℓ
′) + wℓ′)− fγ(p̂

′(ℓ) + wℓ)− fγ(p̂
′(ℓ′) + wℓ′)

= fγ

(
p̂′(ℓ) +

1

n
+ wℓ

)
− fγ(p̂

′(ℓ) + wℓ) + fγ

(
p̂′(ℓ′)− 1

n
+ wℓ′

)
− fγ(p̂

′(ℓ′) + wℓ′)

≤ fγ

(
p̂′(ℓ) +

1

n
+ wℓ

)
− fγ(p̂

′(ℓ) + wℓ)

≤ 1

n
,

where the second to last inequality holds since fγ is a non-decreasing function, and the last
step follows from 1-Lipschitzness of fγ . Likewise, we can show ∆ − ∆′ ≤ 1/n in order to
obtain |∆−∆′| ≤ 1/n.

With this, we next bound the difference between distributions q̃(y) and q̃′(y), defined above.
Consider three different cases:

• ∆ > 0,∆′ < 0. We have

|q̃(y)− q̃′(y)| ≤ |q(y)− q′(y)|+
∣∣∣ ζy∑

y′ ζy′
∆−

ζ ′y∑
y′ ζ

′
y′
∆′
∣∣∣

≤ |q(y)− q′(y)|+ |∆−∆′| ≤ 2

n
.

The case of ∆ < 0, ∆′ > 0 can be handled similarly.

• ∆,∆′ < 0. We have

q̃(y) = q(y) + (q(y)− γ)
∆∑

y′(q(y
′)− γ)

= q(y) + (q(y)− γ)
∆

1−∆−Kγ

= γ + (q(y)− γ) + (q(y)− γ)
∆

1−∆−Kγ

= γ + (q(y)− γ)
1−Kγ

1−∆−Kγ
.
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Therefore,

|q̃(y)− q̃′(y)| ≤ (q(y)− γ)
∣∣∣ 1−Kγ

1−∆−Kγ
− 1−Kγ

1−∆′ −Kγ

∣∣∣+ |q′(y)− q(y)| 1−Kγ

1−∆′ −Kγ

= (q(y)− γ)
(1−Kγ)|∆−∆′|

(1−∆−Kγ)(1−∆′ −Kγ)
+

1

n

1−Kγ

1−∆′ −Kγ

=
1−Kγ

1−∆′ −Kγ

[
(q(y)− γ)|∆−∆′|

(1−∆−Kγ)
+

1

n

]
(a)

≤ 1

n

1−Kγ

1−∆′ −Kγ

(
q(y)− γ

1−∆−Kγ
+ 1

)
(b)

≤ 2

n

1−Kγ

1−∆′ −Kγ
≤ 2

n
.

(a) holds since |∆−∆′| ≤ 1/n. (b) follows from the fact that, since q(y) ≥ γ for all y,

q(y) + (K − 1)γ ≤ q(y) +
∑
y′ ̸=y

q(y′) = 1−∆ ,

such that q(y)− γ ≤ 1−∆−Kγ.

• ∆,∆′ > 0. We have

q̃(y) = q(y) + (1− q(y))
∆∑

y′(1− q(y′))

= 1 + (1− q(y))

(
∆

∆+K − 1
− 1

)
= 1 + (1− q(y))

1−K

∆+K − 1
.

Therefore,

|q̃(y)− q̃′(y)| ≤ (1− q(y))
∣∣∣ 1−K

∆+K − 1
− 1−K

∆′ +K − 1

∣∣∣+ |q(y)− q′(y)| K − 1

∆′ +K − 1

≤ (1− q(y))

[
|∆′ −∆|
∆+K − 1

+
1

n

]
K − 1

∆′ +K − 1

≤ (1− q(y))
1

n(K − 1)
+

1

n
≤ 1

n

K

K − 1
≤ 2

n
.

Combining the above three cases together, we obtain our stated lemma.

Proof of Lemma A.2

We start by proving (18). Consider three different cases:

• o1 ̸= y1, y
′
1: In this case, we have

A1 = λq̃(o1), B1 = λq̃′(o1).
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Therefore, we can write

A1 ≤ λq̃′(o1) + λ∥q̃ − q̃′∥∞

≤ λq̃′(o1) +
2λ

n

≤ λq̃′(o1)

(
1 +

2

nγ

)
= B1

(
1 +

2

nγ

)
≤ eε̃B1

(
1 +

2

nγ

)
+ δ,

where the second step follows from Lemma A.1, third step holds since γ ≤ q̃′(o1), and the
last step holds since ε̃, δ > 0. So the claim (18) is proved in this case.

• o1 = y1: In this case,
A1 = 1− λ+ λq̃(o1), B1 = λq̃′(o1) .

We then have

A1 ≤ 1− λ+ λq̃′(o1) + λ∥q̃ − q̃′∥∞

≤ 1− λ+ λq̃′(o1) + λ
2

nγ
q̃′(o1)e

ε̃ , (20)

where we used Lemma A.1 along with the facts that q̃′(o1) ≥ γ and ε̃ > 0.

We next recall the definition δ := (1 − λ + λγ(1 − eε̃))+ < 1. By a simple rearrangement of
the terms and using that q̃′(o1) ≥ γ and ε̃ > 0, we can verify the following,

1− λ+ λq̃′(o1) ≤ eε̃λq̃′(o1) + δ . (21)

Therefore, by combining equations (20) and (21), we get

A1 ≤ eε̃λq̃′(o1) + δ + λ
2

nγ
q̃′(o1)e

ε̃ = eε̃ =

(
1 +

2

nγ

)
B1 + δ ,

which completes the proof of claim (18) in this case.

• o1 = y′1: In this case,
A1 = λq̃(o1), B1 = 1− λ+ λq̃′(o1) .

The proof of claim (18) in this case follows readily from case 1, because A1 is the same as in
there, while B1 is larger.

This concludes the proof of Claim 18. We next prove Claim 19. Note that for i = 2, . . . , n, we have
yi = y′i. Consider the following two cases:

• oi = yi = y′i: In this case we have

Ai

Bi
=

1− λ+ λq̃(oi)

1− λ+ λq̃′(oi)
.
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• oi ̸= yi: Since yi = y′i, we also have oi ̸= y′i. In this case,

Ai

Bi
=

λq̃(oi)

λq̃′(oi)
.

By symmetry, we can assume q̃(oi) ≤ q̃′(oi), without loss of generality, and therefore, the maximum
value of the ratio A1/B1 is achieved in the second case, for which we have

Ai

Bi
=

q̃(oi)

q̃′(oi)
≤ 1 +

∥q̃ − q̃′∥∞
q̃′(oi)

≤ 1 +
2

nγ
.

This completes the proof of (19).

A.5 Proof of Theorem 4.2

We would like to express the expectation E(τ̂ |n0, n1). Recall that there are three sources of ran-
domness:

• the differential privacy mechanism DP : determines the Laplace noise w and the λ probability
of reporting the true outcome.

• the randomized assignment z: determines which units get assigned to treatment and which
units get assigned to control.

• the super-population P: determines the potential outcomes as well as the cluster assignments.

For a given unit i with (yi(0), yi(1), ci) ∼ P and zi = a,

EDP

∑
y′∈Y

Q−1
ci,zi [y

′, ỹi]y
′zi

∣∣∣∣∣∣z,P
 = EDP

∑
y′∈Y

∑
y∈Y

I(ỹi = y)Q−1
ci,zi [y

′, y]y′zi

∣∣∣∣∣∣z,P


(a)
=
∑
y′∈Y

EDP

∑
y∈Y

I(ỹi = y)Q−1
ci,zi [y

′, y]

∣∣∣∣∣∣z,P
 y′zi

(b)
=
∑
y′∈Y

Ew

∑
y∈Y

Eλ [I(ỹi = y)]Q−1
ci,zi [y

′, y]

∣∣∣∣∣∣z,P
 y′zi

(c)
=
∑
y′∈Y

Ew

∑
y∈Y

Qci,zi [y, yi]Q
−1
ci,zi [y

′, y]

∣∣∣∣∣∣z,P
 y′zi

(d)
=
∑
y′∈Y

Ew

[
I(yi = y′)

∣∣z,P] y′zi
(e)
=
∑
y′∈Y

I(yi = y′)y′zi

= yi(1)zi .

(a) holds since assignments zi is independent from {yi(0), yi(1), ci}; (b) holds from the law of
iterated expectation and the fact that there are two sources of randomness in the differential privacy
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mechanism: (λ,w) with Qc,a independent of the Bernoulli λ; (c) follows from the definition of Qc,a:
Qc,a[y

′, y] = (1− λ)I(y′ = y) + λq̃a(y
′|c) ; and (d) follows from the fact that I = Q−1

ci Qci therefore,
for any a, b ∈ [K], ∑

y

Q−1
ci [a, y]Qci [y, b] = Ia,b = I(a = b) .

Finally, (e) follows from the fact that w is independent from {yi(0), yi(1), ci}. Similarly,

EDP

∑
y′∈Y

Q−1
ci,zi [y

′, ỹi]y
′(1− zi)

∣∣∣∣∣∣z,P
 = yi(0)(1− zi)

As a result, with n0,c (resp. n1,c) the total number of controlled (resp. treated) units in cluster c
and nc := n0,c + n1,c,

EDP [τ̂ |z,P] =
∑
c∈C

nc

n

(
n∑

i=1

yi(1)
zi
n1,c
−

n∑
i=1

yi(0)
1− zi
n0,c

)

We recover the standard form of the difference-in-means estimator. From the law of iterated
expectations, we have

EDP,z[τ̂ ] = Ez [EDP [τ̂ |z]|n0, n1,P] = τ .

A.6 Proof of Theorem 4.4

We would like to express the variance VarDP,z(τ̂). We begin by expressing the variance with respect
to the first two, considering the third fixed. From the law of total variance, we have:

VarDP,z(τ̂) = Ez[VarDP (τ̂ |z, n0, n1,P)] + Varz[EDP (τ̂ |z, n0, n1,P)]
= Ez[VarDP (τ̂ |z,P)] + Varz[EDP (τ̂ |z,P)]

We bound the term VarDP (τ̂ |z,P) in a separate proposition

Proposition A.3. For the average treatment effect estimator τ̂ given by (9) we have

VarDP (τ̂ |z,P) ≤
∑

a∈{0,1}

∑
c∈C

n2
c

n2

[(
1

(1− λ)2
− 1

)
S2(y⃗a,c)

na,c
+

A(na,c)

na,c

]
,

where y⃗a,c := {yi(a) : i ∈ Oa,c}, and

A(x) = 2KB2

((
3

(1− λ)2
+ 2

)
+

(λ
√
K + 1)2

(1− λ)2
∥y∥2(1− λ(K − 1)γ)

)[
γ +

σ

x

(
e−γx/σ − e−x/σ

)]
We now take its expectation with respect to z. We assume that, for each cluster c, there is a

fixed number of units (n1,c) assigned to treatment and a fixed number of units (n0,c) assigned to
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control, regardless of the cluster assignment. We compute the expectation with Ez

[
S2(y⃗a,c)

]
,

(na,c − 1)Ez

[
S2(y⃗a,c)

]
= Ez

 ∑
i∈Oa,c

(
yi(a)− {yi(a)}i∈Oa,c

)2
= Ez

 ∑
i∈Oa,c

y2i (a)− na,c

 1

na,c

∑
i∈Oa,c

yi(a)

2
=
∑
i∈Oc

P (zi = a) y2i (a)− na,cEz

( 1

na,c

∑
i∈Oc

I(zi = a)yi(a)

)2


=
∑
i∈Oc

na,c

nc
y2i (a)−

1

na,c

∑
i∈Oc

∑
j∈Oc

P (zi = a, zj = a) yi(a)yj(a)

=
∑
i∈Oc

na,c

nc
y2i (a)−

1

na,c

∑
i∈Oc

P (zi = a) y2i (a)−
1

na,c

∑
j ̸=i∈Oc

P (zi = a, zj = a) yi(a)yj(a)

=
∑
i∈Oc

na,c

nc
y2i (a)−

1

nc

∑
i∈Oc

y2i (a)−
1

na,c

∑
j ̸=i∈Oc

na,c(na,c − 1)

nc(nc − 1)
yi(a)yj(a) .

Adding and subtracting
na,c−1

nc(nc−1)

∑
i∈Oc

y2i (a), we get:

(na,c − 1)Ez

[
S2(y⃗a,c)

]
=
∑
i∈Oc

na,c

nc
y2i (a)−

1

nc

∑
i∈Oc

y2i (a) +
na,c − 1

nc(nc − 1)

∑
i∈Oc

y2i (a)−
na,c − 1

nc(nc − 1)

(∑
i∈Oc

yi(a)

)2

=

(
na,c

nc
− 1

nc
+

na,c − 1

nc(nc − 1)

)∑
i∈Oc

y2i (a)− (na,c − 1)
nc

nc − 1

(
1

nc

∑
i∈Oc

yi(a)

)2

=
na,c − 1

nc − 1

∑
i∈Oc

y2i (a)− (na,c − 1)
nc

nc − 1

(
1

nc

∑
i∈Oc

yi(a)

)2

= (na,c − 1)S2(y⃗c(a)).

For the second term, we again make the assumption that the number of treated units is fixed
at the cluster level. For the second term, from the proof of Theorem 4.2, we have:

EDP [τ̂ |z,P] =
∑
c∈C

nc

n

(
n∑

i=1

yi(1)
zi
n1,c
−

n∑
i=1

yi(0)
1− zi
n0,c

)

As a result, the second term is given by the usual formula for the variance of the stratified
estimator:

Varz[EDP (τ̂ |z,P)] =
∑
c∈C

n2
c

n2

(
S2(y⃗c(1))

n1,c
+

S2(y⃗c(0))

n0,c
− S2(τ⃗c)

nc

)
(22)
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where, for any vector u⃗ of length n, S2(u) = 1
n−1

∑n
i=1 (ui − ū)2 and ū = 1

n

∑n
i=1 ui. Recall that

τ⃗c = {yi(1) − yi(0)}i:ci=c = y⃗c(1) − y⃗c(0) . Since this is the variance of the typical estimator with
no-differential-privacy, we write this term:

Varz[EDP (τ̂ |z,P)] = Varz[τ̂No-DP]

As a result, we obtain

VarDP,z(τ̂ |n0,c, n1,c,P)

≤Varz[τ̂No-DP] +
∑

a∈{0,1}

∑
c∈C

n2
c

n2

[(
1

(1− λ)2
− 1

)
S2(y⃗c(a))

na,c
+

A(na,c)

na,c

]

≤Varz[τ̂No-DP] +

(
1

(1− λ)2
− 1

) ∑
a∈{0,1}

∑
c∈C

n2
c

n2

S2(y⃗c(a))

na,c
+

∑
a∈{0,1}

∑
c∈C

n2
c

n2

A(na,c)

na,c

which we can rewrite as:

VarDP,z(τ̂ |n0,c, n1,c,P) ≤ Varz[τ̂No-DP] +

(
1

(1− λ)2
− 1

) ∑
a∈{0,1}

ϕa +
∑

a∈{0,1}

∑
c∈C

n2
c

n2

A(na,c)

na,c

where we have defined

ϕa :=
∑
c∈C

n2
c

n2

S2(y⃗c(a))

na,c
≥ 0

Proof of Proposition A.3

We seek to compute VarDP (τ̂ |z,P). We can rewrite τ̂ as

τ̂ =
∑
c∈C

nc

n

∑
a∈{0,1}

ua,c
na,c

,

where Oa,c := {i ∈ [n] : ci = c, zi = a} and ua,c :=
∑

i∈Oa,c

∑
y′∈Y Q−1

ci,a[y
′, ỹi]y

′. Since (yi(0), yi(1))
are i.i.d across units, and the DP mechanism is applied to each clusters separately, such that the
privatized outcomes ỹi are independent across clusters, we have that u0,c and u1,c are independent
across clusters.

VarDP (τ̂ |z,P) =
∑
c∈C

n2
c

n2

∑
a∈{0,1}

1

n2
a,c

VarDP (ua,c|z,P) . (23)

We proceed by calculating VarDP (u0,c|z,P). The computation for VarDP (u1,c|z,P) is identical.

• Computing VarDP (u0,c|z,P)

We have
VarDP (u0,c|z,P) = EDP [u

2
0,c|z,P]− EDP [u0,c|z,P]2

We begin by computing EDP [u0,c|z,P]. Fixing cluster c, we lighten the notation by using the
shorthand Q = Qc,0, Qa,b = Qc,0[a, b], Q

−1
a,b = Q−1

c,0 [a, b], and Q−T = (Q−1)T. Finally, recall that
y = (y)y∈Y is the set of possible outcomes arranged into a vector with the same ordering as the
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columns of Q, and eℓ ∈ RK×1 is the vector with 1 at the ℓ-th position and zero everywhere else.
Writing in matrix form, we have

u0,c =
∑

i∈O0,c

yTQ−1
·,ỹi .

Let ỹ, y, z, w be the vectors of variables ỹi, yi, zi, (w)y,c respectively. We then have

EDP [u0,c|z,P] =
∑

i∈O0,c

EDP

[
yTQ−1

·,ỹi

∣∣∣z,P]

=
∑

i∈O0,c

EDP

[
yT
∑
ℓ∈Y

Q−1
·,ℓ I(l = ỹi)

∣∣∣∣∣z,P
]

=
∑

i∈O0,c

yT
∑
ℓ∈Y

EDP

[
Q−1

·,ℓ I(l = ỹi)
∣∣∣z,P]

Following similar steps to the proof of Theorem 4.2, we have

EDP

[
Q−1

·,ℓ I(l = ỹi)
∣∣∣z,P] = Ew

[
Q−1

·,ℓ Eλ [I(l = ỹi)|w]
∣∣∣z,P] = Ew

[
Q−1

·,ℓ Ql,yi

∣∣∣z,P] = Iei .

It follows
EDP [u0,c|z,P] =

∑
i∈O0,c

yTIei =
∑

i∈O0,c

yi(0) . (24)

We next calculate E[u20,c|z,P].

EDP

[
u20,c|z,P

]
=

∑
i,j∈O0,c

EDP

[
yTQ−1

·,ỹj (Q
−1
·,ỹi)

Ty
∣∣∣z,P]

=
∑

i,j∈O0,c

yTEDP

∑
l,l′∈Y

Q−1
·,l′ (Q

−1
·,l )

TI(l = ỹi)I(l′ = ỹj)

∣∣∣∣∣∣z,P
 y

=
∑

i,j∈O0,c

yTEw

∑
l,l′∈Y

Q−1
·,l′ (Q

−1
·,l )

TEλ

[
I(l = ỹi)I(l′ = ỹj)

∣∣w]
∣∣∣∣∣∣z,P

 y

=
∑

i∈O0,c

yTEw

[∑
ℓ∈Y

Q−1
·,ℓ (Q

−1
·,ℓ )

TQℓ,yi

∣∣∣∣∣z,P
]
y

+
∑

i ̸=j∈O0,c

yTEw

 ∑
ℓ,ℓ′∈Y

Q−1
·,ℓ′(Q

−1
·,ℓ )

TQℓ,yiQℓ′,yj

∣∣∣∣∣∣z,P
 y (25)

For the first term, we write∑
ℓ∈Y

Q−1
·,ℓ (Q

−1
·,ℓ )

TQℓ,yi =
∑
ℓ∈Y

Q−1
·,ℓ (Q

−1
·,ℓ )

T(Qeyi)ℓ = Q−1diag(Qeyi)Q
−T , (26)

Let p̂ = [p̂0(y|c)]y∈Y ∈ RK×1 be the empirical distributions of outcomes of the controlled units in
cluster c, arranged into a K-dimensional vector, such that p̂ℓ =

1
n0,c
|{i ∈ O0,c : yi = ℓ}|. In vector
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form,

p̂ =
1

n0,c

∑
i∈O0,c

eyi .

Taking the expectation of both sides in (26) and summing over i ∈ O0,c, we get

∑
i∈O0,c

Ew

[∑
ℓ∈Y

Q−1
·,ℓ (Q

−1
·,ℓ )

TQℓ,yi

∣∣∣∣∣z,P
]
= Ew

Q−1diag

Q
∑

i∈O0,c

eyi

Q−T

∣∣∣∣∣∣z,P


= Ew

[
Q−1diag(n0,cQp̂)Q−T

∣∣∣z,P]
= n0,cEw

[
Q−1diag(Qp̂)Q−T

∣∣∣z,P]
We next proceed with the second term on the right-hand side of (25). We have∑

ℓ,ℓ′∈Y
Q−1

·,ℓ′Q
−T
·,ℓ Qℓ,yiQℓ′,yj =

∑
ℓ,ℓ′∈Y

Q−1
·,ℓ′Q

−T
·,ℓ (Qeyj )ℓ′(Qeyi)ℓ

=
∑

ℓ,ℓ′∈Y
Q−1

·,ℓ′ [(Qeyj )ℓ′(Qeyi)ℓ]Q
−T
·,ℓ

=
∑

ℓ,ℓ′∈Y
Q−1

·,ℓ′(Qeyje
T
yiQ

T)ℓ′,ℓQ
−T
·,ℓ

= Q−1Qeyje
T
yiQ

TQ−T = eyje
T
yi .

Taking the expectation of both sides of the above equation, we arrive at

yTEw

 ∑
ℓ,ℓ′∈Y

Q−1
·,ℓ′(Q

−1
·,ℓ )

TQℓ,yiQℓ′,yj

∣∣∣∣∣∣z,P
 y = Ew

[
yTeyje

T
yiy
∣∣∣z,P]

= yi(0)yj(0) ,

where the second equality holds since i ̸= j ∈ O0,c. Putting these pieces together, we obtain

EDP [u
2
0,c|z,P] = n0,cy

TEw

[
Q−1diag(Qp̂)Q−T

∣∣∣z,P]y + ∑
i ̸=j∈O0,c

yi(0)yj(0) ,

which along with (24) gives us

VarDP (u0,c|z,P)
= EDP [u

2
0,c|z,P]− EDP [u0,c|z,P]2

= n0,cy
TEw

[
Q−1diag(Qp̂)Q−T

∣∣∣z,P] y + ∑
i ̸=j∈Oo,c

yi(0)yj(0)−

 ∑
i∈O0,c

yi(0)

2

= n0,cy
TEw

[
Q−1diag(Qp̂)Q−T

∣∣∣z,P]y − ∑
i∈O0,c

y2i (0) . (27)
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• Decomposing VarDP (u0,c|z,P)

We wish to bound Var(u0,c|z,P). We begin by decomposing it into two distinct terms. Let q̃ =
[q̃0(y|c)]y∈Y ∈ RK×1 be the distribution constructed in the DP mechanism after adding noise to the
empirical distribution p̂, truncation, and normalization. We consider the following decomposition:

Q−1diag(Qp̂)Q−T = Q−1diag(Qq̃)Q−T +Q−1diag(Q(p̂− q̃))Q−T .

Plugging into (27),

VarDP (u0,c|z,P) =

n0,c

yTEw

[
Q−1diag(Qq̃)Q−T|z,P

]
y︸ ︷︷ ︸

term I

+ yTEw

[
Q−1diag(Q(p̂− q̃))Q−T|z,P

]
y︸ ︷︷ ︸

term II

− ∑
i∈O0,c

y2i (0).

• Bounding Term I

By definition, we can write Q as Q = (1−λ)I+λq̃1T , with 1 ∈ RK×1 indicating the all-one vector.
Furthermore, 1Tq̃ = 1 because q̃ is a probability distribution (see (Esfandiari et al., 2022, Theorem
6)). Using the Sherman–Morrison formula, we obtain

Q−1 =
1

1− λ
I − λ

1− λ
q̃1T .

Plugging for Q and Q−1, we have the following chain of identities:

Qq̃ = (1− λ)q̃ + λq̃ = q̃ ,

Q−1diag(Qq̃) =
1

1− λ
diag(q̃)− λ

1− λ
q̃q̃T ,

Q−1diag(Qq̃)Q−T =
1

(1− λ)2
diag(q̃) +

λ2 − 2λ

(1− λ)2
q̃q̃T .

Using the last identity, we have

yTEw

[
Q−1diag(Qq̃)Q−T|z,P

]
y

=
1

(1− λ)2
yTEw [diag(q̃)] y +

λ2 − 2λ

(1− λ)2
yTEw

[
q̃q̃T

]
y

=
1

(1− λ)2

∑
y∈Y

Ew [q̃y] y
2 +

λ2 − 2λ

(1− λ)2
Ew

∑
y∈Y

yq̃y

2
= Ew

[
1

(1− λ)2
Eq̃[y

2
i (0)] +

(
1− 1

(1− λ)2

)
Eq̃[yi(0)]

2

∣∣∣∣z,P]
= Ew

[
1

(1− λ)2

(
Eq̃[y

2
i (0)]− Eq̃[yi(0)]

2
)
+ Eq̃[yi(0)]

2

∣∣∣∣z,P] . (28)

which can also be written as:

yTEw

[
Q−1diag(Qq̃)Q−T

∣∣∣z,P] y =
1

(1− λ)2

(
Eq̃,w[y

2
i (0)|z,P]−Eq̃,w[yi(0)|z,P]2

)
+Eq̃,w[yi(0)|z,P]2
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In the following lemma, we relate the expectation of outcomes with respect to q̃ to their expectation
with respect to p̂.

Lemma A.4. If outcomes are bounded by B,

Eq̃,w[y
2
i (0)]|z,P] ≤ B2Ew∥q̃ − p̂∥1 +

1

n0,c

∑
i∈O0,c

yi(0)
2 .

Eq̃,w[yi(0)|z,P]2 ≥

 1

n0,c

∑
i∈O0,c

yi(0)

2

− 2B2Ew∥q̃ − p̂∥1 .

Using the above lemma, we obtain:

yTEw

[
Q−1diag(Qq̃)Q−T

∣∣∣z,P] y ≤ 1

(1− λ)2

[
B2Ew∥q̃ − p̂∥1 +

1

n0,c

∑
i∈O0,c

yi(0)
2

]

−
(

1

(1− λ)2
− 1

)
 1

n0,c

∑
i∈O0,c

yi(0)

2

− 2B2Ew∥q̃ − p̂∥1

 ,

which can be simplified to

yTEw

[
Q−1diag(Qq̃)Q−T

∣∣∣z,P] y
≤ 1

(1− λ)2

 1

n0,c

∑
i∈O0,c

yi(0)
2 −

 1

n0,c

∑
i∈O0,c

yi(0)

2
+

 1

n0,c

∑
i∈O0,c

yi(0)

2

+B2
( 3

(1− λ)2
+ 2
)
Ew∥q̃ − p̂∥1

≤ n0,c − 1

n0,c

S2(y⃗0,c)

(1− λ)2
+
(
y⃗c(0)

)2
+B2

( 3

(1− λ)2
+ 2
)
Ew [∥q̃ − p̂∥1] , (29)

where S2(u⃗) = 1
|u⃗−1|

∑
a∈u⃗(a− ā)2 and ¯⃗u = 1

|u⃗|
∑

a∈u⃗ a .

• Bounding Term II

We begin with the two inequalities

yTQ−1diag(Q(p̂− q̃))Q−Ty ≤ ∥Q−Ty∥2∥Q(p̂− q̃)∥∞
≤ ∥Q−Ty∥2|Q|∞∥p̂− q̃∥1 , (30)

where |Q|∞ = maxi,j |Qij |. For every ℓ ∈ Y q̃ℓ ≥ γ (see (Esfandiari et al., 2022, Theorem 6)), and∑
ℓ∈Y q̃l = 1, which implies that ∀ℓ ∈ Y, q̃l ≤ 1− (K − 1)γ. Therefore, by definition of Q, we have

|Q|∞ ≤ 1− λ+ λ(1− (K − 1)γ) = 1− λ(K − 1)γ .

The following lemma bounds the maximum singular value of matrix Q.
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Lemma A.5. The maximum singular value of label randomization matrix Q−1 is at most λ
√
K+1

1−λ .

Using Lemma A.5, we get

yTQ−1diag(Q(p̂− q̃))Q−Ty ≤ (λ
√
K + 1)2

(1− λ)2
∥y∥2(1− λ(K − 1)γ)∥p̂− q̃∥1 . (31)

• Bounding Var(u0,c|c)

Combining (29) and (31) with the expression of Var(u0,c|c, z), we get

VarDP (u0,c|z,P)

= n0,c

yTEw

[
Q−1diag(Qq̃)Q−T|z,P

]
y︸ ︷︷ ︸

term I

+ yTEw

[
Q−1diag(Q(p̂− q̃))Q−T|z,P

]
y︸ ︷︷ ︸

term II

− ∑
i∈O0,c

y2i (0)

≤ (n0,c − 1)
S2(y⃗0,c)

(1− λ)2
+ n0,c

(
(y⃗0,c)

2 +B2
( 3

(1− λ)2
+ 2
)
Ew [∥q̃ − p̂∥1] +

(λ
√
K + 1)2

(1− λ)2
∥y∥2(1− λ(K − 1)γ)Ew∥p̂− q̃∥1

)
−
∑

i∈O0,c

y2i (0)

=
n0,c − 1

(1− λ)2
S2(y⃗0,c) + n0,c(y⃗0,c)

2 −
∑

i∈O0,c

y2i (0) + n0,cA
′
0,cEw[∥q̃ − p̂∥1]

= (n0,c − 1)

(
1

(1− λ)2
− 1

)
S2(y⃗0,c) + n0,cA

′
0,cEw[∥q̃ − p̂∥1] , (32)

with

A′
0,c := B2

(
3

(1− λ)2
+ 2

)
+

(λ
√
K + 1)2

(1− λ)2
∥y∥2(1− λ(K − 1)γ) .

The final step is bounding the term Ew[∥q̃ − p̂∥1].

Lemma A.6. Recall the notation q̃ = [q̃0(y|c)]y∈Y and p̂ = [p̂0(y|c)]. Then,

Ew[∥q̃ − p̂∥1] ≤ 2K
[
γ +

σ

n0,c

(
e−γn0,c/σ − e−n0,c/σ

)]
.

By using Lemma A.6 in (32), we obtain

VarDP (u0,c|z,P) ≤ (n0,c − 1)

(
1

(1− λ)2
− 1

)
S2(y⃗c(0)) + n0,cA(n0,c) , (33)

with

A(x) = A′
0,c2K

[
γ +

σ

x

(
e−γx/σ − e−x/σ

)]
= 2K

(
B2

(
3

(1− λ)2
+ 2

)
+

(λ
√
K + 1)2

(1− λ)2
∥y∥2(1− λ(K − 1)γ)

)[
γ +

σ

x

(
e−γx/σ − e−x/σ

)]
A similar bound can be derived for Var(u1,c|c), which in conjunction with (23) gives the desired

result.
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Proof of Lemma A.4

We recall the statement of Lemma A.4 below for convenience.

Eq̃,w[y
2
i (0)]|z,P] ≤ B2Ew∥q̃ − p̂∥1 +

1

n0,c

∑
i∈O0,c

yi(0)
2 . (34)

Eq̃,w[yi(0)|z,P]2 ≥

 1

n0,c

∑
i∈O0,c

yi(0)

2

− 2B2Ew∥q̃ − p̂∥1 . (35)

Proof. Since the outcomes are bounded by B, we have

∣∣Eq̃,w[y
2
i (0)|z,P]− Ep̂[y

2
i (0)]

∣∣ = ∣∣∣∣Ew

∑
y∈Y

y2(q̃y − p̂y)

∣∣∣∣z,P
 ∣∣∣∣

≤ Ew

∣∣∣∣∑
y∈Y

y2(q̃y − p̂y)

∣∣∣∣ ∣∣∣∣z,P
 ≤ B2Ew∥q̃ − p̂∥1 .

Therefore,

Eq̃,w[y
2
i (0)]|z,P] ≤ Ep̂[y

2
i (0)|z,P] +B2Ew∥q̃ − p̂∥1 .

We next note that

Ep̂[y
2
i (0)|z,P] = E

∑
y∈Y

∑
i∈O0,c

I(yi = y)

n0,c
y2
∣∣∣∣z,P

 =
1

n0,c

∑
i∈O0,c

yi(0)
2 .

This completes the proof of (34). Likewise we have∣∣∣Eq̃,w[yi(0)]
2 − Ep̂[yi(0)]

2
∣∣∣ = ∣∣∣Eq̃,w[yi(0)]− Ep̂[yi(0)]

∣∣∣ · ∣∣∣Eq̃,w[yi(0)] + Ep̂[yi(0)]
∣∣∣

≤ 2B
∣∣∣Eq̃,w[yi(0)]− Ep̂[yi(0)]

∣∣∣
≤ 2B2Ew∥q̃ − p̂∥1 .

Therefore, we obtain:

Eq̃,w[y
2
i (0)|z,P] ≥ Ep̂[yi(0)]

2 − 2B2Ew∥q̃ − p̂∥1 .

We next note that

Ep̂[yi(0)]
2 =

∑
y∈Y

∑
i∈O0,c

I(yi = y)

n0,c
y

2

=

 1

n0,c

∑
i∈O0,c

yi(0)

2

.

This completes the proof of (35).
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Proof of Lemma A.5

Lemma A.5. The maximum singular value of label randomization matrix Q−1 is at most
λ
√
K+1

1−λ .

Proof. For any unit norm vector u we have

uTQ−1 =
1

1− λ
uT − λ

1− λ
uTq̃1T .

Therefore, by triangle inequality

∥uTQ−1∥ ≤ 1

1− λ
+

λ

1− λ
∥q̃∥ · ∥1∥ ≤ 1 + λ

√
K

1− λ
,

where in the last step we used ∥u∥ = 1 and ∥q̃∥ ≤ ∥q̃∥1 = 1.

Proof of Lemma A.6

Lemma A.6. Recall the notation q̃ = [q̃0(y|c)]y∈Y and p̂ = [p̂0,D(y|c)], where we dropped the
subscript c to lighten the notation. Then,

Ew[∥q̃ − p̂∥1] ≤ 2K
[
γ +

σ

n0,c

(
e−γn0,c/σ − e−n0,c/σ

)]
.

We follow the proof of (Esfandiari et al., 2022, Lemma 5). By a tighter derivation which carries
over in a straightforward way, we obtain the following bound analogous to Equation (6) therein:

Ew[∥q̃ − p̂∥1] ≤ 2
∑
y∈Y

Ew[max(γ,min(1, |wy,c|))] = 2KE[max(γ,min(1, V ))] ,

where V = |wy,c| ∼ Exp(n0,c/σ), since wy,c ∼ Laplace(σ/n0,c). For a random variable V ∼ Exp(α),
we have

E[max(γ,min(1, V ))] =

∫ γ

0
γαe−αvdv +

∫ 1

γ
vαe−αvdv +

∫ ∞

1
αe−αvdv

= −γe−αv
∣∣∣γ
0
− (v +

1

α
)e−αv

∣∣∣1
γ
− e−αv|∞1

= γ +
1

α
(e−αγ − e−α) ,

which after substituting for u = n0,c/σ gives the claim.
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