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Abstract

Classification of movement trajectories has many applica-
tions in transportation. Supervised neural models represent
the current state-of-the-art. Recent security applications re-
quire this task to be rapidly employed in environments that
may differ from the data used to train such models for which
there is little training data. We provide a neuro-symbolic rule-
based framework to conduct error correction and detection
of these models to support eventual deployment in security
applications. We provide a suite of experiments on several
recent and state-of-the-art models and show an accuracy im-
provement of 1.7% over the SOTA model in the case where
all classes are present in training and when 40% of classes are
omitted from training, we obtain a 5.2% improvement (zero-
shot) and 23.9% (few-shot) improvement over the SOTA
model without resorting to retraining of the base model.

1 Introduction
The identification of a mode of travel for a time-stamped
sequence of global position system (GPS) known as “move-
ment trajectories” has important applications in travel de-
mand analysis (Huang et al. 2019), transport planning (Lin
& Hsu 2014), and analysis of sea vessel movement (Fikioris
et al. 2023). The current state-of-the-art has relied on super-
vised neural models (Kim et al. 2022). More recently this
problem has been of interest for security applications such as
leading to efforts such as the IARPA HAYSTAC program1.
In this domain, models may be deployed in environments
with different geography, transportation infrastructure, and
socio-cultural dynamics than in the training data and ex-
pected to adapt to such environments with little or no labeled
data specific to those circumstances. Further, such deploy-
ments may happen rapidly, precluding extensive data engi-
neering or model retraining.

In this paper, we extend the current supervised neural
methods with a lightweight error detection and correction
rule (EDCR) framework providing an overall neurosymbolic
system. The key intuition is that training and operation data
can be used to learn rules that predict and correct errors in
the supervised model. Once trained, the rules are employed
operationally in two phases: first detection rules identify po-
tentially misclassified movement trajectories. A second type

1https://www.iarpa.gov/research-programs/haystac

of rule to re-classify the trajectories (“correction rules”) is
then used to re-assign the sample to a new class. Our key
contributions are as follows: (1.) We present a strong theo-
retical framework for EDCR rooted in logic and rule mining
and formally prove how quantities related to learned rules
(e.g., confidence and support) are related to changes in class-
level machine learning metrics such as precision and re-
call. (2.) We conduct experiments where rules trained on the
same data as the original model can improve machine learn-
ing metrics across various settings and model types, includ-
ing the SOTA LRCN model. Specifically, the employment
of EDCRs leads to a 1.7% improvement in accuracy over
the original LRCN model when data leakage between train-
ing and testing is minimized (3.) By excluding 40% of the
classes during the training process, we enhance 5.2% (zero-
shot) and 23.9% improvement (few-shot) compared to the
SOTA model. This progress is accomplished without neces-
sitating any retraining of the underlying base model. (4.) In
addition to offering domain knowledge akin to other papers,
we furnish a neural network-incorporated condition, charac-
terized by its overarching generality, thereby enhancing the
versatility of EDCR for diverse problem domains. (5.) As a
side result, we extend the LRCN SOTA model of (Kim et al.
2022) with attention mechanisms that establish a new SOTA
baseline in certain cases without EDCR. This model is also
improved with EDCR.

The rest of the paper is outlined as follows. In Section 2,
we describe the movement trajectory classification problem
(MTCP) and associated classification approaches, includ-
ing our new “LRCN with attention” (LRCNa) model. Then
we introduce our error detecting and correcting rule frame-
work (Section 3) which formalizes our strategy for EDC and
provides analytical results that support our algorithm devel-
opment. This is followed by experimental results in Sec-
tion 4 followed by a discussion on related work and future
directions. Additional details supporting the reproducibil-
ity of both formal results (e.g., proofs) and experiments
(e.g., data preprocessing and experimental details) along
with code can be found in an online appendix available at
https://github.com/lab-v2/Error-Detection-and-Correction.

2 Technical Preliminaries
In this section, we introduce MTCP, describe the vector em-
beddings used for a neural based classifier (Dabiri & Heaslip
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2018; Kim et al. 2022) as well as the three neural architec-
tures utilized CNN (Dabiri & Heaslip 2018), Long-term Re-
current Convolutional Network (LRCN) (Kim et al. 2022),
and (newly introduced in this work) LRCN with attention
(LRCNa).
Movement Trajectory Classification Problem. We de-
fine the MTCP problem as given a sequence of GPS
points, ω, and assign a movement class from C. The num-
ber of classes in C is n. In this work, as per others
(e.g., (Dabiri & Heaslip 2018; Kim et al. 2022) )we define
C = {walk,bike,bus,drive, train}, though we will typi-
cally not refer to specific classes outside of the description of
the experiments for purposes of generalizability. The current
paradigm for the MTCP problem is to create a neural model
fθ that maps sequences to movement classes using a set of
weights, θ. In this approach traditional methods (i.e., gradi-
ent descent) find a set of parameters such that a loss func-
tion is minimized based on some training set T (where each
sample ω ∈ T is associated with a ground truth class gt(ω)).
Formally: argminθ Eω∈T Loss(fθ(ω), gt(ω)). We also note
that with each sample ω, we will associate three predicates
for each class i: predi, corri, and errori that we will later
use to describe a logic for reasoning about error correction.
• predi: if the model predicted class i: predi(ω) is true iff
fθ(ω) = i.

• corri: the correct movement class for ω: corri(ω) is true
iff gt(ω) = i.

• errori if the model had an error: errori(ω) is true iff
fθ(ω) ̸= gt(ω). In other words: the model is wrong and
predicted class i.

Vector Embedding. The current SOTA approaches that we
examine for fθ rely on an embedding of a sequence ω that
consists of a stack of vectors describing the velocity, accel-
eration, jerk(time rate of change of acceleration), and bear-
ing rate. In this paper, we based these calculations on prior
work (Kim et al. 2022; Dabiri & Heaslip 2018) and included
details in the appendix.
CNN (Dabiri & Heaslip 2018). Utilizing a convolutional
neural network (CNN) presents a viable solution for in-
ferring mobility modes from GPS trajectories, as it can
autonomously extract highly efficient features (Dabiri &
Heaslip 2018). Here, the CNN incorporates a comprehen-
sive set of layers, including the input layer, convolutional
layers, pooling layers, fully-connected layers, and dropout
layers.
LRCN (Kim et al. 2022). To further enhance the accuracy
of extracting mobility modes from GPS trajectories, the ap-
plication of a Long-term Recurrent Convolutional Network
(LRCN) proves beneficial (Kim et al. 2022). The layers of
the LRCN model follow a hierarchical structure with three
components, proceeding from bottom to top: the convolu-
tional layers, LSTM layers, and fully connected layers.
LRCN with Attention (new in this paper). Due to the
notable performance improvement transformer architec-
ture (Vaswani et al. 2017) has provided on related problems,
we felt it would be important to include a transformer-based
approach. Hence, we created a simple extension to LRCN
that utilizes attention. We shall refer to this architecture as

Figure 1: The LRCNa architecture introduced in this paper.

LRCNa. We provide an overview in Figure 1 in the ap-
pendix. LRCNa is a neural network architecture comprising
several essential components, including convolutional lay-
ers employed for feature extraction purposes, LSTM layers,
and an attention layer, which collaboratively contribute to
sequence learning, and lastly, fully connected layers strate-
gically utilized for effective classification tasks.

3 Error Detection and Correction Rules
A key issue with the deployment of model fθ is that it may
encounter sequences whose distribution differs from the data
used to train the model. Further, in our target application,
there may not be sufficient labeled data or time to properly
retrain fθ. We also note that in some cases, fθ may be inac-
cessible for fine-tuning (e.g., behind an API). Additionally,
understanding why the results of fθ change is also important
for our envisioned security application. As such, we are em-
ploying a rule-based approach to correcting fθ. The intuition
is that using limited data, we will learn a set of rules (denoted
Π) that will be able to detect and correct errors of fθ by log-
ical reasoning (Aditya et al. 2023). Then, upon deployment
for some new sequence ω, we would first compute the class
fθ(ω) and then use the rules in set Π to conclude if the re-
sult of fθ should be accepted and if not, provide an alternate
class in an attempt to correct the mistake. In this section, we
formalize the error correcting framework with a simple first
order logic (FOL) and provide analytical results relating as-
pects of learned rules that inform our analytical approach to
learning such error detecting and correcting rules. We com-
plete the section with a discussion on how various potential
“failure conditions” are extracted to create the rules to cor-
rect errors.

Throughout this section, we shall assume a set O of op-
erational sequences for which there is ground truth available
after model training. The size of set O is N and generally,
this is expected to be much smaller than T (the set of train-
ing data). Later, in our experiments, we look at cases where
O = T and T ⊆ O - however these are not requirements as
our results are based on model performance on O - and we
envision use-cases where O is significantly different from
T . On these samples, for each class i, the model (fθ) returns
class i for Ni of the samples, and for each class i we have
the number of true positives, false positives, true negatives,
and false negatives TPi, FPi, TNi, FNi. We have precision
Pi = TPi/Ni, recall Ri = TPi/(TPi + FNi), and prior of
predicting class i: Pi = Ni/N .
Language. We assume simple first order language where



samples are represented by constant symbols, and we
have unary predicates associated with each sample. This
language includes a set C of m “condition” predicates
cond1, . . . , condm associated with each sample that can be
either true or false for a given sample. Additionally, the lan-
guage includes the following:
• “Correct” predicates corr1, . . . , corri, . . . , corrn which

denotes the ground truth class for the sample (i.e., for a
given sample one corri will be true and the rest false),

• “Prediction” predicates pred1, . . . , predi, . . . , predn de-
notes the predicted class for the model (i.e., for a given
sample one predi will be true and the rest false)

• “Error” predicates error1, . . . , errori, . . . , errorn if the
sample is incorrect for class i. Note that errori is true iff
both corri is true and predi is false

Rules The set of rules Π will consist of two rules for each
class: one “error detecting” and one “error correcting.” Er-
ror detecting rules will determine if a prediction by fθ is
invalid. In essence, we can think of such a rule as chang-
ing the movement class assigned by fθ to some sample ω
from i to “unknown.” For a given class i, we will have an
associated set of detection conditions DCi that is a subset of
conditions, the disjunction of which is used to determine if
fθ gave an incorrect classification.

errori(ω)← predi(ω) ∧
∨

j∈DCi

condj(ω) (1)

After the application of the error detection rules for each
class, we may consider re-assigning the samples to another
class using a second type of rule called the “corrective rule.”
Such rules are formed based on a subset of conditions-class
pairs CCi ⊆ C × C.

corri(ω)←
∨

q,r∈CCi

(condq(ω) ∧ predr(ω)) (2)

Associated with the rules of both types are the following
values - both are defined as zero if there are no conditions.
Support (s): fraction of samples inO where the body is true.
Support w.r.t. class i (si): given the subset of samples where
the model predicts class i, the fraction of those samples
where the body is true (note the denominator is Ni).
Confidence (c): the number of times the body and head are
true together divided by the number of times the body is true.

Now we present some analytical results that inform our
learning algorithms. Our strategy for learning involves first
learning detection rules (which establish conditions for
which a given classification decision by fθ is deemed incor-
rect) and then learning correction rules (which then correct
the detected errors by assigning a new movement class to the
sample). We formalize these two tasks as follows.
Improvement by error detecting rule. For a given class i, find
a set of conditions DCi such that precision is maximized and
recall decreases by, at most ϵ.
Improvement by error correcting rule. For a given class i,
find a subset CCi of C × C such that either precision or
recall is maximized.

Properties of Detection Rules. First, we examine the effect
on precision and recall when an error detecting rule is used.
Our first result shows a bound on precision improvement.
If class support (si) is less than 1 − Pi, which we would
expect (as the rule would be designed to detect the 1 − Pi

portion of results that failed), then we can also show that the
quantity c · si gives us a lower bound on the improvement in
precision. In the appendix, we also note that precision will
always increase under a reasonable condition (specifically
when c ≥ 1 − Pi). The proof of this and all other formally
stated results can be found in the appendix.

Theorem 1. Under the condition si ≤ 1−Pi, the precision
of model fθ for class i, with initial precision Pi, after apply-
ing an error detecting rule with support si and confidence
c increases by a function of si and c and is greater than or
equal to c · si.

The error detecting rules can cause the recall to stay the
same or decrease. Our next result tells us precisely how
much recall will decrease.

Theorem 2. After applying the rule to correct errors, the
recall will decrease by (1− c)si

Ri

Pi
.

Algorithm 1: DetRuleLearn
Require: Class i, Recall reduction threshold ϵ, Condition

set C
Ensure: Subset of conditions DCi

DCi := ∅
DC∗ := {c ∈ C s.t. NEG{c} ≤ ϵ · NiPi

Ri
}

while DC∗ ̸= ∅ do
cbest = argmaxc∈DC∗ POSDCi∪{c}
Add cbest to DCi

DC∗ := {c ∈ C \DCi s.t. NEGDCi∪{c} ≤ ϵ · NiPi

Ri
}

end while
return DCi

It turns out that both quantities identified in the theorem 1
and theorem 2 are submodular and monotonic - a property
we can use algorithmically (formal statements and proofs
are included in the appendix). Specifically, we can see that
the selection of a set of rules to maximize c ·si subject to the
constraint that (1− c)si

Ri

Pi
≤ ϵ is a special case of the “Sub-

modular Cost Submodular Knapsack” (SCSK) problem and
can be approximated with a simple greedy algorithm (Iyer
& Bilmes 2013) with approximation guarantee with polyno-
mial run time (Theorem 4.7 of (Iyer & Bilmes 2013)). Our
algorithm DetRuleLearn is an instantiation of such an ap-
proach to creating an error detecting rule for a given class.
As this algorithm will only select conditions for error detect-
ing rules for a given movement class i that ensure that recall
does not decrease more than epsilon, we can be assured it
meets our requirement for recall. Here POSDC , NEGDC

are simply the number of samples that satisfy the condi-
tions for some set DC as well as satisfy errori(ω) (for
POSDC) and corri(ω) ∧ predi(ω) (for NEGDC) respec-
tively. In other words, given a set of condition class pairs and
the rule of interest, BOD here is the number of examples that



satisfy the body (class-condition pair) of the error detection
rules, and POS here is the number of examples that satisfy
the body (class-condition pair) and the head of the error de-
tection rules. Pi, Ri are precision and recall for class i while
Ni is the number of samples that the model classifies as class
i.
Properties of Corrective Rules. In what follows, we shall
examine the results for corrective rules. Here, the error cor-
recting rule with predicate corrj in the head will have a dis-
junction of elements of set CCi ⊆ C × C. Also, note that
here the support s is used instead of class support (si). Here
we find that both precision and recall increase with rule con-
fidence (Theorem 3). We also show a corollary that ensures
that recall is always non-decreasing for corrective rules and
that precision increases when the rule confidence exceeds
Pi.

Theorem 3. For the application of error correcting rules,
both precision and recall increase if and only if rule confi-
dence (c) increases.

It is clear that confidence is the right quantity to optimize
for error correcting rules as it will get both precision and
recall. With these results in mind, we can optimize both pre-
cision and recall using an error correcting rule (with respect
to the class specified in the rule head) but optimizing for
confidence. Note that this does not consider the precision
and recall for the class specified in the rule body (however,
we shall assume that the impact on precision and recall for
the class in the body was handled with the application of the
initial error detection rules). However, it is noteworthy that
confidence is not monotonic as we add conditions to set CCi

as the precision can decrease. We will consider an initial set
of condition-class pairs CCall that is a subset of C × C. For
a given class for which we create an error correcting rule,
we select CCi from this larger set. To do so, we adapt the
simple “Deterministic USM” algorithm of (Buchbinder et al.
2012) that we call 2. Note here that POSCC is the number of
samples that satisfy the rule body and head (corri(ω) in this
case) given a set of condition-class pairs CC while BODCC

is the number of samples that satisfy the body formed with
set CC.
Learning Detection and Correction Rules Together. Error
correcting rules created using CorrRuleLearn will provide
optimal improvement to precision and recall for the rule in
the target class, but in the case of multi-class problems, it
will cause recall to drop for some other classes. However,
we can combine both error detecting and correcting rules to
overcome this difficulty. The intuition is first to create error
detecting rules for each class, which effectively re-assigns
any sample into an “unknown” class. Then, we create a set
CCall (used as input for CorrRuleLearn) based on the con-
ditions selected by the error detecting rules. In this way, we
will not decrease recall beyond what occurs in the applica-
tion of error detecting rules.

Conditions for Error Detection and Correction
In this section, we describe the methods we used to create
conditions (set C) from dataset O. As mentioned in sec-
tion ??, in addition to offering domain-specific knowledge,

Algorithm 2: CorrRuleLearn
Require: Class i, Set of condition-class pairs CCall

Ensure: Subset of condition-class pairs CCi

CCi := ∅
CC ′

i := CCall

Sort each (c, j) ∈ CCall from greatest to least by
POS{(c,j)}
BOD{(c,j)}

and remove POS{(c,j)}
BOD{(c,j)}

≤ Pi

for (c, j) ∈ CCall selected in order of the sorted list do
a :=

POSCCi∪{(c,j)}
BODCCi∪{(c,j)}

− POSCCi

BODCCi

b :=
POSCC′

i
\{(c,j)}

BODCC′
i
\{(c,j)}

−
POSCC′

i

BODCC′
i

if a ≥ b then
CCi := CCi ∪ {(c, j)}

else
CC ′

i := CC ′
i \ {(c, j)}

end if
end for
if POSCCi

BODCCi
≤ Pi then

CCi := ∅
end if
return CCi

Algorithm 3: DetCorrRuleLearn
Require: Recall reduction threshold ϵ, Condition set C
Ensure: Set of rules Π

Π := ∅
CCall := ∅
for Each class i do

DCi := DetRuleLearn(i, ϵ, C)
if DCi ̸= ∅ then

Π := Π∪
{errori(ω)← predi(ω) ∧

∨
j∈DCi

condj(ω)}
end if
for cond ∈ DCi do

CCall := CCall ∪ {(cond, i)}
end for

end for
for Each class i do

CCi := CorrRuleLearn(i, CCall)
if CCi ̸= ∅ then

Π := Π∪
{corri(ω)←

∨
q,r∈CCi

(condq(ω) ∧ predr(ω))}
end if

end for
return Π



our contribution extends to the provision of a condition inte-
grated with a neural network, referred to as the model based
in our paper. This condition, marked by its comprehensive
generality, serves to amplify the adaptability of the EDCR
across a spectrum of diverse problem domains.

Model Based The field of Deep Learning witnesses a con-
tinuous influx of new and improved models for solving com-
plex problems. The prevailing trend involves the adoption of
the latest and supposedly superior models, often leading to
the abandonment of previously successful ones. We present
a method that challenges this paradigm, proposing a tech-
nique to harness the potential of older, proven models to
augment the performance of the latest and most advanced
models. We employ a collection of diverse pre-existing neu-
ral models as a set of conditions to enhance the efficacy of
the current model. More specifically, a more coarse-grain
model can also provide insight into the conditions. As such,
we utilized a binary classifier for each class for a given sam-
ple. Hence, given class i, we have a binary classifier gi which
returns “true” for sample ω if gi assigns it as i and “false”
otherwise. In this way, for each sample ω we have a gi(ω)
condition for each of the classes. We used the LRCNa ar-
chitecture for the binary classifier and the details are in the
appendix.

Domain Knowledge Harnessing domain expertise in out-
lier analysis can yield valuable insights and conditions.
Specifically, our attention was drawn to the maximum veloc-
ity records within our dataset. Consequently, for each class
denoted as i, we formulated a set of conditions encapsulated
by si, each of which is linked to the maximum velocity cri-
terion. So, for a given sample ω, si(ω) is true if the velocity
for ω is greater than the maximum velocity observed in set
O and false otherwise.

4 Experimental Evaluation
GeoLife Dataset. The proposed methodology is validated
and assessed using GPS trajectories obtained from the
GeoLife project, which involved data collected from 69
users (Zheng et al. 2008). Details on the preprocessing of
the data can be found in the appendix.

Training and Test Splits. Previous work such as (Kim et al.
2022) is known to have data leakage based on the split
between training and test primarily due to segments of a
movement sequence existing in both training and test sets
resulting from ransom assignment to each. To address this
data leakage issue, we examine our algorithms under vari-
ous conditions based on ordering and overlap. For ordering,
we examine random (which can allow previous behavior of
the same agent in the training set, as in previous work) and
sequential (which orders the agents to avoid this issue). For
overlap, we examine no overlap between the training and test
sets, segment overlap that allows training and test samples to
overlap each other(as in previous work), and data point over-
lap (that allows for data points of a trajectory to span both
training and test).
Compute and Implementation. All experiments were per-
formed on a 2000 MHz AMD EPYC 7713 CPU, and a
NVIDIA GA100 GPU using Python 3.10 with PyTorch.

All Classes Observed. In our first set of experiments, we ex-
amined how error detecting and correcting rules (EDCR) can
affect the performance of the underlying model. In Table 1
we examine the accuracy of each model, both with and with-
out EDCR. Models enabled with EDCR performed the same
or better with improvement most noticeable when samples
are sequential (which has less data leakage between train-
ing and test). In terms of overall performance, LRCNa with
EDCR performed the best in five of six cases with LRCN
with EDCR performing the best in the sixth. Of particular
importance, in the “no overlap - sequential” case - the least
likely to exhibit data leakage - EDCR improves the perfor-
mance of both LRCNa and LRCN, 1.6% and 1.7% respec-
tively. Additionally, we scrutinized the F1 scores in Table 2
for all models, both with and without EDCR, revealing more
improvement in performance metrics compared to accuracy.

Hyperparameter Sensitivity. In the “all classes observed”
set of experiments, we also examined hyperparameter sen-
sitivity for ϵ. Recall that ϵ is interpreted as the maximum
decrease in recall. We observed and validated the theoreti-
cal reduction(TR) in recall empirically and the experiments
show us that in all cases, recall was no lower than the thresh-
old specified by the hyperparameter ϵ though recall de-
creases as ϵ increases. In many cases, the experimental eval-
uation reduced recall significantly less than expected. In Fig-
ure 2, as the value of ϵ (x-axis) ranges from 0 to 0.10, it is ev-
ident that the decline in recall for all classes remains within
the confines of 0.10. Likewise, precision only increases with
ϵ, which is aligned with our theoretical results. We show pre-
cision, recall, and F1 by class for the “no overlap - sequen-
tial” of LRCNa in Figure 2. Though the algorithm DetCor-
rRuleLearn calls for a single ϵ hyperparameter, it is possi-
ble to set it differently for each class (e.g., lower values for
classes where recall is important, higher values for classes
where false positives are expensive). This may be beneficial
as F1 for different classes seemed to peak for different val-
ues of ϵ. We leave the study of heterogeneous ϵ settings to
future work.

Removal of Movement Classes from Training. Our ex-
perimental focus was on assessing how the introduction of
EDCR impacts model performance in scenarios where cer-
tain movement classes are excluded from training. In Figure
3, we trained the CNN, LRCN, and LRCNa models with-
out incorporating the walk and drive classes. Remarkably,
employing EDCR without any supplementary data yielded
a 5.2%(zero-shot) improvement over the base models, and a
23.9% (few-shot) improvement over the SOTA model with-
out resorting to retraining of the base model, with even more
pronounced results than in the initial experiment set. Uti-
lizing a mere 30% of data from previously unseen classes,
EDCR demonstrates a 21.3% to elevate the performance of
the baseline model, all achieved without the need for direct
access to the model itself. This outcome implies the potential
for conducting few-shot learning, enabling the adaptation of
fθ to novel scenarios with impressive efficacy. This enhance-
ment significantly boosts accuracy using limited data for un-
seen samples, without extensive model modifications. This



No Overlap Segment Overlap Data point Overlap
Random Sequential Random Sequential Random Sequential

(least leakage) (prev. studies)
LRCNa (ours) 0.747 0.751 0.971 0.758 0.921 0.760
LRCNa+EDCR (ours) 0.759 (+1.6%) 0.763 (+1.6%) 0.971 (± 0%) 0.769 (+1.5%) 0.921 (± 0%) 0.780 (+2.6%)
LRCN (prev. SOTA) 0.749 0.747 0.952 0.767 0.887 0.774
LRCN+EDCR (ours) 0.761 (+1.6%) 0.760 (+1.7%) 0.952 (± 0%) 0.768 (+0.1%) 0.889 (+0.2%) 0.783 (+1.1%)
CNN 0.742 0.755 0.851 0.763 0.853 0.779
CNN+EDCR (ours) 0.743 (+0.1%) 0.755 (± 0%) 0.866 (+1.8%) 0.763 (± 0%) 0.862 (+1.0%) 0.779 (± 0%)

Table 1: Accuracy when all classes are represented in training and test sets under various data leakage cases. EDCR means “error
detecting and correcting rules” were used on the model output and numbers in parens show the percent change in accuracy from
EDCR over the base model. Bold numbers are the best in each case.

No Overlap Segment Overlap Data point Overlap
Random Sequential Random Sequential Random Sequential

(least leakage) (prev. studies)
LRCNa (ours) 0.727 0.734 0.971 0.742 0.906 0.715
LRCNa+EDCR (ours) 0.742 (+2.06%) 0.751 (+2.32%) 0.971 (± 0%) 0.757 (+2.02%) 0.906 (± 0%) 0.749 (+4.76%)
LRCN (prev. SOTA) 0.732 0.738 0.951 0.751 0.864 0.737
LRCN+EDCR (ours) 0.75 (+2.46%) 0.741 (+0.41%) 0.951 (± 0%) 0.76 (+1.2%) 0.864 (+0%) 0.755 (+2.44%)
CNN 0.722 0.737 0.846 0.745 0.826 0.748
CNN+EDCR (ours) 0.723 (+0.14%) 0.737 (± 0%) 0.866 (+2.36%) 0.745 (± 0%) 0.83 (+0.48%) 0.748 (± 0%)

Table 2: macro F1 when all classes are represented in training and test sets under various data leakage cases. EDCR means
“error detecting and correcting rules” were used on the model output and numbers in parens show the percent change in macro
F1 from EDCR over the base model. Bold numbers are the best in each case.

Figure 2: LRCNa Results for application of error detection
and correction rules as a function of ϵ (no overlaps with se-
quential selection). TR in Recall is the theoretical reduction
in recall based on analytic results.

is crucial when direct model access is limited, for example
through an API.

5 Related Work and Conclusion
As described earlier, the MTCP problem was previously
studied in (Dabiri & Heaslip 2018; Kim et al. 2022), which
introduces the LRCN and CNN architectures, respectively.
Earlier work has also explored this problem with other ma-
chine learning approaches (Zheng et al. 2008; Wang et al.
2017; Simoncini et al. 2018). Note that error detection and
correction have not previously been explored in these earlier
works. Also note that both this prior work and this paper dif-
fer from trajectory generation (Janner et al. 2021; Chen et al.
2021; Itkina & Kochenderfer 2022) - which differs from tra-
jectory classification.

Earlier work on machine learning introspection (Daftry
et al. 2016; Ramanagopal et al. 2018) examined error detec-
tion on various perceptual models. Unlike this work, these
approaches were not applied to the MTCP, only focused on
error detection, and did not provide theoretical guarantees
of improvement. Another area of related work is machine
learning verification that (Ivanov et al. 2021; Jothimurugan
et al. 2021; Ma et al. 2020)) that looks to ensure the out-
put of an ML model meets a logical specification. Like our
work, some of these contributions (e.g. (Ma et al. 2020))
adjust the output of a machine learning model to meet a
logic-based specification. However, to our knowledge, there
has been no work on the use of machine learning verifica-
tion to correct a machine learning model as this work does.
Other related areas include meta-learning and domain gen-
eralization (Hospedales et al. 2021; Zhou et al. 2022; Van-
schoren 2018; Maes & Nardi 1988) which attempt to ac-
count for changes in the distribution of data and/or selec-



tion of a model that was trained on data similar to the cur-
rent problem. While our approach can use additional data, it
does not depend on training data generated by different dis-
tributions. To our knowledge, these other methods have not
been applied to MTCP. Recent studies on abductive learn-
ing (Huang et al. 2023; Dai et al. 2019) and neural symbolic
reasoning (Cornelio et al. 2022) incorporate error correction
mechanisms rooted in inconsistency with domain knowl-
edge as logical rules. These approaches typically necessitate
direct access to the perceptual model for effective imple-
mentation. In contrast, our work takes a distinct approach by
avoiding reliance on predefined learning rule pairs and elim-
inating the need for direct access to the perceptual model.
We conjecture that these approaches could be complemen-
tary to EDCR, and we leave it to future work to explore how
they can work together.

Conclusion. A key near-term direction for future work is the
employment of these methods in government-administered
tests of the IARPA HAYSTAC program which will provide
an assessment of utility more closely related to real-world
use cases. Likewise, an extension related to the aforemen-
tioned IARPA program would be to identify a sequence of
movement classes in the case where an agent’s mode of tran-
sit may change. For example, Here we would look to ap-
ply our error detection and correction framework to recently
introduced models such as those described in (Zeng et al.
2023). Separately, we framed rule learning as a pair of sub-
modular maximization problems, but there are several op-
tions for algorithms beyond this paper. Finally, the use of
rules for error detection and correction of machine learning
models presented here may be useful in domains such as vi-
sion.
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A Appendix

Details on Vector Embedding of Sequences

We begin with a set of GPS points where each point is a
tuple of timestamp (t), latitude (lat), and longitude (long),
Pi = (ti, P

lat
i , P long

i ). Each point Pi also has an associated
class label c ∈ C. To embed these tuples as vector embed-
dings that can be consumed by the neural model fθ, three es-
sential preprocessing steps must be performed. These steps
include normalizing the data size to meet the input require-
ments, extracting movement behaviors from the GPS points,
and refining the data. In this section, we draw upon previous
approaches (Zheng et al., 2008a,b; Dabiri et al., 2018; Kim,
2022) to guide the data preprocessing process.

As part of the data size normalization step we sequen-
tially group chronologically ordered GPS points into uni-
form lengths of 40. The class label c of every point in this
sequence is the same and the entire sequence represents the
movement trajectory of that class for 40 time units. The re-
sulting sequence ω ∈ S, where S is the set of all sequences
that are curated.

To capture patterns of movement behaviors from GPS
points the distance time-series vector is computed as fol-
lows. Dj

i is the distance between two GPS point tuples P j
i

and P j
i−1, where j ∈ S and i ∈ ω, and is computed using the

Vincenty Distance formula (Vincenty 1975). Here D3
10 rep-

resents the distance between two points P10 and P9 from the
3rd sequence. There could be cases where a distance time-
series vector falls short of 40 data points. To maintain a con-
sistent length of sequence ω we pad the shorter Dj vector
with zeros.

Additionally, we extract the velocity (V ), acceleration
(A), jerk (J) and bearing rate (BR) time-series vectors for
each sequence as follows:

V j
i =

Vincenty
(
P j
i−1, P

j
i

)
ti − ti−1

(1)

Aj
i =

V j
i − V j

i−1

ti − ti−1
(2)

Jj
i =

Aj
i −Aj

i−1

ti − ti−1
(3)

BRj
i =| Bearing i − Bearing i−1 | (4)
where Bearing i = arctan(y, x) (5)

y = sin
(
P long
i − P long

i−1

)∗
cos

(
P lat
i

)
(6)

x = cos
(
P lat
i−1

)
∗ sin

(
P lat
i

)
− sin

(
P lat
i−1

)
∗ (7)

cos
(
P lat
i

)
∗ cos

(
P long
i − P long

i−1

)
We finally stack the vectors V j , Aj , Jj and BRj for each

sequence ω, which is passed as the input to the neural model
fθ as detailed in section 2.

Formal Statements of Additional Theorems
Corollaries for Error Detection Rules
Corollary 1. If and only if c ≥ 1 − Pi then the rule will
cause precision not to decrease.

Corollary 2. If Pi ≥ 1− c (the minimum condition for pre-
cision improvement from Corollary 1 then recall decreases
by at most siRi.

Theorem 4. For a given error detecting rule, the quantity
c · si is a normalized polymatroid function w.r.t. set DC.

Corollary 3. The quantity (1− c)si
Ri

Ri
(decrease in recall)

is a normalized polymatroid function w.r.t. set DC.

Corollary 4. GreedyRuleSelect provides an approxima-
tion of cs that is within 1/|C| of optimal.

Formal Statements of Additional Theorems
Corollaries for Error Correction Rules
Corollary 5. Precision increases for class i with the appli-
cation of an error correcting rule if and only if c > Pi.

Corollary 6. Recall is non-decreasing for class i with the
application of an error correcting rule.

Theorem 5. Confidence is submodular with respect to CCi.

Corollary 7. For an arbitrarily small constant ϵ, DetUSM-
PosRuleSelect provides a 1/3 + ϵ approximation of con-
fidence if the returned confidence is greater than the initial
precision.

Proof of Theorem 1
Under the condition si ≤ 1− Pi, the precision of model fθ
for class i, with initial precision Pi, after applying an error
correcting rule with support si and confidence c increases by
a function of si and c and is greater than or equal to c · si.

Proof. CLAIM 1: The precision of model fθ for class i, with
initial precision Pi, after applying an error correcting rule
with support si and confidence c increases by:

si
1− si

(c+ Pi − 1) (8)

The total number of items that fθ will attempt to classify as
i before error correction is Ni = TPi + FPi. Out of those,
si · Ni will be corrected by the rule. However, a fraction of
(1 − c) will be samples that would have been true positives
if not corrected. Hence, the new precision can be written as
follows:

TPi − (1− c)si ·Ni

Ni − si ·Ni
(9)

As Pi ·Ni = TPi, we have:

Pi ·Ni − (1− c)si ·Ni

Ni(1− si)
(10)

=
Pi − (1− c)si

(1− si)
(11)



Now we subtract from that quantity the initial precision.

Pi − (1− c)si
(1− si)

− Pi (12)

=
Pi − (1− c)si

(1− si)
−] (1− si)Pi

1− si
(13)

=
−si + sic+ Pisi

1− si
(14)

=
si

1− si
(c+ Pi − 1) (15)

CLAIM 2: If si ≤ 1− Pi then c · si is a lower bound on the
improvement in precision.

BWOC, then by Claim 1 we have.
si

1− si
(c+ Pi − 1) < c · si (16)

c+ Pi − 1 < c(1− si) (17)
c+ Pi − 1 < c− c · si (18)

c · si < 1− Pi (19)
c · si < si (20)

However, as c ≤ 1 this is a contradiction.
The proof of the theorem then follows directly from claim
2.

Proof of Corollarly 1
If and only if c ≥ 1 − Pi then the rule will cause precision
not to decrease.

Proof. Suppose, BWOC, the statement is false. By Theo-
rem 1 then the following must be true.

Pi − si(1− c)

1− si
− Pi < 0 (21)

Pi − si(1− c) < P (1− si) (22)
sic− si < −Pisi (23)

Pi < 1− c (24)

However, as Pi ≥ 1− c this cannot hold.
Likewise, suppose BWOC that c < 1 − Pi and BWOC

the statement is false:

Pi − si(1− c)

1− si
− Pi > 0 (25)

Pi − si(1− c) > P (1− si) (26)
sic− si > −Pisi (27)

Pi > 1− c (28)

Again, a contradiction.

Proof of Theorem 4
For a given error detecting rule, the quantity c · si is a nor-
malized polymatroid function w.r.t. set DC.

Proof. CLAIM 1: c ·si = POS/Ni where POS is the num-
ber of samples where both the rule body and head are satis-
fied.
Let BOD be the number of samples that the body of the rule

is true. This gives us c · si = POS
BOD

BOD
Ni

which is equivalent
to the statement of the claim. CLAIM 2: The quantity c · si
is submodular w.r.t. set DC.
We show this by the subodularitiy of POS as Ni is a
constant as well as the result of Claim 1. BWOC, POS
is not submodular for some set DC. We use the symbol
POS(DC) to denote this and assume the exsitence of two
sets of conditions DC1, DC2. Then, the following must be
true:

POS(DC1) + POS(DC2) < POS(DC1 ∪DC2) (29)

Which can be re-written as:

|
⋃

cond∈DC1

{x|cond(ω) ∧ pred(ω)}|+ (30)

|
⋃

cond∈DC2

{x|cond(ω) ∧ pred(ω)}| (31)

This quantity is less than the following:

|
⋃

cond∈DC1∪DC2

{x|cond(ω) ∧ predx}| (32)

However, this would imply there is at least one element in
DC1 ∪ DC2 not in either DC1 or DC2 which is a contra-
diction. CLAIM 3: c · si monotonically increases with DC.
By claim 1, as the quantity equals POS/Ni and Ni is a con-
stant, we just need to show monotonicity of POS. Clearly
POS increases monotonically as additional elements in DC
can only make it increase. CLAIM 4: When DC = ∅,
c · si = 0.
Follows directly from the fact that we define si as zero is no
conditions are used.
Proof of theorem. Follows directly from claims 2-4.

Proof of Theorem 2
After applying the rule to correct errors, the recall will de-
crease by

(1− c)si
Ri

Pi
(33)

Proof. The number of corrections made by the rule is
si(TPi+FPi) with (1−c) fraction of these being incorrect
(increasing false negatives). Note that the sum TPi + FN
does not change after error correction, as any “corrected”
false positive becomes a false negative, and false negatives
do not otherwise change from error correction. Therefore,
the new recall is:

TPi − s(1− c)(TPi + FPi)

TPi + FNi
(34)

When this quantity is subtracted from the original recall
(Ri), we obtain:

si(1− c)

(
Ri +

FPi

TPi + FNi

)
(35)

(36)



We note that FPi =
TPi

Pi
− TPi =

TPi−P ·TPi

Pi
which gives

us:

si(1− c)

(
Ri +

TPi

P (TPi + FNi)
− TPi · Pi

Pi(TPi + FNi)

)
(37)

= si(1− c)

(
Ri +

Ri

Pi
−Ri

)
(38)

= (1− c)si
Ri

Pi
(39)

Proof of Corollary 2
If Pi ≥ 1−c (the minimum condition for precision improve-
ment from Corollary 1 then recall decreases by at most siRi.

Proof. Suppose BWOC the statement is false. By Theo-
rem 2, recall decrease by (1− c)si

Ri

Pi
. This gives us:

(1− c)si
Ri

Pi
> siRi (40)

Precision cannot be less than 1 − c, so recall must then de-
crease by:

(1− c)si
Ri

1− c
> siRi (41)

siRi > siRi (42)

Proof of Corollary 3
The quantity (1−c)si

Ri

Ri
(decrease in recall) is a normalized

polymatroid function w.r.t. set DC.

Proof. Note that BOD is the number of samples that satisfy
the body, while POS is the number of samples that satisfy
the body and head, NEG = POS −BOD.

(1− c)si
Ri

Pii
=

(
1− POS

BOD

)
BOD
Ni

Ri

Pi
(43)

= NEG
BOD

BOD
N

Ri

Pi
(44)

= NEG 1
Ni

Ri

Pi
(45)

As 1
Ni

Ri

Pi
is a constant, we need to show the submodularity

of NEG which follows the same argument for POS as per
Claim 2 of Theorem 4. Likewise, NEG is montonic (mirror-
ing the argument of Claim 3 of Theorem 4) and normalized
by the defintion of si in the case where there are no condi-
tions. The statement of the theorem follows.

Proof of Theorem 3
For the application of positive rules, precision increases if
and only if rule confidence (c) increases.

Proof. CLAIM 1: Precision increases by cs−Pis
Pi+s .

The new precision is equal to the following:

TPi + csN

Mi + sN
(46)

The improvement of the precision can be derived as follows.
TPi + csN

Mi + sN
− Pi = (47)

= TPi+csN−PiMi−PisN
Mi+sN (48)

= TPi+csN−TPi−PisN
Mi+sN (49)

= csN−PisN
Mi+sN (50)

= cs−Pis
Pi+s (51)

CLAIM 2: If count of samples satisfying both rule body and
head (the numerator of confidence) increases, then precision
increases.

Suppose BWOC the claim is not true. Then for some
value of POS for which the improvement in precision is
greater than POS′ = POS + 1. Note that, in this case, the
number of samples satisfying the body also increases by 1.
First, we know that we can re-write the result of claim 1 as
follows.

POS − PiBOD

Mi +BOD
(52)

Therefore, using the result from Claim 1, the following rela-
tionship must hold.

POS − PiBOD

Mi +BOD
>

POS + 1− PiBOD − Pi

Mi +BOD + 1
(53)

POS − PiBOD > Mi(1− Pi) +BOD(1− Pi) (54)
POS > M(1− Pi) +BOD (55)

This gives us a contradiction, as M(1 − Pi) ≥ 0 and
POS ≤ BOD by definition.

CLAIM 3: If the difference in precision increases, the num-
ber of samples satisfying both rule body and head must in-
crease.
By definition, the only way for this to occur is if BOD in-
creases and POS does not - as they can both increase or
only BOD increase. If neither there is no change, and it is
not possible for POS to increase without BOD. Therefore
the following must be true.

POS − PiBOD

Mi +BOD
<

POS − PiBOD − Pi

Mi +BOD + 1
(56)

However, this is clearly a contradiction the expression on
the right is clearly smaller (the numerator is smaller as Pi is
positive, and the denominator is larger).
CLAIM 4: Precision increases if and only if c increases.

Follows directly from claims 1-3.
CLAIM 5: When adding more samples that satisfy the body
of the rule, confidence increases if and only if POS in-
creases.

Note that confidence is defined as POS/BOD. Clearly,
there confidence decreases if BOD increases but not POS
and it is not possible for POS to increase alone. Therefore,
BWOC, the following must hold true.

POS + k

BOD + k
<

POS

BOD
(57)

BODk < POSk (58)
BOD < POS (59)



This is a contradiction as BOD ≥ POS.
Going other way, suppose BWOC confidence increases

but POS does not. We get:

c2 > c1 (60)
POS

BOD2
>

POS

BOD1
(61)

BOD1 > BOD2 (62)

However, by the statement, as we add more samples that sat-
isfy the body of the rule, we must have BOD1 ≤ BOD2.
Hence a cotnradiction.
CLAIM 6: Recall increases if and only if POS increases.

As we can write the new recall in this case simply as the
following, the claim immediately follows.

TPi + POS

TPi + FNi
(63)

CLAIM 7: Recall increases if and only if c increases.
Follows directly from claims 5-6.

Proof of theorem.
Follows directly from claims 4 and 7.

Proof of Corollary 4
GreedyRuleSelect provides an approximation of cs that is
within 1/|C| of optimal.

Proof. Follows directly from Theorem 4.7 of (Iyer & Bilmes
2013).

Proof of Corollary 7
For an arbitrarily small constant ϵ, DetUSMPosRuleSelect
provides a 1/3 + ϵ approximation of confidence if the re-
turned confidence is greater than the initial precision.

Proof. Follows directly from the fact that confidence is zero
when CCi = ∅ and Theorem 2.3 of (Buchbinder et al.
2012).

Conditions for Error Detection and Correction
This section describes the various methods we used to create
conditions (set C) in detail with examples.

Model based. In this study, we employed multiple models,
denoted as M , each corresponding to a specific class. These
models were constructed using our LRCNa architecture, as
detailed in this paper. However, during the training process,
we adapted the model M to perform binary class classifica-
tion. To illustrate, for the drive class, we divided the training
data T into two distinct datasets: one exclusively containing
samples labeled as drive, and the other encompassing sam-
ples labeled as walk, bike, bus, train, collectively forming
the non drive class. We employ this binary class classifica-
tion approach to establish a set of conditions C.

In the realm of Deep Learning, the constant evolution of
models poses the challenge of choosing the most optimal
solution for a given problem. It is a common practice to dis-
card older SOTA models in favor of newer ones. However,
this paper introduces a novel approach aimed at leveraging

the capabilities of older, proven models to enhance the per-
formance of the latest SOTA models.

In the context of classification problems, the conventional
practice involves employing a threshold of 0.5 for evaluating
final results. As illustrated in many receiver operating char-
acteristic(ROC) curves, it is evident that precision generally
escalates with an increase in the threshold. Consequently, a
higher threshold is advocated as a standard in older state-of-
the-art models to enhance their performance.

Examining the ROC curve as an illustrative example, with
a threshold of 0.5, the True Positive Rate (TPR) approxi-
mates 0.65. Elevating the threshold to 0.9 corresponds to an
increased TPR of approximately 0.8. In the event of the in-
troduction of a new state-of-the-art model with a TPR below
0.8 at the 0.5 threshold, adopting the 0.9 threshold from the
prior model is recommended. Here, values predicted above
0.9 are considered true positives, while those below 0.9 are
designated as unknown predictions. For the latter, the state-
of-the-art model can be employed for prediction.

Similar principles are applicable when utilizing the False
Positive Rate curve and reducing the threshold. A lowered
threshold yields a higher true-false prediction ratio, thereby
offering a basis for refining predictions. This methodology,
originally designed for binary classification, is adaptable for
enhancing predictions in the realm of multiple classifications
as well.
Domain knowledge. Leveraging domain knowledge per-
taining to outliers, we focused on the maximum velocity val-
ues present in our dataset. Notably, the highest speed records
were associated with the drive labels. To ensure fair and con-
sistent comparisons across the dataset, we conducted data
normalization based on the maximum speed observed in the
drive data. The highest velocity recorded in our dataset is
1, associated with the label drive.” Following closely is the
train label, exhibiting a maximum velocity of 0.751.

In our datasets, any sample with a speed exceeding the
maximum speed recorded for the train (0.751 in our dataset)
is unambiguously classified as a drive. In a broader context,
we apply the following condition: For instance, if a sam-
ple’s maximum speed measures 0.73—falling below both
the maximum speeds of 0.751 attributed to the train class
and 1 associated with the drive class, yet surpassing those
of other categories—it indicates that the sample is likely to
be categorized as either drive or train. we proceed to assess
its multiclass prediction values. The class with the higher
prediction value will ultimately determine our final classifi-
cation for the sample.
Model based. In this study, we employed multiple models,
denoted as M , each corresponding to a specific class. These
models were constructed using our LRCNa architecture, as
detailed in this paper. However, during the training process,
we adapted the model M to perform binary class classifica-
tion. To illustrate, for the drive class, we divided the training
data T into two distinct datasets: one exclusively containing
samples labeled as drive, and the other encompassing sam-
ples labeled as walk, bike, bus, train, collectively forming
the non drive class. We employ this binary class classifica-
tion approach to establish a set of conditions C.


