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1 Introduction

Accurate calculations of higher-loop corrections play a crucial role in achieving precision

physics at the Large Hadron Collider (LHC) and future colliders. These calculations are

essential for accurately predicting particle interactions and interpreting experimental data.

However, the evaluation of loop integrals becomes increasingly challenging as the loop order

and complexity of the integrals rise. In particular, the presence of intricate tensor structures

and propagators raised to high powers introduces significant computational difficulties.

In recent years, remarkable progress has been made in both the computation and un-

derstanding of the analytic structures of scattering amplitudes. Various powerful techniques

have emerged to address the reduction of loop integrals at both the integrand and integral

levels. Integration-By-Parts (IBP) relations have proven to be highly effective in simpli-

fying loop integrals by relating them to simpler master integrals [1–7]. Passarino-Veltman
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(PV) reduction [8] and Ossola-Papadopoulos-Pittau (OPP) reduction [9–11] provide alter-

native approaches to simplify loop integrals, while unitarity-based methods [12–22] exploit

the cutting equations to derive compact forms of loop integrals. Intersection number tech-

niques [23–29] have also emerged as powerful tools for the reduction of loop integrals.

There has been several research [30–33] investigating these general one-loop integrals

by contact ℓ with an auxiliary vector R. Let us see the one-loop r-rank tensor integral

with n propagators

Iµ1,...,µr
n ≡

∫
ddℓ

i(π)d/2
ℓµ1 . . . ℓ

µ
r∏n

i=1Di
, (1.1)

where the i-th propagator is Di = (ℓ− qi)
2 −m2

i , by introducing an auxiliary vector Rµ

I(r)n ≡2rIµ1···µr
n Rµ1

· · ·Rµr =

∫
ddℓ

i(π)d/2
(2ℓ ·R)r

D1 · · ·Dn
. (1.2)

The introduction of R allows for a more concise expression and enhancing the efficiency

of reduction in previous studies, such as [32, 34–38] for one-loop integrals and [31, 39] for

higher loops. This technique can be combined with other methods, including differential

operators [30–32], the syzygy equation in Baikov representation [37, 40–51], and IBP in

projective space [33]. In this paper, we introduce a simple approach that combines differ-

ential operators with respect to R and the IBP relation in Baikov representation. Baikov

representation provides a systematic way to express loop integrals in terms of a set of mas-

ter integrals. After introducing an auxiliary vector and recognizing the tensor structure as

a new propagator with negative power, we are able to establish a simple recursive relation

for the reduction of general one-loop integrals. This approach proves to be particularly

advantageous in handling degenerate cases, where other methods face challenges.

The main objective of this paper is to present our proposed method for the uniform

reduction of general one-loop integrals using the Baikov representation and IBP reduction.

We demonstrate the effectiveness and simplicity of our approach through several illustrative

examples, including the reduction of tadpole, bubble, triangle and pentagon.

The rest of this paper is organized as follows: In Section 2, we provide a review of two

methods for tensor reduction: differential operators and syzygy equations. In Section 3, we

provide a detailed outline of our method and present the general result for the reduction

of one-loop integrals. Section 4 presents a comprehensive set of examples, showcasing

the application of our approach to various types of integrals. Finally, in Section 5, we

summarize our findings, discuss the implications of our method, and provide an outlook

for future research in this area. The paper ends with an appendix. In Appendix A, we

present the results for the pentagon, and compare the computation times of the FIRE6

and our method. There is an ancillary file in which the symbolic results for the pentagon

reduction coefficient of rank r = 2 are given.
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2 Review of two methods

In this paper we mainly consider the one-loop r-rank tensor integral with n propagators

I
(r)
an ≡

∫
ddℓ

i(π)d/2
(2ℓ ·R)r∏n
j=1D

aj
j

, (2.1)

where the j-th propagator Dj = (ℓ − qj)
2 − m2

j , and the loop momentum ℓ, auxiliary

vector R, and region momentum qj exist in d-dimensional spacetime, with qj =
∑

i<j pi
and q1 = 0. In this expression, an = {a1, a2, . . . , an} represents the power list of the n

propagators. Induction of the auxiliary vector can not only simplify the reduction process

but also help us to solve the higher-pole case. One can see any general tensor structure can

be recover by applying differential operators of R on the standard expression. For example,

∫
ddℓ

i(π)d/2
ℓ2ℓ ·K∏n

j=1((ℓ− qj)2 −m2
j)

aj
∝ (K · ∂R)(∂R · ∂R)I

(3)
an . (2.2)

The more general case of tensor reductions for higher pole can be addressed by employing

differential operators of m2
i ,

∫
ddℓ

i(π)d/2
(2ℓ · R)r∏n
j=1D

aj
j

∝

(
∏

i

(∂m2
i
)ai−1

)∫
ddℓ

i(π)d/2
(2ℓ ·R)r∏n

j=1Dj
. (2.3)

One can notice that any differential operator of mass can lift the power of the associated

propagator by 1. Given the reduction results for the scalar integral class I{ai=2}, where

{ai = 2} indicates all propagators power aj = 1 except ai = 2, one can solve the general

problem of reducing tensor integrals of higher poles. Therefore, for the sake of simplicity,

we will focus solely on the integrals with simple poles and scalar integrals with single

quadratic propagator, i.e., I
(r)
n ≡ I

(r)
{1,1,...,1} and I{ai=2}.

2.1 Reduction by differential operators

In this subsection, we provide a review of utilizing differential operators for tensor re-

duction. In the original works [34, 35], they note that there are two types of differential

operators which can lower the rank r:

Di ≡ qi ·
∂

∂R
, i = 2, . . . , n, T ≡ ηµν

∂

∂Rµ

∂

∂Rν
. (2.4)

It is straightforward to determine the action of these operators

DiI
(r)
n = rI

(r−1)

n;1̂
− rI

(r−1)

n;̂i
+ r(m2

1 + q2i −m2
i )I

(r−1)
n ,

T I(r)n = 4r(r − 1)m2
1I

(r−2)
n + 4r(r − 1)I

(r−2)

n;1̂
. (2.5)

We know that I
(r)
n can be reduced to master integrals,

I(r)n =
∑

j=0,bj

C
(r)

n→n;b̂j

I
n;b̂j

. (2.6)
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In a straightforward approach, given the results for the integrals I
(r′)
m<n, the expressions for

C
(r)

n→n;b̂j

can be determined by solving the n partial differential equations in (2.5), with the

property

Di = 2s0i
∂

∂s00
+

n−1∑

j=1

sij
∂

∂s0j
,

T = 2D
∂

∂s00
+ 4s00

∂2

∂s200
+ 4

n−1∑

i=1

s0i
∂

∂s0i

∂

∂s00
+

n−1∑

i=1

n−1∑

j=1

sij
∂

∂s0i

∂

∂s0j
. (2.7)

However, there exists a more efficient approach. The key idea utilized in [34] is to expand

the reduction coefficients based on their tensor structure

C
(r)

n→n;b̂j

=
∑

2a0+
∑n−1

k=1
ak=r

{
c
(a0,··· ,an−1)

n→n;b̂j

(r)
n−1∏

k=0

sak0k

}
, (2.8)

where s00 ≡ R·R, s0i ≡ R·qi+1. By substituting this expansion into the n partial differential

equations, one can derive n recursion relations for the expansion coefficients c
(a0,...,an−1)

n→n;b̂j
(r).

Moreover, these recursion relations can be solved through an iterative approach. Finally,

by collecting all expansion coefficients, one can compose the desired reduction coefficients.

Regarding degenerate cases, these can be addressed through singularity analysis, as shown

in [32].

2.2 Reduction with syzygy in Baikov representation

The one-loop integrals in Baikov representation [52–57], we denote the propagators and

integral as

z1 = ℓ2 −m2
1 , z2 = (ℓ− p1)

2 −m2
2 , z3 = (ℓ− p1 − p2)

2 −m2
3 , . . . ,

zn = (ℓ− p1 − · · · − pE)
2 −m2

n , z0 = (2ℓ ·R) ,

I
(r)
an ≡ I(r)a1,a2,...,an ≡

K−(d−n−1)/2

(4π)n/2Γ((d− n)/2)

∫

C
dn+1z

G({z})(d−n−2)/2zr0∏n
i=1 z

ai
i

, (2.9)

where E = n− 1 is the number of independent external momenta, the Gram determinant

K involving the external momenta do not depend on {z} and can be ignored for our

subsequent discussions. The G({z}) is another Gram determinant, which depends on both

the loop momentum and the external momenta,

G({z}) = detG(ℓ, p1, . . . , pE , R). (2.10)

Here, the Gram matrix G is defined as

G(q1, . . . , qn) ≡ (qi · qj)n×n ≡




q1 · q1 q1 · q2 · · · q1 · qn
q2 · q1 q2 · q2 · · · q2 · qn

...
. . .

...

qn · q1 qn · q2 · · · qn · qn




. (2.11)
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Introducing the syzygy module [37] and considering the IBP relation

0 =

∫
dn+1z

n∑

a=0

[
∂za

(
Pa

zr0G{z}
(d−n−2)/2

∏n
i=1 z

bi
i

)]

=

∫
dn+1z

n∑

a=0

[
d− n− 2

2
Pa∂zaG + (∂zaPa + rz−1

0 P0 − biz
−1
i Pi)G

]
zr0G{z}

((d−2)−n−2)/2

∏n
i=1 z

bi
i

,

(2.12)

where Pa are polynominals of za. It should be noted that the power of G is dependent on

the dimension d; therefore, to avoid dimension shifting in the reduction coefficients, it is

advantageous to select Pa judiciously to satisfy the syzygy equation.

n∑

a=0

(Pa∂zaG) + Pn+1G = 0 . (2.13)

Another consideration is that the term biz
−1
i Pi may increase the power of the i-th prop-

agator, which is undesirable. To preclude this, we require Pi to be divisible by zi. With

these constraints in place, one can identify solutions to the syzygy equation by searching

for syzygy modules 〈∂z0G, . . . , ∂znG,G〉 subject to the requirement 〈P 〉 ≡ 〈P0, P1, . . . , Pn〉 =

〈d0, d1, . . . , dn〉, where

d1 ={z1, 0, . . . , 0, 0, 0}

...

dn ={0, 0, . . . , zn, 0, 0}

d0 ={0, 0, . . . , 0, 1, 0}

dn+1 ={0, 0, . . . , 0, 0, 1} (2.14)

3 Combined method

Differential operators and syzygy equation both require extensive algebraic computation.

While solving the syzygy equation is typically straightforward at the one-loop level, our

objective is to explore a reduction method that does not rely on this approach. Instead, we

aim to develop a methodology that can be applied more generally, starting with the one-

loop case as a preliminary step. We introduce a simple approach that combines differential

operators with respect to R and the IBP relation in Baikov representation. First, we exam-

ine the elements of the Gram matrix given in (2.11). The Gram matrix contains elements

that represent the Lorentz invariant products of loop momenta, external momenta, and

auxiliary vectors. Specifically, the matrix elements are constructed from scalar products of

the form ℓ · ℓ, ℓ · pi, ℓ ·R, pi · pj , pi · R, and R ·R, where

ℓ · ℓ = m2
1 + z1, ℓ · R = z0/2,

ℓ · pi =
1

2
(m2

i −m2
i+1 + zi − zi+1 + pi · pi + 2

i−1∑

j=1

pj · pi) . (3.1)
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It is evident that the variables {z} only appear in the first column and row of matrix G,

indicating that G must be quadratic expressions of {z}. To simplify the expressions, we

introduce the notation

G = G00z
2
0 +

n∑

i=1

G0iz0zi + G0z0 +
n∑

i≤j

Gijzizj +
n∑

i=1

Gizi + Gc . (3.2)

Since only G00,G0 and Gc are associated with singularities, we will focus exclusively on

presenting their specific results.

G00 = −
1

4
det
[
G({z})❳❳❳1(n+1);❳❳❳1(n+1)

]
,

G0 = − det
[
G({z} = 0)❳❳❳(n+1);❆1

]
, Gc = detG({z} = 0) , (3.3)

where the ❙❙ij;❩❩lk indicates removing the i-th and j-th rows as well as the l-th and k-th

columns. In addition, the {z} = 0 is to set za = 0,∀a = 0, 1, . . . , n. We consider the

integral relation derived from the IBP

0 =

∫

C
dn+1z ∂z0

[
G({z})(d−n−2)/2G({z})

zr−1
0∏n
i=1 zi

]

=

∫

C
dn+1z

[(d− n

2
z0∂z0G + (r − 1)G

)
× G({z})(d−n−2)/2 zr−2

0∏n
i=1 zi

]
. (3.4)

In order to prevent the power of the function G from changing when differentiating, we

append an additional factor of G [58]. Since z0 is independent of the propagators, taking

the derivative ∂z0 does not increase the power of the propagators. Substituting (3.2) into

it and omitting the summation symbol. Recall that any zi represents a certain propagator

and z0 represents the tensor structure, it is direct to recognize the equation as a reduction

relation at integral level as below

(r − 1 + d− n)G00I
(r)
n + (r − 1 +

d− n

2
)
(
G0I

(r−1)
n + G0iI

(r−1)

n;̂i

)

+ (r − 1)
(
GcI

(r−2)
n + GiI

(r−2)

n;̂i
+ GijI

(r−2)

n;îj

)
= 0 , (3.5)

where the îj indicates the propagators zi, zj have been removed. For the case i 6= j,

the integral I
(r)

n;îj
just represents the sub-sector with two different propagators removed.

However, when i = j, special care must be taken to keep zi in the numerator of I
(r−2)

n;îj
. The

terms on the right-hand side have lower rank than the initial I
(r)
n . Hence, with the seed

scalar integrals, we can use this relation to construct r-rank tensor integrals. To enable

the recursion relation to progress smoothly, it is critical to properly handle this i = j case.

One approach is to transfer the propagator zi to differential operator directly using the

fact l2 ∝ ∂R · ∂R, l · qi ∝ qi · ∂R, due to the reduction result of sub-sector is assumed to be

known, one can easily apply on any differential operators. Alternatively, we can write zi as

(zi − zi+1) + zi+1 = 2ℓ · (qi+1 − qi) + fi,i+1 + zi+1, (3.6)
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with n + 1 ≡ 1, fij ≡ m2
j −m2

i + q2i − q2j . There is only one linear term in ℓ, so only one

differential operator ∂R is needed. The zi+1 term that appears can be canceled by the

denominator. Applying this logic leads to the simplified result

I
(r−2)

n;îi
=

∫
ddℓ(2ℓ ·R)(r−2)

i(π)d/2
zi∏n

j=1,j 6=i zj

=

∫
ddℓ(2ℓ ·R)(r−2)

i(π)d/2
2ℓ · (qi+1 − qi) + fi,i+1 + zi+1∏n

j=1,j 6=i zj

=
(qi+1 − qi) · ∂R

r − 1

∫
ddℓ(2ℓ ·R)(r−1)

i(π)d/2
1∏n

j=1,j 6=i zj

+

∫
ddℓ(2ℓ ·R)(r−2)

i(π)d/2
fi,i+1∏n
j=1,j 6=i zj

+

∫
ddℓ(2ℓ ·R)(r−2)

i(π)d/2
zi+1∏n

j=1,j 6=i zj

=
(qi+1 − qi) · ∂R

r − 1
I
(r−1)

n;̂i
+ fi,i+1I

(r−2)

n;̂i
+ I

(r−2)

n;î,i+1
. (3.7)

Plugging the expression into (3.5), we obtain

An,rI
(r)
n + Bn,rI

(r−1)
n + Cn,rI

(r−2)
n + Bn,r;̂iI

(r−1)

n;̂i
+ Cn,r;̂iI

(r−2)

n;̂i
+ Cn,r;îjI

(r−2)

n;îj
= 0 , (3.8)

where the coefficients are

An,r = (r − 1 + d− n)G00 , (3.9)

Bn,r = (r − 1 +
d− n

2
)G0, Bn,r;̂i = (r − 1 +

d− n

2
)G0i + Gii(qi+1 − qi) · ∂R , (3.10)

Cn,r = (r − 1)Gc, Cn,r;̂i = (r − 1)(Gi + fi,i+1Gij), Cn,r;îj = (r − 1)(Gij + δj,i+1Gii) . (3.11)

In fact, all degenerate cases are captured by G00,G0,Gc, as we discussed below. For

the non-degenerate case G00 6= 0, dividing the (3.8) by the prefactor An,r, and introducing

simplified notations, we can derive the recursion relation that governs I
(r)
n

I(r)n =
−1

An,r


B

−
n,rI

(r−1)
n + Cn,rI

(r−2)
n + Bn,r;̂iI

(r−1)

n;̂i
+ Cn,r;̂iI

(r−2)

n;̂i
+
∑

i<j

Cn,r;îjI
(r−2)

n;îj


 .

(3.12)

As we can see, when G00 = 0, i,e. An,r, the (3.12) is no longer applicable. We can

divide both sides of (3.8) by Bn,r and shift r− 1 to r, resulting in the following expression

I(r)n =
−1

Bn,r+1


Cn,r+1I

(r−1)
n + Bn,r+1;̂iI

(r)

n;̂i
+ Cn,r+1;̂iI

(r−1)

n;̂i
+
∑

i<j

Cn,r+1;îjI
(r−1)

n;îj


 . (3.13)

Setting r = 0 leads all Cn to vanish, as evident from (3.11). This implies that In is no

longer a master integral.

When the conditions G00 = 0 and G0 = 0 are satisfied, meaning An,r = 0 and Bn,r = 0,

the previous recursion relation is no longer valid. To address this breakdown, we can divide
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both sides of (3.8) by the prefactor Cn,r, and perform a shift of replacing r − 2 by r. This

gives the result

I(r)n =
−1

Cn,r+2


Bn,r+2;̂iI

(r+1)

n;̂i
+ Cn,r+2;̂iI

(r)

n;̂i
+
∑

i<j

Cn,r+2;îjI
(r)

n;îj


 . (3.14)

Then we turn to discuss the reduction for higher pole case I{ai=2}. In order to lift the

power of propagators, one can consider using ∂zi , then we translate zi’s appearing in the

numerator to the differential operators of R acting on the standard tensor integrals I
(r)
n we

have obtained. A little difference here is that there is no need to introduce z0 anymore.

The scalar one-loop integral in Baikov representation without tensor structure is

I{1,...,1} ≡ Cn(d)K
−(d−n)/2

∫

C
dnz Gscalar({z})(d−n−1)/2 1∏n

i=1 zi
, (3.15)

where the Gram determinant is Gscalar({z}) = detG(ℓ, p1, . . . , pE). Analogous to (3.4),

0 =

∫

C
dnz ∂zi

[
Gscalar({z})(d−n−1)/2Gscalar({z})

1∏n
i=1 zi

]

=

∫

C
dnz

[(d− n+ 1

2
∂ziG

scalar −
Gscalar

zi

)
× Gscalar({z})(d−n−1)/2 1∏n

i=1 zi

]
. (3.16)

Based on the definition of G(ℓ, p1, . . . , pE), we know Gscalar({z}) is a quadratic expression

of {z},

Gscalar =

n∑

j≤k

Gscalar
jk zjzk +

∑

j

Gscalar
j zj + Gscalar

c . (3.17)

Plugging it into (3.16),

H
i+
n I{ai=2} + HnIn + Hn;̂iI{ai=0}

+
∑

j 6=i

(
Hn;ĵI{aj=0} + H

i+

n;ĵj
I{ai=2,aj=−1} + H

i+

n;ĵ
I{ai=2,aj=0}

)
= 0 . (3.18)

Paralleling the approach in (3.7),

I{ai=2,aj=−1} = fjiI{ai=2,aj=0} + I{aj=0} + (qi − qj) · ∂RI
(1)
{ai=2,aj=0} . (3.19)

Plugging it into (3.18)

H
i+
n I{ai=2} + HnIn + Hn;̂iI{ai=0} +

∑

j 6=i

[ (
Hn;ĵ + H

i+

n;ĵj

)
I{aj=0}

+
(
fjiH

i+

n;ĵj
+ H

i+

n;ĵ

)
I{ai=2,aj=0} + H

i+

n;ĵj
(qi − qj) · ∂RI

(1)
{ai=2,aj=0}

]
= 0, (3.20)

where the coefficients are

H
i+
n = −Gscalar

c , Hn =
d− n− 1

2
Gscalar
i , Hn;̂i = (d− n)Gscalar

ii ,

H
i+

n;ĵ
= −Gscalar

j , Hn;ĵ =
d− n− 1

2
Gscalar
ij , H

i+

n;ĵj
= −Gscalar

jj . (3.21)

The recursion relation displayed in (3.20) demonstrates that higher-pole integrals Iai=2 can

be expressed in terms of the master integral In, Iai=0, and lower-sector integrals Iai=2,aj=0,

whose values are known from previous recursion relations.
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4 Examples

To enhance clarity and conciseness in presenting the reduction coefficients, we will adopt

specific symbols throughout this paper,

s00 ≡ R ·R, s0i ≡ R · qi+1, sij ≡ qi+1 · qj+1, ∀i, j = 1, . . . , n. (4.1)

The upcoming Tadpoles and Bubbles subsections will present step-by-step calculations

exemplifying our approach. By walking through specific examples, we aim to demonstrate

the utilization of the method in practice for computing integral families of interest.

4.1 Tadpoles

In this subsection, we examine the reduction of tensor tadpoles, considering the simplest

case. To begin, let’s explicitly define the propagators involved,

z1 = ℓ2 −m2
1 , z0 = 2ℓ · R . (4.2)

We can express the polynomial G in the Baikov presentation as follows,

G = det

(
m2

1 + z1 z0/2

z0/2 s00

)
= −

z20
4

+ s00z1 + s00m
2
1 . (4.3)

Using this expression, we can compute the derivative of G with respect to z0

∂G

∂z0
= −

z0
2
. (4.4)

Consequently, we can rewrite the integrand of (3.4) as

(
A1,r

zr0
z1

+ C1,r
zr−2
0

z1
+ C1,r;1̂z

r−2
0

)
G(d−3)/2 = 0 . (4.5)

In the above equation, we have the coefficients,

A1,r = −
d+ r − 2

4
, C1,r = (r − 1)m2

1s00 . (4.6)

The last term in the equation is zero, as there are no propagators in it. As a result, we

obtain the following relation,

I
(r)
1 =

4(r − 1)m2
1s00

d+ r − 2
I
(r−2)
1 . (4.7)

Consequently, the final result for I
(r)
1 can be summarized as,

I
(r)
1 =





0 r = odd,

2r(r − 1)!!mr
1R

r

(d+ r − 2)!!/(d − 2)!!
I1 r = even.

(4.8)
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The results for non-standard tadpole integrals can be obtained through momentum shifting

∫
ddℓ

(2ℓ · R)r

(ℓ−K)2 −m2

ℓ→ℓ+K
======

∫
ddℓ

((2ℓ+ 2K) ·R)r

ℓ2 −m2

=

r∑

a=0

(
r

a

)
(2R ·K)a

∫
ddℓ

(2ℓ ·R)r−a

ℓ2 −m2
. (4.9)

In order to elucidate the methodology, we consider r = 1 as an example

∫
ddℓ

(2ℓ ·R)

(ℓ−K)2 −m2
= I

(1)
1 + (2R ·K)I1 = (2R ·K)I1. (4.10)

4.2 Bubbles

Bubbles is the simplest case involving singularities. The explicit propagators are given by

z1 = ℓ2 −m2
1, z2 = (ℓ− q2)

2 −m2
2, z0 = 2ℓ ·R . (4.11)

The polynomial G in the Baikov presentation is defined as,

G = det




m2
1 + z1 −(m2

1 −m2
2 + s11 + z1 − z2)/2 z0/2

−(m2
1 −m2

2 + s11 + z1 − z2)/2 s11 s01
z0/2 s01 s00


 . (4.12)

The derivative of G with respect to z0 is given by

∂z0G = −s01(m
2
1 −m2

2 + s11 + z1 − z2)− 2s11z0 . (4.13)

Substituting this expression into (3.4), we obtain:

A2,rI
(r)
n + B2,rI

(r−1)
2 + C2,rI

(r−2)
2 + B

(r−1)

2;̂i
I
(r−1)

2;̂i
+ C2,r;̂iI

(r−2)

2;̂i
+ C2,r;îjI

(r−2)

2;îj
= 0 . (4.14)

In order to derive expressions for I
(r−2)

2;1̂,1
and I

(r−2)

2;2̂,2
, we utilize (3.6) to write z1 and z2 in

the following form

z1 = m2
2 −m2

1 − s11 + 2ℓ · q2 + z2 = z2 +m2
2 −m2

1 − s11 + q2 · ∂Rz0 , (4.15)

z2 = m2
1 −m2

2 + s11 − 2ℓ · q2 + z1 = z1 +m2
1 −m2

2 + s11 − q2 · ∂Rz0 . (4.16)

Substituting these equations, we can express the terms I
(r−2)

2;1̂1
and I

(r−2)

2;2̂2
as follows,

I
(r−2)

2;1̂1
= (m2

2 −m2
1 − s11)I

(r−2)

2;1̂
+

q2 · ∂R
(r − 1)

I
(r−1)

2;1̂
+ I

(r−2)

2;1̂2
, (4.17)

I
(r−2)

2;2̂2
= −(m2

2 −m2
1 − s11)I

(r−2)

2;2̂
−

q2 · ∂R
(r − 1)

I
(r−1)

2;2̂
+ I

(r−2)

2;1̂2
. (4.18)

Then, we can get the bubble version of (3.12)

I
(r)
2 =

−1

A2,r

(
A−

2,rI
(r−1)
2 +A−−

2,r I
(r−2)
2 + Ã−

2,r;̂i
I
(r−1)

2;̂i
+ Ã−−

n,r;̂i
I
(r−2)

2;̂i

)
. (4.19)
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Next, we provide a detailed expression for (3.3)

G({z})❩❩13;❩❩13 = det
(
s11

)
, G({z} = 0)

❆3;❆1
= det

(
−1

2(m
2
1 +m2

2 − s11) 0

s11 s01

)
,

G({z} = 0) = det




m2
1 −(m2

1 −m2
2 + s11)/2 0

−(m2
1 −m2

2 + s11)/2 s11 s01
0 s01 s00


 . (4.20)

The specific components of G are given by

G00 = −
1

4
s11 , (4.21)

G0 =
1

2

(
m2

1 −m2
2 + s11

)
s01 , (4.22)

Gc = −
1

4

(
(m2

1 −m2
2)

2s00 − (2m2
1 + 2m2

2 − s11)s11s00 + 4m2
1s

2
01

)
, (4.23)

G01 =
1

2
s01 , G02 = −

1

2
s01 , (4.24)

G1 = −
1

2

((
m2

1 −m2
2 − s11

)
s00 + 2s201

)
, G2 =

1

2

(
m2

1 −m2
2 + s11

)
s00 , (4.25)

G11 = −
1

4
s00, G12 =

1

2
s00, G22 = −

1

4
s00 . (4.26)

Then, we give the explicitly expression of (4.19)

I
(r)
2 =

(d+ 2r − 4)(m2
1 −m2

2 + s11)s01
(d+ r − 3)s11

I
(r−1)
2

+
r − 1

(d+ r − 3)s11

[ (
(2m2

1 + 2m2
2 − s11)s11s00 − (m2

1 −m2
2)

2s00 − 4m2
1s

2
01

)
I
(r−2)
2

+ (m2
1 −m2

2 + s11)s00I
(r−2)

2;2̂
+ ((m2

2 −m2
1 + 3s11)s00 − 4s201)I

(r−2)

2;1̂

]

+
(d+ 2r − 4)s01 + s00q2 · ∂R

(d+ r − 3)s11

(
I
(r−1)

2;1̂
− I

(r−1)

2;2̂

)
. (4.27)

Clearly, we can reduce I
(r)
2 to I2 and I2;̂i through repeatedly applying (4.27)

I
(r)
2 = C

(r)
2 I2 + C

(r)

2;2̂
I2;2̂ + C

(r)

2;1̂
I2;1̂ . (4.28)

Here are the expressions for C2, C2;2̂, and C2;1̂ for different values of r:

• r = 1

C
(1)
2 =

s01(m
2
1 −m2

2 + s11)

s11
, (4.29)

C
(1)

2;1̂
=

s01
s11

, C
(1)

2;2̂
= −

s01
s11

. (4.30)
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• r = 2

C
(2)
2 =

((
m2

1 −m2
2

)
2 − s11

(
2m2

1 + 2m2
2 − s11

)) (
s11s00 − ds201

)

(1− d)s211
+

4m2
1s

2
01

s11
, (4.31)

C
(2)

2;2̂
=

(
m2

1 −m2
2 + s11

) (
s11s00 − ds201

)

(d− 1)s211
, (4.32)

C
(2)

2;1̂
=

(
−m2

1 +m2
2 + s11

) (
s11s00 − ds201

)
+ 4(d− 1)s11s

2
01

(d− 1)s211
. (4.33)

• r = 3

C
(3)
2 =

(
−
(
m2

2 − s11
)
2 −m4

1 + 2m2
2m

2
1

) (
m2

1 −m2
2 + s11

)
s01
(
3s11s00 − (d+ 2)s201

)

(d− 1)s311

+
2m2

1

(
m2

1 −m2
2 + s11

)
s01
(
(d− 4)s201 + 3s11s00

)

(d− 1)s211
, (4.34)

C
(3)

2;2̂
=

((
m2

2 − s11
)
2 +m4

1 − 2m2
2m

2
1

)
s01
(
3s11s00 − (d+ 2)s201

)

(d− 1)s311

−
2m2

1s01
((
d2 − 2d+ 4

)
s201 + 3(d − 2)s11s00

)

(d− 1)ds211
, (4.35)

C
(3)

2;1̂
=
s01
(
−4(d− 1)m2

2s11 + dm4
1 − 2dm2

2m
2
1 + dm4

2

) (
(d+ 2)s201 − 3s11s00

)

(d− 1)ds311

+
s01
(
4(d− 1)dm2

1s11s
2
01 + ds211

(
(7d − 10)s201 + 3s11s00

))

(d− 1)ds311
. (4.36)

4.2.1 G00 = 0

In this subsection, it is important to note that the I
(r)
2 integrals discussed here are modified

versions that have been adjusted to the same limit. As we can see, when G00 = 0, i,e.

A2,r = 0, the (4.19) is no longer applicable. We can divide both sides of Equation (4.14)

by B2,r = 0 and shift r − 1 to r, resulting in the following expression

I
(r)
2 =

−1

B2,r+1

(
C2,r+1I

(r−1)
2 + B2,r+1;̂iI

(r)

2;̂i
+ Cn,r+1;̂iI

(r−1)

2;̂i

)

=
r

(d+ 2r − 2)(m2
1 −m2

2)s01

[ (
(m2

1 −m2
2)

2s00 + 4m2
1s

2
01

)
I
(r−1)
2

− (m2
1 −m2

2)s00I
(r−1)

2;2̂
−
(
(m2

2 −m2
1)s00 − 4s201

)
I
(r−1)

2;1̂

]

−
(d+ 2r − 2)s01 + s00q2 · ∂R
(d+ 2r − 2)(m2

1 −m2
2)s01

(
I
(r)

2;1̂
− I

(r)

2;2̂

)
. (4.37)

It is evident that r = 0 can be computed, which implies that I2 can be represented in terms

of I2;2̂ and I2;1̂. Consequently, I2 does not appear in the final result, and we have

I
(r)
2 = C

(r)

2;2̂
I2;2̂ + C

(r)

2;1̂
I2;1̂ . (4.38)

Next, we provide the specific expressions for C2;1̂ and C2;2̂ for different values of r:
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• r = 0

C2;1̂ = −
1

m2
1 −m2

2

, C2;2̂ =
1

m2
1 −m2

2

, (4.39)

• r = 1

C
(1)

2;1̂
=

2s01
(
(d− 2)m2

2 − dm2
1

)

d
(
m2

1 −m2
2

)2 , C
(1)

2;2̂
=

4s01m
2
1

d
(
m2

1 −m2
2

)2 , (4.40)

• r = 2

C
(2)

2;1̂
= −

4
(
−2
(
d2 − 4

)
m2

2m
2
1 + d(d+ 2)m4

1 + (d− 2)dm4
2

)
s201

d(d+ 2)
(
m2

1 −m2
2

)
3

−
4m2

2s00
dm2

1 − dm2
2

,

C
(2)

2;2̂
=

32m4
1s

2
01

d(d+ 2)
(
m2

1 −m2
2

)
3
+

4m2
1s00

dm2
1 − dm2

2

. (4.41)

4.2.2 G00 = 0 and G0 = 0

There is still another pole m1 = m2 = m. In this case, B2,r = 0. By dividing both sides of

(4.14) by C2,r = 0 and shifting r − 2 to r, we obtain the following expression

I
(r)
2 =

−1

C2,r+2

(
B2,r+2;̂iI

(r+1)

2;̂i
+ Cn,r+2;̂iI

(r)

2;̂i

)

=
ds01 + s00q2 · ∂R

4m2s201

(
I
(r+1)

2;1̂
− I

(r+1)

2;2̂

)
−

1

m2
I
(r)

2;1̂
. (4.42)

In this scenario, I2;1̂ is equal to I2;2̂. Therefore, the final result can be expressed as

I
(r)
2 = C

(r)

2;1̂
I2;1̂ . (4.43)

Now, we provide the specific expressions for C2;1̂ for different values of r:

• r = 0

C2;1̂ =
d− 2

2m2
, (4.44)

• r = 1

C
(1)

2;1̂
=

(d− 2)s01
2m2

, (4.45)

• r = 2

C
(2)

2;1̂
=

2

3

(
(d− 2)s201

m2
+ 3s00

)
. (4.46)

Interestingly, high-pole tadpole integrals can be found from r = 0 integral. Specif-

ically, when the momentum q2 → 0 and mass m2 → m1, the second bubble propagator

z2 degenerates into z1. In other words, the bubble integral transforms into a higher-pole
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tadpole integral, i.e., I{1,1} → I{2}. Applying (4.44) with q2 = 0 then yields a recurrence

relation directly connecting the higher pole bubble integral to the tadpole base case

I{2} =
d− 2

2m2
1

I{1} . (4.47)

For r is odd, I
(r)
{a1}

= 0 which can be followed from (4.8). Specially,

I
(1)
{2} = 0 . (4.48)

For r is even,

I
(r)
{1} =

2r(r − 1)!!mr
1R

r

(d+ r − 2)!!/(d − 2)!!
I{1}. (4.49)

Arbitrary powers of the tadpole propagator z1 can be generated by repeatedly applying

the differential operator ∂m2
1
. For example,

I
(r)
{2}

=
2r−1(r − 1)!!mr−2

1 Rr

(d+ r − 2)!!/(d − 2)!!

(
rI{1} + 2m2

1I{2}
)
. (4.50)

Substituting (4.47) into it, then

I
(r)
{2} =

2r−1(r − 1)!!mr−2
1 Rr

(d+ r − 2)!!/(d − 2)!!
(r + d− 2)I{1} . (4.51)

4.2.3 Det Q = 0

As stated in [33], detQ = 0 is also a degenerate case where Qij = (m2
i +m2

j − (qi− q2j ))/2).

But it cannot be well handled in our algorithm, we can use their scalar reduction result as

an input to get the tensor reduction. In bubble integral detQ = 0 gives s11 = (m2 ±m1)
2.

Take the s11 = (m2 +m1)
2 as an example(the equation (4.21) in [33])

I2 =
d− 2

2(d− 3)m2(m1 +m2)
I2;1̂ +

d− 2

2(d− 3)m1(m1 +m2)
I2;2̂ . (4.52)

Substitute the above equation into (4.29) and (4.30)

I
(1)
2 =

((d− 2)m1 + (d− 3)m2)s01
(d− 3)m2(m1 +m2)2

I2;1̂ +
s01

(d− 3)(m1 +m2)2
I2;2̂ , (4.53)

which is consistent with the [33]. Similarly,

I
(2)
2 =

2

(d− 3)(d− 1)m2(m1 +m2)3

(
N

(1)

2;1̂
I2;1̂ +N

(1)

2;2̂
I2;2̂

)
, (4.54)

where

N
(1)

2;1̂
=(d− 2)s201

[
(d− 1)m2

1 + (d− 3)m2
2

]
+ (d− 3)m2

[
2(d − 1)m1s

2
01 +m2s00(m1 +m2)

2
]
,

N
(1)

2;2̂
=m1m2

[
(d− 3)s00(m1 +m2)

2 + 2s201
]
. (4.55)
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4.2.4 I{2,1} and I
(1)
{2,1}

For clarity, we calculate the I{2,1} using (3.20)

H
1+
2 I{2,1} + H2I{1,1} + H2;1̂I{0,1} +

[ (
H2;2̂ + H

1+

2;2̂2

)
I{1,0}

+
(
(m2

2 −m2
1 + q22)H

1+

2;2̂2
+ H

1+
2;2̂

)
I{2,0} − H

1+

2;2̂2
q2 · ∂RI

(1)
{2,0}

]
= 0 . (4.56)

Based on the results derived in the preceding section,

I{2,0} =
d− 2

2m2
1

I{1,0}, I
(1)
{2,0} = 0 . (4.57)

We can get the final result of I{2,1}

I{2,1}

= −
H2

H
1+
2

I{1,1} −
H2;1̂

H
1+
2

I{0,1} −



H2;2̂ + H

1+

2;2̂2

H
1+
2

+
(m2

1 −m2
2 + s11)H

1+

2;2̂2
+ H

1+

2;2̂

H
1+
2

d− 2

2m2
1


 I{1,0}

=
(d− 3)

(
m2

1 −m2
2 − s11

)

4H1+
2

I{1,1} +
d− 2

4H1+
2

I{0,1} +
(2− d)

(
m2

1 +m2
2 − s11

)

8m2
1H

1+
2

I{1,0} . (4.58)

where the second equality holds since we have used the coefficients expression

H
1+
2 =

1

4

(
−2m2

1

(
m2

2 + s11
)
+
(
m2

2 − s11
)
2 +m4

1

)
,

H2 = −
1

4
(d− 3)

(
m2

1 −m2
2 − s11

)
, H2;1̂ =

2− d

4
,

H
1+

2;2̂
=

1

2

(
−m2

1 +m2
2 − s11

)
, H2;2̂ =

d− 3

4
, H

1+

2;2̂2
=

1

4
. (4.59)

Acting ∂m2
1
on I

(1)
{1,1} can be derived using the (4.28)-(4.30),

I
(1)
{2,1} =

s01
s11

I{1,1} +
s01(m

2
1 −m2

2 + s11)

s11
I{2,1} −

s01
s11

d− 2

2m2
1

I{1,0} . (4.60)

Plugging (4.58) into it,

I
(1)
{2,1} =

s01

[
s11

(
(d− 4)

(
m2

2 − s11
)
− 2m2

1

)
+ (d− 2)

(
(m2

1 −m2
2)

2 −m2
2s11

)]

4s11H
1+
2

I{1,1}

+
(d− 2)s01

(
m2

1 −m2
2 + s11

)

4s11H
1+
2

I{0,1} +
(2− d)s01

(
m2

1 −m2
2 − s11

)

4s11H
1+
2

I{1,0} . (4.61)

4.3 Triangles

The preceding subsections have provided detailed and specific computations for the tadpole

and bubble. Consequently, in what follows, the step-by-step calculations will be omitted

for brevity. Unlike tadpoles and bubbles, triangles involve integrals where two propagators

have been removed. Using the (3.8), we can get the triangle equation,

A3,rI
(r)
n + B3,rI

(r−1)
3 + C3,rI

(r−2)
3 + B3,r;̂iI

(r−1)

3;̂i
+ Cn,r;̂iI

(r−2)

3;̂i
+
∑

i<j

C3,r;îjI
(r−2)

3;îj
= 0 (4.62)
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Since only G00, G0 and Gc are associated with singularities, we will focus exclusively on

presenting their specific results. The other coefficients in the reduction formula do not

contribute to singular configurations, and hence will be omitted for brevity.

G00 =
1

4
(s11s22 − s212) , (4.63)

G0 =
1

2

(
m2

1 (s12 − s22)−m2
3s12 + s22

(
m2

2 − s11 + s12
))

s01

+
1

2

(
m2

1 (s12 − s11) +m2
3s11 −m2

2s12 + s11s12 − s11s22
)
s02 , (4.64)

Gc =−m2
1s

2
12s00 +

1

4

(
s222s

2
01 +

(
m2

1 (s01 − s02)−m2
3s01 +m2

2s02
)
2 + s211

(
s202 − s22s00

))

−
s22
4

(
m4

1s00 +m2
1

(
2s01 (s01 + s02)− 2m2

2s00
)
+ 2m2

3s
2
01 +m4

2s00 − 2m2
2s01s02

)

+
s12
2

((
m2

1 −m2
2

)
s22s00 +

(
m4

1s00 −m2
1

(
m2

2s00 +m2
3s00 − 4s01s02

)
+m2

2m
2
3s00

))

+ s11

(
1

2
s22
(
m2

2s00 +m2
3s00 − s01s02

)
+

s12
2

((
m2

1 −m2
3

)
s00 + s22s00

)
−

1

4
s222s00

)

−
s11
4

(
m4

1s00 +m2
1

(
2s02 (s01 + s02)− 2m2

3s00
)
+ 2m2

2s
2
02 +m4

3s00 − 2m2
3s01s02

)
.

(4.65)

First, the case of G00 6= 0 will be considered. Following a procedure analogous to that

applied to the Bubble, the final result for the triangle can be derived.

I
(r)
3 = C

(r)
3 I3 +

∑

i=1,2,3

C
(r)

3;̂i
I3;̂i +

∑

1≤i<j≤3

C
(r)

3;îj
I3;îj . (4.66)

The specific coefficients for different values of r:

• r = 1

C
(1)
3 =−

G0

2G00
,

C
(1)

3;3̂
=
s12s01 − s11s02

4G00
, C

(1)

3;2̂
=

s12s02 − s22s01
4G00

,

C
(1)

3;1̂
=
(s22 − s12) s01 − (s12 − s11) s02

4G00
, (4.67)

• r = 2

In this case, the analytic expressions are unwieldy, so a numerical solution will be adopted.

To facilitate comparison with prior results from [33], the parameters are set as d = 4,

{m2
1,m

2
2,m

2
3} = {1

2 ,
1
3 ,

1
5}, {s12, s11, s22} = { 7

13 ,
5
7 ,

7t
5 + 343

845}, where t = 4G00.

C
(2)
3 =

−1573040s00 − 476472423s201 + 1084364190s02s01 − 596126375s202
2519080200t

+
5618 (49s01 − 65s02)

2

17738523075t2
+O(t0) , (4.68)

C
(2)

3;3̂
=
530s00 + 24787s201 − 5200s02s01 − 38025s202

35490t
−

53 (49s01 − 65s02)
2

6997445t2
+O(t0) , (4.69)

C
(2)

3;2̂3
=
−2401s201 + 6370s02s01 − 4225s202

3185t
+O(t0) . (4.70)
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4.3.1 G00 = 0

There are many viable options to satisfy the condition G00 = 0; without loss of generality,

we impose the constraint s11 = s212/s22. As with the bubbles, in this subsection I
(r)
3

represents the modified version of the integral. Using (3.13), the final result for I
(r)
3 is

I
(r)
3 =

∑

i=1,2,3

C
(r)

3;̂i
I3;̂i +

∑

1≤i<j≤3

C
(r)

3;îj
I3;îj . (4.71)

The coefficients for different values of r:

• r = 0

C3;3̂ =
s12

m2
1 (s12 − s22)−m2

3s12 +m2
2s22 − s212 + s12s22

, (4.72)

C3;2̂ =
s22

m2
1 (s12 − s22)−m2

3s12 +m2
2s22 − s212 + s12s22

, (4.73)

C3;1̂ =
s22 − s12

m2
1 (s12 − s22)−m2

3s12 +m2
2s22 − s212 + s12s22

, (4.74)

• r = 1

C
(1)

3;3̂
= −

169 (568463s01 − 972595s02)

943824
, C

(1)

3;2̂3
= −

169

371
(49s01 − 65s02) , (4.75)

where we use the same parameter sets in this subsection beginning.

4.3.2 G00 = 0 and G0 = 0

Under the imposed constraint s11 = s212/s22, G0 and Gc take the form

G0 =

(
m2

1 (s12 − s22)−m2
3s12 +m2

2s22 − s212 + s12s22
)(
s12s02 − s22s01

)

2s22
, (4.76)

Gc =
Nc

4
(
−m2

1 +m2
2 + s12

)
2
(
−m2

1 +m2
3 + s12

)
2
, (4.77)

where

Nc =
((
m2

1 −m2
3 − s12

)
s01 +

(
m2

2 −m2
1 + s12

)
s02
)
2 ((m1 +m2)(m1 −m3)− s12)

× ((m1 −m2)(m1 +m3)− s12) ((m1 −m2)(m1 −m3)− s12)

× ((m1 +m2)(m1 +m3)− s12) . (4.78)

To satisfy G0 = 0, we set

s22 = −
m2

3s12 −m2
1s12 + s212

m2
1 −m2

2 − s12
. (4.79)

Clearly, utilizing alternative constraints is also valid, as the underlying algorithm remains

unchanged. The final result for I
(r)
3 can be expressed as

I
(r)
3 =

∑

i=1,2,3

C
(r)

3;̂i
I3;̂i +

∑

1≤i<j≤3

C
(r)

3;îj
I3;îj . (4.80)

The coefficients for different values of r:
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• r = 0

C3;3̂ =
(3− d)

(
m2

1 −m2
2 − s12

) (
m2

1 −m2
3 − s12

) ((
m2

3 −m2
1

)
(m2

2 −m2
1)− s212

)
s01

D3;3̂

,

C3;2̂3 =
(d− 2)

(
m2

1 −m2
2 − s12

) (
m2

1 −m2
3 − s12

)

D3;2̂3

, (4.81)

where

D3;3̂ =
((
m2

1 −m2
3 − s12

)
s01 +

(
m2

2 −m2
1 + s12

)
s02
)
((m1 +m2)(m1 −m3)− s12)

× ((m1 −m2)(m1 +m3)− s12) ((m1 −m2)(m1 −m3)− s12)

× ((m1 +m2)(m1 +m3)− s12) ,

D3;2̂3 =((m1 +m2)(m1 −m3)− s12) ((m1 −m2)(m1 +m3)− s12)

× ((m1 −m2)(m1 −m3)− s12) ((m1 +m2)(m1 +m3)− s12) . (4.82)

Specific results for rank r ≥ 1 are omitted here in the interest of brevity, but the compu-

tational procedure remains unchanged. As evident from (4.64) and (4.65), setting q3 = 0

results in both G00 and G0 vanishing. In this case, the coefficients for different values of r:

• r = 0

C3;1̂ = −
1

m2
1 −m2

3

, C3;3̂ =
1

m2
1 −m2

3

, C3;2̂ = 0,

C3;2̂3 = 0, C3;1̂3 = 0, C3;1̂2 = 0, (4.83)

• r = 1

C
(1)

3;3̂
=

(
m2

1 −m2
2 + s11

) (
2m2

1 −m2
2 −m2

3 + s11
)
s01(

m2
1 −m2

3

)
2s11

, C
(1)

3;2̂
= 0,

C
(1)

3;1̂
= −

(
m2

1 +m2
2 − 2m2

3 − s11
) (

−m2
2 +m2

3 + s11
)
s01(

m2
1 −m2

3

)
2s11

,

C
(1)

3;2̂3
=

(
−2m2

1 +m2
2 +m2

3 − s11
)
s01(

m2
1 −m2

3

)
2s11

, C
(1)

3;1̂3
=

(
m2

1 − 2m2
2 +m2

3 + 2s11
)
s01(

m2
1 −m2

3

)
2s11

,

C
(1)

3;1̂2
=

(
m2

1 +m2
2 − 2m2

3 − s11
)
s01(

m2
1 −m2

3

)
2s11

. (4.84)

The results of integrals with tensor structure in the examples examined herein match those

derived in [33].

4.3.3 Det Q = 0

Analogous to the bubble, using the scalar result in [33]. The parameters are set as

{m2
1,m

2
2,m

2
3} = {1

2 ,
1
3 ,

5
338}, {s11, s12, s22} = {5

7 ,
7
13 ,

3552
5915},

I3 =
21

1151(d − 4)

[
4225(d − 2)I3;1̂2 − 780(d − 2)I3;1̂3 + 455(d − 2)I3;2̂3

+ 402(d − 3)I3;1̂ − 592(d − 3)I3;2̂ + 130(d − 3)I3;3̂

]
. (4.85)
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Substitute the above equation into (4.67),

I
(1)
3 =

7

11510(d − 4)

[
− 4225(d − 2) (12s01 − 65s02) I3;1̂2 + 780(d − 2) (12s01 − 65s02) I3;1̂3

− 455(d − 2) (12s01 − 65s02) I3;2̂3 + 130 ((37d− 160)s01 + 65s02) I3;3̂

+ 2 (65(692 − 247d)s02 + 3552s01) I3;2̂ − 2 ((2045d − 5768)s01 + 65(667 − 217d)s02) I3;1̂

]
.

(4.86)

4.3.4 I{2,1,1}

The integral I{2,1,1} is evaluated using (3.20)

H
1+
3 I{2,1,1} + H3I{1,1,1} + H3;1̂I{0,1,1} +

∑

j=2,3

[ (
H3;ĵ + H

1+

3;ĵj

)
I{aj=0}

+
(
(m2

1 −m2
j + q2j )H

1+

3;ĵj
+ H

1+

3;ĵ

)
I{a1=2,aj=0} − H

1+

3;ĵj
qj · ∂RI

(1)
{a1=2,aj=0}

]
= 0 . (4.87)

Noting that the specific integrals I{a1=2,aj=0} and I
(1)
{a1=2,aj=0} follow from corresponding

bubbles section.

I{2,1,1} = C1+
3→3I{1,1,1} +

∑

i=1,2,3

C1+

3→3;̂i
I{ai=0} +

∑

i 6=j

C1+

3→3;îj
I{ai=0,aj=0} , (4.88)

where the coefficients are

C1+
3→3 =

(d− 4)
[
(m2

1 − s12) (s11 − 2s12 + s22) +m2
3 (s12 − s11) +m2

2 (s12 − s22)
]

4B1+
3

,

C1+

3→3;1̂
=

(d− 3) (s11 − 2s12 + s22)

4B1+
3

,

C1+
3→3;2̂

=
N3→3;2̂

4(m4
1 − 2m2

1

(
m2

3 + s22
)
+
(
m2

3 − s22
)
2)B1+

3

,

C1+

3→3;3̂
=

N3→3;3̂

4(m4
1 − 2m2

1

(
m2

2 + s11
)
+
(
m2

2 − s11
)
2)B1+

3

,

C1+

3→3;1̂2
=

(d− 2)
(
m2

1 (s22 − s12) +m2
3s12 − s22

(
m2

2 − s11 + s12
))

4(m4
1 − 2m2

1

(
m2

3 + s22
)
+
(
m2

3 − s22
)
2)B1+

3

,

C1+

3→3;1̂3
=

(d− 2)
(
m2

1 (s11 − s12) +m2
2s12 − s11(m

2
3 − s22 + s12)

)

4(m4
1 − 2m2

1

(
m2

2 + s11
)
+
(
m2

2 − s11
)
2)B1+

3

,

C1+

3→3;2̂3
=

N3→3;2̂3

D3→3;2̂3

, (4.89)

where

B1+
3 =

1

2
(s22 − s12)

(
−m2

3s11 −m2
1m

2
2

)
+

1

4
(s11 − 2s12 + s22)

(
−2m2

1s12 +m4
1 + s11s22

)

+
1

4

(
m4

3s11 − 2m2
2m

2
3s12 + 2m2

1m
2
3 (s12 − s11) +m2

2s22
(
m2

2 − 2s11 + 2s12
))

,
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N3→3;2̂ =(3− d)s22

[ (
m2

3 −m2
1

) (
−m2

2 +m2
3 + s11

)
+ 2s12

(
m2

1 +m2
3 − s22

)

+ s22
(
−m2

1 −m2
2 − 2m2

3 + s11 + s22
) ]

,

N3→3;3̂ =(3− d)s11

[ (
m2

1 −m2
2

) (
−m2

2 +m2
3 − s22

)
+ 2s12

(
m2

1 +m2
2 − s11

)

+ s11
(
−m2

1 − 2m2
2 −m2

3 + s11 + s22
) ]

,

N3→3;2̂3 =(d− 2)
{ [

(m2
1 −m2

2)
3 + s311

]
(s22 −m2

1 −m2
3)s22

+ 2s12
(
m2

1 −m2
2

) [
m6

1 +m2
2

(
m2

3 − s22
)
2 −m2

1(m
2
1 +m2

2)
(
m2

3 + s22
)]

+ s211
[
2m2

3

(
m2

1 −m2
3

)
s12 + 3

(
m2

2 +m2
3

)
s22
(
m2

3 − s22
)

+ s22
(
m2

1

(
3m2

2 −m2
3 + 2s12 − 2s22

)
+ 4m2

3s12 + s22 (s22 − 2s12)
)
+
(
m2

1 −m2
3

)
3
]

+ s11

[ (
3m2

2

(
m2

2 +m2
3

)
−m2

1

(
m2

2 − 3m2
3

))
s222 −

(
m2

1 +m2
2

)
(
(
m2

1 −m2
3

)
3 + s322)

+
(
2m4

1 − 3m4
2 − 3m4

3 + 4m2
2m

2
3

)
s22m

2
1 + 3s22

(
m2

2 +m2
3

) (
m4

1 −m2
2m

2
3

)

+ s12
(
2m2

1

((
m2

3 − s22
)
2 − 2m2

2

(
m2

3 + s22
))

+ 4m2
2

(
m2

3 − s22
)
2 − 2m6

1

) ]}
,

D3→3;2̂3 =8m2
1

(
(m1 −m2)

2 − s11
) (

(m1 +m2)
2 − s11

)

×
(
(m1 −m3)

2 − s22
) (

(m1 +m3)
2 − s22

)
B1+

3 . (4.90)

The integrals with higher poles presented in the tadpoles, bubbles, and triangles sections

are consistent with [36].

5 Summary and Outlook

This work has demonstrated a unifying framework that synergizes the Baikov representa-

tion and IBP relations to uniformly reduce one-loop integrals with arbitrary tensor struc-

tures and high poles. Although our recursion formula includes a term with ∂R, this poses

little difficulty given the simplicity it provides in avoiding tedious algebraic manipulations.

Most importantly, one can easily and consistently treat various degenerate cases appearing

in our method. The degeneracy of detQ = 0 in [33] may not be immediately apparent using

our method. However, it is worth noting that our degenerate origin, represented by G00 and

G0, does not vanish, our recursion relation remains valid. Although their tensor reduction

cannot be effectively handled by our algorithm, we can utilize their scalar reduction result

as an input to obtain the tensor reduction.

To restore the general tensor structure in the tensor reduction of L-loop integrals, it is

necessary to introduce L auxiliary vectors. In contrast to the one-loop case, the inclusion

of ISP’s such as ℓi · Rj and ℓi · pj becomes necessary. We call the ISP ℓi · Ri as R-ISP

as they emerge in the momentum representation. In general, we can derive L recursion

relations by considering differentiation with respect to the L R-ISP’s.1. However, these

relations alone are insufficient due to the presence of ISP’s in ∂z0iG(z) and G(z), where

z0i = ℓi · Ri. Unfortunately, there is no established method for handling these terms

1In the subsequent discussion, unless explicitly indicated, the term “ISP” refers to the ISP’s excluding

R-ISP’s.
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effectively. One approach is to translate these terms into differential operators acting

on the auxiliary vectors. Consequently, unlike the one-loop case, we obtain differential

equations instead of pure recursion relations. To solve the tensor reduction problem, one

can consider expanding the reduction coefficient based on its tensor structure, which leads

to L recursion relations. Next, we introduce a linear combination of propagators in the

numerator by applying differential operators. This gives rise toN recursion relations, where

N is the number of propagators. Assuming there are E independent external momenta,

if L + N < L(L+1)
2 + EL, we can consider applying ∂zISP to generate additional required

recursion relations. In this way, we can ultimately solve the tensor reduction problem.

However, it should be noted that redundancy may arise when the number of ISP’s is large

compared to the number of extra recursion equations needed.

To illustrate this process, let’s consider the sunset diagram as an example. We intro-

duce two auxiliary vectors, R1 and R2, which results in more ISP’s involved in the Baikov

representation, namely ℓ1 · p, ℓ2 · p, ℓ1 · R2, and ℓ2 · R1. There are 5 tensor structures

involving R1 and R2, i.e., R
2
1, R

2
2, R1 · R2, R1 · p,R2 · p. The sunset has exactly 2 R-ISP’s

and 3 propagators. Fortunately, we are fortunate enough to solve the reduction problem by

utilizing a set of L+N = 5 recursion relations which are derived through the loop-by-loop

reduction and constructing propagators [31]. Here we can simply make use of the IBP

relations generated by ∂z0i :
∫

∂z0i

[
G(z)γzri0i∏

j zj

]
= 0 . (5.1)

During the reduction process, one may come across terms in the numerator that involve

zISP and zj . The presence of terms involving zj allows for a reduction of the integral to a

known sector with a lower topology. On the other hand, handling the terms containing zISP
is relatively straightforward, as they can be readily translated into differential operators

acting on R1 and R2. So finally we obtain two partial differentials of the standard integral

I
(r1,r2)
1,1,1 . The remaining three recursion relations are obtained by constructing propagators

in the numerator through the application of three differential operators:

∂R1
· ∂R1

, ∂R2
· ∂R2

, ∂R1
· ∂R2

. (5.2)

It is easy to find

∂R1
· ∂R1

I
(r1,r2)
1,1,1 = 4r1(r1 − 1)

[
m2

1I
(r1−2,r2)
1,1,1 + I

(r1−2,r2)
0,1,1

]
,

∂R2
· ∂R2

I
(r1,r2)
1,1,1 = 4r2(r2 − 1)

[
m2

2I
(r1,r2−2)
1,1,1 + I

(r1,r2−2)
1,0,1

]
,

∂R1
· ∂R2

I
(r1,r2)
1,1,1 = 2r1r2

[
I
(r1−1,r2−1)

1,1,1;3̂−1̂−2̂
− (p2 +m2

1 +m2
2 −m2

3)I
(r1−1,r2−1)
1,1,1

]

+ 2r2p · ∂R1
I
(r1,r2−1)
1,1,1 + 2r1p · ∂R2

I
(r1−1,r2)
1,1,1 .

(5.3)

To convert the aforementioned differential equations into recursion relations, one can ex-

pand the reduction coefficient C
(r1,r2)
a in I

(r1,r2)
1,1,1 =

∑7
a=1 C

(r1,r2)
a Ia based on the tensor

structure of R1 and R2.

C(r1,r2)
a =

∑

{v}

ca;(r1,r2)ν1ν2ν3ν4ν5(R
2
1)

ν1(R2
2)

ν2(R1 · R2)
ν3(R1 · p)

ν4(R2 · p)
ν5 , (5.4)
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with

2ν1 + ν3 + ν4 = r1 , 2ν2 + ν3 + ν5 = r2 . (5.5)

The five recursion relations of the expansion coefficients c
a;(r1,r2)
ν1ν2ν3ν4ν5 , as explicitly discussed

in [31], provide a complete solution for the tensor reduction of integrals with the sunset

topology. For higher-loop tensor integrals with L + N < L(L+1)
2 + EL, one can initially

generate L+N recursion relations using a similar approach. Subsequently, the remaining

recursion relations needed for these cases can be obtained from IBPs generated by taking

derivatives with respect to other ISP parameters. As can be anticipated, higher loops will

inevitably result in high-degree polynomials. As previously discussed, it is necessary to

convert all ISP’s in the numerator (excluding the R-ISP’s) into differential operators. This

transformation can lead to a series of complex partial differential equations with high-order

derivatives. In principle, these intricate calculations can be delegated to a computer. How-

ever, we must actually resolve the linear equations for the expansion coefficients. Indeed,

the method encounters challenges as the total rank r1+r2 (in the case of two loops) and the

number of external momenta increase. This leads to a rapid proliferation in the number of

linear equations involved in the reduction process. Improvement for this method for higher

loops is left for future research and exploration.
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A Pentagon

r=1 r=2 r=3

Our method 6s 16s 39s

FIRE6 60s 180s 557s

Table 1. The consuming time for different ranks of our method vs. FIRE6. In order to expedite

the reduction process, we have made the decision to set m1 = m2 = m3 and m4 = m5 during the

reduction process in FIRE6.

In this appendix, we will provide an additional illustrative example of a pentagon.

For simplicity, we will give the numerical result. Let us begin by setting up the numerical

framework: s11 = 1
13 , s12 = 1

17 , s13 = 1
19 , s14 = 1

23 , s22 = 2
29 , s23 = 2

31 , s24 = 2
37 , s33 =

3
41 , s34 =

3
43 , s44 =

3433409242718675−8300603361746045880868t
48244934730591561 , with t = G00. The definition of sij

remains consistent with the previous formulation.

• r = 1

C
(1)
5 =−

N
(1)
5 (48324393052s01 − 863984088446s02 + 1984130693427s03 − 1318419772377s04)

10943679594784982799533787019183236 t
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+O(t0) , (A.1)

C
(1)

5;5̂
=

−48324393052s01 + 863984088446s02 − 1984130693427s03 + 1318419772377s04
226835825478808676 t

+O(t0) , (A.2)

where

N
(1)
5 =165198902691154 + 5487075499569992m2

1 + 1768334514951836m2
2

− 31615769748504478m2
3 + 72605294464574211m2

4 − 48244934730591561m2
5 .

(A.3)

• r = 2

In this case, we additionally assume that all mi are equal, denoted as mi = m, and we take

d = 6 to avoid excessive complexity.

C
(2)
5 =

6822669362590342075877462929 N
(2)
5

19960687178885534221068998904386539063038990526693942059576757238616 t2

+O(t−1) , (A.4)

C
(2)

5;5̂
= −

82599451345577 N
(2)
5

827472864886215336096756770932755381383603943518512 t2
+O(t−1) ,

(A.5)

C
(2)

5;4̂5
=

67 N
(2)
5

380016026464966029473624813316 t
+O(t0) . (A.6)

where

N
(2)
5

=(48324393052s01 − 863984088446s02 + 1984130693427s03 − 1318419772377s04 )
2 .

(A.7)

The time required to obtain the results for the tensor rank of a pentagon is presented in

Table 1. The parameter setting remains the same as for the case of r = 1, without any

constraints on the values of mi and d. Our method is a simple Mathetica program, while

the FIRE6 algorithm is executed in parallel using a total of 10 computing threads. It is

evident that our method offers significantly faster computational efficiency compared to

directly solving the IBP relations.

We can also give the symbolic result for the pentagon using our algorithm. Setting all

of the mass equal zero. The time for r = 1 and r = 2 are about 6s and 15s respectively.

C
(1)
5 =

N
(1)
5

D
(1)
5

, C
(1)

5;̂̂5
=

N
(1)

5;5̂

D
(1)
5

, (A.8)

where

N
(1)
5 =s04

[
s13
(
s11(s23s24 − s22s34) + s12s22s34 − 2s12s23s44 + s12s24s33 + s14s22(s23 − s33)

)

+ s11(s12(s23s34 − s24s33) + s14(s22s33 − s223) + s22(s24s33 − s23s34 + s33s34 − s33s44)

– 23 –



+ s223s44 − s23s24s33) + s12s33(−s12s34 + s12s44 − s14s22 + s14s23) + s213s22(s44 − s24)
]

+ s02

[
s14(s11(s23s34 − s24s33) + s12s33(s34 − s44) + s13(−2s22s34 + s23s44 + s24s33))

+ s13s44(s12(s34 − s33) + s13(s22 − s24)) + s11s34(s34(s22 − s12) + s24(s13 − s33))

+ s11s44(s33(s12 − s22 + s23 + s24)− s23(s13 + s34)) + s214s33(s22 − s23)
]

+ s03

[
s14(s11(s23s24 − s22s34) + s12(s22s34 + s23s44 − 2s24s33) + s13s22(s24 − s44))

+ s11s44(−s12s23 + s22(s13 + s23 − s33 + s34)− s23s24) + s214s22(s33 − s23)

+ s11s24(s34(s12 − s22)− s13s24 + s24s33) + s12s44(s12(s33 − s34) + s13(s24 − s22))
]

+ s01

[
s14(s22s23s34 − s22s33(s24 + s34 − s44) + s23(s24s33 − s23s44))

+ s44(s12s33(s22 − s23 − s24) + s12s23s34 − s13s22(s23 − s33 + s34) + s13s23s24)

+ s11
(
s22(s

2
34 − s33s44) + s23(s23s44 − 2s24s34) + s224s33

)

− (s13s24 − s12s34)(s24s33 − s22s34)
]
,

N
(1)

5;5̂
=− s04

[
s11
(
s223 − s22s33

)
+ s212s33 − 2s12s13s23 + s213s22

]
+ s03

[
s11s23s24 − s11s22s34

+ s212s34 − s12s13s24 − s12s14s23 + s13s14s22

]
+ s02

[
s11s23s34 − s11s24s33 + s12s14s33

− s13(s12s34 + s14s23) + s213s24

]
+ s01

[
s12s24s33 − s12s23s34 + s13s22s34 − s13s23s24

+ s14
(
s223 − s22s33

) ]
,

D
(1)
5 =s44

(
−s11s22s33 + s11s

2
23 + s212s33 − 2s12s13s23 + s213s22

)
+ s11s22s

2
34 − 2s11s23s24s34

+ s11s
2
24s33 − s212s

2
34 + 2s14(s12(s23s34 − s24s33) + s13(s23s24 − s22s34))

+ 2s12s13s24s34 − s213s
2
24 + s214

(
s22s33 − s223

)
. (A.9)

The result for rank r = 2 is given in the ancillary file pentagon.nb.
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