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Abstract

In discrete choice panel data, the estimation of average effects is crucial for quanti-

fying the effect of covariates, and for policy evaluation and counterfactual analysis.

This task is challenging in short panels with individual-specific effects due to par-

tial identification and the incidental parameter problem. In particular, estimation

of the sharp identified set is practically infeasible at realistic sample sizes whenever

the number of support points of the observed covariates is large, such as when the

covariates are continuous. In this paper, we therefore propose estimating outer

bounds on the identified set of average effects. Our bounds are easy to construct,

converge at the parametric rate, and are computationally simple to obtain even

in moderately large samples, independent of whether the covariates are discrete

or continuous. We also provide asymptotically valid confidence intervals on the

identified set.
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1 Introduction

Panel data models with individual-specific effects make it possible to control for unob-

served heterogeneity and confounding due to omitted variables that are constant over

time. Nonlinear models are required to correctly describe discrete outcomes, and the

main complication in such nonlinear panel models is the unknown distribution of unob-

served heterogeneity, which constitutes an infinite-dimensional parameter. The fixed ef-

fects approach leaves this distribution unspecified, eliminating misspecification concerns

(as opposed to the correlated random effects approach which models this distribution

parametrically). However, lack of sufficient time-series variation in short panels means

that this unknown distribution remains set-identified. An important consequence of this

is a general lack of point-identification of average effects. While it is theoretically pos-

sible to recover the sharp identified set for average effects, in empirically relevant panel

dimensions this often becomes an infeasible task due to a curse of dimensionality. This

is a serious issue because average effects are typically the ultimate object of interest, es-

pecially from the policy perspective. In this paper, considering a general semiparametric

setting, we propose alternative outer bounds which are simple to obtain and remain free

of the curse of dimensionality in empirically relevant settings.

Formally, let Yi = (Yi1, . . . , YiT ) be the vector of observed outcomes for individual

i = 1, . . . , n, where T is the number of time periods and n is the number of cross-sectional

units. Throughout, we assume that n → ∞ but T remains fixed. The semiparametric

panel models we consider in this paper describe the distribution of Yi conditional on a

vector of observed conditioning variables Zi as

fY |Z(yi|zi) =

∫
A
f(yi | zi, ai; β) π(ai|zi) dai. (1)

Here, f(yi | zi, ai; β) is the distribution of Yi conditional on Zi and the (vector of) un-

observed individual effects Ai, and it is assumed to be known up to the finite dimen-

sional parameter β. The distribution of Ai conditional on Zi, given by π(ai|zi), is

left unrestricted. Both β and π = π(ai|zi) are unknown. The vector of conditioning

variables usually consists of observed covariates (Xi1, . . . , XiT ) and/or initial conditions

(Yi0, Yi,−1, . . .). Given the true distribution of Yi conditional on Zi, the identified set for

the model parameters consists of all pairs (β, π) that satisfy (1).

In empirical research, the ultimate object of interest is generally an average effect of
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the form

m := Em(Zi, Ai, β), (2)

where m(Zi, Ai, β) is some function of interest. The exact choice of m(·, ·, ·) may vary

from application to application, leading to different definitions of m; see, among others,

Chamberlain (1984), Blundell and Powell (2003, 2004), Altonji and Matzkin (2005),

Wooldridge (2005a,b), Bester and Hansen (2009), Graham and Powell (2012), Hoderlein

and White (2012).1 Abrevaya and Hsu (2021) provide a detailed discussion of different

average effects used in the literature.

The average effect in (2) can be rewritten as

m =

∫
Z

∫
A
m (zi, ai, β) π(ai|zi) fZ(zi) daidzi,

which clearly depends on (β, π). In discrete choice models those model parameters (and

in particular π) are usually only partially-identified, implying that m is also typically

only partially-identified.

Honoré and Tamer (2006) and Chernozhukov, Fernández-Val, Hahn and Newey

(2013) provide methods for obtaining the identified set when covariates are discrete.

More recently, there has been an increased interest in the identification and estimation

of average effects in various settings; see, e.g., Aguirregabiria and Carro (2021), Dav-

ezies, D’Haultfœuille and Laage (2021), Dobronyi, Gu and Kim (2021), Liu, Poirier and

Shiu (2021), Botosaru and Muris (2022) and Botosaru, Muris and Sokullu (2022).2

Unfortunately, obtaining the sharp identified set is often practically infeasible for

sample sizes typically encountered in applications, due to a curse of dimensionality.

This is because obtaining the sharp identified set for m typically requires estimates

of the conditional probabilities fY |Z(yi|zi). Since Zi usually contains a time-vector of

(multiple) covariates, the curse of dimensionality is obvious for continuous covariates.

However, even with discrete covariates the number of conditional probabilities that would

1A different quantity of interest, which we will not consider, is the quantile structural function of
Imbens and Newey (2009).

2Lack of point-identification of π(ai|zi) does not invariably lead to set-identification of m. An inter-
esting contribution in this vein is by Aguirregabiria and Carro (2021) who obtain point-identification
of the average effect with respect to the lagged dependent variable in a dynamic logit model. However,
such case-specific results usually remain an exception. A different route is to obtain point-identification
of average effects under additional restrictions on the data generating process as in Liu, Poirier and Shiu
(2021). In contrast to these approaches, our aim is to provide a method which applies to an arbitrary
function m(Zi, Ai, β) in a generic semiparametric framework.
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need to be estimated is usually large. Suppose, for example, Yit, Xit ∈ {0, 1}, and that

Zi = (Xi1, . . . , XiT ). This implies 22T different conditional probabilities fY |Z(yi|zi); for,
say, T = 5 this yields 1, 024 conditional probabilities. Estimation of objects of such

numbers would require a much larger cross-sectional sample size than available in the

majority of applications.

Motivated by this issue, we propose alternative bounds on the average effect m which

can be feasibly obtained in realistic data settings. Our proposal is based on finding

appropriate functions L(Zi, Yi, β) and U(Zi, Yi, β) such that

EL(Zi, Yi, β) ≤ Em(Zi, Ai, β) ≤ EU(Zi, Yi, β).

We show that suitable functions L(·, ·, ·) and U(·, ·, ·) can be obtained by solving an

appropriate linear program for each realized value of Zi. Asymptotically valid lower and

upper bounds are then given by

1

n

n∑
i=1

L(Zi, Yi, β̂) and
1

n

n∑
i=1

U(Zi, Yi, β̂),

respectively, for some appropriate estimator β̂, assuming that β is point-identified. We

prove the validity of the proposed bounds and provide asymptotically valid inference

methods on m. Our approach allows for discrete, as well as continuous covariates.

We also provide computationally feasible methods for obtaining the suggested bounds.

Importantly, these do not require searching over the space of possible distributions for

π(ai|zi), but only over the domain of Ai itself. Consequently, implementation of our

method is computationally straightforward and fast.

Our proposal differs from the existing literature in several ways. Firstly, we do not

propose a different approach to obtaining the sharp identified set form; rather, we obtain

outer bounds on this set. This has the virtue of avoiding the curse of dimensionality

associated with the conditioning variable Zi. Indeed, our outer bounds can be feasibly

obtained at standard sample sizes even if the vector of conditioning variables Zi is

continuous, or high-dimensional, or takes on many different values within the sample.

Secondly, given our general semiparametric setting, the proposed method can easily be

applied to different models (and functions m(Zi, Ai, β)) of interest, such as the static

logit, dynamic logit or the more complicated random coefficient logit models.

Davezies, D’Haultfœuille and Laage (2021) propose an alternative method to achieve
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inference on m. Their paper initially focuses on inference on the sharp identified set,

but they also consider “outer bounds” (different from ours) that avoid non-parametric

estimation of intermediate objects, similar in spirit to our results here. However, their

approach currently only applies to static logit and ordered logit models (and for several

choices of average effects), while in this paper we consider general models of the form

(1) (and more general average effects of the form (2)).

Throughout, we consider the case where β is point-identified. In principle, our ap-

proach can be extended to the case where β is partially identified, but we do not inves-

tigate this extension here. The reason for this is that methods for point-estimation of β

are well-established in the literature, and these methods are regularly used by applied

researchers. Indeed, for essentially every type of discrete outcome variable (e.g. binary,

count data, ordered choice, multinomial choice, . . . ) there exist appropriate specifi-

cations for f(yi | zi, ai; β) that allow point identification and
√
n-consistent estimation

of β by the conditional likelihood method. In static models, this approach relies on

the availability of a sufficient statistic for Ai (conditional on Zi), which is satisfied in

exponential-family models.3 In dynamic panel models, one can similarly find specifica-

tions for f(yi | zi, ai; β) such that estimation of β via the generalized method of moments

is possible.4 More generally, the functional differencing method of Bonhomme (2012) can

be viewed as a unifying framework for point-estimation of β in both static and dynamic

panel models of the form (1).

Notice also that there are interesting models that do not require estimation of any

common parameters β. A prominent example is the binary choice random coefficient

model, which has been used in Browning and Carro (2007, 2010, 2014) to incorporate

richer forms of heterogeneity; see Example 2 below, and our discussion in Section 4.3.

The rest of the paper is organized as follows: The main idea of our approach is

introduced in Section 2. Section 3 provides some illustrations of the main idea, including

some comparison of our outer bounds to the sharp identified set. The actual construction

of our bounds in general models is explained in Section 4. Section 5 provides general

inference methods and asymptotic theory. Sections 6 and 7 provide a simulation study

3To provide a non-exhaustive list of examples, see, e.g., Rasch (1961), Andersen (1970), Chamberlain
(1980), Chamberlain (1985) for binary choice logit; Lancaster (2000), Blundell, Griffith and Windmeijer
(2002) for count data Poisson; and Das and van Soest (1999), Baetschmann, Staub and Winkelmann
(2015), Muris (2017) for ordered choice logit models (using binarization).

4See, for example, Honoré and Weidner (2020), Kitazawa (2022) for dynamic binary choice logit;
Blundell, Griffith and Windmeijer (2002) for dynamic count data Poisson; and Honoré, Muris and
Weidner (2021) for dynamic ordered choice. Honoré and Kyriazidou (2000) and Bartolucci and Nigro
(2010) also consider estimation of β in dynamic binary choice panel models.
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and present our empirical illustration, respectively. Section 8 concludes. All proofs are

in the Appendix.

2 Bounds on average effects

We observe discrete outcomes Yi ∈ Y , and conditioning variables Zi ∈ Z for a cross-

sectional sample of units i = 1, . . . , n. Unobserved heterogeneity is modeled through an

unobserved latent variable Ai ∈ A. The probability of observing Yi = y conditional on

Zi = z and Ai = a is given by f (y | z, a; β0) where β0 ∈ B ⊂ Rdimβ and f : Y ×Z ×A×
B → [0, 1] is a known function. The joint distribution of the conditioning variables Zi

and Ai is left unspecified. We focus on panel data models, where Yi = (Yi1, . . . , YiT ) is

a vector of outcomes Yit ∈ Yt. The vector of conditioning variables Zi can, for example,

be equal to Xi = (Xi1, ..., XiT ) in static models, or to Zi = (Xi, Yi0) in dynamic models

where Yi0 is the initial condition from time period t = 0. We assume that Xi is strictly

exogenous, and in dynamic models (i.e. models with lagged dependent variables), we

assume that Yi0 is observed. Our goal is to provide inference methods on average effects

of the form

m := E [m (Zi, Ai, β0)] , (3)

where m : Z ×A× B → R is a known function.

To focus on the main features and intuition behind our proposed approach, in this

section we abstract away from estimation of β0 and assume that it is known. In Section

5 we will consider the case where β0 is unknown but point-identified. The random

coefficient model in Example 2 below provides an interesting case where no estimation

of β0 is necessary, because the model does not feature any such common parameter. In

that case, the results in this section are already fully sufficient for inference on m.

While our approach is general enough to accommodate different panel models of

interest (including dynamic ones), for illustration purposes we focus on two running

examples.

Example 1 In a static binary choice model, outcomes are generated as Yit = 1{Xitβ0+

Ai ≥ εit}, where Xit is a 1 × K vector of covariates, dim β0 = K, and εit is a logistic

or standard normal random variable. Letting Xk,it be the k-th covariate and X−k,it be a
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row matrix containing the remaining covariates, typical examples of m(Zi, Ai, β0) are

1

T

T∑
t=1

[P (Yit = 1|Xk,it = x1, X−k,it, Ai, β0)− P (Yit = 1|Xk,it = x2, X−k,it, Ai, β0)] , (4)

1

T

T∑
t=1

∂P (Yit = 1|Xit = xit, Ai, β0)

∂xk,it

, (5)

for discrete and continuous Xk,it, respectively, where x1, x2 ∈ R. For binary and multi-

nomial variables, examples are (x1 = 1, x2 = 0) and (x1 = x + 1, x2 = x), for some x.

In (5), xit could be equal to the observed value of Xit or its time average, or some other

value of interest.

Example 2 Our second example is the random coefficient binary choice model, given

by Yit = 1{Xit A2,i + A1,i ≥ εit}, where A1,i ∈ R, A2,i ∈ RdimXit, and εit can have the

logistic or standard normal distribution. This allows for richer types of heterogeneity

which cannot be captured by the classical fixed effects model (see, for example, Browning

and Carro 2007, 2010, 2014). For simplicity, we consider the static setting, but our

approach remains valid if lagged dependent variables are included as regressors. Defining

Ai = (A1,i, A2,i), examples for m(Zi, Ai) in this case can be generated analogous to (4)

and (5). We will later consider the case of a single discrete covariate Xit and focus on

1

T

T∑
t=1

[P (Yit = 1|Xit = 1, Ai)− P (Yit = 1|Xit = 0, Ai)] . (6)

Our proposal for inference on m is based on the simple idea that suitable non-random

functions L,U : Z × Y × B → [bmin, bmax] which satisfy,∑
y∈Y

L (z, y, β) f (y | z, a; β) ≤ m (z, a, β) ≤
∑
y∈Y

U (z, y, β) f (y | z, a; β) , (7)

can be used to obtain asymptotically valid bounds on m. To see how, notice that when

evaluated at β0, the condition in (7) is equivalent to

E
[
L(Zi, Yi, β0)

∣∣Zi = z, Ai = a
]
≤ m(z, a, β0) ≤ E

[
U(Zi, Yi, β0)

∣∣Zi = z, Ai = a
]
,
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which, by the Law of Iterated Expectations, implies that

E[L(Zi, Yi, β0)] ≤ m ≤ E[U(Zi, Yi, β0)]. (8)

This suggests that asymptotically valid bounds on m are given by

L̂ :=
1

n

n∑
i=1

L(Zi, Yi, β0), Û :=
1

n

n∑
i=1

U(Zi, Yi, β0). (9)

To formally show this, we impose the following regularity conditions.

Assumption 1

(i) (Yi, Zi, Ai) are independent and identically distributed across i = 1, . . . , n.

(ii) The conditional distribution of outcomes Yi satisfies

P
(
Yi = y

∣∣Zi = z, Ai = a
)
= f (y | z, a; β0) .

(iii) There are known bounds bmin, bmax ∈ R such that bmin ≤ m (z, a, β) ≤ bmax, for all

z ∈ Z, a ∈ A and β ∈ B.

Assumption 1(i) demands cross-sectional sampling. Assumption 1(ii) imposes correct

specification of our parametric model for Yi conditional on Zi and Ai. Assumption1(iii)

requires uniform bounds on the functions m (z, a, β) that define the average effect of

interest m. This holds for typical choices for m such as those in Examples 1 and 2, and

it can easily be confirmed for any given m(z, a, β).5 Importantly, we do not put any

restriction on the joint distribution of Zi and Ai. In particular, Zi can be discrete or

continuous, and Zi and Ai can be arbitrarily related.

Theorem 1 Let Assumption 1 hold, and let L,U : Z × Y × B → [bmin, bmax] satisfy

equation (7) for β = β0 and for all z ∈ Z, a ∈ A. Let m, L̂, Û be as defined in (3) and

5In principle a weaker condition such as bmin ≤ E[m (Zi, Ai, β0) |Ai = a] ≤ bmax might also be used
here, or bounds on second or higher-order moments of m (Zi, Ai, β0) are also conceivable, but in all
the applications we consider in the paper the original Assumption 1(iii) holds, and we find it attractive
that this assumption can be verified without knowing anything about the data generating process of Zi

and Ai. More generally, Assumption1(iii) could be replaced by any assumption that guarantees that
Var [L(Zi, Yi, β0)], and Var [U(Zi, Yi, β0)] are finite in Theorem 1.
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(9). Then,

L̂+Op(n
−1/2) ≤ m ≤ Û +Op(n

−1/2) as n → ∞.

Furthermore, assume that Var [L(Zi, Yi, β0)] > 0, and Var [U(Zi, Yi, β0)] > 0, and define

σ̂2
L := 1

n

∑n
i=1[L(Zi, Yi, β0) − L̂]2 and σ̂2

U := 1
n

∑n
i=1[U(Zi, Yi, β0) − Û ]2. Then, for α ∈

[0, 1], we have

lim
n→∞

P

(
L̂−

cα/2 σ̂L√
n

≤ m ≤ Û +
cα/2 σ̂U√

n

)
≥ 1− α, where cα/2 = Φ−1

(
1− α

2

)
.

3 Some further discussion of the bounds

Before moving to the general construction of our bounds in Section 4, we find it useful to

give a concrete example, and to also to compare the outer bounds to the sharp identified

set.

3.1 An illustrative example

The following example simply corresponds to the nonparametric bounds in Chernozhukov,

Fernández-Val, Hahn and Newey (2013). It is therefore not representative of how we

obtain the bounds in this paper in general, but we still find the example instructive,

since it provides analytical expressions for bounds satisfying (7).

We consider the static binary choice model of Example 1 for the case where Xit ∈
{0, 1} is the only covariate and the error term εit is stationary over time t. The average

effect is given by (4) with x1 = 1 and x2 = 0, that is,

m(Ai, β0) =
1

T

T∑
t=1

[
P
(
Yit = 1

∣∣Xit = 1, Ai, β0

)
− P

(
Yit = 1

∣∣Xit = 0, Ai, β0

)]
= E

[
Yit

∣∣Xit = 1, Ai, β0

]
− E

[
Yit

∣∣Xit = 0, Ai, β0

]
, (10)
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where the time averaging is not needed due to stationarity.6 For d ∈ {0, 1}, let

v(Xi, d) :=

{
0 if Xit = 1− d for all t ∈ {1, . . . , T},
1 if Xit = d for some t ∈ {1, . . . , T}.

For v(Xi, d) = 1 we define Y (Yi, Xi, d) :=
∑

t∈T (Xi,d)
Yit/ |T (Xi, d)| to be the average of

Yit over those time periods T (Xi, d) = {t : Xit = d} whereXit equals d. For v(Xi, d) = 0

we simply let Y (Yi, Xi, d) := 0.7 Valid outer bound functions are then given by

L(Xi, Yi) = v(Xi, 1)Y (Xi, Yi, 1)− v(Xi, 0)Y (Xi, Yi, 0)− [1− v(Xi, 0)], (11)

U(Xi, Yi) = v(Xi, 1)Y (Xi, Yi, 1)− v(Xi, 0)Y (Xi, Yi, 0) + [1− v(Xi, 1)]. (12)

The stationarity assumption then guarantees that

E
[
L(Xi, Yi)

∣∣Xi, Ai

]
≤ m(Ai, β0) ≤ E

[
U(Xi, Yi)

∣∣Xi, Ai

]
, (13)

which is exactly the condition (7) that our bound functions are supposed to satisfy.8

Again, we want to point out that this example is not characteristic of our bounds

more generally. In particular, here L(Xi, Yi) and U(Xi, Yi) do not depend on β0, and

neither the single-index structure Xitβ0+Ai+ εit nor the parametric assumption on the

error distribution are utilized to show validity of the bounds — the bounds here are

valid for any model Yit = g(Xit, Ai, εit), as long as the function g(·, ·, ·) is constant over
t, and the conditional distribution of the shocks εit is stationary over t.

From the corresponding discussion in Chernozhukov, Fernández-Val, Hahn and Newey

(2013) we also know that, as T → ∞, the width of these bounds, E[U(Xi, Yi)−L(Xi, Yi)],

shrinks proportionally to the probability of Xit being constant over t. Under appropri-

ate distributional assumptions on Xit (e.g. Xit independent across t and random), this

implies that the width of the bounds shrinks exponentially fast in T . We suspect that

6In this case, Zi = Xi = (Xi1, . . . , XiT ). Notice that, contrary to the general case, here m(Ai, β0)
does not depend on Xi. This is because the average effect is calculated with respect to specific values
of Xit and there are no other covariates.

7Essentially, Y (Yi, Xi, d) can be defined as any real number, given that its contribution to the bounds
will be equal to zero whenever v(Xi, d) = 0.

8Due do stationarity we have

E
[
L(Xi, Yi)

∣∣Xi, v(Xi, 0) = v(Xi, 1) = 1, Ai

]
= m(Ai, β0) = E

[
U(Xi, Yi)

∣∣Xi, v(Xi, 0) = v(Xi, 1) = 1, Ai

]
,

while for v(Xi, d) = 0, the above bounds L(Xi, Yi) and U(Xi, Yi) simply revert to the appropriate
worst-case bounds (zero or one) that are possible for the unidentified expectations
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similar results hold more generally for the bounds in this paper, but we do not actually

explore large T results here.

3.2 Comparison to the identified set

The key difference between our outer bounds, EU(Xi, Yi) and EL(Xi, Yi), and the iden-

tified set for m is how they depend on the conditional choice probabilities, P (Yi|Xi).

In particular, while our outer bounds are a linear function of choice probabilities, the

upper and lower boundaries of the identified set are complicated nonlinear functions

of P (Yi|Xi). The goal of this subsection is to briefly explain this difference and its

consequences for inference on the average effects.

For simplicity, we stick to the static binary choice example with single binary co-

variate discussed in the last subsection, and we assume that εit has standard logistic

distribution. Let f(y|x, a; β0) be the corresponding conditional distribution of Yi|Xi, Ai.

As long as we have some variation on the covariates across time, β0 is point-identified

in this model (see e.g. Chamberlain 1985, 2010).

For x ∈ {0, 1}T , let p(x) :=
[
P (Yi = y |Xi = x) : y ∈ {0, 1}T

]
be the 2T -vector of

choice probabilities conditional on Xi = x, and define m(x) := E
[
m(Ai, β0)

∣∣Xi = x
]
.

Next, let Π(x, p(x)) be the set of conditional distributions Ai|Xi that are compatible

with the choice probabilities p(x): that is, we have π(·|x) ∈ Π(x, p(x)) if and only if

P (Yi = y |Xi = x) =
∫
R f(y|x, a; β0)π(a|x)da. Since β0 and p(x) are point-identified,

the only ambiguity in the identification of m(x) is due to the unknown distribution of

Ai|Xi. Then, defining

Lid(x, p(x)) := inf
π(·|x)∈Π(x,p(x))

∫
R
m(a, β0) π(a|x)da,

Uid(x, p(x)) := sup
π(·|x)∈Π(x,p(x))

∫
R
m(a, β0) π(a|x)da,

the identified set for m = E [m(Xi)] is given by
[
ELid(Xi, p(Xi)), EUid(Xi, p(Xi))

]
. All

this is of course well-known. What we want to highlight here is that the above con-

struction inevitably yields a complicated nonlinear dependence of the boundaries of the

identified set on the observable choice probabilities p(x) through Π(x, p(x)). In contrast,
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our bounds

EL(x, Yi) =
∑

y∈{0,1}2
L(x, y)P (Yi = y|Xi = x),

EU(x, Yi) =
∑

y∈{0,1}2
U(x, y)P (Yi = y|Xi = x),

are by construction linear functions of the vector of conditional choice probabilities p(x).

This distinction between non-linearity (for the identified set) vs linearity (for our

outer bounds) in p(x) has a fundamental effect on inference: the sample analogs of

our bounds, 1
n

∑n
i=1 L(Xi, Yi) and

1
n

∑n
i=1 U(Xi, Yi), avoid estimating p(x) naturally. In

contrast, we are not aware of any inference procedure on the sharp identified set that

would avoid consistent estimation of p(x).9 Especially when p(x) is hard to estimate,

the nonlinear dependence of the identified set on p(x) can cause significant issues in

inference. Hence, as already mentioned in the introduction, reliable inference on the

identified set is problematic unless the sample size n is much larger then the number of

possible values for (Xi, Yi). Our outer bounds are by design immune to this.

To illustrate the points made here, we consider a brief simulation exercise. Let

Yit = 1{Xitβ + Ai ≥ εit}, Ai ∼ N

(
1

T

T∑
t=1

Xit −
1

2
, 1

)
, Xit = xit/(|X | − 1),

where εit ∼ Logit(0, 1) and xit is discrete uniform with support [0,X −1]. Then, Xit can

take on one of |X | equidistant values between 0 and 1. We consider |X | ∈ {6, 12}. The
analysis for either case is based on 1000 replications of panels with T = 2, N = 200. The

average effect of interest is as in (10). For each replication, we obtain the estimated sharp

identified set and our outer bounds based on the construction in Section 4. Then we

report the 2.5% and 97.5% sample quantiles of these quantities across all replications.10

Doing so enables us to compare the limits of the estimated confidence intervals, without

estimating the confidence bands directly. Results are presented in Figure 1. When

|X | = 6, the lower and upper 2.5% percentiles of the estimated bounds of the identified

9Davezies, D’Haultfœuille and Laage (2021) present two different inference procedures for average
effects in static panel logit models, one that relies on consistent estimation of p(x), and one that does
not. In the latter case, they also obtain certain outer bounds on the identified set, in line with our
discussion here.

10The outer bounds presented here, based on the construction in Section 4, provide much narrower
bounds than the simple analytical expressions in (11)-(12). This is not surprising, given that our bounds
utilize stronger model assumptions.
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Figure 1: Sample quantiles of estimates of the outer bounds and the identified set. The DGP
is Yit = 1{Xitβ + Ai ≥ εit} where Ai ∼ N(T−1

∑T
t=1Xit − 1/2, 1), Xit = xit/(|X | − 1), xit

is discrete uniform with support [0,X − 1], and εit ∼ Logit(0, 1). The average effect under
consideration is E[Yit

∣∣Xit = 1, Ai, β0] − E[Yit
∣∣Xit = 0, Ai, β0]. For each β0 ∈ [−2, 2], the

quantiles are calculated across 1000 replications of panels with T = 2 and N = 200. The left
panel contains the results for |X | = 6 whereas the results for |X | = 12 are presented in the
right panel.

set provide valid coverage. However, when |X | increases to 12, the same percentiles do

not even include the average effect itself almost all the time. This reflects an underlying

bias in the estimation of the sharp identified set. The outer bounds are immune to this

issue, and still provide valid coverage. This example illustrates that, although the outer

bounds are not sharp, they can be more reliable in inference compared to estimators of

the sharp identified set itself. The results suggest, as expected, that issues arise as the

cardinality of the support of the covariate increases. Therefore, the case with continuous

Xit will be subject to more pronounced issues.

4 Construction of the bounds

We now introduce our general construction of the bound functions L(z, y, β) and U(z, y, β).

To concentrate solely on bound construction, in this section we still consider the case

with known β0. A full theory with estimated β0 is provided in Section 5. In terms of

implementation, the construction methods remain the same for given β, independent of

whether it is β0 or its estimate.

The example in Section 3.1 illustrates that in a particular model and for a particular

average effect of interest, it might be possible to obtain analytic expressions for those
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bound functions. But for the class of semi-parametric panel models and average effects

introduced in Section 2, it does not appear likely that analytic expressions for the bounds

can be obtained in general. We therefore introduce a computational method for obtaining

L(z, y, β) and U(z, y, β) based on solving linear programs.

The distinction between analytic expressions for the bound functions and a com-

putational method is analogous to the distinction between the functional differencing

method in Bonhomme (2012) and the analytical moment functions in Honoré and Wei-

dner (2020) for the purpose of inference on β. The former paper applies to the same

class of semi-parametric panel models that we consider here, but it only provides a

computational method to find valid moment functions. The latter paper only applies

to specific models, but allows for the explicit analytical constructions of valid moment

functions for β. From the perspective of this comparison, our current paper is analogous

to Bonhomme (2012).

In obtaining asymptotically valid bounds, the key requirement on the functions

L(z, y, β) and U(z, y, β) is that they satisfy (7) and that they are bounded. Of course,

one wants the estimated bounds on m to be informative, in the sense that the inter-

val in (7) is as narrow as possible. At the same time, importantly, for given z and β,

L(z, y, β) and U(z, y, β) have to be chosen such that (7) holds for all a ∈ A. This can

be reformulated as a standard optimisation problem. Namely, for any given z ∈ Z and

β ∈ B we can choose L(z, y, β) = ℓ(y) and U(z, y, β) = u(y) as solutions to the following

optimization problem with some appropriate objective function Q(ℓ(·), u(·), z, β),11

min
ℓ,u :Y→R

Q(ℓ(·), u(·), z, β)

subject to (14)

∀y ∈ Y : bmin ≤ ℓ(y) ≤ u(y) ≤ bmax

and ∀a ∈ A :
∑
y∈Y

ℓ(y) f(y | z, a; β) ≤ m(z, a, β) ≤
∑
y∈Y

u(y)f(y | z, a; β).

In the current setting where we assume that β0 is known, (14) will be solved at β = β0.

When β0 is estimated, (14) will be solved at some estimate β = β̂. When no common

parameter is estimated (as in Example 2), the objective function and the constraints

will be free of β.

11The solutions L(z, y, β) = ℓ(y) and U(z, y, β) = u(y) may not be unique. But in a practical
implementation some concrete solution will still be obtained by the specific linear solver used for im-
plementation, and Theorem 1 is still valid, since it only depends on the constraints being satisfied.
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The restrictions of the program (14) guarantee the conditions of Theorem 1 and

also impose that ℓ(y) ≤ u(y). Consequently, any choice of the objective function

Q(ℓ(·), u(·), z, β) yields valid bounds with L̂ ≤ Û . It is important to stress that in

order to construct the bounds L̂ and Û we only need to solve the program in (14) once

for every i ∈ {1, ..., n} at z = Zi. Contrary to the sharp identified set, construction of

our bounds does not involve conditional choice probabilities, and therefore remains free

of the curse of dimensionality.

Display (14) states our approach to obtaining bounds in its most general form, in

the sense that the econometrician can choose any objective function Q(ℓ(·), u(·), z, β)
that she sees fit. It is computationally attractive to consider objective functions which

turn the optimization problem into a linear program, and we now discuss two intuitive

choices of objective functions that are indeed linear in ℓ(·) and u(·).

4.1 Choice of objective function for linear program

4.1.1 Baseline linear program

A linear program can be implemented by using the objective function

Q(ℓ(·), u(·), z, β) =
∫
A

∑
y∈Y

[u(y)− ℓ(y)] f(y | z, a; β) p(a|z) da, (15)

where p(a|z) is some (potentially non-proper) “prior distribution”. Our bounds are valid

for any choice of “prior”, but if p(a|z) happens to be equal to the true distribution of

Ai|Zi, then this objective function yields the narrowest expected bounds that satisfy

the constraints of (14). Essentially, the function p(a|z) allows for considering a weighted

average over a ∈ A. In the absence of any additional information on a one can simply

use p(a|z) = 1, which is indeed what we use in all our applications below.

4.1.2 Uniform linear program

If we are unwilling to specify a prior p(a|z), then we can choose the objective function

Q(ℓ(·), u(·), z, β) = max
a∈A

[∑
y∈Y

[u(y)− ℓ(y)] f(y | z, a; β)

]
, (16)
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where instead of integrating over a ∈ A with a prior distribution we choose the worst-

case value of a ∈ A that maximizes the expected bounds
∑

y∈Y [u(y)− ℓ(y)] f(y | z, a; β).
Hence, we call the ensuing approach the uniform linear program. To be precise, this

objective function cannot be used directly to yield a linear program since it is not linear

in u(y) and ℓ(y); however, an equivalent representation of this problem as a linear

program is obtained as follows:

min
{s∈R, ℓ,u :Y→R}

s

subject to (17)

∀y ∈ Y : bmin ≤ ℓ(y) ≤ u(y) ≤ bmax

∀a ∈ A :
∑
y∈Y

[u(y)− ℓ(y)] f(y | z, a; β) ≤ s

and ∀a ∈ A :
∑
y∈Y

ℓ(y) f(y | z, a; β) ≤ m(z, a, β) ≤
∑
y∈Y

u(y)f(y | z, a; β).

In this linear program, the variable set is extended by s ∈ R. When profiling out s ∈ R
from this program one finds that for given ℓ, u : Y → R the optimal s is given by

s = max
a∈A

[∑
y∈Y

[u(y)− ℓ(y)] f(y | z, a; β)

]
, (18)

which is identical to the objective function in (16). Thus, solving the linear program

in (17) gives the desired bound functions L(z, y, β) = ℓ(y) and U(z, y, β) = u(y) that

correspond to choosing the objective function (16) in our general program (14).

4.2 Implementational details

In practice, we usually cannot solve the linear programs (14) and (17) exactly. This is

because the functions (15) and (18) require evaluation over A which typically has infinite

cardinality. Instead, we approximate these objects by choosing a subset of grid points

Ag ⊂ A and imposing the constraints only at a ∈ Ag. This yields

Q(ℓ(·), u(·), z, β) =
∑
a∈Ag

∑
y∈Y

[u(y)− ℓ(y)] f(y | z, a; β) p(a|z) ,
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and

s = max
a∈Ag

[∑
y∈Y

[u(y)− ℓ(y)] f(y | z, a; β)

]
.

The size of the grid Ag directly controls the number of restrictions in (14) and so,

especially in complicated applications, computational concerns may put a limit on how

fine the gridAg can be. However, even then, our approach provides an easy way to obtain

solutions that work on a much finer grid. To illustrate how, let Ag,AG ⊂ A be two grids

where the cardinality of AG is (much) larger than that of Ag. Let (L(z, y, β), U(z, y, β))

be the solution to (14) on Ag. It is computationally almost cost-free to check whether

this solution satisfies the restriction (7) on AG. If violations occur, one can adjust the

original solution (L(z, y, β), U(z, y, β)) to fit the restriction (7) on AG, thereby obtaining

a valid solution to the constraints on the much finer grid AG. A simple way to do this

is to replace the original solution by (L̇(z, y, β), U̇(z, y, β)) where

L̇(z, y, β) := L(z, y, β) + min
{
0,mina∈AG

[
m(z, a, β)−

∑
y∈YL(z, y, β)f(y|z, a; β)

]}
,

U̇(z, y, β) := U(z, y, β) + max
{
0,maxa∈AG

[
m(z, a, β)−

∑
y∈YU(z, y, β)f(y|z, a; β)

]}
.

Here, we simply add the maximum deviation across all grid points to the original so-

lution, automatically yielding a solution that satisfies (7) on AG. The grid AG can be

made very fine, making the difference between AG and A negligible. Of course, depend-

ing on the case at hand, one can devise options that yield less “conservative” solutions

compared to (L̇(z, y, β), U̇(z, y, β)). We suggest comparing results from different selec-

tions of (Ag,AG) in order to find some Ag which is computationally feasible and yet

yields reliable bounds.

Computational properties will also depend on the cardinality of Y , which determines

the number of variables in the program (14). Although the cardinality of Y is finite in a

fixed-T setting, the size of the support can still be large enough to cause computational

difficulties. In logit-based applications it is relatively straightforward to mitigate this

problem, by re-writing the restriction (7) in terms of the conditional density of the

sufficient statistic. We next illustrate this for Examples 1 and 2.

17



Example 1 (continued) Fix z and β. Let y = (y1, ..., yT )
′ and define

P (k|z, a, β) :=
∑

{y:
∑

t yt=k}

P (y|z, a, β),

the conditional density of the sufficient statistic
∑T

t=1 yt. Then, there is some u(k) such

that

m(z, a, β) ≤
∑
y∈Y

u(y)P (y|z, a, β) =
T∑

k=0

u(k)P (k|z, a, β), ∀a ∈ R.

As such, one can solve the problem for u(k), k = 0, ..., T , and then use, for instance,

u(y) = u(k) for all y with
∑T

t=1 yt = k. This effectively decreases the number of variables

from 2T to T + 1. An analogous argument applies to ℓ(y).

Example 2 (continued) Suppose that zt is binary. In this case there are two unob-

served effects, and so the argument will be based on the sufficient statistics
∑T

t=1 yt and∑T
t=1 ytzt. Fix z = (z1, ..., zT )

′. Define P (k1, k2|z, a1, a2), the conditional density of

k1 =
∑T

t=1 yt and k2 =
∑T

t=1 ytzt. Then, similar to Example 1, there is some u(k1, k2)

such that

m(z, a1, a2) ≤
∑
y∈Y

u(y)P (y|z, a1, a2)

=
T∑

k1=0

T∑
k2=0

u(k1, k2)P (k1, k2|z, a1, a2), ∀a1 ∈ R and a2 ∈ R,

implying that it is sufficient to solve the linear program for u(k1, k2). At first sight, it

appears that the number of variables in this problem is (T + 1)2. However, notice that

one cannot have k2 > k1. Moreover, for a given z some combinations of (k1, k2) will

have zero probability. Consequently, the actual number of variables will usually be less

than (T + 1)2. We note this method will not work with continuous covariates, since in

that case z has infinite support and so does k2.

An analogous idea for non-logit applications (where the outlined approach does not

necessarily exist) is to reduce the dimension of the problem by partitioning the sup-

port Y using some meaningful criterion. One can, for example, partition Y such that

argmaxa∈Ag P (y|z, a, β) is the same for all y ∈ Y in the same subset. Generation of the

partition can also be based on extra information specific to the application or data at

hand.
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Another way to decrease the computational complexities is to solve the linear pro-

gram separately for the upper and lower bounds. Note that (14) puts the restriction

ℓ(·) ≤ u(·) to avoid any crossover between the upper and lower bounds. Solving the

bound problem separately would drop this convenient additional condition. However,

for moderately large T the probability of such a crossover between the bounds is ex-

pected to be quite low, and a potential solution of the crossover problem is, for example,

given in Stoye (2020).

4.3 Comparison to the identified set (cont’d)

Continuing the discussion in Section 3.2, we now investigate how the outer bounds

compare to the sharp identified set, in the specific cases of typical logit-based binary

choice models. These are the static logit and random coefficient logit models, and

dynamic variants thereof. In all cases (except for the random coefficient dynamic logit

model) we use the linear program in (17). The analysis in this subsection is at the

population level, that is, we compare our outer bounds to the population sharp identified

set, estimation of which is challenging whenever the support of the conditioning variables

(Z1, . . . , ZT ) is not small relative to the sample size.12

For static logit we consider both the discrete and continuous covariate cases, with

the data generating processes (DGPs) given by

Yit = 1 {Xitβ + Ai ≥ εit} , Ai ∼ N(0, 1), Xit = 1 {Ai ≥ ηit} , ηit ∼ N(0, 1), (19)

and

Yit = 1 {Xitβ + Ai ≥ εit} , Ai ∼ N(0, 1), Xit ∼ N(Ai, 1), (20)

respectively. In both cases, εit ∼ Logit(0, 1). For the discrete covariate case we consider

the average effect based on (4) with (x1, x2) = (1, 0). The analysis for the continuous

covariate case focuses on the average effect based on (5). To focus solely on the difference

between the bounds and the identified set, we set β = β0 (a simulation analysis for

obtaining bounds when β is estimated will be provided in Section 6).

Results are presented in Figure 2, where the reported outer bounds are the aver-

12Similar to Chernozhukov, Fernández-Val, Hahn and Newey (2013) we obtain the sharp identified
set by solving an appropriate linear program.
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Figure 2: Comparison of the outer bounds and the identified set for the static logit model Yit =
1 {Xitβ +Ai ≥ εit}, where εit ∼ Logit(0, 1) and Ai ∼ N(0, 1). Results for each β0 ∈ [−2, 2] are
based on 1000 replications of panels with cross-section size n = 1000. Reported outer bounds
are the cross-replication averages. Left panel: single discrete covariate Xit = 1 {Ai ≥ ηit}
where ηit ∼ N(0, 1). The average effect of interest is based on (4) with (x1, x2) = (1, 0). Right
panel: single continuous covariate, Xit ∼ N(Ai, 1). The average effect of interest is based on
(5).
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ages of the estimated bounds across 1000 replications of panels with n = 1000.13 The

identified set and the outer bounds are obtained for β0 ∈ [−2, 2]. The support of Ai

is approximated by a grid of 100 equidistant points between −5 and 5. Several obser-

vations are in order. First, in all cases, the outer bounds mimic the behaviour of the

identified set. In particular, both the identified set and our bounds shrink to a point

when β0 = 0 but become wider as |β0| increases. At T = 5 both the bounds and the

identified set become almost a point for the majority of β0 we consider. Also, both types

of bounds yield the correct sign for the average effect. Second, the difference between

the identified set and the outer bounds vanishes almost completely at T = 5. This is

an important result: as mentioned previously, obtaining the identified set in applica-

tions with moderate T is practically infeasible due to the large number of conditional

probabilities P (Y = y|Z = z) one has to estimate, even when Z is discrete. Our results

show that the method proposed here stands out as a viable and computationally feasible

alternative in such cases.

The random coefficient example is based on the DGP

Yit = 1 {XitA2,i + A1,i ≥ εit} , A1,i ∼ N(0, 1/
√
2), A2,i ∼ N(A2, 1/

√
2), (21)

Xit = 1 {A1,i ≥ ηit} , ηit ∼ N(0, 1), (22)

where εit ∼ Logit(0, 1). Our interest is in identifying the average effect based on (6).

We note that Theorem 1 fully applies here, as there are no structural parameters to be

estimated.

Results are based on 1000 replications, and are presented in Figure 3. We consider

n = 1000 and T ∈ {3, 5, 8, 10} with A2 ∈ [−2, 2]. To approximate the supports of Ai,1

and A2,i we use grids of 50 equidistant points between −5/5 and −7/7, respectively. Not

surprisingly, the presence of a random coefficient renders the average effect more difficult

to identify. Indeed, for small T even the sign of the average effect remains inconclusive

for values of A2 close to zero. More importantly, although the identified set becomes

narrower as T increases, it does not shrink to a point even when T is 8 or 10. For

reasons discussed before, obtaining the identified set for such large T will in practice

be infeasible. Simulation results confirm that our proposed method provides a reliable

alternative. Indeed, the outer bounds are quite close to the identified set at T = 8, 10.

13Since we are averaging over a large number of replications, the bounds reported in Figure 2 are
essentially equal to the population outer bounds E[L(Zi, Yi, β0)] and E[U(Zi, Yi, β0)], which justifies the
comparison to the identified set. The same comment applies to the comparisons made in Figures 3-5.
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Figure 3: Comparison of the outer bounds and the identified set for the random coefficient
logit model Yit = 1 {XitA2,i +A1,i ≥ εit}, where εit ∼ Logit(0, 1), A1,i ∼ N(0, 1/

√
2), A2,i ∼

N(A2, 1/
√
2), Xit = 1 {A1,i ≥ ηit} and ηit ∼ N(0, 1). The average effect of interest is based on

(6). Results for each A2 ∈ [−2, 2] are based on 1000 replications of panels with cross-section
size n = 1000. Reported outer bounds are the cross-replication averages.

We next focus on the dynamic logit model with a continuous covariate. The DGP is

Yit = 1 {Yi,t−1γ +Xitβ + Ai ≥ εit} for t = 1, . . . , T,

Yi0 = 1 {Xi0β + Ai ≥ εi0} , Xit ∼ N(Ai, 1), Ai ∼ N(0, 1), εit ∼ Logit(0, 1),

and we consider the average effect

E

[
1

T

T∑
t=1

E [m(Xit, Ai, γ, β)|Xit]

]
, (23)
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Figure 4: Comparison of the outer bounds and the identified set for the dynamic logit model
Yit = 1 {Yi,t−1γ +Xitβ +Ai ≥ εit}, where εit ∼ Logit(0, 1), Ai ∼ N(0, 1), Xit ∼ N(Ai, 1), and
Yi0 = 1{Xi0β+Ai ≥ εi0}. Results for each β0 ∈ [−2, 2] are based on 1000 replications of panels
with cross-section size n = 1000. Reported outer bounds are the cross-replication averages.
The average effect of interest is based on (23).

where

m(Xit, Ai, γ, β) = P (Yit = 1|Yi,t−1 = 1 , Xit, Ai , γ, β)

− P (Yit = 1|Yi,t−1 = 0 , Xit, Ai, γ, β).

This is an interesting case, since Aguirregabiria and Carro (2021) have shown that in a

dynamic logit model with a single covariate, the average effect in (23) will under certain

conditions be point-identified. The comparison in this part is then that between the

outer bounds and the point-identified average effect. We investigate the behaviour of

the outer bounds in this case in panels of size n = 1000 and T ∈ {4, 6, 8} with β = 1

and γ ∈ [−2, 2]. The support of Ai is approximated by a grid of 50 equidistant points

between −5 and 5. The results, presented in Figure 4, are based on 1000 replications

and confirm that the outer bounds nearly point-identify the average effect, unless when

γ is large; however this issue tends to disappear as T increases. This is not surprising

since under a large γ, the term γYi,t−1 will act similar to a fixed effect.

Finally, we consider the random coefficient dynamic logit model given by

Yit = 1 {Yi,t−1A2,i + A1,i ≥ εit} for t = 1, . . . , T,

Yi0 = 1 {A1,i ≥ εi0} , A1,i ∼ N(0, 1/
√
2) A2,i ∼ N(A2, 1/

√
2), εit ∼ Logit(0, 1).
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Figure 5: Comparison of the outer bounds and the identified set for the random coefficient dy-
namic logit model Yit = 1 {Yi,t−1A2,i +A1,i ≥ εit}, where εit ∼ Logit(0, 1), A1,i ∼ N(0, 1/

√
2),

A2,i ∼ N(A2, 1/
√
2), and Yi0 = 1 {A1,i ≥ εi0}. The average effect of interest is based on (24).

Results for each A2 ∈ [−2, 2] are based on 1000 replications of panels with cross-section size
n = 1000. Reported outer bounds are the cross-replication averages.

For this exercise, we focus on the average effect

E [P (Yit = 1|Yi,t−1 = 1, A1,i, A2,i)− P (Yit = 1|Yi,t−1 = 0, A1,i, A2,i)] . (24)

We consider 1000 replications where n = 1000 and T ∈ {4, 6, 8, 10}, and vary A2

between −2 and 2. As in the static logit variant of this model, the supports of Ai,1

and A2,i are approximated by grids of 50 equidistant points between −5/5 and −7/7,

respectively. Figure 5 reveals that the identified set can be quite wide. This is in line

with the earlier observations for the random coefficient static logit model. However, the
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identified set becomes wider as A2 increases. This is similar to the asymmetry observed

in the dynamic logit case. When A2 is large, Yi is more likely to be a vector of 1s.

Hence, again, the effect of Ai,2Yi,t−1 is hard to distinguish from that of Ai,1. In results

not reported here, we observed that the outer bounds do not perform well when the

uniform linear program (17) is used. This highlights that in certain cases the uniform

linear program can yield too conservative bounds. We therefore used the baseline linear

program which utilizes (15) in obtaining the bounds reported in Figure 5. The resulting

outer bounds perform well in tracking the identified set as T increases.

5 Accounting for estimated common parameters

We now consider the case where the common parameter vector β0 has to be estimated.

Our construction of the bound functions L (z, y, β) and U (z, y, β) remains essentially

unchanged in that case, but they are now evaluated at some consistent estimator of β0,

rather than the true β0. The goal of this section is to provide asymptotic results that

account for the noise in the estimation of β0.

If the bound functions L (z, y, β) and U (z, y, β) were differentiable in β, then ac-

counting for the estimation of β0 when providing one-sided confidence intervals on the

bounds E[L(Zi, Yi, β0)] and E[U(Zi, Yi, β0)] would be a straightforward application of the

delta method. Unfortunately, because we obtain L (z, y, β) and U (z, y, β) as the solu-

tion to a linear program, it is generally not possible to verify any smoothness (or even

uniqueness or continuity) of those functions in β. The convergence rate and inference

results in this section therefore make no assumption whatsoever on the continuity or

smoothness of the bound functions.14

5.1 Consistency and convergence rate of the estimated bounds

Before discussing inference on m, our first goal is to show that the population bounds

E[L(Zi, Yi, β0)] and E[U(Zi, Yi, β0)] can be estimated at
√
n rate, even if β0 is estimated.

For that purpose, we split the set of observations {1, . . . , n} into the disjoint subsets

I1 = {1, . . . , ⌊n/2⌋} and I2 = {⌊n/2⌋ + 1, . . . , n}. For any subset of observed units

14One could, alternatively, construct L (z, y, β) and U (z, y, β) such that they still satisfy the assump-
tions of Theorem 1, but are also smooth in β (e.g. in a particular model for a particular average effect
of interest, one may simply find explicit analytic expressions for the bound functions). We leave the
exploration of such possibilities to future work.
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I ⊂ {1, . . . , n} we denote by Y(I) and Z(I) the collection of all observations Yi and Zi

with i ∈ I. Furthermore, we define the function s̄ : {1, . . . , n} → {1, 2} by

s̄(i) :=

{
2 if i ∈ I1,

1 if i ∈ I2.

For each s ∈ {1, 2} we have an estimator β̂s = β̂s(Y(Is), Z(Is)) that only depends on the

observed data (Yi, Zi) for i ∈ Is. In other words, β̂1 and β̂2 are estimators of β obtained

using the first and second half-sample, respectively. Our estimates for the upper and

lower bounds in (9) then generalize to

L̂S :=
1

n

n∑
i=1

L
(
Zi, Yi, β̂s̄(i)

)
, ÛS :=

1

n

n∑
i=1

U
(
Zi, Yi, β̂s̄(i)

)
. (25)

Notice that the “cross-fitting” construction in (25) ensures that for any i, (Zi, Yi) and

β̂s̄(i) are always from two different half-samples, and therefore independent of each other.

Consequently, conditional on the half-sample Is̄(i), L(Zi, Yi, β̂s̄(i)) and U(Zi, Yi, β̂s̄(i)) are

independently distributed over i. In contrast, if the bound estimators were based on

β̂ obtained from the full-sample, L(Zi, Yi, β̂) and U(Zi, Yi, β̂) would be arbitrarily de-

pendent over i, ruling out a standard Law of Large Numbers. Along with reasonable

assumptions on the behavior of β̂s̄(i), as well as smoothness conditions on the functions

f(y|z, a; β) and m(z, a, β) in β, the conditional independence is sufficient for proving the

consistency of the bounds in (25) for E[L(Zi, Yi, β0)] and E[U(Zi, Yi, β0)].

Assumption 2

(i) For s ∈ {1, 2} the estimator β̂s = β̂s(Y(Is), Z(Is)) satisfies β̂s = β0 +Op

(
n−1/2

)
.

(ii) There exists ϵ > 0 such that for an ϵ-ball Bϵ(β0) around β0 we have

sup
β∈Bϵ(β0)

∑
y∈Y

E
∥∥∥∥∂f (y |Zi, Ai; β)

∂β

∥∥∥∥ < ∞, sup
β∈Bϵ(β0)

E
∥∥∥∥∂m (Zi, Ai, β)

∂β

∥∥∥∥ < ∞.

Theorem 2 Let Assumptions 1 and 2 hold, and let L,U : Z × Y × B → [bmin, bmax] be

two non-random functions that satisfy (7) for all z ∈ Z, a ∈ A and β ∈ B. Let, finally,
m be as defined in (3), and L̂S and ÛS be as defined in (25). Then, as n → ∞, we have

L̂S +Op(n
−1/2) ≤ m ≤ ÛS +Op(n

−1/2).
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This theorem generalizes consistency of the outer bounds to the case of estimated

β0. The proof is straightforward and provided in the appendix. By contrast, obtaining

inference results under estimated β0 is more complicated due to the linear program

yielding potentially non-smooth bound functions. This non-smoothness is not specific

to our case. The bottom line is that one cannot simply deploy the delta method to

account for randomness introduced by the estimation of β0, and so a different approach

is needed. In the remainder of this section, we introduce two inference methods.

5.2 First inference method

Our first inference method is inspired by the handling of common parameters in the

“perturbed bootstrap” approach of Chernozhukov, Fernández-Val, Hahn and Newey

(2013). The idea is to simply take the union of our “known β0” confidence intervals in

Section 2 over a confidence set of the unknown β0. For that purpose, define

L̂(β) :=
1

n

n∑
i=1

L(Zi, Yi, β), Û(β) :=
1

n

n∑
i=1

U(Zi, Yi, β),

σ̂2
L(β) :=

1

n

n∑
i=1

[
L(Zi, Yi, β)− L̂(β)

]2
, σ̂2

U(β) :=
1

n

n∑
i=1

[
U(Zi, Yi, β)− Û(β)

]2
.

We then have the following theorem.

Theorem 3 Let, for some 0 < γ < 1, B1−γ be such that limn→∞ P (β0 ∈ B1−γ) ≥ 1− γ.

Then,

lim
n→∞

P

{
inf

β∈B1−γ

[
L̂(β)−

cα/2 σ̂L(β)√
n

]
≤ m ≤ sup

β∈B1−γ

[
Û(β) +

cα/2 σ̂U(β)√
n

]}
≥ 1− α− γ,

where cα/2 = Φ−1
(
1− α

2

)
.

Theorem 3 provides a straightforward albeit potentially conservative way of obtain-

ing confidence bands that incorporate the uncertainty due to estimation of β0. This

uncertainty is captured by γ whereas α parameterizes the uncertainty due to estimation

of the population outer bounds by sample averages. For a desired level of confidence

1 − c, one can trade off between these two sources of uncertainty by choosing α and γ

as desired. Another option is to find the narrowest confidence interval across all (α, γ)

such that c = α + γ. Notice that the infimum and supremum cannot be calculated
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exactly, so one has to do a grid search across a sufficiently large selection of β ∈ B1−γ.

Especially when β contains several parameters, this method can be demanding. Nev-

ertheless, the attraction of Theorem 3 is that as long as a valid confidence interval for

β0 can be constructed, inference on m requires only a straightforward application of the

methods described in Section 2. Fortunately, there is a large literature on obtaining

valid confidence intervals on the common parameters β0 in the type of panel data model

with fixed effects that we consider here; see, for example, Arellano (2003) and Arellano

and Bonhomme (2011) for reviews, as well as our discussion in the introduction.

Interestingly, the confidence set for β0 in Theorem 3 can in principle also accommo-

date cases where β0 is not point-identified, as long as a valid confidence set B1−γ can be

constructed. We leave the exploration of this idea to future work.

5.3 Second inference method

As mentioned before, evaluating the infimum and supremum over β ∈ B1−γ in Theorem 3

can be challenging. As an alternative inference method, we therefore suggest to modify

the linear program that is used to calculate the upper and lower bounds for m such that

the uncertainty about β0 is accounted for within the constraints of the linear program.

In Section 2, the crucial requirement on our bound functions L (z, y, β) and U (z, y, β)

was that they satisfy the inequalities in (7) for a fixed value β. To account for the fact

that the true β0 is unknown, we now slightly generalize this idea. Given a finite set

Bsub ⊂ B of possible values for β, we demand that the bound functions L (z, y,Bsub) and

U (z, y,Bsub) satisfy the inequalities in (7) for each value β ∈ Bsub, that is, we demand

∀β ∈ Bsub :
∑
y∈Y

L (z, y,Bsub) f (y | z, a; β) ≤ m (z, a, β) ≤
∑
y∈Y

U (z, y,Bsub) f (y | z, a; β) .

(26)

As in (7), we want the inequality in (26) to hold for all z ∈ Z and a ∈ A.15

Next, for each half-sample s ∈ {1, 2}, let B̂s be a set of points estimated only from

observations i ∈ Is, such that the convex hull of B̂s, Conv(B̂s), provides a 1 − γ/2

confidence set for β0. For example, for a one-dimensional parameter β, we choose B̂s =

{β̂low,s, β̂up,s} to consist of the lower and upper bounds of a confidence interval for β0.

Then, Conv(B̂s) = [β̂low,s, β̂up,s] is just a standard confidence interval in that case. More

15For consistency of notation, our previous bounds L (z, y, β) and U (z, y, β) could have been written
as L (z, y, {β}) and U (z, y, {β}) to agree with (26), but this is a minor mismatch of notation.
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generally, we have to find a confidence set that can be generated as a convex hull of a

finite number of points.16 Let also diam (Bsub) be the diameter of the set Bsub. Finally,

we define

L̂C :=
1

n

n∑
i=1

L
(
Zi, Yi, B̂s̄(i)

)
, ÛC :=

1

n

n∑
i=1

U
(
Zi, Yi, B̂s̄(i)

)
. (27)

We require the following additional assumptions for this inference method, which

strengthen Assumption 2(ii) and also formalize the requirement that Conv(B̂s) is a

confidence interval.

Assumption 3

(i) E[diam(B̂s)]
2 = o(n−1/2) and limn→∞ P{β0 ∈ Conv(B̂s)} ≥ 1 − γ/2 where s ∈

{1, 2}.

(ii) There exists ϵ > 0 such that for an ϵ-ball Bϵ(β0) around β0 we have

sup
β∈Bϵ(β0)

∑
y∈Y

E
∥∥∥∥∂2f (y |Zi, Ai; β)

∂β2

∥∥∥∥ < ∞, sup
β∈Bϵ(β0)

E
∥∥∥∥∂2m (Zi, Ai, β)

∂β2

∥∥∥∥ < ∞.

Then, the following lemma shows that conditional on β0 ∈ B̂s̄, L(Zi, Yi, B̂s̄) and

U(Zi, Yi, B̂s̄) provide valid bounds on m in expectation.

Lemma 1 Let Assumptions 1 and 3 hold. Let L(·, ·, ·) and U(·, ·, ·) satisfy (26) for all

z ∈ Z and a ∈ A, and let B̂s̄ be as defined after display (26). Let Bsub ⊂ B be such that

β0 ∈ Conv(Bsub). Then, for sufficiently large n, we have

E
[
L(Zi, Yi, B̂s̄)

∣∣∣ B̂s̄ = Bsub

]
+O

(
[diam(Bsub)]

2
)
≤ m

≤ E
[
U(Zi, Yi, B̂s̄)

∣∣∣ B̂s̄ = Bsub

]
+O

(
[diam(Bsub)]

2
)
.

Once Lemma 1 is obtained, then all that is left to do is to account for the sampling

uncertainty when replacing the expected value over L(Zi, Yi, B̂s̄) and U(Zi, Yi, B̂s̄) by the

sample averages in (27), analogously to Theorem 1.

16If β is higher-dimensional, then one simple choice for B̂s would be the Cartesian product of one-
dimensional confidence bounds for each component of β, using a Bonferroni correction to maintain the
correct confidence level 1 − γ/2. Less conservative (though possibly more complicated) constructions

that might allow for a lower cardinality of B̂s are also possible.
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Theorem 4 Let Assumptions 1 and 3 hold. For s ∈ {1, 2} and s = s − 3, let L(·, ·, ·)
and U(·, ·, ·) satisfy (26) for all z ∈ Z and a ∈ A, and be such that bmin ≤ L(z, y, B̂s̄) ≤
bmax and bmin ≤ U(z, y, B̂s̄) ≤ bmax. Assume further that Var [L(Zi, Yi, β)] > 0 and

Var [U(Zi, Yi, β)] > 0 for all β in some neighborhood around β0. Let m, L̂C, ÛC be as

defined in (3) and (27), let σ̂L,s and σ̂U,s be the sample standard deviations over i ∈ Is

of L(Zi, Yi, B̂s̄) and U(Zi, Yi, B̂s̄), respectively.
17 Let α ∈ [0, 1]. Then, as n → ∞ we

have:

lim
n→∞

P

(
L̂C −

cα/4 (σ̂L,1 + σ̂L,2)/2√
n/2

≤ m ≤ ÛC +
cα/4 (σ̂U,1 + σ̂U,2)/2√

n/2

)
≥ 1− α− γ,

with cα/4 = Φ−1
(
1− α

4

)
.

Theorem 1 demands that equation (7) holds, but does not specify any explicit con-

struction of the bound functions. Analogously, Theorem 4 requires that equation (26)

hold, but again does not specify any explicit construction of the bounds. In order to

actually construct the bounds we use the methods described earlier, but we replace the

constraint (7) by (26). Specifically, the program in display (14) then gets modifies as

follows: For any given z ∈ Z and any finite set Bsub ⊂ B with β = |Bsub|−1∑
β∈Bsub

β

we can choose L(z, y,Bsub) = ℓ(y) and U(z, y,Bsub) = u(y) as solutions to the following

optimization problem:

min
ℓ,u :Y→R

Q(ℓ(·), u(·), z, β)

subject to (28)

∀y ∈ Y : bmin ≤ ℓ(y) ≤ u(y) ≤ bmax

and ∀β ∈ Bsub : ∀a ∈ A :
∑
y∈Y

ℓ(y) f(y | z, a; β) ≤ m(z, a, β) ≤
∑
y∈Y

u(y)f(y | z, a; β).

Useful choices for the objective function Q(ℓ(·), u(·), z, β) are already described in Sec-

tion 4.1. For example, by choosing Q(ℓ(·), u(·), z, β) as in (15) we again have to solve a

linear program to obtain the bounds.

17Formally, letting L̂C,s = (2/n)
∑

i∈Is
L(Zi, Yi, B̂s̄(i)) and ÛC,s = (2/n)

∑
i∈Is

U(Zi, Yi, B̂s̄(i)) we

have σ̂2
L,s := (2/n)

∑
i∈Is

[L(Zi, Yi, B̂s̄(i))− L̂C,s]
2 and σ̂2

U,s := (2/n)
∑

i∈Is
[U(Zi, Yi, B̂s̄(i))− ÛC,s]

2.
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6 Simulation evidence

In this part we investigate the small sample behavior of the proposed bounds and con-

fidence bands. We focus on the static logit and random coefficient logit models. The

setting largely follows Section 4.3. In particular, we use the DGPs in (19) and (21)-(22)

with a single discrete covariate, and focus on the same average effects. The main differ-

ence is that we now estimate β0 in the static logit model, and also provide confidence

bands. The results, presented in Figures 6-8, provide the population average effect, and

the cross-replication averages of estimated bounds and 95% confidence bands.

We first consider the static logit model. β0 is estimated using the conditional likeli-

hood method. For inference we use the two inference methods proposed in Sections 5.2

and 5.3. In either case, we consider 1000 replications of panels of size n = 5000 and

T ∈ {3, 5, 8}. For Ag, we use a grid of 100 equidistant points between −5 and 5.

The results using the inference method of Section 5.2 are based on γ = 0.0001 and

B1−γ is approximated by a grid of 5000 equidistant points on B1−γ. Outer bounds for this

case are obtained by the uniform linear program of Section 4.1.2. Results are presented

in Figure 6. For moderate T , which is the main focus of this study, both the bounds

and the confidence bands are quite tight. Interestingly, this is despite the fact that

the bounds are based on a uniform linear program. In all cases, the confidence bands

yield the correct sign for the average effect. The coverage rates of confidence bands are,

not surprisingly, conservative, with some improvement as T increases. However, this is

acceptable in view of the bands being quite tight. While we have not tried this option,

coverage rates may be improved by using the method of Imbens and Manski (2004).

We next consider the inference approach of Section 5.3, the results of which are

presented in Figure 7. Confidence bands are based on α = 2
3
× 0.05 and γ = 1

3
× 0.05.18

Both the confidence bands and the outer bounds are based on the linear program defined

in (28). Relative to the inference method of Section 5.2, there are two differences: first,

the confidence bands are overall quite tight around the estimated bounds, across all T .

This is not surprising given that the inference method of Section 5.2 is based on the

infemum/supremum bands. Second, while the outer bounds improve with T , they are

not as tight as the bounds produced by the linear program in (14). This probably results

from (28) incorporating the uncertainty due to β̂ in outer bound estimation (as opposed

18The choice of α = 2γ is not crucial and was only imposed to compensate for the fact that the
confidence interval Conv(B̂s) is subject to one Bonferroni split, whereas the interval for estimated outer
bounds is subject to two.
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Figure 6: Simulation results for the static logit model with a single discrete covariate: Yit =
1 {Xitβ +Ai ≥ εit} where εit ∼ Logit(0, 1), Ai ∼ N(0, 1), Xit = 1 {Ai ≥ ηit} and ηit ∼ N(0, 1).
Average effects are based on (4) with (x1, x2) = (1, 0). Results for each β0 ∈ [−2, 2] are based
on 1000 replications of panels with cross-section size n = 5000. For each replication, L̂ and Û
are obtained by the linear program of Section 4.1.2, using the conditional likelihood estimator β̂
of β0. Confidence intervals are based on the inference method of Section 5.2, using γ = 0.0001.
B1−γ is approximated by a grid of 5000 equidistant points. Reported confidence intervals and

(L̂, Û) are cross-replication averages. The lower right panel presents the coverage rates.

to (14) which incorporates the same in the inference stage). This is also possibly why

the coverage rate of this second approach is almost always 100%.

We move to the random coefficient static logit example. Figure 8 presents results

based on 1000 replications of panels of size n = 1000 and T ∈ {3, 5, 10}. We construct
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Figure 7: Simulation results for the static logit model with a single discrete covariate: Yit =
1 {Xitβ +Ai ≥ εit} where εit ∼ Logit(0, 1), Ai ∼ N(0, 1), Xit = 1 {Ai ≥ ηit} and ηit ∼ N(0, 1).
Average effects are based on (4) with (x1, x2) = (1, 0). Results for each β0 ∈ [−2, 2] are based
on 1000 replications of panels with cross-section size n = 5000. For each replication, outer
bounds and confidence bands are obtained by the methods outlined in Section 5.3, using the
conditional likelihood estimator β̂ of β0. Confidence intervals are based on α = 2

3 × 0.05 and

γ = 1
3 × 0.05. Reported confidence intervals and (L̂, Û) are cross-replication averages. The

lower right panel presents the coverage rates.
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Figure 8: Simulation results for the random coefficient logit model with a single discrete co-
variate: Yit = 1 {XitA2,i +A1,i ≥ εit}, where εit ∼ Logit(0, 1), A1,i ∼ N(0, 1/

√
2), A2,i ∼

N(A2, 1/
√
2), Xit = 1 {A1,i ≥ ηit} and ηit ∼ N(0, 1). Average effects are based on (6). Results

for each A2 ∈ [−2, 2] are based on 1000 replications of panels with cross-section size n = 1000.
For each replication, L̂ and Û are obtained by the linear program in (17) Confidence inter-
vals are based on Theorem 1. Reported confidence intervals and (L̂, Û) are cross-replication
averages. The lower right panel presents the coverage rates.
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Ag using 50 equidistant grid points between −5 and 5 for A1,i, and between −7 and 7

for A2,i, leading to 2,500 grid points in total. We note that the average effects and outer

bounds are the same as in Section 4.3, since no parameter estimation is involved in this

setting. The new result is the confidence bands, which are based on Theorem 1. On

average the confidence bands are reasonably tight around the outer bounds.

A general observation across the three simulation exercises is that while the confi-

dence bands are generally tight around the bounds, the coverage rates are conservative.

We however note that conservative coverage rates would not be surprising for confidence

bands around the sharp identified set either (e.g., see Imbens and Manski 2004 and Stoye

2020).

7 Empirical Analysis

We consider an empirical analysis of female labor force participation, using the National

Longitudinal Survey of Youth (NLSY) 1979 dataset. Our sample consists of data on

women who were married throughout the sample and who were not in active forces or

going to school.19 Also, we only include individuals who were observed at all periods

under consideration.

First, we consider a random coefficient logit specification:

LFPit = 1 {αi + βi kids3it ≥ εit} , (29)

where, for individual i and at time t, LFPit is the labor force participation indicator

whereas kids3it is a binary variable which equals one if the individual has at least

one child below the age of three. This is almost identical to the example considered

by Chernozhukov, Fernández-Val, Hahn and Newey (2013), except that they assume a

homogeneous coefficient β for all individuals. Our objective is to obtain a confidence

interval on the average effect

E [P (LFPit = 1|kids3it = 1, αi, βi)− P (LFPit = 1|kids3it = 0, αi, βi)] .

Our sample period for this analysis covers all even years from 1986 to 1998, which

19An individual is classified as “in the labor force” if her status was recorded as working, with job not
at work or unemployed. Individuals are considered as not in the labor force if their recorded status was
keeping house, unable to work or other.
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yields data on 929 individuals over seven years. For comparison, we also report the

average effects based on the fixed effects logit (FE logit) and probit (FE probit) models,

as well as the linear fixed effects model. We note that all these alternatives impose

homogeneity of βi, and calculate the average effects using estimated (αi, β). Hence, they

provide a point-estimate for the average effect. We also use the bias-corrected logit (BC

logit) and probit (BC probit) methods, which analytically correct β̂ for the incidental

parameter bias. We note that none of these alternative methods are designed for short-

T samples where average effects are not necessarily point-identified. For all methods

under consideration, we provide the 95% confidence intervals. For the outer bounds this

is obtained by using the normal approximation of Theorem 1.

Results for this first illustration are reported in the top panel of Table 1. All methods

agree that having at least one child younger than three has a negative impact on labor

force participation. This is also in line with the results obtained by Chernozhukov,

Fernández-Val, Hahn and Newey (2013) who consider a shorter sample, covered by our

dataset (see their Table III). The confidence intervals for the outer bounds are wider

than the rest, but this is normal as it is the only method that allows for heterogeneity of

βi. Heterogeneity of βi is quite likely, as the effect of having a child younger than three

will vary depending on various conditions. For example, families with higher income will

have easier (and better) access to child care. Geographical proximity of grandparents

(who can, at least from time to time, provide child care) is also likely to have an effect

on βi. Moreover, the effect of having children younger than three may differ depending

on the actual number of children. The wider confidence bands provided by our method

reflect all such considerations.

In the second illustration, we consider the static logit specification with a richer set

of covariates:

LFPit = 1 {αi + β kids3it + γ educit + δ ln(spouseincit) ≥ εit} , (30)

where educit is the highest completed grade (as of May 1 of the survey year) and

spouseincit is the total income of the spouse from wages and salary in past calendar

year. The sample for this exercise covers all even years from 1990 to 1998. We do

not include individuals whose spouse had zero income at any point during this period.

Average effects for the covariates kids3it and educit are based on (4), where we use

(x1, x2) = (1, 0) and (x1, x2) = (educit + 1, educit), respectively. Average effects for log

spouse income are calculated using (5) with xk,it = ln(spouseincit). The outer bounds
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LFPit = 1 {αi + βi kids3it ≥ εit}, n = 929, T = 7

heterogeneous βi βi = β

(L̂, Û) FE logit BC logit FE probit BC probit Linear model
kids3 −.245 ; −.067

[−.272 ,−.044]

−.122
[−.142 ,−.102]

−.133
[−.153 ,−.113]

−.122
[−.142 ,−.102]

−.132
[−.151 ,−.112]

−.124
[−.144 ,−.104]

LFPit = 1 {αi + β kids3it + γ educit + δ ln(spouseincit) ≥ εit}, n = 993, T = 5

(L̂, Û) FE logit BC logit FE probit BC probit Linear model

kids3 −.101 ; −.098
[−.169 ,−.045]

−.097
[−.118 ,−.076]

−.120
[−.141,−.099]

−.096
[−.116 ,−.076]

−.116
[−.137 ,−.096]

−.095
[−.117 ,−.072]

educ .018 ; .020
[−.036 , .078]

.018
[−.024 , .060]

.022
[−.020,.063]

.016
[−.023 , .056]

.020
[−.020 , .059]

.011
[−.017 , .039]

ln(spouseinc) −.101 ; −.040
[−.112 , .077]

−.057
[−.165,.051]

−.069
[−.177,.039]

−.047
[−.137 , .042]

−.057
[−.146 , .033]

−.042
[−.065 ,−.020]

Table 1: Empirical analysis results. For the average effects of interest in each case, see the discussion in Section 7. (L̂, Û) are the
outer bounds. FE logit and FE probit are the fixed effects panel logit and panel probit models. BC logit and BC probit are the
bias-corrected versions, which analytically correct for the incidental parameter bias in estimating β0. Linear model is the linear
panel fixed effects model. Numbers in brackets are the 95% confidence bands. All methods other than the outer bounds provide
point estimates of the average effects. In addition, on the top panel these alternative methods impose homogeneity of βi.
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are obtained using the uniform linear program of Section 4.1.2 whereas the inference

approach of Section 5.3 is used to generate the confidence bands.20

Results are reported in the bottom panel of Table 1. All methods agree that the

average effect of kids3 is negative. For educ, all confidence bands are ambiguous about

the size of the effect. However, for all methods these bands are mostly on the positive

side. In addition, estimated average effects and outer bounds all point to a positive

effect of educ on labor force participation. Finally, for log of spouse income, confidence

bands by all alternatives (other than the linear model) are inconclusive about the sign of

the average effect, though they mostly lie on the negative side. Interestingly, confidence

bands for all methods other than the linear probability model lie partially outside the

confidence intervals for the outer bounds. This is not necessarily surprising, given that

none of the alternative methods considered here are designed to work in short samples.

8 Conclusion

In this paper, we have introduced a new method for estimating bounds on average effects

in discrete choice panel data models with fixed effects, including two approaches for

obtaining asymptotically valid confidence intervals on the average effects. For realistic

models and sample sizes, inference based on our outer bounds is easier and more robust

than inference based on the sharp identified set. A key strength of our approach is its

broad applicability: it is suitable for models with both discrete and continuous covariates,

and it can be adapted for a variety of static and dynamic panel models.

We have focused here on the case where the common model parameters β0 are point-

identified and can be estimated at the parametric rate, but our approach can, in principle,

be extended to cases where structural parameters are only partially-identified.
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A Appendix with Proofs

Proof of Theorem 1. # Part (i): Define Ui = U(Zi, Yi, β0) and U = E (Ui). We have

Var(Ui) < ∞ since Ui is, by design, uniformly bounded. Then, by Assumption 1 and

Chebychev’s inequality, for any ε > 0 we have

P
{
|Û − U | ≥ ε

}
= P


[
1

n

n∑
i=1

(
Ui − U

)]2
≥ ε2


≤ 1

n2 ϵ2

n∑
i=1

n∑
j=1

E
[(
Ui − U

) (
Uj − U

)]
=

Var(Ui)

n ϵ2
= O

(
1

n

)
.

We therefore have Û − U = Op(n
−1/2). According to (8) we have m ≤ U , and therefore

m ≤ Û +Op(n
−1/2). By analogous arguments we obtain L̂+Op(n

−1/2) ≤ m.

# Part (ii): Define σ2
U = Var[U(Zi, Yi, β0)]. By the Weak Law of Large Numbers we

have σ̂2
U →p σ

2
U . Remember that σ2

U > 0, by assumption. Then, by the Lindeberg–Lévy

CLT it follows that
1√
n

n∑
i=1

Ui − U
d→ N (0, σ2

U),

and also using the continuous mapping theorem we thus obtain

lim
n→∞

P

(
U ≤ Û +

cα/2σ̂U√
n

)
= Φ(cα/2). (31)

By analogous arguments,

lim
n→∞

P

(
L ≥ L̂−

cα/2σ̂L√
n

)
= Φ(cα/2). (32)
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Next, notice that

P

(
L̂−

cα/2 σ̂L√
n

≤ m ≤ Û +
cα/2 σ̂U√

n

)
= P

(
m ≥ L̂− cα/2

σ̂L√
n

∩ m ≤ Û + cα/2
σ̂U√
n

)
≥ P

(
L ≥ L̂− cα/2

σ̂L√
n

∩ U ≤ Û + cα/2
σ̂U√
n

)
= 1− P

(
L ≤ L̂− cα/2

σ̂L√
n

∪ U ≥ Û + cα/2
σ̂U√
n

)
≥ 1− P

(
L ≤ L̂− cα/2

σ̂L√
n

)
− P

(
U ≥ Û + cα/2

σ̂U√
n

)
,

(33)

where in the first inequality we have used L ≤ m ≤ U . Using (31) and (32) in (33), and

then taking limits, we finally obtain

lim
n→∞

P

(
L̂−

cα/2 σ̂L√
n

≤ m ≤ Û +
cα/2 σ̂U√

n

)
≥ 1−

(
1− Φ(cα/2)

)
−
(
1− Φ(cα/2)

)
= 1− α,

as stated.

Proof of Theorem 2. For s ∈ {1, 2} let s̄ = 3− s and ns = |Is|, which is either ⌊n/2⌋
or ⌈n/2⌉. Define also

L̂s =
1

ns

∑
i∈Is

L(Zi, Yi, β̂s̄), L(β) = E

[∑
y∈Y

L (Zi, y, β) f (y |Zi, Ai; β)

]
.

Note, importantly, that whenever i ∈ Is

L(β) = E

[∑
y∈Y

L (Zi, y, β) f (y |Zi, Ai; β)

∣∣∣∣∣Y(Is̄), Z(Is̄)

]

due to cross-sectional independence. Now, conditional on (Y(Is̄), Z(Is̄)) the terms L(Zi, Yi, β̂s̄)

are independent and identically distributed across i and have a variance bounded by

(bmax − bmin)
2, which implies that

Var(L̂s |Y(Is̄), Z(Is̄)) ≤
(bmax − bmin)

2

ns

= O(n−1).
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By an application of Markov’s inequality we therefore obtain

L̂s = E
[
L(Zi, Yi, β̂s̄)

∣∣∣ Y(Is̄), Z(Is̄)

]
+Op(n

−1/2),

where here and in the following i ∈ Is. Evaluating the expectation over Yi gives

L̂s = E

[∑
y∈Y

L(Zi, y, β̂s̄)f (y |Zi, Ai; β0)

∣∣∣∣∣Y(Is̄), Z(Is̄)

]
+Op(n

−1/2)

= E

[∑
y∈Y

L(Zi, y, β̂s̄)f(y |Zi, Ai; β̂s̄)

∣∣∣∣∣Y(Is̄), Z(Is̄)

]

− E

[∑
y∈Y

L(Zi, y, β̂s̄)
∂f(y |Zi, Ai; β̃)

∂β′

∣∣∣∣∣ Y(Is̄), Z(Is̄)

]
(β̂s̄ − β0) +Op(n

−1/2)

= L(β̂s̄) +Op(n
−1/2), (34)

where in the second step we performed a mean-value expansion of f (y |Zi, Ai; β) around

β0, with β̃ being some value between β0 and β̂s̄, and in the last step we used the definition

of L(β) as well as β̂s̄ − β0 = Op(n
−1/2) and∥∥∥∥∥E

[∑
y∈Y

L(Zi, y, β̂s̄)
∂f(y |Zi, Ai; β̃)

∂β

∣∣∣∣∣ Y(Is̄), Z(Is̄)

]∥∥∥∥∥
≤ max(|bmin|, |bmax|) sup

β∈Bϵ(β0)

∑
y∈Y

E
∥∥∥∥∂f (y |Zi, Ai; β)

∂β

∥∥∥∥ = O(1).

Here we also used that by the consistency of β̂s̄ one has β̃ ∈ Bϵ(β0), for an ϵ > 0, with

probability approaching one. Next, we define

m(β) = E [m (Zi, Ai, β)] .

Then, by another mean-values expansion in β we find that

m = m (β0) = m(β̂s̄) +Op(n
−1/2). (35)

By condition (7), L(β̂s̄) ≤ m(β̂s̄), and together with (34) and (35) this implies L̂s +

Op(n
−1/2) ≤ m, as stated. The derivation of m ≤ Ûs + Op(n

−1/2) is analogous. This

completes the proof.
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Proof of Theorem 3. Let Û = Û(β0), U = E [U(Zi, Yi, β0)] and σ̂2
U = σ̂2

U(β0), and

let L̂, L, and σ̂2
L be defined analogously. Remember that it was already obtained in (31)

and (32) in the proof of Theorem 1 that

lim
n→∞

P

(
U ≤ Û +

cα/2σ̂U√
n

)
= Φ(cα/2) and lim

n→∞
P

(
L ≥ L̂−

cα/2σ̂L√
n

)
= Φ(cα/2).

To keep the notation simple, define (with some abuse of notation)

L(1− γ, α) = inf
β∈B1−γ

(
L̂(β)− cα/2

σ̂L(β)√
n

)
, L0(α) =

(
L̂− cα/2

σ̂L√
n

)
,

U(1− γ, α) = sup
β∈B1−γ

(
Û(β) + cα/2

σ̂U(β)√
n

)
, U0(α) =

(
Û + cα/2

σ̂U√
n

)
.

Now, notice that

P (L0(α) ≤ m ≤ U0(α)) ≥P
(
L ≥ L0(α) ∩ U ≤ U0(α)

)
=1− P

(
L ≤ L0(α) ∪ U ≥ U0(α)

)
≥1− P

(
L ≤ L0(α)

)
− P

(
U ≥ U0(α)

)
, (36)

where in obtaining the first inequality we have used L ≤ m ≤ U . Moreover, analogous

to the arguments used in the Proof of Theorem 11 of Chernozhukov, Fernández-Val,

Hahn and Newey (2013),

P (L0(α) ≤ m ≤ U0(α)) = P
(
L0(α) ≤ m ≤ U0(α)

⋂
β0 ∈ B1−γ

)
+ P

(
L0(α) ≤ m ≤ U0(α)

⋂
β0 /∈ B1−γ

)
≤ P

(
L0(α) ≤ m ≤ U0(α)

⋂
β0 ∈ B1−γ

)
+ P (β0 /∈ B1−γ)

≤ P (L(1− γ, α) ≤ m ≤ U(1− γ, α)) + γ. (37)

Combining (36) and (37), and taking limits, it follows that

lim
n→∞

P (L(1− γ, α) ≤ m ≤ U(1− γ, α)) ≥ 1− α− γ,

as stated.
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B Online appendix with additional Proofs

Proof of Lemma 1. Given β0 ∈ Conv(Bsub), by the definition of the convex hull

we have β0 =
∑

β∈Bsub
λβ β, for some convex weights λβ ≥ 0 such that

∑
β∈Bsub

λβ = 1.

To keep the notation simple, define ℓ(y) = L(z, y,Bsub) and u(y) = U(z, y,Bsub). Then,

under the assumption that L(z, y, B̂s̄) and U(z, y, B̂s̄) satisfy (26) for all β ∈ Bsub and

a ∈ A, conditional on the event B̂s̄ = Bsub we have∑
y∈Y

ℓ(y) f(y | z, a; β) ≤ m(z, a, β) ≤
∑
y∈Y

u(y)f(y | z, a; β).

Multiplying this expression by λβ and summing over β ∈ Bsub then gives∑
y∈Y

ℓ(y)
∑

β∈Bsub

λβ f(y | z, a; β) ≤
∑

β∈Bsub

λβ m(z, a, β) ≤
∑
y∈Y

u(y)
∑

β∈Bsub

λβ f(y | z, a; β).

(38)

Using Assumption 3 we can employ a second-order mean value expansion of f(y | z, a; β)
around β0, to find for β ∈ Bsub,

f(y | z, a; β) = f(y | z, a; β0) +
∂f(y | z, a; β0)

∂β′ (β − β0) + (β − β0)
′∂

2f(y | z, a; β̃)
∂β∂β′ (β − β0),

= f(y | z, a; β0) +
∂f(y | z, a; β0)

∂β′ (β − β0) +O
(
d2
sub

)
,

where β̃ is a mean value between β and β0 and dsub = diam(Bsub). By definition∑
β∈Bsub

λβ(β − β0) = 0. It then follows from the expansion in the previous display that∑
β∈Bsub

λβ f(y | z, a; β) = f(y | z, a; β0) +O
(
d2
sub

)
. (39)

Analogous arguments also yield∑
β∈Bsub

λβ m(z, a, β) = m(z, a, β0) +O
(
d2
sub

)
. (40)

Then, by combining (38), (39) and (40) we obtain∑
y∈Y

ℓ(y) f(y | z, a; β0) +O
(
d2
sub

)
≤ m(z, a, β0) ≤

∑
y∈Y

u(y)f(y | z, a; β0) +O
(
d2
sub

)
. (41)

46



Taking expectations of all sides of (41) finally yields,

E
[
L(Zi, Yi, B̂s̄)

∣∣∣ B̂s̄ = Bsub

]
+O

(
d2
sub

)
≤ m ≤ E

[
U(Zi, Yi, B̂s̄)

∣∣∣ B̂s̄ = Bsub

]
+O

(
d2
sub

)
,

where the conditioning on B̂s̄ = Bsub is required as the derivations leading up to (41) are

based on this condition. Finally, E[m(Zi, Ai, β0) | B̂s̄ = Bsub] = E[m(Zi, Ai, β0)] follows

since the marginal distribution of (Yi, Zi, Ai) is independent across i. This completes

the proof.

Proof of Theorem 4. Before moving to the proof, we make a series of definitions for

notational brevity. First, define

L(B̂s̄(i)) = E
[
L(Zi, Yi, B̂s̄(i))

∣∣∣ B̂s̄(i)

]
,

where the expectation is with respect to the joint distribution of (Yi, Zi) with i ∈ Is,

conditional on B̂s̄(i). We next define the centered quantity

L̃(Zi, Yi, B̂s̄(i)) = L(Zi, Yi, B̂s̄(i))− L(B̂s̄(i)),

and the half-sample averages

L̃C,s =
2

n

∑
i∈Is

L̃(Zi, Yi, B̂s̄(i)) and L̂C,s =
2

n

∑
i∈Is

L(Zi, Yi, B̂s̄(i)).

The corresponding quantities U(B̂s̄(i)), Ũ(Zi, Yi, B̂s̄(i)), ŨC,s and ÛC,s are defined analo-

gously. We further define

LC,s = L̂C,s −
cα/4 σ̂L,s√

n/2
and UC,s = ÛC,s +

cα/4 σ̂U,s√
n/2

.

Notice that L̂C = (L̂C,1 + L̂C,2)/2 and ÛC = (ÛC,1 + ÛC,2)/2. Finally, let

LC =
LC,1 + LC,2

2
and UC =

UC,1 + UC,2

2
.

These quantities are equivalent to the lower and upper bounds in the probability state-

ment of Theorem 4. We therefore want to prove

P (LC ≤ m ≤ UC) ≥ 1− α− γ + o(1), as n → ∞.
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Lemma 1 states that conditional on β0 ∈ Conv(B̂s̄(i)), we have

L(B̂s̄(i)) + δL(B̂s̄(i)) ≤ m ≤ U(B̂s̄(i)) + δU(B̂s̄(i)), (42)

where we have introduced the notation δL(B̂s̄(i)) and δU(B̂s̄(i)) for the upper and lower

bound O([diam(B̂s̄)]
2) remainder terms in Lemma 1. In what follows, let As denote the

event that β0 ∈ Conv(B̂s), with the complement given by Ac
s. Now, observe that

P
(
LC,s ≥ m

⋃
UC,s ≤ m

)
= P

({
LC,s ≥ m

⋃
UC,s ≤ m

} ⋂
As̄

)
+ P

({
LC,s ≥ m

⋃
UC,s ≤ m

} ⋂
Ac

s̄

)
≤ P

(
LC,s ≥ m

⋂
As̄

)
+ P

(
UC,s ≤ m

⋂
As̄

)
+ P (Ac

s̄)

= P (LC,s ≥ m | As̄)P (As̄) + P (UC,s ≤ m | As̄)P (As̄) + P (Ac
s̄)

≤ P
(
LC,s ≥ L(B̂s̄) + δL,s̄

∣∣∣ As̄

)
P (As̄) + P

(
UC,s ≤ U(B̂s̄) + δU,s̄

∣∣∣ As̄

)
P (As̄) +

γ

2
+ o(1)

= P
(
LC,s ≥ L(B̂s̄) + δL,s̄

)
+ P

(
UC,s ≤ U(B̂s̄) + δU,s̄

)
+

γ

2
+ o(1), (43)

where in the second to last step we have used Assumption 3(i) and (42), and we defined

δL,s̄ = δL(B̂s̄) and δU,s̄ = δU(B̂s̄). Next, we obtain

P (LC ≤ m ≤ UC) ≥P
(
LC,1 ≤ m ≤ UC,1

⋂
LC,2 ≤ m ≤ UC,2

)
≥1− P

(
LC,1 ≥ m

⋃
UC,1 ≤ m

)
− P

(
LC,2 ≥ m

⋃
UC,2 ≤ m

)
≥1− γ −

2∑
s=1

[
P
(
LC,s ≥ L(B̂s̄) + δL,s̄

)
+ P

(
UC,s ≤ U(B̂s̄) + δU,s̄

)]
+ o(1)

≥1− γ −
2∑

s=1

P

(√
n/2

L̃C,s

σ̂L,s

≥ cα/4 +
√

n/2
δL,s̄
σ̂L,s

)

−
2∑

s=1

P

(√
n/2

ŨC,s

σ̂U,s

≤ −cα/4 +
√

n/2
δU,s̄
σ̂U,s

)
+ o(1) (44)

where the third inequality follows from (43) and the last inequality applies the various

definitions we made earlier.

It remains to show that the probabilities P (·) that explicitly appear in the last

inequality of (44) are all bounded from above by α/4+ o(1). To show this, we first note

that conditional on Gs̄ = {(Yj, Zj) : j ∈ Is̄}, L̃(Zi, Yi,Bs̄) is centered and iid over i ∈ Is.
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Next, define Mr,s̄ = E
[
|L̃(Zi, Yi,Bs̄)|r

∣∣∣ Gs̄

]
. Since L(z, y, B̂s̄) is bounded by bmin and

bmax, Mr,s̄ exists for any r > 0. It follows by Theorem 1.1 of Bentkus and Götze (1996)

that there exists some ks̄ > 0 such that

sup
c∈R

∣∣∣∣∣P
(√

n/2
L̃C,s

σ̂L,s

< c

∣∣∣∣∣Gs̄

)
− Φ(c)

∣∣∣∣∣ ≤ 1√
n/2

ks̄M3,s̄

(M2,s̄)3/2
.

The second part of this upper bound is finite for any s. Hence, it equivalently holds that

P

(√
n/2

L̃C,s

σ̂L,s

< c

∣∣∣∣∣ Gs̄

)
= Φ(c) +O

(
n−1/2

)
, (45)

where the rate O
(
n−1/2

)
holds uniformly over c ∈ R. Choosing c = cα/4+

√
n/2δL,s̄/σ̂L,s,

equation (45) yields

P

(√
n/2

L̃C,s

σ̂L,s

≥ cα/4 +
√
n/2

δL,s̄
σ̂L,s

∣∣∣∣∣ Gs̄

)
= 1− Φ

(
cα/4 +

√
n

2

δL,s̄
σ̂L,s

)
+O

(
n−1/2

)
= 1− Φ

(
cα/4

)
+O

(√
n

2

∣∣∣∣ δL,s̄σ̂L,s

∣∣∣∣+ 1√
n

)
=

α

4
+O

(√
n

2

∣∣∣∣ δL,s̄σ̂L,s

∣∣∣∣+ 1√
n

)
,

(46)

where the second equality expands Φ around cα/4, and the final equality follows from the

definition of cα/4. Taking expectations over Gs̄ in (46) and applying the Law of Iterated

Expectations yields

P

(√
n/2

L̃C,s

σ̂L,s

≥ cα/4 +
√
n/2

δL,s̄
σ̂L,s

)
=

α

4
+O

(√
n

2
E |δL,s̄|E

∣∣∣∣ 1

σ̂L,s

∣∣∣∣+ 1√
n

)
=

α

4
+ o (1) ,

(47)

where in obtaining the final o(1) rate we have used Assumption 3(i). We have also used

the assumption Var [L(Zi, Yi, β)] > 0 which implies that E|1/σ̂L,s| is bounded for some

sufficiently large n. By analogous arguments one obtains

P

(√
n/2

ŨC,s

σ̂U,s

≤ −cα/4 +
√
n/2

δU,s̄
σ̂U,s

)
=

α

4
+ o(1). (48)

Combining (44), (47) and (48) yields the stated result.
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