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Abstract—This paper presents a fully unsupervised deep
change detection approach for mobile robots with 3D LiDAR. In
unstructured environments, it is infeasible to define a closed set of
semantic classes. Instead, semantic segmentation is reformulated
as binary change detection. We develop a neural network,
RangeNetCD, that uses an existing point-cloud map and a live Li-
DAR scan to detect scene changes with respect to the map. Using
a novel loss function, existing point-cloud semantic segmentation
networks can be trained to perform change detection without
any labels or assumptions about local semantics. The mean
intersection over union (mIoU) score is used for quantitative
comparison. RangeNetCD outperforms the baseline by 3.8% to
7.7% depending on the amount of environmental structure. The
neural network operates at 67.1 Hz and is integrated into a
robot’s autonomy stack to allow safe navigation around obstacles
that intersect the planned path. In addition, a novel method
for the rapid automated acquisition of per-point ground-truth
labels is described. Covering changed parts of the scene with
retroreflective materials and applying a threshold filter to the
intensity channel of the LiDAR allows for quantitative evaluation
of the change detector.

Index Terms—unsupervised machine learning, change detec-
tion

I. INTRODUCTION

While significant progress has been made towards robot
navigation in unstructured environments, challenges with ro-
bust perception and terrain assessment remain [1]. These can
be exacerbated by a domain gap where methods designed for
one location do not transfer reliably to another [2]. On-road
autonomous driving benefits from clear rules and common
types of objects that assist with risk assessment and detection
[3]. Using extremely large, labelled datasets such as the
Waymo Open Dataset [4] or SemanticKITTI [5] have allowed
deep 3D networks to progress rapidly in the semantic and
instance segmentation of known classes [6], [7].

This paper aims to solve a broader problem. We envision a
situation where a robot can safely navigate autonomously after
an initial mapping step. The map could be generated through
manual exploration or prior experience from other systems. We
argue that a map is a stronger prior for the types of features
and obstacles that may be encountered than a predefined set
of classes. It is desirable to perform per-point segmentation
because bounding box regression implicitly imposes class-
related sizes. Based on these conditions, we formulate the
problem as binary change detection; points in the live scan
are labelled as either changed or consistent with respect to the

All authors are with the University of Toronto Robotics Institute.

Fig. 1. The Clearpath Warthog UGV with the Ouster OS-1 LiDAR, driving a
previously taught path. A section of the path is now blocked and the change
detection algorithm proposed in this paper will be used to allow the robot
to safely navigate around the obstruction. The mannequin is wearing the
retroreflective suit that is used for dataset generation and evaluation.

map. A conceptualization of the desired behaviour is provided
in Figure 1. Classical change-detection methods use nearest-
neighbour distances [8], normal distances [9], or ray tracing
[10] to classify changes. However, they are most effective
indoors and are less accurate in unstructured environments
[11]. Vegetation is often dynamic on small length scales
leading to variable scans with small changes irrelevant to
planning. We hypothesize that a deep neural network can
filter these planning-irrelevant changes to detect higher-quality
clusters of changed points. Rather than tackle the full scope of
terrain traversability assessment [12], all changes are treated
as a threat and are avoided by the path planner. In the absence
of a change, regions where the robot has driven before are
considered traversable.

A novel loss formulation is used to provide an unsupervised
training signal. This loss leverages inductive biases based on
the amount of change, distance of changes from the existing
map, and temporal permanence of objects.

These factors can be represented as a standard optimization
problem. However, finding the optimal solution is computa-
tionally intractable. Our approach uses a neural network to
learn a good heuristic for the problem instead. An unsuper-
vised network training process can be used to learn an initial,
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general network, which can be fine-tuned to new environments
using data collected from the robot itself.

Once the network is trained, it is integrated into an existing
autonomy stack to detect obstacles on a Clearpath Warthog
unmanned ground vehicle (UGV) [13]. The robot can avoid
obstacles reliably in real time.

In summary, we make the following contributions:
• an unsupervised deep LiDAR change-detection method

for use on mobile robots,
• a loss formulation to train neural networks in an unsu-

pervised manner,
• a rapid evaluation process for per-point semantic la-

belling,
• a change-detection neural network running in closed-loop

on an unmanned ground vehicle.
The corpus of LiDAR datasets that contain multiple tra-

jectories through the same environment is limited. A custom
dataset with a combination of on-road and off-road driving is
created and used for evaluation. Figure 2 shows the satellite
view of the dataset paths.

II. RELATED WORK

A. Change Detection

Change detection in point clouds has been well studied in
both mobile robotics [14] and remote sensing [15]. Classical
change detection is primarily based on distances between two
scans at different times. Some works [16], [10] use the labels
Changed and Unchanged, which carry the same meaning as
Changed and Consistent in this work. Our notation emphasizes
that the classifications are not absolute and that points are
typically consistent with mapping evidence, not identical. The
simplest method evaluates the distance from each point in the
first point cloud to the closest point in the second [8]. Distant
points are classified as changed if they exceed a threshold
value. Wu [11] proposed a Gaussian roughness model of a
local neighbourhood to set a dynamic threshold. Alternatively,
Underwood et al. [10] use ray tracing to determine which parts
of the scene have changed. Any points along a ray that are
closer than a previous scan are considered changed. A common

Fig. 2. The dataset trajectories and sample views. In total, the dataset is 8.5
km long with 1.75 km of unique paths.

challenge with these methods is that occluded regions are
implicitly assumed to be free space, leading to false positives.
Voelsen et al. [17] combine these approaches and use region
growing to create instance clusters. However, these clusters
require a pre-defined set of classes for the changes.

More recently, change detection has been approached using
deep learning. There is a focus on airborne LiDARs that
detect the long-term change of large geographic areas [18],
[19]. Datasets such as SHREC 2023 [20] contain matched
pairs of large point clouds for change detection but do not
contain trajectory information. De Gelis et al. [21] present
SiameseKPConv: a supervised semantic segmentation network
that detects six classes of changes on 3D point clouds of
cities. Twin encoders extract features from the map and live-
scan point clouds. Once encoded, the feature-space difference
of every live point to its nearest map neighbour is used
for classification. A follow-up work uses the same network
architecture but with self-supervised training [16]. They pro-
pose three losses: a contrastive loss, a deep clustering loss,
and a temporal consistency loss. The contrastive loss pushes
points classified as changed to have different embeddings than
those classified as consistent. By clustering the predictions,
some misclassifications are corrected to improve pseudo-labels
for the next epoch. Finally, the temporal consistency loss
encourages predictions to be consistent over time, imposing
the bias that the number of changed points should be small.
This work focuses on large-scale point clouds and does not
consider the local trajectory of a mobile system.

Deep learning for change detection on mobile robots is
beginning to take shape. Zhao et al. [22] perform supervised
change detection on an indoor robot. They use four classes
of changes: unchanged, dynamic, structural change, and tem-
porary change. They show that a range image can be used to
make efficient predictions about changes in the environment.
To the best of our knowledge, there are no unsupervised deep
LiDAR change detection systems for mobile robots.

B. Map Refinement

The construction of the point-cloud map impacts change-
detection algorithms. Ideally, maps contain only static struc-
tures. Map refinement is the process of updating maps, remov-
ing dynamic objects, and rejecting outliers [23]. Pioneering
works, Erasor [24] and PeopleRemover [25], use voxelized
pseudo-occupancy-grid maps to estimate whether a region is
free at a given time. These methods run in batches, allowing
information from future scans to improve the detection at every
frame. Points that exist within voxels that are often empty
are removed from the map. Additionally, Erasor2 [26] uses
instance segmentation to reduce the number of misclassifica-
tions at contact regions. Maintenance can be achieved by using
multiple passes through the same environment and voting.

An alternative approach to creating static maps detects
dynamic objects while the robot is moving and never adds
them to the map. Pomerleau et al. [9] use the visibility of
the map points and estimate every normal vector to determine
whether a point is dynamic or static. Static points are added



Fig. 3. Data flow of the training procedure. Only a single map and live-scan pair are used for inference.

to the SLAM problem and dynamic points are rejected. Yoon
[27] applies a combination of free-space checks with region
growth to detect class-free dynamic points. Deep learning has
also been applied to moving-object segmentation. SLIM [28]
is a self-supervised moving-object segmentation network that
operates on point clouds directly. RVMOS [29] uses sequences
of range images and temporal augmentation to train effective
supervised classifiers. Moving-object segmentation alone is in-
sufficient for long-term autonomy because dangerous changes
may be static during traversal.

C. Teach and Repeat Framework

The methods presented in this paper apply to any system
that localizes against a point-cloud map. For the purposes of
evaluation, we integrate the detector into the Visual Teach
and Repeat 3 (VT&R3) framework1. VT&R was designed
for stereo cameras and allows robots to precisely localize and
repeat a path taught by a human operator [30]. Wu [11] and
Sehn [31] modified the VT&R3 framework to use LiDAR
for odometry and localization. During the teaching process,
iterative-closest-point (ICP) [32] odometry determines the
motion of the robot. These frames are collected into a sequence
of topologically connected submaps. A relative transformation
between each submap is stored for later localization. The
repeat phase involves autonomous navigation to any location
within the network of paths. By relaxing the path-following
constraint to a corridor [31], the robot is given the flexibility
to navigate around obstacles on the path. A local cost map is
required by the existing planner within the corridor around the
robot. The proposed method detects changes and treats their
locations as unsafe to drive.

III. METHODOLOGY

A. Problem Definition

We let the problem of LiDAR change detection be one of
binary classification. Given two point clouds in a common
reference frame, the map M and current scan S, every point
si ∈ S is assigned a binary label (li) of Changed or Consistent.
Let the number of points in S be n. Consistent is loosely
defined as a point that could be in M under a slightly different
mapping process.

1The framework is available at: github.com/utiasASRL/vtr3

To solve the problem without ground-truth labels, a combi-
natorial optimization problem is defined over a sequential set
of two point-cloud pairs ({M0, S0}, {M1, S1}). The first live
scan is recorded at time t0. Consider t1 = t0 +∆t where ∆t
is a hyperparameter of the system. All four point clouds are
transformed into a common frame. The optimization has three
terms: a chamfer loss [33] between the map and the Consistent
live scan, a class-balance loss that penalizes the number of
points that are considered to be Changed, and a temporal-
consistency loss that penalizes labels that change between the
sequential scans. The total loss function is defined as

L = Lcham + λ1Lclass + λ2Ltemporal, (1)

where λ1 and λ2 are hyperparameters to be tuned. In theory,
the solution to this problem does not require machine learning.
For a fixed set of maps and live-scans, a gradient descent
method could be iterated to find a local minimum to the
problem for each frame starting from random labels. However,
with thousands of points, it is intractable to solve as a classical
optimization. To respect the run time requirements of a 10
Hz LiDAR scanner, a neural network is used to learn a fast
heuristic solution to the optimization problem. To make the
loss functions differentiable, the softmax probability of being
classified as Changed is used instead of the actual prediction.
Next, each of the terms in (1) is explained in detail.

1) Chamfer Loss: The chamfer loss uses the nearest-
neighbour Euclidean distance between points in live scan
(si ∈ S) and the map (mj ∈ M ). It is weighted by the
likelihood that the given point belongs to the Consistent class
(li = 0):

Lcham =
1

n

n∑
i=1

p(li = 0) min
mj∈M

||mj − si||2. (2)

If the weighting of the chamfer loss is large, all points that
do not exactly match the map will be classified as Changed.
The chamfer loss pushes points to be classified as Changed.

2) Class-Balance Loss: The class-balance loss is the sum-
mation of the likelihood of a point being classified as Changed
(li = 1):

Lclass =
1

n

n∑
i=1

p(li = 1). (3)



This loss pushes all points to be classified as Consistent. This
loss opposes the chamfer loss.

3) Temporal-Consistency Loss: The temporal-consistency
loss uses a bidirectional chamfer loss between points in the
two consecutive live scans, S0 and S1, that are classified as
Changed. lki is the label of point si in point cloud Sk:

Ltemporal =
1

n0

n0∑
i=1

p(l0i = 1) min
sj∈S1

||si − sj ||2

+
1

n1

n1∑
i=1

p(l1i = 1) min
sj∈S0

||si − sj ||2.
(4)

This loss acts as a form of outlier rejection and encourages
predictions to be consistent through time. This loss will push
the network to classify all points as Consistent because an
empty obstacle class has a loss of zero.

B. Deep Network Architecture

The novelty of this paper lies in the training method rather
than the network architecture used to process the 3D points.
In Figure 3, the neural network could be any 3D architecture
that can be modified to accept pairs of maps and live scans.
A convolutional neural network using range images as the
input was chosen in this paper for its fast inference time
[34]. Speed is critical to the autonomous operation of the
UGV. Preliminary experiments were also performed on a 3D
architecture based on KPConv [35] but the run time was too
long.

a) Range Image Generation: The inputs to the network
are aligned range images from the map and the live scan.
These images are rendered by transforming the live scan
and local map 3D point clouds into a common spherical
coordinate system centred on the LiDAR. Each range image
pixel, (ui, vi), contains the value ri =

√
x2
i + y2i + z2i , to the

closest point in the frustum. Dimensions H×W = 64×1024
are used over a 25◦×360◦ field of view (fov). The lower limit
of the fov below the horizon (fovdown) is a sensor property. An
indexed mapping between the range image and point cloud is
stored to reassign labels in the image to the corresponding 3D
points. Given a point (xi, yi, zi) ∈ R3 the following image
mapping R3 −→ R2 is used:(

ui

vi

)
=

(
1
2 (1−

arctan(yi,xi)
π )W(

1− arcsin(zi,ri)+fovdown
fov

)
H

)
. (5)

b) Neural Network Architecture: The range image net-
work (RangeNetCD) is based on RangeNet++ [34] but mod-
ified to accept both a map and live scan. The input has a
dimension of H ×W × 2 with the live scan and map on each
channel. The network encoder consists of four double con-
volutions followed by maxpooling. The decoder uses bilinear
upsampling and skip connections from the encoder layers for
per-pixel prediction. We observed that effective classification
requires non-square convolution kernels on the first and last
layers by experimenting with different shapes. The kernel in
the first and last layer has dimension 1× 2.

Fig. 4. A LiDAR scan of two pedestrians coloured by intensity. Left: A
pedestrian wearing regular clothes. Right: A pedestrian wearing the reflective
suit.

IV. EXPERIMENTS

Experimental evaluation occurred in forested and off-road
areas around the University of Toronto Institute for Aerospace
Studies (Figure 2). A Clearpath Warthog UGV [13] equipped
with an Ouster-OS1 LiDAR [36] was used for experiments.
LiDAR ICP localization [32] aligned the live scan with the
corresponding map prior to performing any neural-network
inference. The horizon of the local planner is 10 m. Accord-
ingly, detections are limited to this range around the robot.
Empirically, it was observed that the sensor-aligned frame with
the origin on the ground below the LiDAR scanner performed
the best. This may occur because the nearby planar ground
points are projected into the same pixel frustum.

A. Retroreflective Semantic Evaluation

While the method presented in this paper is fully unsu-
pervised, for quantitative evaluation of the results, ground-
truth labels are required. For change detection, an offline ray-
tracing approach similar to Thomas et al. [37] could classify
the points corresponding to changes of interest. However, these
ray-tracing approaches are challenged in foliage [11] and are
computationally expensive. Instead, we propose using a rapid
technique for implicitly labelling the data.

During dataset evaluation, all objects introduced into the
scene are coated in retroreflective material. Figure 4 highlights
the difference in intensity between a reflective suit, regular
clothes, and the background. The intensity channel of LiDAR
is unique to each distinct sensor and not standardized between
different models. For this reason, we discard the intensity
values and render the intensity channel out-of-band. However,
the intensity can be used for automatic labelling: a threshold
filter reliably classifies the points that belong to reflective
objects.

The effectiveness of this approach requires a controlled
environment without ambient dynamic actors, so public sce-
narios are unsuitable. However, for many cases when the
rapid labelling of an object is required, this method is highly
effective. While we use pedestrians with reflective suits in our



TABLE I
STATISTICS FOR THE DATASET USED FOR TRAINING AND QUANTITATIVE EVALUATION

Sequence Name Path Length (m) Number of Traversals Frames Total Driving Time (h:mm)
Parking Loop 925.7 5 11831 2:02

North Field Loop 124.9 5 2250 0:18
Grass Yard 338.7 3 2930 0:28
Forest Loop 232.6 4 3557 0:33

TABLE II
PERFORMANCE ON EASY (GRASS YARD) DATA OF UNSUPERVISED

DETECTOR AND CLASSICAL BASELINE

Method IoUch Corridor IoUch mIoU
Nearest Neighbour 0.507 0.618 0.745
RangeNetCD (ours) 0.651 0.820 0.822

TABLE III
PERFORMANCE ON MEDIUM (NORTH FIELD) DATA OF UNSUPERVISED

DETECTOR AND CLASSICAL BASELINE

Method IoUch Corridor IoUch mIoU
Nearest Neighbour 0.438 0.586 0.712
RangeNetCD (ours) 0.577 0.609 0.782

dataset, in general, retroreflective cloth or tape can be placed
on any object where per-point ground truth is required.

B. Results

The network is trained and evaluated on a collection of four
different mapping and repeating sequences. In total, the raw
dataset consists of 50, 000 frames and the robot traverses 8.5
km over 1.75 km of unique paths. A LiDAR frame is stored
every 30 cm of driving rather than every 0.1 s, which reduces
the total frames used to 20, 568. This prevents biased training
due to interruptions in the data collection when the robot stops
moving. The four sequences are traced out in Figure 2. The
longest sequence is the Parking Loop, which is uncontrolled
and contains moving vehicles, bicycles, and pedestrians. The
other three sequences were recorded with reflective obstacles
for evaluation. Table I describes the details of each run of the
dataset.

For comparison, a classical nearest-neighbour baseline [8]
is used as an alternative to unsupervised learning. Table II,
Table III, and Table IV provide the intersection-over-union
(IoU) score of the Changed class as well as the mean IoU
(mIoU). Note that, because the labels are highly imbalanced,
metrics evaluated on the Changed class are the basis of
comparison. We adopt an additional planning-oriented metric
to represent the ability of the robot to perform path planning.
The IoU is re-evaluated within the known planning corridor
around the robot, which is 5 m wide for the Warthog running
Teach and Repeat. The results in Tables I-III are evaluated with
map voxel size of 0.2 m and live-scan voxel size 0.05 m. The
loss function hyperparameters during training were λ1 = 15
and λ2 = 1.0.

On the Grass Yard (Table II), the corridor IoUch is 16.9%
higher than the IoUch evaluated on the entire scan for
RangeNetCD. This highlights the practical effectiveness of the

TABLE IV
PERFORMANCE ON HARD (FOREST LOOP) DATA OF UNSUPERVISED

DETECTOR AND CLASSICAL BASELINE

Method IoUch Corridor IoUch mIoU
Nearest Neighbour 0.290 0.547 0.635
RangeNetCD (ours) 0.607 0.656 0.673

Fig. 5. Changed IoU vs Distance Traveled Fine-tuning for a map-voxel of
0.3 m and live voxel of 0.05 m. Pre-training improves the performance.

system because false positives on static structures outside the
corridor of the planner do not affect the trajectory.

We find that pre-training a general network followed by
environment-specific fine-tuning is the most effective training
approach. To pre-train, the unlabelled and uncontrolled data
from the Parking Loop is used. Finetuning occurs on a specific
sequence with a lower learning rate in the optimizer. In
Figure 5, pre-training improves the initial performance to
68%. While the general network is capable in all of the
environments tested, fine-tuning with more specific examples
boosts detection accuracy further. An avenue of future work
is to fine-tune live on the robot once it has been deployed
in operation. The detection quality is suitable for autonomous
navigation.

C. Ablation Studies

a) Scan and Map Density: The OS-1 LiDAR used for
these experiments produces 1.3 million points per second
[36]. Using every point is computationally impractical for ICP
odometry and localization [11]. Additionally, storing every
point in the map is prohibitively expensive. For this reason, the
map is voxel downsampled. The voxel sizes of the map and
live scan impact the accuracy of change detection. Table V
shows the corridor IoU of the Changed class for different



TABLE V
CORRIDOR IOUCH FOR DIFFERENT COMBINATIONS OF THE MAP AND LIVE

SCAN VOXEL DOWNSAMPLING ON THE GRASS YARD

Map Voxel Size
0.1 m 0.2 m 0.3 m

Live Voxel Size
0.05 m 0.760 0.820 0.811
0.15 m 0.091 0.111 0.110
0.3 m 0.050 0.071 0.056

TABLE VI
ABLATION STUDY ON LOSS FUNCTIONS EVALUATED ON THE GRASS

YARD WITH MAP VOXEL 0.2 M AND LIVE VOXEL 0.05 M

Chamfer Class Temporal IoUch
✓ × × 0.02
× ✓ × 0.0
✓ ✓ × 0.388
✓ ✓ ✓ 0.651

combinations of scan and map densities. Increasing the live-
scan density improves performance but changing the map
density is less important. Most obstacles in the dataset are
smaller than 1 m in their longest dimension so voxel down-
sampling removes defining points. In contrast, much of the
map contains larger objects that can be downsampled without
affecting performance. The range-image network performs
much better than the baseline as the map density decreases.
This is advantageous because smaller point clouds use less
storage and are processed faster. For reference, storing the
raw scan requires about 50 Gb/km and downsampling to
0.3 m requires about 3.75 Gb/km. Intermediate values scale
nonlinearly based on the LiDAR scan pattern and density of
nearby static features. A map voxel size of 0.3 m and a live-
scan voxel size of 0.05 m is used on the Warthog.

b) Loss Functions: Table VI shows the impact of each
loss function on the performance for the 0.2 m and 0.05
m map and live-scan voxelizations of the Grass Yard. As
expected, if the class loss is removed, all points are classified
as Changed. This occurs because the trivial optimal solution
classifies all points as Changed. Conversely, if only the class
loss is used, all points are classified as Consistent. The correct
balance of the chamfer and class losses accounts for the basic
capability of the system. Adding the temporal loss improves
the performance by penalizing transient points, reducing the
number of false-positive detections.

D. Qualitative Evaluation

Several interesting phenomena are observed in the output of
the network. First, this change-detection approach is capable
of generalizing to new types of objects. In Figure 6, a cyclist
is accurately detected biking past the robot. No cyclists were
included in the training data. While RangeNetCD is designed
to allow for the detection of any changes in the scene, it is
possible to overfit the network to shapes seen during training.
For example, when the network was trained on data that
changed only by introducing pedestrians, it failed to detect
new vehicles at test time. This was solved by using more,
diverse training data. With extensive datasets, it is interesting

Fig. 6. The input range images and change detection of a cyclist passing
by the robot. The two range images are used by the network to determine
changes. Part of the live scan is blocked by the robot’s structure, this area is
purple. In the result, green regions are classified as changed and grey regions
are consistent.

to consider if these objects could be differentiated in the
feature space. We observe that if training sequences contain
changes in every frame, the network forces detections in
every frame. The most false positives appear when the correct
solution is no change at all.

Change-detection performance is limited by the map qual-
ity. The map is assumed to capture only the permanent
environment but errors appear when it does not. Using the
uncontrolled parking lot data, a map was generated containing
cars that had moved before later runs were recorded. This led
to two types of misdetections. Points on static objects that
were previously occluded are false positives. For example, a
fire hydrant behind a parked car was later detected as a change
even though it was always present. Points in the same location
as an object that moved are false negatives. For example, a
pedestrian walking through an empty parking space where a
car was located during mapping is not detected even though
it is a change. These issues rarely impact the planner, because
the taught path will not exist inside obstacles in the map.
Significant issues with the mapping process can destabilize
network training because patterns are less consistent. These
errors were eliminated by generating the map when the parking
lots were empty. Applying a map-cleaning approach offline
would be beneficial as well.

E. Closed-Loop Performance

The range-image network was tested on a laptop NVIDIA
RTX A4500 GPU located on the robot. Inference takes 14.9±
2.3 ms. Most of this time is spent transferring the tensors
between CPU and GPU memory. More optimal pipelines may
exist that reduce the amount of transfer. RangeNetCD was
exported to TorchScript and executed in C++ as part of the
existing LiDAR Teach and Repeat [11] pipeline.

Points detected as Changed are passed to a cost map
inflation module that projects them into 2D and accounts
for the robot’s radius. The planner maintains a queue of
cost maps to overcome the LiDAR’s close-range blind spot.
These cost maps allow the robot to avoid local obstacles.
The supplementary video 2 contains sequences of the robot
navigating around a series of introduced obstacles. In Figure 7,

2https://youtu.be/prqVQJHXYWE

https://youtu.be/prqVQJHXYWE


Fig. 7. Left: an image view of an obstacle and the path the robot drives to
avoid it. Right: The point cloud view of the same scene.

a mannequin was placed on the path as a change. The robot
successfully detects and avoids it and then continues to follow
the originally planned path. As a side effect of maintaining a
queue of obstacles, dynamic changes cause smearing in the
cost map leading to suboptimal routes. As a future extension
to this work, a self-supervised prediction layer could be used
to extrapolate the motion of changes over a short time horizon.

V. CONCLUSION AND FUTURE WORK

In this paper, we present a novel method for the unsu-
pervised training of a deep network that performs change
detection on a pair of point clouds. We show that by exploiting
inductive biases related to the amount of change, distance of
changes from the map, and temporal consistency of physical
scenes, it is possible to train a network. We demonstrate
the applicability of the approach on a range-image convo-
lutional neural network that is trained on data collected on
an unmanned ground vehicle. Once trained, the network runs
quickly and is added to the robot to improve its ability to
navigate for long periods. Future work using a pre-trained
contrastive encoder for feature extraction will add semantic
differences to the training loss.
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