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Abstract

We construct supersymmetric fermionic Wilson loops along general curves in four-dimensional
N = 4 super Yang-Mills theory and along general planar curves in N = 2 superconformal
SU(N) × SU(N) quiver theory. These loops are generalizations of the Zarembo loops and
are cohomologically equivalent to them. In N = 4 super Yang-Mills theory, we compute their
expectation values and verify the cohomological equivalence relation up to the order g4 in
perturbation theory.
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1 Introduction

Bogomolǹyi-Prasad-Sommerfield (BPS) Wilson loops (WLs) [1,2] in four-dimensional N = 4
super Yang-Mills theory (SYM) play an important role in the precise checks of the AdS/CFT
correspondence [3–5] since the early days. One of the precise checks is about the vacuum
expectation value (vev) of a circular half-BPS WL in the fundamental representation in N = 4
SYM with gauge group SU(N). Based on one-loop computations, it was conjectured [6]
that, the planar limit of this vev can be obtained from a resummation of the ladder planar
diagrams in the Feynman gauge. This conjecture leads to the result that this vev can be
computed using a Gaussian matrix model in its own planar limit [6]. This vev is a non-
trivial function of the ’t Hooft coupling constant λ and N . The large N , large λ limit
of this vev matches precisely with the prediction from the dual string theory [7, 8] using
certain half-BPS F-string solutions in the AdS5 × S5 background. The conjecture about the
reduction to the Gaussian matrix model was later proved by Pestun [9] using supersymmetric
localization. This precise matching between the strong coupling result in the field theory side
and the weakly coupled string theory result is among the earliest non-trivial validations of
the AdS/CFT correspondence, extending beyond the checks about correlation functions of
BPS local operators related to various non-renormalization theorems [10–12].

Many BPSWLs with fewer supersymmetries were constructed inN = 4 SYM. In Zarembo’s
construction [13], the loops inside a R

n subspace of R4 Euclidean space preserve 1/2n of the
Poincaré supercharges. We will refer to such loops as 1/2n Poincaré BPS or just 1/2n-BPS.
By direct perturbative computations, Zarembo found that the leading and next-to-leading
corrections to the vev of 1/4-BPS Zarembo loop vanishes in the large N limit. Subsequent
arguments were presented to support the result that the vev of any Zarembo loop equals
unity exactly even at finite N [14–16]. The holographic description of Zarembo loops using
calibrated surfaces [16] also supports this result.

Another class of BPSWLs was found by Drukker, Giombi, Ricci and Trancanelli (DGRT) [17,
18]. For an arbitrary curve in S3 they found the suitable scalar coupling to the WL such that
the WL preserves at least two linear combinations of Poincaré and conformal supercharges.
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Different from the case of Zarembo loops, the generic DGRT loop has nontrivial vev. It was
found [18, 19] that, when the DGRT loop is restricted to an S2 submanifold, its vev can
be obtained from the vev of certain ordinary WL in two-dimensional (non-supersymmetric)
Yang-Mills theory on S2 restricted to the zero-instanton sector [20, 21]1. A similar relation
was also obtained for correlation functions of such DGRT loops and certain local operators
on the same S2 [25]. Certain classification of BPS WLs in N = 4 SYM was performed in [26].

The above BPS WLs in N = 4 SYM usually involve suitable coupling of scalars to the
WLs in the construction. In the study of BPS WLs in three-dimensional super-Chern-Simons
theories, fermionic BPS WLs were also constructed. In such construction [27], the WL couples
to the fermions in the theory as well, besides the gauge fields and scalars. The introduction
of the fermionic BPS WLs was to resolve a puzzle about the duality between BPS WLs
in ABJM theory [28] and the probe F-string theory in the dual type IIA string theory on
AdS4×CP

3 background. 1/6-BPS bosonic WLs in ABJM theory was constructed in [29–31].
However there are probe F-string solutions [29,31] in AdS4×CP

3 which are half-BPS and quite
reasonably dual to WLs. But no such half-BPS WLs are found among the above 1/6-BPS
bosonic WLs. The construction of half-BPS fermionic WLs by Drukker and Trancanelli [27]
satisfactorily resolved this problem. Later 1/6-BPS fermionic WLs in ABJM theory were
constructed in [32, 33]. For special choice of the parameters in the constructions, such WLs
will go back to the previously found 1/6-BPS bosonic WLs or half-BPS WLs. It was proposed
in [34] that a generic 1/6-BPS fermionic WL is dual to an F-string with supersymmetric mixed
boundary conditions.

One naturally wonders whether similar BPS fermionic WLs exist in four-dimensional
superconformal gauge theories. In [35] we provided a positive answer to this question by
explicitly constructing in four-dimensional N = 2 superconformal SU(N) × SU(N) quiver
theory and N = 4 SYM. In each theory, we constructed two types of fermionic BPS WLs
that preserve some supersymmetries. The first type consists of WLs along an infinite timelike
straight line in Lorentzian signature, which preserve one or more Poincaré supercharges. The
second type consists of WLs along a circular contour in Euclidean signature, which preserve
one or more linear combinations of Poincaré and conformal supercharges. Every fermionic
WL belongs to the same Q-cohomology class as a bosonic half-BPS WL that shares the
same supercharge Q. If we assume that this cohomological equivalence also holds true at the
quantum level, we can predict that the fermionic BPS WL has the same expectation value as
the bosonic one.

The aim of the present work is to investigate fermionic BPS WLs along more general con-
tours by employing Zarembo’s construction. One notable feature of the fermionic Zarembo
loops is that the connections are supersymmetric invariant, whereas the supersymmetric vari-
ations of the connections of typical fermionic BPS WLs constructed previously are covariant
total derivatives2. The number of preserved supersymmetries by the WL depends on the
choice of the contour and parameters in the connection. Similar to previously constructed
WLs, there exists a cohomological equivalence relation between the fermionic and bosonic
Zarembo loops. In N = 4 SYM, we verify the cohomological equivalence relation up to or-
der g4 in the perturbation theory. Our results provide new insights into the structure and

1This restriction leads to the Wu-Mandelstam-Leibbrandt prescription of reguralization [22–24].
2The connection in this covariant derivative is just the connection used to define the WL.
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properties of BPS WLs in four-dimensional superconformal gauge theories.
The paper is organized as follows. In section 2 we review Zarembo’s construction. Then

we present our construction of fermionic Zarembo loops in N = 4 SYM and compute their
expectation values to order g4 at finite N . In section 3 we construct fermionic Zarembo loops
in N = 2 superconformal SU(N) × SU(N) quiver theory and discuss their supersymmetry
properties. Section 4 concludes with some remarks. Appendix A contains some conventions
and useful formulas.

2 Fermionic supersymetric WLs in N = 4 SYM

2.1 Zarembo loop

Let us begin by briefly reviewing Zarembo’s construction [13]. The Euclidean action of N = 4
SYM with gauge group SU(N) is

SN=4 =

∫

R4

d4x

(

1

2
Tr (FMNF

MN ) + iTr (ΨcΓMDMΨ)

)

. (1)

The ΓM ’s are ten-dimensional gamma matrices. We use the index conventions M,N = 0, ..., 9
and I, J = 4, ..., 9. Ψ satisfies the chiral condition Γ0123456789Ψ = Ψ and Ψc = ΨTC is the
charge conjugation of Ψ. For more detailed conventions, please refer to Appendix A. The
action is invariant under the superconformal transformations:

δAM = −iξcΓMΨ,

δΨ =
1

2
FMNΓMNξ − 2ΓIAIϑ.

(2)

where ξ = θ + xµΓµϑ with µ = 0, ..., 3. ξ satisfies the chiral condition Γ0123456789ξ = ξ. The
constant spinors θ and ϑ generate Poincaré supersymmetry transformations and conformal
supersymmetry transformations respectively. In N = 4 SYM, a natural generalization of the
ordinary WL is the Maldacena-Wilson loop:

W =
1

N
TrP exp

(

ig

∫

C

dτ(Aµẋ
µ(τ) + i|ẋ|ΘI(τ)AI)

)

. (3)

Local supersymmetry requires the norm of ΘI to be one. One simple example of a globally
supersymmetric WL is the one with C a straight line and ΘI ’s being constants. A remarkable
generalization has been proposed by Zarembo [13]. The Zarembo loops are defined by

ΘI(τ) =M I
µ

ẋµ

|ẋ| . (4)

where M I
µ is a constant projection matrix:

M I
µM

J
ν δIJ = δµν . (5)

Considering Poincaré supersymmetry variation of the loop, some supersymmetries will be
preserved if the equation

ẋµ
(

Γµ + iΓIM
I
µ

)

θ = 0, (6)
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has nontrivial solutions. When the contour is a generic curve in R
4, θ satisfies four constraints

(

Γµ + iΓIM
I
µ

)

θ = 0, µ = 0, 1, 2, 3, (7)

and the WL is 1/16 Poincaré BPS. When the contour of the loop is inside a subspace R
n,

there are n independent constraints and the loop is 1/2n BPS3. Especially, if the operator
lies on a straight line there is only one constraint equation on θ so it is 1/2 BPS. Zarembo
loop operators on non-straight curves can only be constructed in Euclidean signature. The
reason is that if there is more than one constraint equation, at least one of them corresponds
to a space direction and contradicts the real condition of the spinor in Lorentz signature [36].
Therefore in this work, we focus on WL operators in Euclidean space.

2.2 Fermionic loop

We now generalize Zarembo’s construction by including coupling to the fermionic fields in
N = 4 SYM. The connection contains both bosonic and fermionic components. BPS fermionic
WLs along a straight line were constructed in [35]. The fermionic component can be obtained
by acting on a specific linear combination of the scalars with a supersymmetry generator Qs

that preserves the loop. The fermionic supersymmetry generator Qs is defined as δθ = χQs,
where the bosonic spinor s is related to θ as θ = χs and χ is a real Grassmann variable.

To construct a BPS WL on a non-straight curve, we start with a bosonic connection

Lbos = gẋµ(Aµ + iM I
µAI), (8)

which is Qs-invariant. When s is constrained by at least two projection equations, i.e.

(

Γµ1
+ iΓIM

I
µ1

)

s =
(

Γµ2
+ iΓIM

I
µ2

)

s = 0, (9)

one can prove that
scΓMs = 0, (10)

by using the SO(4)× SO(6) symmetry (and parity invariance if needed) to transform M I
µ to

a simple form δµI−4. Therefore we find

Q2
sAM = Qs(−iscΓMΨ) = 0. (11)

A supersymmetric fermionic loop can be constructed as

Wfer =
1

N
TrP exp

(

i

∫

C

Ldτ

)

, (12)

with a Qs-invariant connection

L = Lbos + g|ẋ|Qs(m
I(τ)AI) = Lbos − ig|ẋ|mI(τ)scΓIΨ. (13)

For the BPS WL constructed in [35], its connection transforms under supersymmetry as a
covariant derivative. However, for the BPS WL we constructed here, its connection itself

3Precisely speaking, Zarembo only investigated the Poincaré supercharges preserved by these WLs. The
counting of the supercharges in this and the next subsections is only for Poincaré supercharges as well.
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is supersymmetric invariant. Therefore, we can directly use the trace to construct the WL,
without the need to construct supermatrices and take the supertrace as in the case of [35].

When the contour is a generic curve in R
4, the WL is 1/16 BPS. When the loop lies

in a subspace, we would like to find all the u such that QuL = 0. To be concrete, we take
M I

µ = δI−4
µ . When the WL is inside the 01 plane, s is constrained by two projection equations:

(1 + iΓ04)s = (1 + iΓ15)s = 0, (14)

and u satisfies the same constraints because QuLbos = 0. When m4 = m5 = 0, QuL =
QuQs(m

IAI) = 0 requires
mIscΓ45Iu = 0, (15)

so the solution space of u is three-dimensional and the WL is 3/16 BPS. Otherwise, the
solution is u ∝ s, which can be derived from the vanishing of the F0P and F1P terms, and
the WL is 1/16 BPS.

When WLs lie along the 012 subspace, s and u are constrained by three projection equa-
tions. Therefore scΓIJKu 6= 0 only if {I, J,K} = {4, 5, 6} and scΓ456u = 0 only if u ∝ s. So
when m4 = m5 = m6 = 0, the WL is 1/8 BPS. Otherwise, the WL is 1/16 BPS.

2.3 Expectation values in perturbation theory

The fermionic Zarembo loop is classically Qs-cohomological equivalent to the bosonic one:

1

N
TrP exp

(

i

∫

C

Ldτ

)

− 1

N
TrP exp

(

i

∫

C

Lbosdτ

)

= QsV, (16)

where V can be constructed as

V =
1

N

∞
∑

n=1

TrP
(

ei
∫
Lbosdτ

∫

τ1>τ2>...>τn

dτ1dτ2...dτnΛ(τ1)F (τ2)...F (τn)

)

,

Λ = mIAI , F = QsΛ.

(17)

If the Qs-cohomological equivalence holds at the quantum level, the expectation values of
the bosonic and fermionic loops should be equal. The expectation values of the bosonic
Zarembo loops are known to be exactly one [14–16]. In this subsection, we compute the
expectation value of the fermionic Zarembo loop to order g4 in perturbation theory to test
the Qs-cohomological equivalence. We will use regularization by dimensional reduction [37]
as in [6]. We do not take the planar limit in this computation.

Let us first review the calculation of the vacuum expectation value of the bosonic loop
in [13]. In the Feynman gauge, the tree-level propagators take the form

〈A(x)aMA(y)bN 〉0 = δabδMND(x− y), (18)

〈Ψ(x)aΨ̄(y)b〉0 = iδabΓµ∂µD(x− y). (19)

Although the explicit forms of the propagators will not be necessary for our discussion below,
we give the tree level and one-loop corrected propagators in regularization by dimensional
reduction for completeness in Appendix A and the explicit form of D(x) in 2ω dimensions is

D(x) =
Γ(ω − 1)

4πω
1

(x2)ω−1
. (20)
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Lbos

Lbos

Figure 1: Feynman diagram for the bosonic loop at order g2.

At order g2, the Feynman diagram depicted in figure 1 vanishes because

Tr 〈Lbos(x1)Lbos(x2)〉0 ∝ ẋµ1 ẋ
ν
2(δµν − δIJM

I
µM

J
ν )D(x1 − x2) = 0. (21)

Because of the same reason, diagram (b) in figure 2 is zero. The one-loop propagators are

〈A(x)aµA(y)bν〉1 = g2Nδab
Γ(ω − 1)Γ(ω − 2)

32π2ω(2ω − 3)

(

δµν
((x− y)2)2ω−3

− ∂µ∂ν(((x− y)2)4−2ω)

8(ω − 3)(ω − 2)

)

,

(22)

〈A(x)aIA(y)bJ〉1 = g2NδabδIJ
Γ(ω − 1)Γ(ω − 2)

32π2ω(2ω − 3)

1

((x− y)2)2ω−3
, (23)

〈Ψ(x)aΨ̄(y)b〉1 = −ig2NδabΓ(ω − 1)Γ(ω − 2)

8π2ω
(xµ − yµ)Γµ

((x− y)2)2ω−2
. (24)

Because the one-loop scalar and vector propagators are equal up to a total derivative, diagram
(a) in figure 2 vanishes. To compute diagram (c), we use

〈Tr (Lbos(x1)Lbos(x2)Lbos(x3))Tr (∂MAN (x)[AM (x), AN (x)])〉0 = 0, (25)

where the convention ∂I = 0 is used. Here when one Lbos is contracted with ∂MAN and
another Lbos with A

N , one can find that the result is proportional to δNµ δνN −M I
µM

J
ν δIJ = 0

and thus diagram (c) vanishes. Therefore the vev of the bosonic loop equals unity up to order
g4.

For the fermionic loop, we need to consider diagrams with fermion insertions. We assume
that the parameters mI ’s are independent of g. At order g2, the Feynman diagram depicted
in figure 3 vanishes:

Tr 〈
∫

dτ1>2gm
I(τ1)s̄ΓIΨ(τ1) gm

J (τ2)Ψ̄(τ2)ΓJs〉0

=ig2N

∫

dτ1>2m
I(τ1)m

J (τ2)s̄ΓIΓ
µΓJs∂µD(x1 − x2)

=0,

(26)

where we have used scΓMs = 0 and scΓM1M2M3
s = 0.
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Lbos

Lbos

1-loop

Lbos Lbos

Lbos Lbos

Lbos

Lbos

Lbos

a b c

Figure 2: Feynman diagrams for the bosonic loop at order g4. Diagram (b) represents all
distinct types of contractions including non-planar contributions.

F

F

Figure 3: Feynman diagram involving F at order g2.

F

F

F

Lbos

FF Lbos

F Lbos

1-loop

F F

F F

a b c d

Figure 4: Feynman diagrams involving F at order g4. Diagrams (b) and (c) represent all
distinct types of contractions including non-planar contributions.
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The order g4 Feynman diagrams involving F = −imI s̄ΓIΨ are shown in figure 4. Since
the one-loop fermion propagator is proportional to xµΓµ as the tree-level one, diagram (a)
does not contribute. Diagrams (b) and (c) vanish for the same reason. Diagram (d) vanishes
because it contains the following structure:

ẋµscΓKΓρ(Γµ + iM I
µΓI)ΓνΓ

Js = 0, (27)

where we have used scΓMs = scΓM1M2M3
s = 0 and the anti-communication relations of the

gamma matrices to move (Γµ+ iM
I
µΓI) to the place just before s. Then ẋµ(Γµ+ iM

I
µΓI)s = 0

has been used. Therefore the expectation value of the fermionic Zarembo loop is trivial and
the Qs-cohomological equivalence is confirmed up to order g4.

2.4 WL with conformal supersymmetries

The WL constructed above typically does not preserve conformal supersymmetry. How-
ever, for a circular contour, the WL may preserve conformal symmetry. In this section,
we will provide an example which is a generalization of one special 1/4-BPS bosonic loop
studied in [38] being also a special case of Zarembo loops. Let us consider WLs on a circle
(x0, x1, x2, x3) = r(cos τ, sin τ, 0, 0). We start with the bosonic connection:

Lbos = g(ẋµAµ + ir cos τA4 + ir sin τA5). (28)

Referring to the Poincaré supersymmetry generator notation, we employ Sv with a bosonic
spinor v to represent the superconformal generator. The preserved supersymmetries by Lbos

satisfy

(− sin τΓ0 + cos τΓ1 + i cos τΓ4 + i sin τΓ5)(s+ r(cos τΓ0 + sin τΓ1)v) = 0. (29)

The result is
(1 + iΓ14)s = (1− iΓ05)s = (1 + iΓ14)v = (1− iΓ05)v = 0, (30)

so Lbos preserves four Poincaré supersymmetries and four conformal supersymmetries. We
take F = g|ẋ|m6(τ)QsA6 = −igrm6(τ)scΓ6Ψ. As discussed in subsection 2.2, the connection
L = Lbos + F preserves Qu with scΓ456u = 0.

Acting Sv on F we get

SvF =− i

2
grm6scΓ6Γ

MN (r cos τΓ0 + r sin τΓ1)vFMN + 2igrm6scΓ6Γ
JvAJ . (31)

We find F preserves Sv with v ∝ Γ6s. Therefore the WL associated with the connection L
preserves three Poincaré supercharges and one conformal supercharge, so it is 1/8-BPS.

3 Fermionic Zarembo loops in N = 2 superconformal SU(N)×
SU(N) quiver theory

In this section, we construct fermionic Zarembo loops in the N = 2 superconformal SU(N)×
SU(N) quiver theory which can be obtained via orbifolding N = 4 SYM by Z2. There are

9



two N = 2 vector multiplets for the two gauge group factors. The component fields can be
arranged into 2× 2 block matrices:

Am =

(

A
(1)
m 0

0 A
(2)
m

)

, m = 0, ..., 5,

λα =

(

λ
(1)
α 0

0 λ
(2)
α

)

, α = 1, 2,

(32)

where Aµ with µ = 0, ..., 3 is the gauge field and A4,5 are two real scalars. We use six-
dimensional spinorial notations for the spinors. The gaugino fermions λ1 and λ2 are SO(6)
Weyl spinors of chirality −1 for Γ012345. There are also two bifundamental hypermultiplets
with component fields:

qα =

(

0 q(1)α

q(2)α 0

)

, ψ =

(

0 ψ(1)

ψ(2) 0

)

, (33)

where q1,2 are complex scalars and ψ is an SO(6) Weyl spinor of chirality +1 for Γ012345. The
Euclidean action of the N = 2 gauge theory is

SN=2 =

∫

d4x

(

Tr (
1

2
FmnF

mn+iλ̄αΓmDmλα+2DmqαD
mqα+2iψ̄ΓmDmψ

−2
√
2gλ̄αAqαTaψ+2

√
2gψ̄Taq

αλAα )+2g2Tr (qαT
aqβ)Tr (qβTaq

α)

−g2Tr (qαTaqα)Tr (qβT aqβ)
)

, (34)

where T a are the generators of the gauge group. We define λ̄α as λ̄α = −ǫαβλcβ where ǫαβ

is the antisymmetric symbol with ǫ12 = 1. The fermions ψ and ψ̄ are independent. The
N = 2 superconformal symmetry is still preserved when one leaves the orbifold point by
independently varying the coupling constants for the two factors of the gauge group. The
two coupling constants can be written as:

g =

(

g(1)IN 0

0 g(2)IN

)

, (35)

where IN denotes the N ×N identity matrix. The definitions of the covariant derivatives are

Dµλ = ∂µλ− ig[Aµ, λ], (36)

Dµq
α = ∂µq

α − igAµq
α, (37)

Dµqα = ∂µqα + igqαAµ, (38)

DµΨ = ∂µΨ− igAµΨ. (39)
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The N = 2 superconformal transformations are:

δAm = −iξ̄αΓmλα = iλ̄αΓmξα,

δqα = −i
√
2ξ̄αψ,

δqα = −i
√
2ψ̄ξα,

δλAα =
1

2
FA
mnΓ

mnξα+2igqαT
Aqβξβ − igqβT

Aqβξα−2AA
a Γ

aϑα,

δλ̄αA = −1

2
ξ̄αFA

mnΓ
mn−2igqβT

Aqαξ̄β + igqβT
Aqβ ξ̄α+2ϑ̄αAA

a Γ
a,

δψ = −
√
2Dmq

αΓmξα−2
√
2qαϑα,

δψ̄ =
√
2ξ̄αΓmDmqα−2

√
2ϑ̄αqα,

(40)

where ξα = θα + xµΓµϑα has chirality −1 for Γ012345 and the index a = 4, 5. The constant
spinors θα and ϑα are parameters associated with Poincaré supersymmetry and conformal
supersymmetry respectively.

There are only two real adjoint scalars in the N = 2 theory. One can define a planar
bosonic Zarembo loop:

Wbos =
1

2N
TrPei

∫
dτLbos(τ), Lbos = gẋµ(Aµ + iMa

µAa). (41)

Without loss of generality, we choose a contour inside the 01 plane and take Ma
µ = δaµ+4. The

Poincaré supersymmetries preserved by this bosonic WL satisfy

ẋµ
(

Γµ + iΓaM
a
µ

)

θα = 0. (42)

Parameterizing θα as θα = χsα with a real Grassmann number χ, we find

(1

2
+
i

2
Γ04

)

sα =
(1

2
+
i

2
Γ15

)

sα = 0. (43)

For each α there is only one linearly independent solution and s1 ∝ s2. So the WL preserves
two supersymmetries.

The connection of the fermionic loop can be constructed as a supermatrix

L = Lbos + F, (44)

where the fermionic part takes the form:

F = g|ẋ|(ζcψ + ψ̄η), ζc =

(

ζ(1)cIN 0

0 ζ(2)cIN

)

, η =

(

η(2)IN 0

0 η(1)IN

)

. (45)

The bosonic spinors ζ and η satisfy

(1

2
+
i

2
Γ04

)

ζ =
(1

2
+
i

2
Γ15

)

ζ =
(1

2
+
i

2
Γ04

)

η =
(1

2
+
i

2
Γ15

)

η = 0, (46)

and they can depend on τ .
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We define the fermionic supersymmetry generator Qs as δθ =
√
2χQs by extracting a real

Grassmann number χ. For any sα satisfying (43), we have QsF = 0. Therefore we can define
a BPS WL by using a trace or supertrace:

Wtr =
1

2N
TrP exp

(

i

∫

C

Ldτ

)

, or Wstr =
1

2N
sTrP exp

(

i

∫

C

Ldτ

)

. (47)

Both of them preserve two Poincaré supersymmetries. It is straightforward to show that F
can be constructed by acting Qs on a linear combination of qα and qα, so the The fermionic
Zarembo loops are classically Qs-cohomological equivalent to the bosonic one.

4 Conclusion and discussions

In this paper, we have constructed fermionic Zarembo loops in four-dimensional N = 4 SYM
and N = 2 superconformal SU(N)×SU(N) quiver theories. These loops are generalizations
of the bosonic Zarembo loops. In the construction, we strongly made use of special properties
of Poincaré supercharges preserved by the bosonic Zarembo loops. We examined how the
choice of contour and connection parameters affects the number of supersymmetries preserved
by the fermionic Zarembo loops. We have shown that the fermionic Zarembo loops are
cohomologically equivalent to the bosonic ones and computed their expectation values in
perturbation theory up to order g4 in N = 4 SYM. We have also discussed the possibility of
preserving conformal supercharges.

Our results provide new examples of BPS WLs in four-dimensional superconformal gauge
theories. They also raise some open questions and potential extensions of our work. It would
be interesting to study the holographic duals of the fermionic Zarembo loops in IIB superstring
theory on AdS5 × S5 or its orbifold background. It would be worthwhile to consider other
generalizations of known fermionic BPS WLs such as possible fermionic DGRT loops.

Both N = 4 SYM and ABJM theories are integrable in the planar limit. If we insert
a composite operator inside the WL, the WL provides boundary conditions/interactions for
the open spin chain from the composite operator. Half-BPS WLs in both theories lead to
integrable open spin chains [39–41]. The correlation function of a WL and a single trace
operator which is an eigenstate of the dilatation operator is proportional to the overlap of a
boundary state and a Bethe state. For half-BPS WLs in the antisymmetric representation
in N = 4 theory, such boundary states are integrable in the planar limit [42]. For bosonic
1/6-BPS WLs and half-BPS WLs in the fundamental representation in ABJM theory, such
boundary states are integrable at least at tree level in the planar limit [43]. It is interesting
to study whether the fermionic BPS WLs constructed in [35] and this paper can lead to
integrable open chains and/or integrable boundary states.
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A Conventions and useful formulas

The action of N = 4 SYM in Euclidean signature is:

SN=4 =

∫

d4x

(

1

2
Tr (FMNF

MN ) + iTr (Ψ̄ΓMDMΨ)

)

. (48)

We split the ten-dimensional indices M,N,P = 0, ...9 into two groups: µ, ν = 0, 1, 2, 3 and
I, J = 4, ..., 9. We denote AM = (Aa

µ,Φ
a
I )T

a, Ψ = ΨaT a and ΓM = (Γµ,Γi). In Euclidean

signature Ψ̄ = ΨTC where C is the charge conjugation matrix. The field strength is defined
as

FMN = ∂MAN − ∂NAM − ig[AM , AN ] . (49)

And the covariant derivative is defined as

DMΨ = ∂MΨ− ig[AM ,Ψ] . (50)

Following the conventions in [35], we use the representation for the ten-dimensional gamma
matrices:

Γm
(10) = I4 ⊗ Γm

(6), m = 0, ..., 5,

Γp
(10) = Γ10−p

(4) ⊗ Γ012345
(6) , p = 6, ..., 9.

(51)

The four-dimensional gamma matrices are

Γj

(4) =

(

0 −iσj
iσj 0

)

, Γ4
(4) =

(

0 I2
I2 0

)

, (52)

where σj’s denote the Pauli matrices. The six-dimensional gamma matrices are

Γ0
(6) =− σ2 ⊗ σ3 ⊗ σ3,

Γ1
(6) =σ1 ⊗ σ3 ⊗ σ3,

Γ2
(6) =− I2 ⊗ σ1 ⊗ σ3,

Γ3
(6) =− I2 ⊗ σ2 ⊗ σ3,

Γ4
(6) =I2 ⊗ I2 ⊗ σ1,

Γ5
(6) =I2 ⊗ I2 ⊗ σ2,

(53)
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which were also used in section 3. The charge conjugate matrices can be defined as

C(4) =

(

iσ2 0
0 iσ2

)

, (54)

C(6) =

























0 0 0 0 0 0 0 1
0 0 0 0 0 0 −1 0
0 0 0 0 0 1 0 0
0 0 0 0 −1 0 0 0
0 0 0 −1 0 0 0 0
0 0 1 0 0 0 0 0
0 −1 0 0 0 0 0 0
1 0 0 0 0 0 0 0

























, (55)

C(10) = C(4) ⊗ C(6). (56)

The commutation relations and normalization of the generators of the Lie algebra su(N)
are,

[T a, T b] = ifabcT c, TrT aT b =
1

2
δab. (57)

The structure constants satisfy the identity

∑

c,d

facdf bcd = Nδab. (58)

Adding terms involving the ghosts and gauge fixing terms to the Euclidean N = 4 SYM
action, we get

Stotal
N=4 =

∫

d4x
1

2

(1

2

(

F a
µν

)2
+
(

∂µΦ
a
i + gfabcAb

µΦ
c
i

)2
+ iΨ̄aΓµ

(

∂µΨ
a + gfabcAb

µΨ
c
)

+ igfabcΨ̄aΓiΦb
iΨ

c − g2
∑

i<j

fabcfadeΦb
iΦ

c
jΦ

d
iΦ

e
j + ∂µc̄a

(

∂µc
a + gfabcAb

µc
c
)

+ ξ(∂µAa
µ)

2
)

.

(59)

The unrenormalized gluon and scalar propagators up to one-loop order in the Feynman
gauge using regularization by dimensional reduction can be found in [6]. Up to one loop
order, the gluon propagator in d = 2ω in momentum space is

∆ab
µν(p) = δab

δµν
p2

− g2N
Γ(2− ω)Γ(ω)Γ(ω − 1)

(4π)ωΓ(2ω)
· 4(2ω − 1)δab

δµν − pµpν/p
2

(p2)3−ω
. (60)

and the scalar propagator is

Dab
IJ(p) = δab

δIJ
p2

− g2N
Γ(2− ω)Γ(ω)Γ(ω − 1)

(4π)ωΓ(2ω)
· 4(2ω − 1)

δijδ
ab

(p2)3−ω
. (61)
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The fermion propagator to one loop order can be computed as

Sab(p) = −δab pµΓ
µ

p2
− g2

∫

d2ωl

(2π)2ω
−pµΓµ

p2

(

facdΓM
) −(pν − lν)Γ

ν

(p− l)2

(

fdcbΓM

) 1

l2
−pρΓρ

p2

= −δab pµΓ
µ

p2
−Nδabg2

∫

d2ωl

(2π)2ω
pµΓ

µ

p2
ΓM (pν − lν)Γ

ν

(p− l)2
ΓM

1

l2
pρΓ

ρ

p2

= −δab pµΓ
µ

p2
+ 8Nδabg2

∫

d2ωl

(2π)2ω
pµΓ

µ

p2
(pν − lν)Γ

ν

(p − l)2l2
pρΓ

ρ

p2

= −δab pµΓ
µ

p2
+ g2Nδab

Γ(2− ω)Γ(ω)Γ(ω − 1)

(4π)ωΓ(2ω)
· 8(2ω − 1)

pµΓ
µ

(p2)3−ω
,

(62)

where we have used
∫

d2ωl

(2π)2ω
1

(l2 + 2l · p+M2)A
=

Γ(A− ω)

(4π)ωΓ(A) (M2 − p2)A−ω
, (63)

and the Feynman parameterization formula

∏

i

A−ni

i =
Γ(
∑

ni)
∏

i Γ(ni)

∫ 1

0
dx1 · · · dxk xn1−1

1 · · · xnk−1
k

δ(1 −∑xi)
(
∑

iAixi
)

∑
ni

. (64)

The propagators in position space can be obtained via the Fourier transform

∫

d2ωp

(2π)2ω
eip·x

p2s
=

Γ(ω − s)

4sπωΓ(s)

1

(x2)ω−s
. (65)

The results are

∆ab
µν(x) = δabδµν

Γ(ω − 1)

4πω
1

(x2)ω−1

+ g2Nδab
Γ(ω − 1)Γ(ω − 3)

64π2ω(2ω − 3)

δµνx
2(2ω − 5) + xµxν(6− 4ω)

(x2)2ω−2
, (66)

Dab
IJ(x) = δabδIJ

Γ(ω − 1)

4πω
1

(x2)ω−1
+ g2NδabδIJ

Γ(ω − 1)Γ(ω − 2)

32π2ω(2ω − 3)

1

(x2)2ω−3
, (67)

Sab(x) = −iδabΓ(ω)
2πω

xµΓµ

(x2)ω
− ig2Nδab

Γ(ω − 1)Γ(ω − 2)

8π2ω
xµΓµ

(x2)2ω−2
. (68)
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four-dimensional N = 2 superconformal gauge theories, SciPost Phys. 14 (2023) 008,
[2205.01348].

[36] H. Ouyang, J.-B. Wu and J.-j. Zhang, BPS Wilson loops in Minkowski spacetime and
Euclidean space, Eur. Phys. J. C 75 (2015) 606, [1504.06929].

[37] W. Siegel, Supersymmetric Dimensional Regularization via Dimensional Reduction,
Phys. Lett. B 84 (1979), 193-196

[38] N. Drukker, 1/4 BPS circular loops, unstable world-sheet instantons and the matrix
model, JHEP 09 (2006) 004, [hep-th/0605151].

[39] N. Drukker and S. Kawamoto, Small deformations of supersymmetric Wilson loops and
open spin-chains, JHEP 07 (2006) 024, [hep-th/0604124].

[40] D. Correa, M. Leoni and S. Luque, Spin chain integrability in non-supersymmetric
Wilson loops, JHEP 12 (2018) 050, [1810.04643].

[41] D. H. Correa, V. I. Giraldo-Rivera and M. Lagares, Integrable Wilson loops in ABJM:
a Y-system computation of the cusp anomalous dimension, JHEP 06 (2023), 179,
[2304.01924].

[42] Y. Jiang, S. Komatsu and E. Vescovi, to appear.

[43] Y. Jiang, J.-B. Wu and P. Yang, Wilson-loop One-point Functions in ABJM Theory,
2306.05773.

18

http://dx.doi.org/10.1016/j.nuclphysb.2016.07.018
https://arxiv.org/abs/1511.02967
http://dx.doi.org/10.1007/JHEP03(2020)010
https://arxiv.org/abs/1910.04225
http://dx.doi.org/10.21468/SciPostPhys.14.1.008
https://arxiv.org/abs/2205.01348
http://dx.doi.org/10.1140/epjc/s10052-015-3834-6
https://arxiv.org/abs/1504.06929
https://doi.org/10.1016/0370-2693(79)90282-X
http://dx.doi.org/10.1088/1126-6708/2006/09/004
http://arxiv.org/abs/hep-th/0605151
https://arxiv.org/abs/hep-th/0605151
http://dx.doi.org/10.1088/1126-6708/2006/07/024
http://arxiv.org/abs/hep-th/0604124
https://arxiv.org/abs/hep-th/0604124
http://dx.doi.org/10.1007/JHEP12(2018)050
https://arxiv.org/abs/1810.04643
http://dx.doi.org/10.1007/JHEP06(2023)179
https://arxiv.org/abs/2304.01924
https://arxiv.org/abs/2306.05773

	Introduction
	Fermionic supersymetric WLs in N=4 SYM
	Zarembo loop
	Fermionic loop
	Expectation values in perturbation theory
	WL with conformal supersymmetries

	Fermionic Zarembo loops in N=2 superconformal SU(N)SU(N) quiver theory
	Conclusion and discussions
	Conventions and useful formulas

