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Abstract

Code is increasingly becoming a core data modality of modern machine learning research
impacting not only the way we write code with conversational agents like OpenAI’s ChatGPT,
Google’s Bard, or Anthropic’s Claude, the way we translate code from one language into
another, but also the compiler infrastructure underlying the language. While modeling
approaches may vary and representations differ, the targeted tasks often remain the same
within the individual classes of models. Yet, relying solely on the ability of modern models
to extract information from unstructured code does not take advantage of 70 years of
programming language and compiler development by not utilizing the structure inherent to
programs in the data collection. This detracts from the performance of models working
over a tokenized representation of input code and precludes the use of these models in the
compiler itself. To work towards the first intermediate representation (IR) based models, we
fully utilize the LLVM compiler infrastructure, shared by a number of languages, to generate
a 1.4T Llama 2 token dataset of LLVM IR. We generated this dataset from programming
languages built on the shared LLVM infrastructure, including Rust, Swift, Julia, and
C/C++, by hooking into LLVM code generation either through the language’s package
manager or the compiler directly to extract the dataset of intermediate representations from
production grade programs. Statistical analysis proves the utility of our dataset not only
for large language model training, but also for the introspection into the code generation
process itself as well as for training of machine-learned compiler components.
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1 Introduction

With the encapsulation of attention (Chorowski et al., 2015) in the modern transformer
architecture (Vaswani et al., 2017), the transformer has dominated many natural language
processing tasks, starting with the widely used BERT architecture (Devlin et al., 2018).
Adjacent fields, such as vision (Alayrac et al., 2022), and cross-modal models, such as natural
language to vision models, all have been transformed by the modern singular architecture
approach. Originally, due to the immense computational cost of training (Hoffmann et al.,
2022), models with full weights for further training were only sparsely available. Fine-tuning
for downstream tasks (Brown et al., 2020), or task suites (bench authors, 2023), allows
modern large language models to solve a wider array of modeling tasks. In the past few
years, there has been a Cambrian explosion in the availability of pre-trained capable models
for fine-tuning. There are currently a large number of open-source release of pre-trained
model series such as OPT (Zhang et al., 2022), Llama (Touvron et al., 2023a), Llama
2 (Touvron et al., 2023b), Pythia (Biderman et al., 2023), MPT Portes et al. (2023), and
the recently released StarCoder 2 (Lozhkov et al., 2024). The wider availability of model
weights, architectures, and training checkpoints has enabled the application and tuning of
these increasingly capable large language models for domains such as code.

Beginning with the first BERT models for code (Feng et al., 2020) and their extension to
graphs (Guo et al., 2020), code has remained a highly active data modality and has seen a
constant flurry of new ideas, interfaces, representations, and downstream tasks. Most recently,
the rise of instruction-tuned (Ouyang et al., 2022), and reinforcement learning-trained large
language models (Christiano et al., 2017) have enabled a completely new interface to these
models. For example, by conversing with a large language model for code (cha; bar), the
user prompts the model with their query, and the model then writes the prompted-for code.
This has, in turn, spawned an entire class of new prompting approaches specifically designed
for code, such as grammar-based sampling and sequential Monte-Carlo steering (Lew et al.,
2023). Approaches to the construction of large language models for code vary. Some large
language models use a base model, such as, e.g., Code Llama (Roziére et al., 2023), that is
fine-tuned through a general training corpus that only contains code (OpenAl, 2023; cla).
On the other hand, other models are only trained on code from the outset (cop; Roziere
et al., 2021; Szafraniec et al., 2023). We focus on the category of models for which one
utilizes a pre-trained base building block trained on a larger training corpus consisting of not
only code, to then fine-tune on a code-only code training corpus. Recently, several models
have appeared, such as Meta’s Code Llama (Roziere et al., 2023), Alphabet’s Codex (cod),
WizardCoder (Luo et al., 2023), and the large cross-institutional collaborations StarCoder (Li
et al., 2023; Lozhkov et al., 2024), and SantaCoder (Allal et al., 2023). All these share the
goal of assisting people in writing code but miss the opportunities afforded by combining the
properties of these powerful modern models (i.e., scale, capabilities, and adaptiveness) with
the established shared compilation infrastructure that has made programming languages
faster, more robust, and easier to use.

In several pieces of previous work (Haj-Ali et al., 2020; Kulkarni et al., 2013), this transfor-
mative potential was harnessed, machine-learned heuristic replacements developed, and in
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some cases (Trofin et al., 2021) the heuristics were upstreamed to the main LLVM codebase,
improving all code run through LLVM when the ML heuristics are enabled. Orthogonal to
the replacement of heuristics with machine learning, a large number of people have explored
the ordering of compiler passes (Cummins et al., 2022; Huang et al., 2020). While the learn-
ing of pass orderings was initially held back by the lack of easy-to-access, high-performance
reinforcement learning environments to validate new reinforcement learning strategies, this
has by now been addressed with the introduction of CompilerGym (Cummins et al., 2022).
In contrast, the learning of entirely new heuristics, optimization passes, and other compiler
components with large language models (Yang et al., 2023; Cummins et al., 2023) to realize
the transformative potential of the model class is held back partially by the lack of large
datasets of high-quality code to train such models properly. Models are only trained on
smaller datasets, such as Anghabench (da Silva et al., 2021), Exebench (Armengol-Estapé
et al., 2022), and HPCORPUS (Kadosh et al., 2023a), or sometimes rely on synthetic
benchmarks. Synthetic benchmarks can be aided by ML techniques (Cummins et al., 2017;
Tsimpourlas et al., 2023) and even closely match some properties of the corpora they are
trained on, but these techniques themselves still suffer from a small training set and can
only approximate the properties of production code. Small datasets lead to smaller, worse-
performing models and hence do not allow such compiler-focussed models to fully access the
fine-tuning paradigm utilized by modern large language models with their base models of
multiple billion parameters.

1.1 Contributions

Focusing on the paradigm of taking a pre-trained basic building block, we pose the question
"What does a modern, large code training dataset for compilers actually look like?” and
construct a high-quality dataset of a similar scale to existing LLM datasets solely at the
level of compiler intermediate representation. Within this context, we associate quality
with the usage of code, with code being used more often being of higher quality for our
purposes. Correctly being able to reason about very widespread code in production systems
is incredibly important for compiler work. In the short term, we believe our dataset will
enable the training of larger language models for compilers useful for a broader array of
downstream tasks after fine-tuning, and in the long-term enable use-cases such as direct
performance prediction to obtain a reliable runtime estimate without ever needing to run a
single line of code. To these goals, our paper makes the following contributions:

e The introduction of a 2.8 TB dataset of textual intermediate representation of the
shared LLVM compiler infrastructure encompassing production-grade programs
from Rust, Julia, Swift, and C/C++4. A broad overview of the size distribution
is shown in Figure 1.

e Preliminary large scale statistical analyses of LLVM-IR modules across mul-
tiple languages, demonstrating the utility of our dataset and tooling.

e Demonstration of the utility of ComPile for training large machine learning models
through quantification of size and approximate token counts.

e Open-sourcing of workflow and compiler tooling to construct massive-scale
code datasets, which are easy to install and ready for scalable deployment in HPC and
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Figure 1: Size distribution of LLVM intermediate representation (IR) bitcode within ComPile
before de-duplication within and among languages.

cloud environments. The statistics of the entire dataset constructable with the tooling
are available in the appendix A.

Public Dataset

BPE Tokens
L Llama 2 Tokens 10k 50k 50k 100k
anguage (billions) (billions)  (billions)  (billions) (billions)
(C] C 5 1 1 0.5 0.4
G C++ 47 11 6 5 4
julia  Julia 548 42 23 18 12
® Rust 736 137 90 79 69
Swift 20 3 2 1 1
Total 1355 195 122 104 88

Table 1: Token count of the encoded ComPile under varying vocabulary sizes, and considering
the tokenization of the data with Byte-Pair encodings (BPE), and tokenization
with the Llama 2 tokenizer.

2 Background

Building upon package ecosystems as sources of intermediate representation is ideal due to
the large amount of packaged high-quality code and the abstraction over the build systems
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Language Source Code Unoptimized IR Optimized IR X86 Assembly

define 132 @sum
(132 %0, i32 %1) {

%3 = alloca i32 sum:
; ; ; %4 = alloca i32 define i32 @sum push rbp
znt sun(int a, int b) store i32 %0, ptr %3 (i32 %0, i32 %1) { mov rbp, rsp
C return a+b: store i32 %1, ptr %4 %3 = add nsw i32 %1, %0 mov eax, esi
3 ’ %5 = load i32, ptr %3 ret 132 %3 add eax, edi
%6 = load i32, ptr %4 } pop rbp
%7 = add i32 %5, %6 ret
ret i32 %7
}
define i32 @a::sum define 132 Qa::sum
ub fn sum( : N ’ ;
P a: i32, b: i32 (i32 %a, 132 %b) { (i32 %a, 132 %b) { example: :sum:
-> i32 start: start: mov eax, edi
Rust ) a +1b ¢ %_0 = add 132 %a, %b %-0 = add i32 %a, %b add eax, esi
} ret i32 %_0 ret i32 %_0 ret
} }

Table 2: The transformations source code goes through into assembly through the compiler’s
LLVM intermediate representation. We collect the intermediate representation at
the unoptimized stage.

of individual projects. This abstraction is due to a common build wrapper that invokes
the individual build systems with the relevant configuration options. Package managers
are designed to install a set of packages that a user desires, abiding by some constraints
from some repositories. Each package manager often has its own repositories that are
built from source. The recipes used to build the included applications often specify exact
build steps to build a piece of software, including an exact and consistent specification
of dependencies needed to build said software. These package recipes can also often be
modified to perform some additional steps or to modify the build process itself. Some build
systems, such as cargo, are combined with package managers, allowing them to build a
piece of software and all of its dependencies that the build system supports installing itself.
Modifying these build processes allows us to take advantage of the dependency management
and other aspects of build recipes already present for a significant number of packages.
However, many build systems do not explicitly support custom modification of build recipes
or build-time configuration options, including compile flags. In this work, we choose to
specifically focus on utilizing package managers that explicitly allow setting compiler flags,
such as the from-source package manager Spack (Gamblin et al., 2015) that is focused on
high-performance computing (HPC).

In addition to utilizing package managers, we also take advantage of several aspects of the
LLVM compilation infrastructure (Lattner and Adve, 2004), particularly the Clang C/C++
frontend and LLVM-IR, the intermediate representation LLVM uses. The full process of
compilation, such as the one performed by Clang with LLVM during the compilation of
C/C++, is composed of three main stages: the frontend, the middle-end, and the backend.
The entire compilation process is exemplified in Table 2. A compiler frontend has the job of
taking a piece of source code, typically a single source file, sometimes called a translation
unit, and generating a module of intermediate representation that can then be processed
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by a compiler middle-end, such as LLVM. A module typically contains multiple functions,
referenced globals, and relevant metadata. Compiler intermediate representations, or IRs,
are designed to sit between the source programming language and the compiler’s output,
assembly. They are typically designed to be source-language and target-agnostic. This allows
code written to modify and process the IR to be reused across many languages and target
platforms. IRs typically also have additional properties that make them particularly amenable
for performing optimizations. LLVM-IR specifically enforces single static assignment (SSA),
where all variables are assigned exactly once and referenced multiple times. This makes certain
analyses much easier, such as dataflow analysis. LLVM uses its intermediate representation,
LLVM-IR, to perform optimizations and other operations related to lowering source code to
machine code in a manner that abstracts away most details of the target machine. Within
LLVM, the compiler middle-end operates over the IR produced by the frontend through a
series of grouped operations called passes. A pass is designed to perform a specific task,
such as removing dead code, simplifying the control flow graph, or combining instructions
that can be simplified. A pass pipeline is typically language and optimization-level specific.
It comprises a set of passes in a specific order run over the IR to optimize it for the desired
properties. After optimization, the compiler backend takes over, performing the necessary
tasks to transform the (mostly) target-agnostic IR into target-specific machine code that can
be executed on the target machine. The backend typically performs tasks such as instruction
selection, instruction scheduling, and register allocation. In addition, compiler backends also
often perform some small target-specific optimizations, such as peephole optimizations, to
further improve the characteristics of generated code. We compose our dataset, ComPile,
of LLVM-IR, as it gives a common framework across programming languages and target
platforms while also allowing us to perform a detailed analysis of the compiler middle-end.
These properties and more make LLVM-IR a great modality for a compiler-centric dataset
useful for compiler tasks such as program analysis, optimizations, and code generation.

3 Dataset Construction

The building of entire language ecosystems introduces its very own kind of problems, such
as “How can we build all packages while only manipulating a single builder file?”, “How
can we distribute the build process of all these packages across many nodes?” and in the
case of just in time (JIT) compiled languages “How well defined is the compilation of entire
packages?”. In this section, we describe in detail our workflow and all modifications to
the build systems of individual languages. A summary of our workflow can be seen in
Figure 2. To construct the IR database, we use a set of curated sources focusing on code
used in production systems. Individual sources are defined in . json files. While most
projects are hosted in repositories on GitHub, we also added sources consisting of archived
compressed source codes such as tarball files. The builders then ingest the information from
the project on its build system, either through the manifest information, which contains the
information on the building mechanism and commands, or through an ecosystem specific
manifest processed by a script into a complete package manifest. Next in the workflow is
the LLVM-IR extraction. Extracting IR depends on the way the IR is presented in the
curated source, as we will be described below. A deduplication stage removes exact or near
duplicate IR to eliminate common IR, or IR that does not improve the quality of our corpus,
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Figure 2: Individual components of the dataset collection tooling. (Curated Sources) The
set of sources comprised of package indices, and selected packages, ingested by the
ComPile Dataset Generation Pipeline. (Sources) acquire the source based upon
the provided package list, before the (Builders) built the package, and it is then
filtered, deduplicated, and its build process documented in the (IR Eztraction) to
arrive at the dataset.

which has established precedent in literature (Allamanis, 2019). A manifest that contains a
list of LLVM bitcode modules extracted from the project is then created. Leaning into the
shared LLVM compiler infrastructure, we are able to take advantage of existing LLVM tools
and LLVM passes to obtain information about the LLVM-IR modules. After building, IR
extraction, and deduplication, the dataset is then ready for downstream usage in analysis or
training capacities. !

3.1 Ecosystem-Specific Builders

We support extracting LLVM-IR from several large package ecosystems through many
different builders that each handle a specific ecosystem or build system. The major builders
that have been implemented are described below.

3.1.1 Rust

For extracting IR from Rust packages, we first extract a list of crates from the Rust Package
Repository (rus). The Rust Package repository has over 100,000 Rust packages that are all

1. Scripts and builders to reproduce the entire dataset are available under: github.com/llvin-ml/llvm-ir-
dataset-utils


https://github.com/llvm-ml/llvm-ir-dataset-utils
https://github.com/llvm-ml/llvm-ir-dataset-utils

(GROSSMAN ET AL.

buildable using a consistent build system, cargo, which makes the build process very feasible
to automate. Additionally, the process of listing packages in the repository serves as a filter,
preventing the ingestion of unused or experimental Rust code, which could otherwise feasibly
impact the IR distributions within the final corpus. We prioritize building crates from the
indicated git repository in the package repository as we found that git repositories often
have additional targets not included in the tar archives uploaded to the package repository
that yield more IR. We remove crates that point to the same git repository to improve build
times and prevent excessive duplication within the dataset. In addition to pulling from
a git repository, we also use the package repository provided tar archive as a fallback as
we found that many git repositories would fail to clone. For building each crate, we used
the native cargo build system. We first extract a list of targets and sub-packages from the
package manifest and then built each one with cargo rustc, specifying the appropriate
sub-package and target and passing the -—emit=11vm-bc flag to make cargo additionally
generate LLVM IR. We built Rust packages without any optimizations to ensure we get
unoptimized bitcode. This could feasibly impact the distribution of our dataset as Rust has
two high level Rust-specific IRs that are used to optimize Rust code before it is lowered into
LLVM-IR that do not perform optimizations without optimization flags. We leave analysis
of distribution shifts related to pre-LLVM optimizations to future work.

3.1.2 JuLia

To extract code from Julia, we used the official package registry (JuliaLang, a) as a source of
over 9000 packages. We then processed them using a custom pipeline to extract bitcode. Due
to the nature of Julia’s “ahead-of-time just-in-time” (AOT-JIT) design, the “compilation’
of a whole package is an ill-defined task. Julia only completely lowers a function to IR at
runtime when the function is called. This makes the extraction of bitcode for an entire
package difficult as every single function within a package has to be run with all potential
function signatures. However, there has recently been a large push to precompile packages
using PackageCompiler. jl (JuliaLang, b). The precompilation process involves completely
compiling a variety of often used functions within a package and caching them for later
use so the user experiences less wait time when using the package later. This is performed
automatically for many packages during the installation process. In addition to taking
advantage of IR generated during the precompilation process, we also run unit tests, if
available, to force the lowering of additional functions. To grab bitcode per package, we
implemented a custom hook in the compilation process?. We subsequently post-process the
produced files to only grab IR which contains actual code rather than serialized Julia data
structures. All the IR files for a package are gathered with the dependencies to capture all
uses of a function. This results in duplicate code, which is removed through a deduplication
pipeline. This process inevitably leaves some gaps in the collected IR. For example, we
are not capturing the function specializations exactly used in production code, instead
capturing the function specializations deemed important by the package authors in the
package compilation step and from the available unit tests. However, we believe these
nuances of the collection process do not impact the results presented in this paper or the
utility of the collected Julia code significantly.

9
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3.1.3 SWIFT

To prepare a list of Swift packages, we used the Swift Package Index (Swi), processing
all the GitHub repositories present in the packages list. We then cloned and built ev-
ery repository we found with Swift. Swift automatically resolved the dependencies that
it was able to and, by passing the flags ——emit-swift-module-separately -Xswiftc
--embed-bitcode, we are able to embed bitcode within the object files produced during the
compilation process for extraction later. To embed the bitcode correctly, we have to use
the -—emit-swift-module-separately flag to deactivate the default behaviour of swiftc
to emit partial modules, and only merging them later, which is incompatible with bitcode
embedding. While we were able to get some packages to build, our tooling is designed for a
Linux environment, and not the Swift-preferred MacOS environment. Although Linux has
Swift platform support, it does not have support for several of the closed-source dependencies
that many Swift packages require such as SwiftUL.

3.1.4 SPACK

To include HPC packages, we utilized the HPC package manager Spack (Gamblin et al.,
2015). Spack contains a large set of packaged applications, many of them C/C++, and it
lets the user specify the compiler toolchain and any compiler flags to use. In addition, the
packaging process in Spack serves as a quality filter for the dataset, as Spack selects for only
those HPC packages whose developers or users have opted to take steps to contribute their
software to Spack. Getting a package into Spack requires review on GitHub, and this tends
to select for popular HPC packages that people want to use. While Spack also contains
packages that use a significant amount of Fortran, we only extract bitcode generated from
C/C++, because most Fortran packages are not yet compatible with recent LLVM-based
Fortran frontend.

To build a corpus of IR from Spack, we start by extracting a list of packages. Spack supports
a variety of different package types, including Python packages and custom build systems,
many of which will not produce IR. We filter the packages by build system, including
only packages that use the common C/C-++ build systems CMake, Meson, Autotools, and
Makefiles. After we have a list of packages, we then concretize each package. Concretization
is the process of generating the fully satisfied dependency graph (including flags, build
options, microarchitecture targets, and optional dependencies) for each package. Spack can
optionally unify the dependency graph for packages to ensure that each dependency is built
only once, in one configuration, but we choose to concretize each package separately to allow
each package to have its own dependency configuration. This aids in error handling, and it
allows us to run the concretization process in parallel. If any package is incompatible with
another for a unified set of packages, concretization fails. If we allow packages to have their
own dependency versions, we can split up the process and handle individual failures more
gracefully. However, this methodology leaves us with many duplicate packages in addition
to dependencies that won’t produce any bitcode. We handle this by building all packages in
the same manner and passing all extracted bitcode through a deduplication pipeline.
After concretization, we build all packages with a custom build distribution system, starting
with leaf dependencies and continuing on as more and more packages have all of their
dependencies built. We build each package with clang while passing the compiler flags
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-Xclang -fembed-bitcode=all, which causes LLVM IR to be embedded as bitcode within
the generated object files. To extract IR from built packages, we direct Spack to keep
the build directory (which contains .o files, libraries, and other build artifacts) by passing
the --keep-stage flag. To allow for multi-node parallelism, we take advantage of Spack’s
buildcache feature, pushing all built packages to a buildcache so that any node within an
allocation can use a built package as a dependency. This allows us to distribute builds across
a large cluster and obtain a high degree of parallelism, significantly reducing overall build
time for the corpus.

3.1.5 INDIVIDUAL PACKAGES

In addition to collecting a significant number of packages available through specific ecosystems,
we also wrote additional tooling to allow for the collection of bitcode from individual curated
packages. We wrote scripts to build applications that use CMake, Autotools, and any other
build system that can be invoked through raw shell commands. These scripts work by
invoking the build system using the user-provided arguments along with some additional
flags. These additional flags include setting the compiler to clang to make bitcode extraction
possible and passing -Xclang -fembed-bitcode=all as C/C++ flags to ensure that bitcode
was inserted into the generated object files. The bitcode is then extracted from the object
files after the build completes which is available for further analysis. We collected bitcode
from several large applications not included in the existing package ecosystems that we
deemed to be high impact including Chromium, Firefox, and the Linux Kernel. These
programs each consist of upwards of tens of gigabytes of bitcode and contain production
code that is run virtually everywhere.

3.2 LLVM-IR extraction

The aim of our IR extraction approach is to extract IR immediately after the frontend,
before any LLVM optimization passes have run. This allows us to perform analysis on the
IR emitted directly after the frontend, and anywhere else in the optimization pipeline, as
we can perform optimization manually, and introspect the optimization pipeline itself. It is
important to note that there are certain languages, like Rust and Julia, that use language-
specific higher level intermediate representations for optimizations and other transformations
specific to the specific language that we are not able to introspect with this approach. The
process for extracting IR directly after the frontend differs significantly depending upon the
language with the necessary options and configurations for doing so being reported in the
build processes above. After the build process completes for a specific package we are left
with an assortment of bitcode in two different formats depending upon the build system:
bitcode embedded in object files or a collection of separate bitcode files. To extract the
bitcode into a structured corpus, we take advantage of the ml1-compiler-opt tooling from
MLGO (Trofin et al., 2021) as it is production-proven, and allows for the extraction of IR
object files by analyzing a structured compilation command database, or alternatively by
searching for all object files within the build directory. In addition, it also supports creating
a structured corpus from raw bitcode files by searching the build directory. The exact
strategy used is dependent upon the build system. Julia, and Rust directly emit bitcode.
Spack, CMake, Autotools, and manual builds are all currently set up to embed bitcode

10
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Deduplicated Licensed Licensed

Programming Language Bl(tgg;:le Bitcode Bitcode Text
(GB) (GB) (GB)

@ C 16 8 2 10
& C++ 109 74 29 103
julia Julia 200 184 164 1088
® Rust 656 580 400 1524
Swift 8 7 7 36
Total 990 853 602 2761

Table 3: Amount of bitcode contained in the public version of ComPile before and after
deuplication, and the size of the bitcode and associated textual IR for the public
version of ComPile.

in object files, but only CMake is able to provide a structured database of compilation
commands. Swift embeds bitcode but needs additional flags during IR extraction due to the
bitcode section naming within the object file differing from clang’s. During IR-extraction
we do not strip debug information if it is present as it can easily be stripped later and some
models need to have some debug information in their training corpus to be robust against it.
Some builders emit debug information more commonly than others, such as Rust where we
compile in debug mode by default to disable optimizations, but ultimately whether or not
debug information is present is project dependent. Finally, we specifically collect bitcode
rather than textual IR as LLVM supports reading bitcode produced by older versions of
LLVM but has no such support for textual IR, which is also easily produced by running
1lvm-dis over the collected corpus.

3.3 Deduplication

Training dataset deduplication can be important for the performance of several key model
characteristics (Allamanis, 2019; Kandpal et al., 2022). To this end, we deduplicate the entire
dataset presented in this paper at the module level by computing a combined hash of all
global variables and functions. To perform the hashing, we upstreamed the StructuralHash
to LLVM through the StructuralHashPrinterPass ®  °. The structural hashing process
only captures semantic details of the IR making it invariant against all changes that do not
impact the meaning of the IR other than function call names. In addition, the implementation
does not capture all semantic information, currently ignoring details such as attributes and
instruction dependencies which ensures that near-duplicates may be matched as well. We
chose to deduplicate at the module level as this ensures the majority of the duplicate code
is removed from the dataset while leaving all significant context within each module for
performing module-level tasks. This deduplication strategy prevents some tasks from being
performed, such as project-level tasks, which rely on a complete set of modules or metadata.

3. reviews.llvim.org/D158217
4. reviews.llvm.org/D158250
5. reviews.llvm.org/D158317
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The amount of data removed from the dataset through the deduplication process is heavily
language dependent. For example, Julia, a language where our decision to include bitcode
from package dependencies significantly increases the duplication rate, has a duplication
rate of approximately 40%. Other languages have significantly lower duplication rates.

3.4 Dataset Size

To analyze the size of the dataset, we directly gather the size of all bitcode files in the corpus
before and after deduplication. A 35% reduction in dataset size after dedupliction is observed.
While measuring the size of bitcode files gives some idea of the total size, it does not allow
for proper size comparisons to other datasets as LLVM bitcode is highly compressed. To
this end, we also compute the size of all textual IR in the dataset by measuring the size of
all disassembled bitcode files. We find that the size of textual IR is approximately 4.6 times
the size of the equivalent bitcode. Precise size figures for ComPile are available in Table 3.

3.5 License Filtering

To filter our closed-source dataset for permissively licensed projects, we filter the entire
database of projects compiler into ComPile for the MIT, Apache-2.0, the BSD-3-Clause,
and the BSD-2-Clause licenses. For this we obtain the license information from package
repositories, GitHub, and in part manually using the go-1icense-detector %, and distribute
provenance information, and license text along with the dataset to comply with terms.

4 Statistical Analysis

To characterize the dataset, its inherent statistical utility, and correlation to not only guide
development decision of compiler engineers, but also its utility for the training of large
language models, a number of statistical analyses are performed. The ability to explore, and
compare these analyses cross-language is a core novelty of our dataset to compiler engineers,
as well as to the construction of machine-learned compiler componentry.

4.1 Visualization of Properties

The function properties are computed using the upstream FunctionPropertiesAnalysis
pass in LLVM, which we modified © ® ¥ to give us a similar set of features to YaCoS (Filho
et al., 2018). To better understand the characteristics of the collected IR in terms of features
of the underlying source code, and of the language itself, several analyses are performed.

. https://github.com/go-enry/go-license-detector
. reviews.llvin.org/D157358
. reviews.llvim.org/D158018
. reviews.llvm.org/D158681
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Figure 3: Histograms of 8 different function properties. All function properties are analyzed
across all 5 languages, and show a similar left-skew in their count-statistics.
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Figure 4: Percentage of duplicate functions present between two languages as determined by
the newly upstreamd StructuralHash in LLVM with detailed hashing enabled.
All values are percentages.

4.2 Function Properties

In addition to looking at the combination of function properties, we also looked at several
function properties individually, comparing them across languages as shown in Figure 3. We
collected properties using LLVM’s FunctionPropertiesAnalysis pass, sampling 1,000,000
functions from each language contained within the dataset. All of these variables show the
same overall shape, a strongly left-skewed distribution, but the exact characteristics are
language dependent. In addition, most of these properties are correlated with the length of
the function under analysis, but show some distinct patterns depending upon the variable
under analysis such as the load instruction count and the floating point instruction count
where certain languages have a significantly longer tail than other languages, C and C++ for
load instructions, and C for floating point instructions. There are several other patterns such
as the significantly longer tail for C++ in regards to direct calls, suggesting small-function
idioms. The long-tail of top-level loops in C/C++ also suggests some information about
their usage.

4.3 Function Duplication

Furthermore, we performed an analysis quantifying function duplication within and between
languages and present our results in the heatmap shown in Figure 4. To compute function
duplication, we used a similar methodology to the one used for module-level deduplication
in the initial deduplication stage. We deduplicated using LLVM’s StructuralHash, but
for this analysis we looked at individual functions rather than the whole module. Within
the deduplicated data, some interesting patterns emerge. There is a much higher degree of

14



CoMPILE: A LARGE IR DATASET FROM PRODUCTION SOURCES

1.0
0.8 1
0.6 1
0.4 1
0.2 1
0.0 -

++ Julia Swift Rust

AddrSpaceCast
Alloca

BitCast

Br

Call
ExtractValue
GetElementPtr
ICmp

Invoke

Load

Other Instructions
Ret

Store

Figure 5: LLVM IR opcode distribution of the top ten operations across all languages
included in ComPile as computed by LLVM’s InstCount pass.

duplication within individual languages than there is between languages. We hypothesize
this is caused primarily by the following two factors: language idioms and function mangling.
There are often a significant number of idioms within a language such as getters and setters in
C++ that will often end up producing similar IR, causing a high degree of duplication within
a language. In addition to this, different languages use different mangling strategies, which
significantly decreases the duplication rate between languages for functions that involve
function calls as StructuralHash takes function names into account when evaluating call
instructions, on top of the names of the called functions potentially being different. However,
we do see more duplication between languages that share similar niches and compilation
strategies. There is a significant amount of overlap between C and C++ as they occupy
similar software niches and, when compiled with clang, share a compiler frontend and
middle end. We also see some overlap between C++ and Swift, suggesting some similarity,
potentially in language idioms. Next, we observe that there is virtually no overlap between
Julia and other languages, again supporting the hypothesis that Julia emits code significantly
different from other languages. Finally, we observe duplication between Rust and C++ in
addition to a smaller amount of duplication between Rust and C, but both are quite small.

4.4 Opcode Distribution

Next, we perform an analysis of the instruction distribution across languages. We use
the LLVM InstCount pass to count instructions at the module level and then aggregate
the total number of instructions per language. This pass ignores extraneous instructions
like debug instructions, but does count some LLVM annotations presented as intrinsics,
such as lifetime annotations, as call instructions. There are several interesting differences
between the frontends for various languages that we observed. For example, we observed that
Julia emits significantly less store instructions than other languages, but takes significant
advantage of instructions not within the ten most frequent instructions compared to other
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languages. Other differences, such as the significant number of return instructions in C++
suggest a large amount of small functions, which we also see to a lesser degree in Swift
and Rust, which share some OOP idioms. However, this could also be due to multi-exit
functions as a choice of the program or as a pattern within the source code. In addition, we
see that certain languages are the only ones to use specific instructions. For example, Julia
and Swift make extensive use of the BitCast instruction while C, C++, and Rust do not
use it. Finally, we observe an increase in call instructions after optimization, which is most
likely a result of inlining. It is important to note that an increase in call instructions only
describes the static count and the number of runtime call instructions would likely decrease.

4.5 Token Count

Finally, we performed experiments at different vocabulary sizes to gather approximate
token counts to determine the utility of our dataset for the code training of pre-trained
large language models with the results shown in Table 1. For these experiments we used
the Llama 2 tokenizer (Touvron et al., 2023b) to be able to compare ComPile’s size to
contemporary datasets. To further test the size of the dataset, we generated a vocabulary
from a subset of the dataset. We chose to use BPE tokenization (Sennrich et al., 2016)
as it is one of the most commonly used techniques for tokenization for LLMs and easily
adaptable to the textual component of our dataset. We gathered approximately 400 bitcode
modules from each language and disassembled them into IR, training a BPE tokenizer over
this data using fastBPE 1V, generating several different vocabulary sizes for the various
experiments. Finally, we used fastBPE to tokenize all the modules in our dataset after
disassembling them, counting the number of tokens generated and summing over the entire
dataset. Relative to the large size of our dataset in text form, approximately 2.8TB, we end
up with comparatively few tokens. We believe this is primarily due to the very formulaic
nature of IR where there are many long character sequences that will occur often enough to
be tokenized into a single token. We note that this is a very naive method of tokenizing a
language as structured as LLVM-IR but believe this serves as an appropriate estimate for
the number of tokens that one could expect to obtain from our dataset.

5 Related Work

There exist a number of related datasets of code for the training of machine learning models
in literature. Conceptually, we break these related datasets down into three main categories,
as shown in Table 4. Case 1 consists of datasets translating between two different codebases,
case 2 considers reference work which translates between two different languages by going
through the IR as an intermediate translation step, case 3 consists of a dataset of different
languages without the structure to translate from one language, to the other explicitly, and
case 4 consists of a number of source languages, compiled to the IR, which, to our knowledge,
only contains our dataset, ComPile, and the dataset used in the work of Cummins et al.
(2023). Most pretraining datasets for large language models (Li et al., 2022; Kocetkov
et al., 2022; Lozhkov et al., 2024; Markovtsev and Long, 2018) fall into the third category,
scraping source code from hosting services like GitHub, and GitLab with their expansive

10. https://github.com/glample/fastBPE
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Name of Dataset (S;; Pioagr:‘;:;g:g Case
The Stack 2.9 358 Languages Case 3
The Stack v2 32.1 358 Languages Case 3
ComPile (closed) 2.4 Rust, Swift, Julia, C/C++  Case 4
ComPile (public) 1.9  Rust, Swift, Julia, C/C++  Case 4
Code Llama 0.86 < 358 Languages Case 3
TransCoder 0.74 C++, Java, Python Case 13
AlphaCode 0.72 1 12 Languages Case 3
LLM for Compiler Opt. 0.001 C/C++ Case 4
TransCoder-IR 2 C++, Go, Java, Rust Case 2
HPCorpus 0.07 Fortran, C, C++ Case 3

Table 4: Related datasets to our newly introduced dataset are the Stack (Kocetkov et al.,
2022), the Stack v2 (Lozhkov et al., 2024), the datasets used for the training of Code
Llama (Roziere et al., 2023), TransCoder (Lachaux et al., 2020), AlphaCode (Li
et al., 2022), LLMs for Compiler Optimization (Cummins et al., 2023), and the
HPCorpus (Kadosh et al., 2023b). Code Llama, as well as AlphaCode, use filtered
subsets of GitHub Activity Data, where the filtering criteria of Code Llama are
not known. We break all related datasets down into 4 distinct cases: Case 1:
The translation between two programming languages, Case 2: The translation
between two programming languages through the intermediate representation
as an intermediate step, Case 3: A mix of different codebases from different
programming languages, and Case 4: A mix of different codebases from different
programming languages compiled to the intermediate representation.

index of individual repositories in all programming languages, and hence tend to produce
very extensive datasets which are only filtered for licensing issues, and then deduplicated,
but do not take the quality of the included code into account.

Relating to our dataset, datasets from the third class also do not guarantee that they, in
themselves, are compilable, and often contain auxiliary files such as documentation in Mark-
down. Another favored source of code within this category is programming competitions,
and while such code is inherently compilable, it bears little resemblance to code used in
production. In the case of modern large language models, the quality of the code is mitigated
by only using the data for fine-tuning (Brown et al., 2020), or further instruction-tuning with
reinforcement learning (Ouyang et al., 2022) to achieve the desired downstream behaviour.

Case 1 contains a number of recent datasets for models which transcode between two
programming languages, examples of which include Transcoder (Roziere et al., 2020), and
recent efforts like the one of IBM to translate COBOL to Java ibm. Depending upon the
specific methodology used for training, datasets for this case can look similar to datasets

1. This figure only includes the pretraining dataset for AlphaCode rather than the smaller competition
sourced fine-tuning dataset.

2. Size of training dataset not reported, and not reproducible. Dataset consists of 9.5B tokens, tokenized
with fastBPE (Sennrich et al., 2016).
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for case 2 when techniques like back-translation are employed for model training, but we
make the distinction here primarily on dataset usage. The extension of case 1 to translate
between two different programming languages by utilizing the intermediate representation
as an intermediate translation step transforms such a dataset into Case 2. The only example
of this known to the authors is Transcoder-IR (Roziere et al., 2023).

Complementary to these large pretraining-scale datasets, there exist a number of smaller,
more focussed datasets aimed at the fine-tuning of already pretrained large language mod-
els (Zhu et al., 2022; Li et al., 2022; Puri et al., 2021). These datasets are primarily collected
through data extraction from coding competitions (Li et al., 2022; Puri et al., 2021), or the
scraping of curated websites (Zhu et al., 2022). This guarantees a higher level of quality in
regards to buildability and structure for the included code, hence making them more optimal
for fine-tuning. However, the data collection methodology implicitly introduces a lack of
variety in the datasets. Coding competititon datasets might include a couple thousand
coding exercises which contain a great many solutions to the same exercises, but yet they
are only solving the very same set of coding problems. Optimizing for time-to-solution or
other narrow properties, such code also exhibits decidedly different characteristics to code
used in production, hence making these datasets markedly different to ComPile.
Specifically for the task of machine-learned compiler heuristics, and machine-learned compiler
componentry there exist a number of statistics-focussed (Kadosh et al., 2023a), compiler
heuristics-focussed (Armengol-Estapé et al., 2022), and autotuning-focussed datasets (da Silva
et al., 2021). Often beginning with the web-scraping of large amounts of code, these
approaches modify the resulting code in a number of ways. Examples include the modification
of arbitrary source files to make them compilable (da Silva et al., 2021), executable (Armengol-
Estapé et al., 2022), or abetting the statistical analysis of aspects of the code (Kadosh et al.,
2023a). ComPile, while being able to fulfill similar dataset demands, offers a number of key
advantages. The code in our dataset, by means of our dataset construction methodology,
consists only of compilable code, using the same compilation toolchain as used for production
deployments, of which the IR is collected before optimization, allowing for IR at any stage
of the compilation pipeline to be easily generated. This allows ComPile to go significantly
beyond the capabilities of previous compiler-targeted datasets.

6 Limitations and Future Work

The presented dataset introduces a large corpus of compiled high-quality code. While this
work has very good coverage of languages such as Rust, Swift, and Julia, we had to make a
number of implicit trade-offs in the construction of our dataset. Compared to a number of
other larger datasets such as the Stack 1 & 2 (Kocetkov et al., 2022; Lozhkov et al., 2024),
we decided to not pursue a number of avenues to obtain the same order of magnitude of
tokens, opening up a number of future avenues of work.

Following our approach to only include high-quality code in our dataset, we believe the
dataset could be significantly expanded by taking advantage of additional package ecosystems
such as those of Linux distributions. These ecosystems contain recipes with a consistent
format across all packages that describe the individual building steps and dependencies.
Some individual package ecosystems contain close to 1M recipes (AUR), and could hence
prove fruitful to the expansion of our IR database. Adopting the widely used approach of
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GitHub repository scraping, we could also envision filtering the list of repositories compilable
with LLVM-IR generation, adding to the corpus only those repositories of proven quality.
Filtering parameters such as the number of contributors, number of commits, and other
activity metrics could remove outlier repositories that do not contain high-quality code (e.g.,
homework assignments and abandoned code). However, we view this task as challenging
due to these repositories not abiding by a consistent format, having much higher variance in
their build systems, and hence being much harder to compile with a single builder. This
problem extends to the dependencies of said GitHub repositories. Not all the projects have
a consistent dependency specification, hence requiring either manual dependency resolution
or resolution in a highly complex automated fashion.

Furthermore, we did not include a number of other language-specific ecosystems due to
the inherent difficulties and fragmentation of their build systems. Haskell, for example,
builds on the LLVM compilation infrastructure and has a centralized package repository
with specified dependencies. Nevertheless, including it in this dataset proved infeasible due
to the complexity of Haskell’s dependency management which requires very specific Haskell
versions and highly specific dependencies with pre-specified versions. These convoluted
dependencies are almost impossible to be handled by the central builder schemes used in this
project. Other languages, like the HPC-language FORTRAN, did not see wider inclusion in
the dataset due to the varied compilation behavior of its multiple LLVM frontends. Added
complexity came from highly specific compilation flags for each FORTRAN project which
vary from compiler frontend to compiler frontend and from build system to build system,
hence making it impossible to compile with one central compilation approach. While we
could explore the integration of code from other datasets such as the Stack 2 (Lozhkov
et al., 2024), coding competition datasets (Li et al., 2022), and HPC-focussed datasets of
code (Kadosh et al., 2023a), these would still be subject to the same restrictions as in the
preceding paragraph. They would have to be filtered for code quality, their build systems
inspected for the amenability to a centralized builder, and for compiled languages such as
C/C++ and FORTRAN their compilation would have to utilize a LLVM-based compiler.

In future work, we seek to expand upon our approach to more closely align large language
models for code with compilation infrastructure. We will explore code-centric tokenization
as an opportunity to closely incorporate knowledge about the programming language and IR
structure. We believe that by departing from textual tokenization of the IR, as is beginning
to be explored in the literature (Guo and Moses, 2022; Szafraniec et al., 2023), we can
provide improved performance over the current state-of-the-art. Our primary motivations
for this belief include the fact that the distance between certain elements of IR, like attribute
groups, and relevant context, like their associated definitions, can easily exceed the context
length of most LLMs, in addition to the possibility for more compact tokenizations allowing
more context to be given to models. In using domain-specific tokenizations, we hope to
preserve more of the semantic structure of the IR throughout the tokenization, and hence
improve downstream model performance. This approach will hopefully be able to yield
small, performant models, which also retain the performance of larger models trained on
textual tokenization.

In follow-up work, we seek to further explore the statistical properties of the dataset such
as the distribution of code within the dataset, the impact on the distribution of code by
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different collection methods, and the performance impact of trained models these different
distributions end up having. Further influences to be quantified are the influence of the
dataset construction techniques, the influence of the sources of the dataset on the distribution
of the dataset, and most importantly the impact of distribution shifts in code datasets on
downstream model performance.

With a fast moving project like LLVM, there are often significant changes between versions.
Even within the rendition of the dataset presented here, there is bitcode from multiple
versions of LLVM depending upon the specific frontend used to compile a piece of code.
Many of these updates to LLVM involve significant changes to how IR, should be produced
by a compiler frontend, such as the change from typed to opaque pointers. Having a static
dataset means that the dataset becomes less relevant over time as LLVM evolves further.
We publish our tooling to produce the dataset which allows for the creation of a dataset
similar to this one produced with arbitrary frontend versions and leave it to future work to
quantify the impact that distribution shifts over time might have on the utility of a dataset
such as this one.

Beyond the training of large language models, we also envision extensive future use of the
dataset for the training of machine learned compiler components. First, machine learned
compiler heuristics have shown great promise (Trofin et al., 2021), but are held back by
limitations of current datasets. ComPile enables the metrics to be better trained, which has
shown ample performance improvement in practice with performance metrics sometimes
doubling from having access to large amounts of previously hard to gather IR. Going beyond
the improvement of existing machine learned compiler heuristics, the presented dataset could
furthermore make the training of heuristics such as e.g. the inlining-for-size in generic cases
much easier. While learned compiler heuristics only touch individual stages of the compilation
pipeline, ComPile enables much more far-reaching work on performance evaluations of LLMs
as models of entire compilation pipelines, which has only been explored on small datasets
previously (Guo and Moses, 2022; Mannarswamy and Das, 2022). ComPile is much broader
in scope than the previously tested datasets, and our data collection approach allows for
the collection of IR at any point of the compilation pipeline through simple postprocessing
pipelines, hence enabling entirely new avenues of LLM compilation pipelines research.

The developed dataset collection, and compilation tooling is also to be further explored
in future work. Its extensible pipeline could potentially be used to automatically execute
a plethora of unit tests and benchmarks throughout the build system, and hence much
better verify the individual stages of compilation and IR transformations. Extended with
function instrumentation, and replay tooling (Castro et al., 2015), future derivatives of
ComPile could also include function inputs, and expected outputs along with extracted
functions to allow for fine-grained performance introspection on a grand scale, which is
currently impossible. Potential future results of such fine-grained introspection throughout
the compilation pipeline, and across programming languages include better performance
prediction without needing to compile a single line of a program, better evaluation of the
performance impact on individual compiler optimizations, and performance improvement
through better compiler-generated code.
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7 Conclusion

In this paper we present ComPile, a novel dataset of LLVM-IR collected from a number of
package ecosystems consisting of large production-grade codebases. It is significantly larger
than previous finetuning-focussed, and compiler-focussed code datasets, albeit smaller than
large language model-focussed code pretraining datasets. Statistical analysis of the collected
dataset is performed, and differences in the IR properties of the collected IRs between
languages are being shown. ComPile’s increased size in combination with its quality-focused
construction methodology not only enables the systematic evaluation of previous work,
but opens up entirely new avenues of research for IR-centric machine learning, and most
specifically machine-learned compiler componentry for which the scale of this dataset paves
the way to an entirely new generation of machine learning models for compilers.

Broader Impact Statement

The ComPile dataset will have the largest impact in machine learning for compilers, where
it constitutes the first large language model scale dataset of compiler representation. It will
hopefully enable wider progress in the application of machine learning to compilers, and the
design thereof.

The potential uses of the dataset may benefit a large user base due the ubiquitous use of
LLVM across compilers in industry such as the ones from Apple, Intel, IBM, and AMD,
as well as LLVM’s just-in-time (JIT) compiler, which used by a number of programming
languages such as Julia, and the widely-used Python. Each optimization, heuristic, or
learned pass ordering will in some capacity apply to all of these, and hence be for the broad
benefit of all. While the, repeated, building of ComPile snapshots leads to a short-term
increase in greenhouse gas emissions, the exact amount is hard to quantify due to varying
datacenter efficiency. This is expected to be offset by the long-term benefits brought about
by better compiler heuristics, and machine learning-improved compiler infrastructure trained
on ComPile, whose impact is compounded by the widespread use of the LLVM compiler
infrastructure.

There are important considerations made in the construction of ComPile to respect the
licenses of the software packages ComPile is built from. The dataset is filtered for permissive
licenses, as outlined in subsection 3.5, and licenses are distributed alongside with the dataset.
In addition, the public release of the dataset went through the rigorous internal release
review of Lawrence Livermore National Laboratory (LLNL).

We would encourage further work into the biases inherent to the dataset, and its internal
distribution of intermediate representation sources. Its construction is a conjunction of our
best effort to represent the wider usage of LLVM across programming languages, and the
ability to extract intermediate representation from centralized package indices. As such it
is not representative of the wider usage of LLVM as outlined in section 6. To ensure the
long-term benefit of ComPile, it’s representative evaluation of the usage across languages
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utilizing the LLVM compiler infrastructure is going to be of the utmost importance. The
exact impact of this is an open research question.
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Appendix A. Dataset Statistics of the Closed Dataset

Closed Dataset

BPE Tokens
Laneuage Llama 2 Tokens 10k 50k 50k 100k
guag (billions) (billions)  (billions)  (billions)  (billions)

(C] C 16 3 2 2 1
@ C++ 116 30 17 14 12
julia  Julia 615 48 27 20 14
® Rust 1079 198 132 116 102
Swift 21 4 2 1 1

Total 1848 282 179 154 130

Table 5: Token count of the encoded ComPile under varying vocabulary sizes, and considering

the tokenization of the data with Byte-Pair encodings (BPE), and tokenization
with the Llama 2 tokenizer.
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