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Abstract—Massive MIMO is expected to play an important role
in the development of 5G networks. This paper addresses the issue
of pilot contamination and scalability in massive MIMO systems.
The current practice of reusing orthogonal pilot sequences in
adjacent cells leads to difficulty in differentiating incoming inter-
and intra-cell pilot sequences. One possible solution is to increase
the number of orthogonal pilot sequences, which results in
dedicating more space of coherence block to pilot transmission
than data transmission. This, in turn, also hinders the scalability
of massive MIMO systems, particularly in accommodating a
large number of IoT devices within a cell. To overcome these
challenges, this paper devises an innovative pilot allocation scheme
based on the data transfer patterns of IoT devices. The scheme
assigns orthogonal pilot sequences to clusters of devices instead
of individual devices, allowing multiple devices to utilize the same
pilot for periodically transmitting data. Moreover, we formulate
the pilot assignment problem as a graph coloring problem and use
the max k-cut graph partitioning approach to overcome the pilot
contamination in a multicell massive MIMO system. The proposed
scheme significantly improves the spectral efficiency and enables
the scalability of massive MIMO systems; for instance, by using
ten orthogonal pilot sequences, we are able to accommodate 200
devices with only a 12.5% omission rate.

Index Terms—Massive MIMO, Pilot Contamination, IoT Scal-
ability, 5G, Smart Grid, Graph Coloring, Clustering.

I. INTRODUCTION

Massive MIMO enhances 5G networks, enabling greater
spectral efficiency, capacity, coverage, and reliability. This
technology also boosts energy efficiency, crucial for widespread
IoT deployment. The combination of IoT devices and massive
MIMO is expected to enable a range of new services and
applications that will transform life experiences.

Massive MIMO enhances spectral efficiency by scheduling
multiple devices for concurrent spectrum access. Feres et al.
[1] proposed a scheduling scheme to cluster devices having
minimal interference for effective resource sharing but without
capping cluster size. Thus, high device volumes in clusters
could lead to delays as devices await their turn to transmit,
questioning the device’s ability to transmit data effectively
while meeting timing requirements. Therefore, we propose a
scheduling scheme by taking into account data transmission
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time and time period, alongside introducing a novel pilot
sequence allocation scheme to mitigate inter-cell interference.

In massive MIMO, acquiring channel state information plays
a key role in base stations communicating with multiple devices
simultaneously and at the same frequency [2]. The popular way
to get the channel state information is by using orthogonal
pilot signals. Orthogonal pilot signals are predefined symbols
assigned to each device within a cell to estimate the channel
between the base station and the device. However, the number
of orthogonal pilot sequences are limited. Therefore, pilot
sequences are usually reused in the adjacent cells. Since the
pilot sequences are transmitted synchronously in all cells,
the base station finds it difficult to differentiate whether the
incoming pilot sequence comes from the adjacent or within a
cell. This phenomenon is called inter-cell pilot contamination
(PC) and is considered a critical limiting factor in enhancing
spectral efficiency [3]. We propose to utilize max K-cut graph
partitioning method to overcome this issue.

To address intra-cell PC, it is essential to utilize orthogonal
pilot sequences for each devices within a cell. However, this
strategy encounters scalability issues due to the limited coher-
ence block space, restricting the integration of multiple IoT
devices. Consequently, the idea of periodic data transmission
to a data concentrator by IoT devices came into consideration.
Therefore, rather than giving each device a unique orthogonal
pilot sequence, we allocate one to a cluster of devices, and
each device can utilize the same pilot to transmit data in its
turn. Simulation results show enhanced spectral efficiency and
scalability of IoT devices in massive MIMO systems.

II. CONTRIBUTION

The contributions of this paper are summarized as follows:
1) To address the issue of scalability, we propose a

clustering-based pilot assignment scheme to efficiently
integrate more IoT devices in a massive MIMO system
through the efficient use of scarce pilot signal resources.

2) We propose a modified Kfaster medoid clustering algo-
rithm to cluster devices by considering spatial correlation
among them.

3) We address the inter-cell pilot contamination problem
by formulating the original problem as a graph coloring

ar
X

iv
:2

31
0.

03
27

8v
1 

 [
cs

.I
T

] 
 5

 O
ct

 2
02

3



problem and maximizing the throughput by smartly allo-
cating pilot signal between clusters using the max K-cut
graph partitioning approach.

III. SYSTEM MODEL

This paper considers a multi-cell massive MIMO network
with L cells. Each cell has K IoT devices clustered in C
clusters, and each cluster contains d devices represented by
Ud. The base station is equipped with M antennas. Moreover, a
massive MIMO system is working in uplink data transmission.
The channel between the kth IoT device of the ith cell, where
i ∈ {1, ..., L}, with the base station of the ith cell, is denoted
by hiik ∈ CM . The interference channel between the kth device,
of the jth cell with the base station of the ith cell is denoted by
hijk ∈ CM . A tractable way to model the spatially correlated
Rayleigh fading channel with no line of sight can be represented
as hj

ik ∼ NC

(
0M ,R

j
ik

)
.

Where the Rj
ik ∈ CM×M represents a spatial correlation

matrix. Eigen-structure of Rj
ik captures the hidden spatial

correlation properties of hjik, with the assumption that certain
spatial directions are statistically more likely to contain a signal
component than others.

Fig. 1. Required and interference signals of ith and jth cells

A. Channel State Information

The time-frequency is divided into coherence blocks τc, and
in each block, the channel response is frequency-flat and time-
invariant. A portion of the coherence block, denoted as τρ, is
allocated for transmitting a predefined pilot signal during uplink
training. This allows the base station to acquire the channel
state information of the kth device. The base station utilizes

these pilot sequences to estimate the channels of kth device,
represented by ĥjik, where i, j ∈ {1, ...., L}. The received pilot
signals at ith base station can be written as,

Y′
i =

K∑
k=1

√
ρulh

i
ikΦ

H
ik︸ ︷︷ ︸

Desired Pilots

+

L∑
j=1,j ̸=i

K∑
k=1

√
ρulh

i
jkΦ

H
jk︸ ︷︷ ︸

Inter-cell PC

+ ni︸︷︷︸
AWGN

(1)
Where the pilot sequence of kth device of the ith cell is

ΦH
ik ∈ Cτρ , and is transmitted with ρul power. The first term,

desired pilots, means that the pilot sequences of devices of ith
cell received at ith BS. However, the second term represents
the inter-cell pilot contamination (PC) caused by the devices of
jth cell, which use the same pilot sequence as of ith cell. The
last term is additive white Gaussian noise ni ∈ CM×τρ and is
distributed as NC

(
0, σ2

ulIM
)
.

Generally, we assign an orthogonal pilot sequence to each
device within a cell and reuse the same pilot sequences in other
cells. Therefore, ΦikΦ

H
jk′ = τρ, if the device k, k′ are using the

same pilot sequences in their respective ith cell and jth cell,
otherwise, ΦikΦ

H
jk′ = 0. Moreover, to perform the despreading

operation, we multiply the received pilot signal with the known
pilot sequence of the kth device.

yik =
1

τρ
√
ρul

Y′iΦH
ik = hi

ik +

L∑
j=1,j ̸=i

hi
jk′ +

ni
τρ
√
ρul

(2)

We are using a minimum mean squared error (MMSE) esti-
mator to estimate channel hiik. The vector ĥiik that minimizes
the mean squared error is,

ĥiik =Ri
ik

(
ψi
ik

)−1
yik = Ri

ik

( L∑
j=1

Ri
jk +

1

τp

σ2
ul

ρul
IM

)−1
yik

(3)

Where the expected value of the channel estimation error is
h̃iik = hiik − ĥiik and can be written as,

E{∥hi
ik − ĥi

ik∥2}
E{∥hi

ik∥2}
=

tr
(
Ci

ik

)
tr
(
Ri

ik

) = 1−
tr
(
Ri

ik

(
ψi
ik

)−1
Ri

ik

)
tr
(
Ri

ik

)
(4)

The above-normalized minimum squared estimation error
depends on PC, in which the pilot signals coming from other
cells contaminate the channel estimates of ith cell, making it a
limiting factor of a massive MIMO system.

B. Signal Processing at Base Station

Consider an uplink data transmission; the signal received at
the ith base station is modeled as,

Yi =

K∑
k=1

hi
iksik︸ ︷︷ ︸

Desired signals

+

L∑
j=1,j ̸=i

K∑
k=1

hi
jksjk︸ ︷︷ ︸

Interference Signal

+ ni︸︷︷︸
Noise

(5)



Where the sik ∼ NC (0, ρul) represents the transmitted data
signal by the kth device in the ith cell to the ith base station,
where ρul is the uplink transmitted power. ni ∼ NC(0, σ

2
ulIM )

is an independent noise. To separate the required signal from
the received signal in the ith cell, the base station utilizes
the combining vector Ŵ i = [ŵi1 , ŵi2 , ......ŵik ] to separate
required signal from the interference and noise.

ŵH
ikYi = ŵH

ikĥ
i
iksik︸ ︷︷ ︸

Desired Signal

+

K∑
k′=1,k′ ̸=k

ŵH
ikĥ

i
ik′sik′

︸ ︷︷ ︸
Intra−cell Interference

+

L∑
j=1,j ̸=i

K∑
k=1

ŵH
ikĥ

i
jksjk︸ ︷︷ ︸

Inter−cell Interference

+ ŵH
iknik︸ ︷︷ ︸
Noise

(6)

In the above equation, the desired signal is the required signal
of the kth device and intra-cell interference is the added small
portion of the signal from k′ devices within the same cell due
to channel estimation error. However, inter-cell interference is
the signal of the kth device of the jth cell using the same pilot
sequence as of the ith cell. The spectral efficiency SEik can be
computed as,

SEik =
τup
τc

log2(1 + γik) [bit/s/Hz] (7)

Where τup = τc − τρ, represents uplink data samples and
γik represents signal-to-interference and noise ratio (SINR).
Therefore, the SINR of the kth device can be written as,

γik =

||ŵH
ikĥ

i
ik∥2︸ ︷︷ ︸

Desired

ŵH
ik


K∑

k′=1,k′ ̸=k

||ĥi
ik′ ||2︸ ︷︷ ︸

intra−cell PC

+

L∑
j=1,j ̸=i

K∑
k=1

||ĥi
jk||2︸ ︷︷ ︸

inter−cell PC

+Zi

 ŵH
ik

(8)
Where

Zi =

L∑
j=1

K∑
k=1

(Ri
jk −Ri

jk

(
ψi
jk

)−1
Ri

jk) +
σ2
ul

ρul
IM (9)

Selecting a good receive combing vector would reduce the
mean square error of the transmitted data signal sik and the re-
ceived signal at the base station. Therefore, this paper considers
a multicell minimum mean squared error (M-MMSE) combin-
ing scheme. According to M-MMSE combining, Wi

M−MMSE

for ith cell can be written as,

Wi
M−MMSE =

 L∑
j=1

Ĥi
j(Ĥ

i
j)

H
+ Zi

−1

Ĥi
i (10)

Where Ĥi
j = [ĥi

j1, ĥ
i
j2, ..., ĥ

i
jk] is the combination of the

individual channel of each device.

IV. DEVICE CLUSTERING

Generally, an orthogonal pilot sequence is assigned to each
device in a cell. During the uplink data transmission, a certain
portion of the coherence block τc is dedicated to pilot symbols
τρ. If there a K devices within a cell, then at least we
need K orthogonal pilot symbols for each device for channel
estimation. This means that by increasing the number of devices
in a cell, we need more pilot symbols. As a result, we will
have less space left in coherence blocks for data transmission,
which is a limiting factor for enhancing spectral efficiency and
scalability in a massive MIMO system.

An inherent characteristic of IoT devices considered in our
work is that they transmit data at a pre-defined regular interval
(varies from millisecond to minutes) depending on the critical
nature of the data. Therefore, assigning an orthogonal pilot
sequence to each device will not be viable. Thus, we propose a
clustering algorithm to cluster devices that show a high spatial
correlation between them. Moreover, we assigned an orthogonal
pilot to each cluster, and within that cluster, each device will
use the same pilot sequence in its turn while transmitting data.
So, each device will take a certain data transmission time TUd

,
where d ∈ {1, 2, ..., d} is the total number of devices in that
cluster. This paper considers homogeneity in devices and data
transmission size. The case of non-homogeneous devices and
variable data transmission sizes and rates will be addressed in
our future work.

A. Modified KFaster Medoid Clustering Algorithm

In clustering, Kmedoid clustering is a popular approach
because of its notable advantages. The primary benefits involve
its decreased susceptibility to outliers and selecting a data
point as the centroid that exhibits the closest distance to
other nodes facilitates information transmission between cluster
nodes. The prominent disadvantage is that the Kmedoid is
computationally expensive. Schubert et al. [4] proposed a faster
Kmedoid clustering algorithm which reduced the complexity by
O(K(K−C)). They introduced an eager swapping mechanism
with different initializations and showed the proposed scheme
produced good results even when eager swapping with random
initialization was used. Therefore, this paper considers spatial
correlation as a similarity metric for device clustering. Which
can be calculated as,

S(U(ik),U(ik′))
=

Tr
(
Ri

ikR
iH
ik′

)∣∣∣∣Ri
ik

∣∣∣∣
F

∣∣∣∣Ri
ik′

∣∣∣∣
F

, k ̸= k′, (11)

In this paper, we modified the Kfaster medoid clustering
algorithm. We aim for a balanced device distribution in each
cluster, allowing for slight variations. Fig. 2 compares the
clustering algorithm with and without uniform distribution of
devices within clusters. We can see that, till K = 100, uniform
and non-uniform distribution of clusters don’t differ in omitted
devices (Omitted devices are cluster devices unable to transmit
due to time limitations or poor channel conditions). However,
we can see a gradual increase in the number of omitted devices



from K = 125 onward. This means the difference could be
higher if we go beyond K = 200. Therefore, it is better to
uniformly distribute devices in a cluster.

Fig. 2. Comparison of clustered devices with and without uniform distribution

In Algorithm 1, we initially define the inputs, which include
the number of clusters: C, based on the available pilot se-
quence; spatial correlation matrix: R, to compute the similarity
S between devices; the set of devices: Uk : 1 ≤ k ≤ K, and the
max cardinality of a cluster: N , which means that the number
of devices in one cluster should not exceed N . The output is
a set of clusters C ∈ c1, c2, .....cc.

In line 1, the algorithm begins by randomly selecting C nodes
as medoids. In lines 2 and 3, it computes the nearest medoid
nearest(k), second nearest medoid second(k), distance to
nearest medoid dnearest(k), and distance to second nearest
medoid dsecond(k) using the spatial correlation similarity matrix
S. Between lines 4 to 7, If the closet medoid is ci for the kth
device, and cardinality of ci < N , then device ci is assigned kth
medoid otherwise it is assigned to the second nearest medoid.

The proposed algorithm then uses a swapping technique to
find a sub-optimal solution. From lines 12 to 22, the algorithm
iterates through each device uk and computes the removal loss
for each non-medoid uo. In line 23, we pick a medoid having
minimum removal loss. In line 24, we update the minimum
deviation by adding the deviation of minimum removal loss
with uk. Between lines 25 to 29, we select the uk as a
new medoid if the minimum change in deviation is less than
zero. Furthermore, from lines 30 to 35, we again compute the
nearest(k), second(k), dnearest(k), and dsecond(k) for each
device, using the updated similarity matrix S of new medoids
and assigning devices to their respective clusters based on the
same criterion as before. The algorithm returns the resulting set
of clusters C for ith cell and iterates for each cell.

V. WEIGHTED GRAPH FRAMEWORK

Once the nodes have been grouped into clusters using spatial
correlation as a clustering criterion, the next step is to assign
pilot sequences to the clusters. In this regard, pilot contami-
nation restricts the performance of a massive MIMO system.
One possible way to mitigate pilot contamination between two

cells is to assign a pilot signal in such a way that minimizes
the interference caused by a device in one cell over the device
in another cell that is using the same pilot signal. Zeng et al.
[5] proposed a graph coloring technique to mitigate pilot con-
tamination in a cell-free massive MIMO system. However, the
situation of a multi-cell massive MIMO system is different from
a cell-free massive MIMO system. Therefore, we proposed
a pilot assignment scheme for a multi-cell massive MIMO
system to overcome pilot contamination. We reformulate the
pilot assignment problem to the graph coloring problem and
solve it using the maximum K-cut partitioning approach.

Ic,c′ =

C∑
c=1

C∑
c′=c

∣∣∣∣∣∣∣
∑

k∈cc′

βi
jk/|cc′ |∑

k∈cc

βi
ik/|cc|

+

∑
k∈cc

βj
ik/|cc|∑

k∈cc′

βj
jk/|cc′ |

∣∣∣∣∣∣∣ (12)

In the above equation, Ic,c′ is the sum of the ratio of average
interference caused by cc ← cc′ and cc′ ← cc, where cc′ and cc
are two clusters in two different cells, which can be using same
pilot sequence. To combine the impact of multiple devices
within a cluster, we take the average β of devices within a
cluster, where |cc| represents the cardinality of cluster cc. In the
above equation, β is a large-scale fading coefficient containing
geometric attenuation and shadow fading.

In Algorithm 2, from lines 1 to 4, we randomly assign
clusters of the first cell to subgroups Vs. Between lines 5
to 10, we compute the interference matrix for ith cell using
neighboring cells’ already assigned pilot assignments. In line
11, we sorted the indices of ith cell clusters with interference
from all neighboring cells in descending order. Afterward, from
lines 12 to 14, we pick the maximum interference cluster of ith
cell and assign it to a subgroup having the least interference to
ith cell from the neighboring cell, and we keep iterating this
procedure until we assign all the highest interference clusters
to the least interference-causing subgroups for all cells.

VI. SIMULATION RESULTS

We performed simulations of the proposed technique using
Matlab and associated Communication Tool Box. We consider
a hexagonal network of 16 cells, utilizing the wrap-around
technique to avoid the boundary effect at the edges. Each cell
has K uniformly distributed devices with a minimum distance
to the serving base station of 35m. We are considering 50
random channel realizations. We are allocating orthogonal pilot
sequences to each cluster within a cell and reusing them in
all other cells. Therefore, there are C orthogonal pilot signals
assigned to each cell. Further details on the parameters used in
this paper are in Table 1.

This paper considers a usecase of demand response (DR)
management in a smart grid. DR effectively regulates and
allocates resources to maintain a steady flow of smart grids but
requires improved communication technologies [6]. However,
5G-enabled IoT devices enhance DR management by real-time
updates of smart meters’ energy consumption data to energy
providers. We consider DR due to its significant predictive



Algorithm 1 Devices Clustering Algorithm
Description: Cluster devices based on spatial correlation
Inputs: R, C, N , Uk : 1 ≤ k ≤ K
Output: Set of clusters C ∈ {c1, c2, ..., cc}.
Modified Kfaster Medoid Clustering:

1: Randomly pick nodes as medoids m: mi : 1 ≤ i ≤ C
2: foreach uk /∈ m do
3: Using correlation similarity matrix S, Compute

nearest(k), second(k), dnearest(k), dsecond(k)
4: foreach mi ∈ m do
5: if (nearest(k) == mi and cardinality of ci < N)
6: ci ← ui
7: else: csecond(k) ← ui
8: Swapping to Find Sub-Optimal Solution
9: ulast ← invalid

10: ∆TDm1 , . . . ,∆TDmc ← Initial Removal Loss
11: repeat
12: foreach uk /∈ m do
13: break outer loop if uk == ulast
14: ∆TD ← ∆TDm1 , . . . ,∆TDmc

15: ∆TDuk
← 0

16: foreach uo /∈ m,
17: doj ← d(uo, uk)
18: If doj < dnearest(k)
19: ∆TDuk

← ∆TDuk
+ doj − dnearest(k)

20: ∆TDnearest(k) ← ∆TDnearest(k)+dnearest(k)−
dsecond(k)

21: Else If doj < dsecond(k)

22: ∆TDnearest(k) ← ∆TDnearest(k)+doj−dsecond(k)
23: min← arg min ∆TDi

24: ∆TDmin ← ∆TDmin +∆TDuk

25: If ∆TDmin < 0
26: swap roles of medoid m∗ and non-medoid uk
27: TD ← TD +∆TDmin

28: update ∆TDm1
, . . . ,∆TDmc

29: ulast ← uk
30: foreach uk /∈ m do
31: Using updated similarity matrix S, Compute

nearest(k), second(k), dnearest(k), dsecond(k)
32: foreach mi ∈ m do
33: if (nearest(k) == mi & cardinality of ci < N)
34: ci ← ui
35: else: csecond(k) ← ui
36: until convergence
37: return C

TABLE I
SIMULATION PARAMETERS

Parameter Value Parameter Value
Cell Area 0.25× 0.25km2 Channel gain:1 km -148.1 dB

Pathloss exponent α = 3.76 Shadow fading σsf = 10
Receiver noise −94dBm UL transmit power 20 dBm

Coherence Block 200 sample M 64
Data Size 500 bytes bandwidth 12.5 Khz

Algorithm 2 Pilot Assignment Algorithm
Description: This algorithm minimizes inter-cell PC.
Inputs: L,K,C, βj

ik

Output: Set of Sub-Graphs V ∈ {V1, V2, .....Vc}.
Algorithm:

1: Unassigned clusters of ith cell Pic : 1 ≤ c ≤ C, 1 ≤ i ≤ L
2: Subgraphs of cluster set Vs = ∅, for 1 ≤ s ≤ τρ
3: For 1 ≤ s ≤ τρ
4: Arbitrarily select ith cell cc, Vs = Vs ∪ ci; Pic = Pic − ci
5: For 1 ≤ l ≤ L
6: Ic,c′ = 0
7: For 1 ≤ j ≤ L
8: If Assigned Neighbors Cells (i, j) == 1
9: For 1 ≤ c < c′ ≤ C

10: Ic,c′ + =

∑
k∈cc′

βi
jk/|cc′ |∑

k∈cc

βi
ik/|cc|

+

∑
k∈cc

βj
ik/|cc|∑

k∈cc′
βj
jk/|cc′ |

11: max indices ← descend-sorted (Ic,c′ )
12: Foreach max index ∈ max indices do
13: Vmin interference ← Vmin interference + Pimax index

14: Pic ← Pic − Pimax index

15: Update and return subgrahps Vs for 1 ≤ s ≤ τρ

capability, with only a portion of devices having negligible
impact of omitted devices.

This paper considers smart meters as IoT devices that trans-
mit energy consumption data to the base station after regular
intervals. We are considering a narrow bandwidth of 12.5
KHz in the 902 MHz ISM band. In Fig 3, we compare the
impact of the increasing number of devices K and available
orthogonal pilot signals/clusters C over the omitted devices.
Omitted devices are those devices that cannot transmit data due
to bad channel conditions, limited orthogonal pilot sequences,
or time-constrained, which is 1 second in the first case.

Fig. 3. Impact of increasing devices in a cell over omitted devices

Fig. 3, we can see that as the number of available orthogonal
pilot signals/cluster C increases, the number of omitted devices
decreases exponentially for a fixed number of devices K.
However, initially omitted devices are close to zero till K = 50
and linearly increase with the number of devices. Moreover,
when the time period of smart meters increases by 50 percent



(1.5 seconds), this results in reducing the omitted devices by
nearly 40 percent, as shown in Fig. 3. Therefore, with ten
orthogonal pilot sequences per cell, we can accommodate 175
IoT devices, with just 25 omitted devices when K = 200.

Fig. 4 depicts the spectral efficiency (SE) achieved with
and without clustering in any given cell, assuming different
number of devices (K) in the cell. The coherence block length
is fixed to be 200 samples per communication round. Based
on the simulation parameters listed in Table 1, our results
show that the SE of IoT devices transmitting without clustering
initially increases until K=46 and reaches a maximum of 89.1
(bits⧸s⧸Hz⧸cell). It starts decreasing due to the fact that
without clustering, with the increase in the number of devices
in a cell, most part of the coherence block gets consumed by
the transmission of pilot samples rather than data transmission.
On the other hand, assuming all simulation parameters remain
unchanged, the SE of the clustering-based scheme coupled
with graph-coloring-based pilot sequence assignment, intro-
duced in this paper, remains stable around a constant value of
81 (bits⧸s⧸Hz⧸cell) even when the maximum number of
devices (K = 200) in a cell is reached for C = 25 clusters with
8.17% omission rate. It is due to the fact that with clustering and
conflict-free pilot sequence assignment using graph-coloring,
we acquire the ability to schedule a fixed number of devices
transmitting in any given round without channel collisions.

Fig. 4. Impact of average SE by increasing users with fixed coherence block

VII. DISCUSSION AND FUTURE RESEARCH DIRECTIONS

In this paper, we addressed the issue of scalability of massive
MIMO systems by considering the orthogonal pilot signal
assignment problem as a limiting factor in integrating a large
number of IoT devices. Orthogonal pilot signals are scarce and
should be assigned effectively to fulfill the orthogonality re-
quirement within a cell to reduce intra-cell pilot contamination.
Therefore, we proposed that instead of assigning an orthogonal
pilot signal to each device, we can assign one pilot signal to
each group, and each device can take its turn to transmit data.

Figure 4 results demonstrate that assigning an orthogonal
pilot sequence to each device is expensive and inefficient.
Furthermore, our approach enables the integration of numerous
devices using minimal orthogonal pilot sequences. This reduces
pilot symbols, conserves coherence block space for signal
transmission, and enhances spectral efficiency.

In our future work, we aim to consider minimizing the
number of omitted devices. Moreover, prioritizing certain de-
vices over others in a cluster will help us to minimize omitted
devices. Therefore, a mechanism is needed to prioritize devices
that exhibit better channel conditions over others in a cluster.

In our current work we have considered homogeneous
devices, i.e., they are identical or very similar in terms of
their specifications, features, or functionality. Incorporating
heterogeneous devices, particularly in terms of different sample
rate, sample size, and the time-critical nature of the data,
pose significant additional optimization constraints that must
be addressed. Furthermore, an intelligent mechanism would be
needed to assign devices to different clusters while keeping in
view the specification and critical nature of each device’s data.

VIII. CONCLUSION

Massive MIMO is crucial for 5G networks, enabling higher
spectral efficiency, coverage, and energy efficiency required for
IoT deployment. Acquisition of channel state information using
orthogonal pilot signals plays a key role in massive MIMO
systems. Due to scarce resources of orthogonal pilot signals and
ineffective pilot assignment limits the scalability and spectral
efficiency of massive MIMO systems. To address this issue,
we proposed a novel pilot allocation scheme based on data
transfer patterns from IoT devices and, assigned orthogonal
pilot sequences to clusters of devices instead of individual
devices and minimized pilot contamination using the max k-
cut graph partitioning problem. Our simulation results showed
the effectiveness of the proposed scheme in incorporating a
large number of devices with a few orthogonal pilot sequences
without sacrificing spectrum usage efficiency. Possible future
research directions are proposing advanced methods for pi-
lot contamination, prioritizing certain devices based on their
channel quality, and intelligent mechanisms for incorporating
heterogeneous devices in a smarter way.
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