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Abstract—Autonomous unmanned aerial vehicles (UAVs) can
be utilized as aerial relays to serve users far from terrestrial
infrastructure. Existing algorithms for planning the paths of
multiple aerial relays cannot generally accommodate flight con-
straints. These are imposed by the presence of obstacles, such
as buildings, and by regulations, which include altitude limits,
minimum distance to people, and no-fly zones to name a few.
Existing schemes for UAV path planning typically handle these
constraints via shortest-path algorithms. However, in the context
of aerial relays, the large number of degrees of freedom renders
such an approach unaffordable. To bypass this difficulty, this
work develops a framework built upon the notion of probabilistic
roadmaps that allows the optimization of different communica-
tion performance metrics while preserving connectivity between
the relays and the base station throughout the trajectory. To
counteract the large number of configuration points required
by conventional probabilistic roadmaps, a novel node generation
scheme is developed based on two heuristics with theoretical
guarantees, one for static users and another for moving users.
Numerical experiments demonstrate that the proposed scheme
can effectively serve the user by means of just two aerial relays.

Index Terms—Aerial relays, path planning, probabilistic
roadmaps, aerial communications.

I. INTRODUCTION

Extending the coverage of cellular communication networks
beyond cell limits is one of the many applications of au-
tonomous unmanned aerial vehicles (UAVs) [1]. This need
arises e.g. when terrestrial infrastructure is absent, as occurs
in remote areas, or damaged by a natural disaster or military
attack. Depending on the communication layers that they
implement, UAVs that serve this purpose are referred to either
as aerial base stations or as aerial relays [1].

This application has spurred a great amount of research
in the last few years. For example, some works address the
problem of placing aerial base stations at suitable locations
to serve a collection of users on the ground that either
remain static (see [2] and the references therein) or move (see
e.g. [3], [4]). When it comes to aerial relays, many works
focus on using a single UAV. Some consider remote regions
with free space propagation (see e.g. [5]–[11]) whereas others
can accommodate more complex scenarios such as urban
environments (see e.g. [12]–[14]). However, long distances and
obstructions call for multiple relays.

Some works considering multiple UAVs target the dissem-
ination or collection of delay-tolerant information. There, the

This work has been funded by the IKTPLUSS grant 311994 of the Research
Council of Norway.

Fig. 1: Trajectories of two relay UAVs obtained with the
proposed algorithm. Red/blue boxes represent buildings. The
flight grid points are represented as blue dots. The green line
is the trajectory of UAV-1, whose final position is at the green
circle. The yellow line represents the trajectory of UAV-2,
whose final position is the yellow cross.

UAVs deliver the data that they store on board by flying
to the vicinity of its intended recipient (see e.g. [15], [16])
and, therefore, strictly speaking they may not be regarded
as relays. Other works do consider multiple aerial relays
that establish a real-time communication link between the
user and the terrestrial base station (BS). The most common
approaches in this context plan the paths of the UAVs via
non-linear optimization over continuous variables, which com-
prise the spatial coordinates of all UAVs; see e.g. [17]–[23].
Unfortunately, these problems are non-convex, the solvers
entail high complexity, and it is not generally possible to
accommodate flight constraints. Other schemes, e.g. those
based on mixed integer linear programs [24], [25] and the
Steiner tree problem [26] also suffer from similar limitations.

In practice UAVs must accommodate the flight constraints
imposed by regulations (e.g. no-flying zones, maximum and
minimum heights, minimum distance to crowds, and so on)
and by obstacles such as buildings. For this reason, most
approaches for UAV path planning outside the aerial relay
literature discretize the airspace and apply a shortest-path
algorithm on the resulting graph [27]. Approaches of this kind
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have been pursued for UAV communications e.g. to plan a path
through coverage areas [28], but not to plan the trajectories
of multiple aerial relays. The reason is that the degrees of
freedom scale exponentially with the number of relays, which
renders shortest-path algorithms computationally prohibitive.

The main novelty in this work is a framework for path
planning of multiple aerial relays that can accommodate
flight constraints. To sidestep the computational complexity of
conventional shortest-path algorithms, the main idea is to build
upon the probabilistic roadmap (PR) algorithm [29], where
a shortest-path primitive is applied on a graph whose nodes
are randomly generated. However, since the number of nodes
required by conventional PR to ensure connectivity between
the BS and the relays is prohibitively large, this algorithm
is modified to draw the nodes around a tentative path that
is judiciously designed by relying on a heuristic. It is worth
noting that there have been works where PR has been applied
to UAV path planning (see e.g. [30] and references therein)
but, to the best of our knowledge, never for communications.

The main contributions of this work are
C1 A general framework for planning the 3D path of multiple

aerial relays such that (i) the relays maintain connectivity
among themselves and with a terrestrial BS throughout
their trajectories and (ii) the trajectory satisfies any given
constraint on the flight region. The idea is to improve
upon conventional PR by drawing the nodes of the graph
around a heuristic waypoint sequence, which drastically
reduces computational complexity and increases the op-
timality of the resulting path.

C2 This approach is applied to devise an algorithm that
approximately minimizes the time it takes to establish
connectivity with a static remote user. The heuristic way-
point sequence designed for this scenario is theoretically
guaranteed to connect the user to the BS using just two
relays and is optimal in certain cases. An example of the
trajectories of two relays obtained with this algorithm in
an urban environment is illustrated in Fig. 1.

C3 The approach in C1 is also applied to design another
algorithm that either approximately minimizes the out-
age time or approximately maximizes the amount of
transferred data when the user moves. The heuristic
waypoint sequence utilized in this scenario enjoys similar
theoretical guarantees to those in C2.

C4 An extensive set of numerical experiments corroborates
the effectiveness of the proposed algorithms in terms of
multiple communication metrics.

After presenting the model and formulating the problem in
Sec. II, PR is reviewed in Sec. III. Next, the proposed path
planning algorithms are introduced in Sec. IV for a static user
and in Sec. V for a moving user. Numerical experiments and
conclusions are respectively presented in Secs. VI and VII. The
developed simulator, the simulation code, and some videos
can be found at https://github.com/uiano/pr for relay path
planning.

Notation: Sets are notated by uppercase caligraphic letters.
|S| is the cardinality of set S. A×B ≜ {(a, b) : a ∈ A, b ∈ B}
is the Cartesian product of sets A and B, where (a, b) denotes a
tuple. R+ is the set of non-negative real numbers. Boldface up-

percase (lowercase) letters denote matrices (column vectors).
∥q∥ stands for the ℓ2-norm of vector q. I[.] is a function
that returns 1 if the condition inside is true and 0 otherwise.
min(a, b) and max(a, b) respectively denote the minimum and
maximum between a and b. q̇(t) stands for the entrywise first
derivative of q(t) with respect to t. ⌊a⌋ is the largest integer
that is less than or equal to a.

II. THE PATH PLANNING PROBLEM

This section presents the model and problem formulation.

A. Model

Consider a spatial region S ⊂ R3 and let F ⊂ S denote the
set of points above the ground and outside any building or ob-
stacle. For simplicity, it is assumed that [x, y, z]⊤ ∈ F implies
[x, y, z′]⊤ ∈ F for all z′ ≥ z, which essentially means that
the buildings or obstacles contain no holes or parts that stand
out. To establish a link between a base station (BS) at location
qBS ≜ [xBS, yBS, zBS]

⊤ ∈ S and the user equipment (UE) with
trajectory1 {qUE(t) ≜ [xUE(t), yUE(t), zUE(t)]

⊤, t ≥ 0} ⊂ S,
a total of K aerial relays are deployed. Let F̄ ⊂ F be
the set of spatial locations where the UAVs can fly. This
can be determined by regulations (e.g. the minimum and
maximum allowed altitudes, no-fly zones, and so on) or any
other operational constraints. The position of the k-th UAV
at time t is represented as qk(t) ∈ F̄ and the positions
of all UAVs at time t are collected into the 3 × K matrix
Q(t) ≜ [q1(t), . . . , qK(t)], referred to as the configuration
point (CP) at time t [29]. The set of all matrices whose
columns are in F̄ is the so-called configuration space (Q-
space) and will be denoted as Q. The UAVs collectively follow
a trajectory T ≜ {Q(t), t ≥ 0} ⊂ Q. The take-off locations
of the UAVs are collected in matrix Q0 ≜ Q(0) and the
maximum speed is vmax.

The targeted link must convey information in both ways
but, to simplify the exposition, the focus here will be on
the downlink. There, the signal transmitted by the BS is first
decoded and retransmitted by UAV-1. The signal transmitted
by UAV-1 is decoded and retransmitted by UAV-2 and so
on, until the UE receives the signal retransmitted by UAV-K.
Relays employ capacity-attaining codes and the interference
between hops is ignored.

Besides the data to be relayed towards the UE, each UAV
consumes a rate rCC for command and control. This means that
the achievable rate between the BS and UAV-k for a generic
CP Q ≜ [q1, . . . , qK ] can be recursively obtained as

rk(Q) = max(0,min (rk−1(Q)− rCC, c(qk−1, qk))), (1)

where c(q, q′) denotes the channel capacity between a UAV
at q and a UAV at q′ and r1(Q) = c(qBS, q1). Similarly, the
achievable rate of the UE when it is at qUE is

rUE(Q, qUE) = max(0,min (rK(Q)− rCC, c(qK , qUE))).
(2)

1Formally, a trajectory is a function. However, set notation is adopted
throughout for concision.

https://github.com/uiano/pr_for_relay_path_planning
https://github.com/uiano/pr_for_relay_path_planning
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The second argument in rUE will be omitted when it is clear
from the context. Throughout the trajectory, the UAVs must
have connectivity with the BS, which means that rk(Q(t)) ≥
rCC ∀k, t. Meanwhile, the UE is said to have connectivity with
the BS if rUE(Q) exceeds a given target rate rmin

UE .
To plan the trajectory, it is necessary to know function

c(q, q′). In practice, one needs to resort to some approxima-
tion. For example, one can use a channel-gain map [31], a 3D
terrain/city model together with a ray-tracing algorithm, a line-
of-sight (LOS) map [32], a set of bounding boxes known to
contain the buildings and other obstacles, specific models for
UAV channels, and so on. As an example, a LOS map c(q, q′)
is a decreasing function c(d) of the distance d = ∥q − q′∥
whenever there is LOS between q and q′ and 0 otherwise. For
example, if B is the bandwidth and the noise power spectral
density is 1 without loss of generality, c(d) can be given by

c(d) = B log2

(
1 + PtGtGr

(
λ

4πd

)2
)
, (3)

where Pt, Gt, Gr, and λ are respectively the transmit power,
transmit gain, receive gain, and wavelength. Although c(0)
is not defined, to simplify some expressions it is useful to
assume that it is a very large constant. LOS maps are suitable
to high-frequency communications, such as mmWave, where
the absorption introduced by obstacles is large [2].

B. Problem Formulation

This paper addresses the problem of designing the trajectory
for the UAVs to establish connectivity between the UE and the
BS. Given qBS, Q0 ∈ Q, qUE(t), K, c, rCC, rmin

UE , and vmax,
the problem is to solve

minimize
T

J(T ) (4a)

s.t. Q(t) ∈ Q ∀t, Q(0) = Q0 (4b)
rk(Q(t)) ≥ rCC ∀k, t (4c)
∥q̇k(t)∥ ≤ vmax ∀k, t, (4d)

where J(T ) is the objective function. Several possibilities are
discussed next:

• Connection time. In many situations, it is desirable to
establish connectivity between the UE and the BS as
soon as possible. This is the case when time-sensitive
information must be delivered in a short time, e.g. to
notify a user of a tsunami, earthquake, or military attack.
The goal is therefore to minimize the connection time

J(T ) = T c(T ) ≜ inf{t : rUE(Q(t), qUE(t)) ≥ rmin
UE }.

(5)
Note that, consistent with the standard convention for the
infimum, T c(T ) = ∞ if rUE(Q(t), qUE(t)) ≥ rmin

UE does
not hold for any t.
Note that a low J(T ) may not be meaningful if the
UE loses connectivity right after the connection is estab-
lished, which can happen if the UE moves. This renders
the connection time immaterial unless the UE is static.

• Outage time. A natural objective when the UE is not
static is the time during which it has no connectivity [33].
This leads to minimizing the outage time

J(T ) =

∫ T

0

I[rUE(Q(t), qUE(t)) < rmin
UE ]dt, (6)

where T is a given time horizon and I[.] was defined in
Sec. I.

• Transferred data. In some applications, data may be
relatively delay tolerant. Thus, instead of minimizing
outage time, one may be interested in maximizing the
total amount of data received by the UE within a given
time horizon T . This gives rise to the objective function

J(T ) = −
∫ T

0

rUE(Q(t), qUE(t))dt, (7)

where the minus sign is due to the fact that (4) is a
minimization problem.

Finally, note that (4) does not enforce a minimum distance
between UAVs for simplicity. However, such a constraint can
be readily accommodated in the proposed scheme.

III. PATH PLANNING VIA PROBABILISTIC ROADMAPS

Since Problem (4) involves the optimization with respect
to a trajectory, which comprises infinitely many CPs, the
exact solution cannot generally be found by numerical means.
Instead, as customary in UAV path planning, both spatial and
temporal discretizations will be introduced.

Specifically, the flight region F̄ is discretized into a regular
3D flight grid F̄G ⊂ F̄ ⊂ R3, whose points are separated
along the x, y, and z axes respectively by δx, δy , and δz; see
Fig. 1. To simplify some expressions, it will be assumed that
the take-off locations of the UAVs are in F̄G. This spatial
discretization also induces a grid QG in the Q-space, which
e.g. for K = 2 is given by QG ≜ F̄G × F̄G.

Regarding the time-domain discretization, the trajectory
T will be designed by first finding a CP sequence P ≜
{Q[0], . . . ,Q[N − 1]} through the grid QG. This sequence
will be referred to as combined path, whereas the sequence of
waypoints qk[n] that each individual UAV must follow will be
referred to as a path. Given P , the trajectory T is recovered
by interpolating the waypoints in P . A path P will be said to
be feasible iff the associated trajectory T is feasible.

Having introduced the discretization, the next step is to
discuss approaches to obtain a feasible waypoint sequence that
attains a satisfactory objective value. Conventional algorithms
for planning the path of a single UAV create a graph whose
nodes are the points of F̄G and where an edge exists between
two nodes if the associated points are adjacent on the grid.
In a 3D regular grid like F̄G, each point has typically 26
adjacent points, which renders the application of shortest-path
algorithms on such a graph viable. However, the grid QG has
exponentially many more points than F̄G. For example, if F̄G
is a (small) 10 × 10 × 10 grid, then QG has 103K points.
Besides, since each of them has generally 27K − 1 adjacent
points, solving (4) via shortest-path algorithms is prohibitive.

To bypass this kind of difficulties, the seminal paper [29]
proposed the PR algorithm, which consists of 3 steps: Step 1: a
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node set N ⊂ Q with a much smaller number of nodes than
QG is randomly generated at random. Step 2: the edge set E ⊂
N ×N is constructed by connecting the nodes corresponding
to CPs Q and Q′ if they are nearest neighbors and it is possible
to transition directly from Q to Q′. Step 3: a shortest path is
found on the graph with node set N and edge set E .

Unfortunately, the complexity reduction of PR comes at a
cost: the number of nodes in N necessary to find a feasible
(let alone satisfactory) path may be very large. The key idea
in this paper is to solve (4) by modifying PR to counteract
the aforementioned limitation: the node generation (sampling)
in Step 1 is carried out in such a way that Step 3 can always
find a feasible waypoint sequence that attains a satisfactory
objective. The idea, described in the following sections, relies
on a heuristic to obtain an initial combined path.

IV. PATH PLANNING FOR STATIC UE

Although the scenario where the UE is static is a special
case of the general problem obtained by setting qUE(t) = qUE
for all t, it is convenient to address the static case separately
since it affords a simpler algorithm with lower complexity and
facilitates the exposition. To this end, this section applies the
approach described in Sec. III — the case of a moving UE
will be addressed in Sec. V. Specifically, Sec. IV-B adapts PR
to solve (4) when qUE(t) = qUE ∀t by relying on the tentative
path produced by the technique proposed in Sec. IV-A. Due to
the reasons in Sec. II-B, the objective in (5) will be adopted.

A. Planning the Tentative Path

A combined path P is said to be valid if it is feasible
and attains a finite connection time T c(T ). Equivalently,
P ≜ {Q[0], . . . , Q[N − 1]} is valid if it is feasible and
∃n : rUE(Q[n]) ≥ rmin

UE . A feasible path P on a grid
QG is said to be optimal if it attains the lowest connection
time among all feasible paths on QG. This section proposes a
heuristic that is guaranteed to find a valid path under general
conditions. In some situations, this path will even be optimal.

While the general approach in this paper is applicable to an
arbitrary K, the heuristics developed here are specialized to
the case K = 2. To motivate this assumption, the first result
establishes that 2 UAVs suffice to guarantee the existence of
a valid path under general conditions.

Proposition 1: Let h denote the height of the highest obsta-
cle and suppose that the UAVs can fly above h. Let c be a LOS
map. Furthermore, let d ≜

√
(xUE − xBS)2 + (yUE − yBS)2

denote the horizontal distance between the BS and the UE
and assume that qk(0) = qBS ∀k. If h < min(zUE +
c−1(rmin

UE ), zBS + c−1(rmin
UE + 2rCC)) and d ≤ c−1(rmin

UE + rCC),
there exists a valid trajectory T with K = 2 for Problem (4).

Proof: Let z = min(zUE + c−1(rmin
UE ), zBS + c−1(rmin

UE +
2rCC)) and suppose that K = 2. It is easy to show that if
UAV-1 navigates to q1 ≜ [xBS, yBS, z]

⊤ and UAV-2 navigates
first to q1 and later to q2 ≜ [xUE, yUE, z]

⊤, then T is feasible
and T c(T ) < (z − zBS + d)/vmax.

Thus, so long as d and h are not too large relative to rmin
UE

and rCC, a valid trajectory exists with only 2 relays. For this
reason, the rest of this section focuses on the case K = 2.

Note that the proof of Proposition 1 also provides a valid path.
However, to apply PR it is preferable to adopt the approach
in this section since it yields a path that is also valid and, in
addition, attains a significantly smaller objective; cf. Sec. VI.
The idea is to first generate the path for UAV-2. Then, a path
is found for UAV-1 to serve UAV-2 throughout. If this is not
possible, the path of UAV-2 is lifted until it becomes possible.

Before delving into the procedure, some notation and termi-
nology needs to be introduced. Upon letting R(q, r) ≜ {q′ ∈
F̄G : c(q, q′) ≥ r}, it is clearly necessary (but not sufficient)
that UAV-1 is in R(qBS, 2rCC) throughout the path and in
R(qBS, 2rCC+rmin

UE ) at the moment of establishing connectivity
with the UE. Similarly, with notation R(q, r, r′) ≜ {q′′ ∈
F̄G|∃q′ ∈ R(q, r) : c(q′, q′′) ≥ r′}, it is necessary (not
sufficient) that UAV-2 is in N2 ≜ R(qBS, 2rCC, rCC) through-
out the path and in D2 ≜ R(qBS, 2rCC + rmin

UE , rCC + rmin
UE ) ∩

R(qUE, r
min
UE ) at the moment of establishing connectivity with

the UE. For simplicity, a grid point q2 will be referred to as
a candidate location of UAV-2 if q2 ∈ N2, whereas q2 will
be named a destination of UAV-2 if q2 ∈ D2. Throughout the
paper, the term candidate will refer to a set of points where a
UAV is required to be because otherwise the UAVs will not
meet the rCC requirement. The term destination will refer to
a set of locations where the UAV is desired to be since there
the UE may receive rmin

UE .
1) Path for UAV-2: The idea is to start by first planning the

path of UAV-2 by finding the shortest path (e.g. via Dijkstra’s
algorithm) from the given q2[0] = q2(0) to the nearest point
in D2 ⊂ N2 through a graph with node set N2. In this graph,
two nodes q and q′ are connected if they are adjacent in F̄G,
which will be denoted as (q, q′) ∈ EF̄G

. Since the objective in
(4) is the connection time, the weight of an edge (q, q′) can
be set to ∥q−q′∥ since this distance is proportional to the time
it takes for UAV-2 to travel from q to q′ at full speed vmax.

This procedure produces a path {q2[0], q2[1], . . . , q2[N0 −
1]}, where N0 is the length of the shortest path. The algorithm
is summarized as Algorithm 1.

2) Path for UAV-1: If there exists a path for UAV-1 through
F̄G that provides a sufficient rate to UAV-2 at all the waypoints
q2[0], q2[1], . . . , q2[N0 − 1], the combined path will not only
be valid but also optimal. As seen later, this will often be
the case, but not always. Formally, for the combined path
to be feasible, the position of UAV-1 must satisfy q1 ∈
N1[n] ≜ R(qBS, 2rCC) ∩ R(q2[n], rCC) when UAV-2 is at
q2[n]. Besides, for the path to be valid, it is required that
q1 ∈ D1 ≜ R(qBS, 2rCC+rmin

UE )∩R(q2[N0−1], rCC+rmin
UE ) ⊂

N1[N0 − 1] once UAV-2 reaches q2[N0 − 1]. In terms of the
terminology introduced earlier, q1 is a candidate location at
time step n if q1 ∈ N1[n] and a destination if q1 ∈ D1.

Since the set of candidate positions depends on n, the path
must be planned through an extended graph. Upon letting the
set of extended nodes at time n be N̄ 1[n] ≜ {(n, q) | q ∈
N1[n]}, the node set of this graph is N̄ 1 ≜ ∪nN̄ 1[n]. Initially,
one can think of finding a path (0, q1[0]), (1, q1[1]), . . . , (N0−
1, q1[N0−1]) such that (n, q1[n]) ∈ N̄ 1[n] ∀n, q1[N0−1] ∈
D1, and (q1[n], q1[n+ 1]) ∈ EF̄G

∀n. If this is possible, then
the combined path {Q[n] = [q1[n], q2[n]], n = 0, . . . , N0 −
1}, is, as indicated earlier, optimal. For the cases where it is
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Fig. 2: Top view of an example case where no path through
adjacent points exists that allows UAV-1 to serve UAV-2
throughout the path of the latter. At some point, UAV-2 may
need to wait so that UAV-1 can gain altitude. Grey boxes
represent buildings and dots are grid points.

not possible, two techniques are presented: waiting and lifting.
Waiting. The aforementioned optimal combined path can

certainly be found when UAV-1 can maintain the connectivity
of UAV-2 just by moving to adjacent locations on F̄G. How-
ever, this may not be the case: sometimes UAV-1 may need
to perform multiple steps through adjacent locations on F̄G to
fly around obstacles in order to guarantee the connectivity of
UAV-2; see Fig. 2. In other words, UAV-2 may need to wait at a
certain waypoint until UAV-1 adopts a suitable location. To al-
low for this possibility, the form of the path of UAV-1 is gener-
alized to be (n0, q1[0]), (n1, q1[1]), . . . , (nÑ−1, q1[Ñ−1]) for
some Ñ , where (ni, q1[i]) ∈ N̄ 1[ni], n0 = 0, q1[Ñ−1] ∈ D1,
ni−1 ≤ ni ≤ ni−1 + 1, and (q1[i], q1[i + 1]) ∈ EF̄G

for all
i. In words, the index ni need not increase monotonically, it
suffices that it does not decrease. The corresponding sequence
of waypoints for UAV-2 will be q2[n0], q2[n1], . . . , q2[nÑ−1].
This means that UAV-2 waits at q2[ni] whenever ni = ni+1.

To accommodate this possibility, nodes (n, q) and (n′, q′)
must be connected iff (q, q′) ∈ EF̄G

and n ≤ n′ ≤ n+1. The
weight of an edge between (n, q) and (n′, q′) is ∥q − q′∥.

Lifting. In certain cases, a path for UAV-1 may not be found
even with the waiting technique. To remedy this, one can lift
the path of UAV-2 to expand the set of candidate locations of
UAV-1. To this end, let hmax be the height of the lowest level
in F̄G that is higher than all obstacles. Also, for q ∈ F̄G, let

L(q) ≜

{
q + [0, 0, δz]

⊤ if [0, 0, 1]q + δz ≤ hmax,

q otherwise,
(8)

where δz is the spacing along the z-axis between two consecu-
tive levels in F̄G and the inner product [0, 0, 1]q returns the z-
component (altitude) of q. Additionally, it is convenient to re-
cursively let L(i)(q) ≜ L(L(i−1)(q)), where L(1)(q) ≜ L(q).

To extend operator L to paths, let p2 ≜ {q2[0],
q2[1], . . . , q2[N0 − 1]} be the path of UAV-2 provided by
Algorithm 1. Also, let u↑

max ≜ min{u : L(u)(q2[0]) =
L(u+1)(q2[0])} and u↓

max ≜ min{u : L(u)(q2[N0 − 1]) =
L(u+1)(q2[N0 − 1])} respectively denote the maximum num-
ber of times that the initial and final points of p2 can be
lifted. The operator L(u)(p2) returns the path that results from
concatenating the following paths:

1) an ascent path {q2[0], L
(1)(q2[0]), . . . , L

(u↑−1)(q2[0])},
where u↑ ≜ min(u, u↑

max),
2) the shortest path {q(u)

2 [0], . . . , q
(u)
2 [Nu−1]} from q

(u)
2 [0]

≜ L(u↑) (q2[0]) to q
(u)
2 [Nu− 1] ≜ L(u↓)(q2[N0− 1]) in

the graph of Sec. IV-A1, where u↓ ≜ min(u, u↓
max), and

3) the descent path {L(u↓−1)(q2[N0−1]), L(u↓−2)(q2[N0−
1]), . . . , q2[N0 − 1]}.

Lifting the path of UAV-2 expands the set of candidate
locations for UAV-1. This motivates iteratively lifting the path
of UAV-2 until a suitable path for UAV-1 can be found. Such
a procedure is summarized in Algorithm 2.

3) Theoretical Guarantees: The procedure described above
and summarized in Algorithm 2 is guaranteed to eventually
succeed under broad conditions:

Theorem 1: Let F̄G be a sufficiently dense regular grid
and let Q[0] = [qBS, qBS]. With the LOS map model intro-
duced in Sec. II-A, suppose that rmin

UE ≥ 4rCC and hmax ≤√
[c−1(2rCC)]2 − [c−1(2rCC + rmin

UE )]
2. If a valid path for (4)

when J(T ) = T c(T ) exists through waypoints in QG, then
the tentative path P V ≜ {[q1[i], q́2[ni]], i = 0, . . . , Ñ − 1}
obtained from Algorithm 2 is valid. In addition, if no lifting
steps are used and q́2[ni] ̸= q́2[ni+1] ∀i, then P V is optimal.

Proof: See Appendix A.
Thus, if rmin

UE and rCC are not too large relative to the size
of the region, the approach in this section results in a valid
combined path whenever such a path exists.

B. Probabilistic Roadmaps with Feasible Initialization

This section adapts PR to solve (4) by relying on the
tentative path produced by Algorithm 2.

1) Construction of the Node Set: As described earlier, the
first step in PR is to randomly generate a set N of CPs. The
sampled distribution drastically impacts the optimality of the
resulting combined path and the computational burden of the
algorithm. In the work at hand, N will comprise all the CPs of
the path PV = {Q[0], . . . ,Q[Ñ−1]} from Sec. IV-A together
with C additional CPs drawn at random around the CPs in PV.

Specifically, for each Q = [q1, q2] ∈ PV, the pro-
posed sampling strategy generates ⌊C/Ñ⌋ configuration points
Q̃ = [q̃1, q̃2] as follows. First, generate q̃1 by drawing a
point of R(qBS, 2rCC) − {q1} with probability proportional
to 1/∥q̃1 − q1∥. Next, independently of q̃1, generate q̃2 by
drawing a point of R(qBS, 2rCC, rCC)−{q2} with probability
proportional to 1/∥q̃2 − q2∥. If q̃2 /∈ R(q̃1, rCC), another
pair (q̃1, q̃2) is generated until q̃2 ∈ R(q̃1, rCC), which will
eventually happen as q̃2 ∈ R(qBS, 2rCC, rCC).

This procedure, which is based on the distance to CPs in PV,
ensures that many of the sampled CPs lie close to the tentative
path while others may be farther away, thereby increasing the
chances for finding near-optimal paths.

2) Construction of the Edge Set: The next step is to
construct the edge set of a nearest neighbor graph whose
node set was generated in Sec. IV-B1. To obtain trajectories
with a lower connection time, it is convenient not to require
that each UAV moves through adjacent points in F̄G: what
matters is that the UAVs can move from one CP to another
(i) without losing connectivity and (ii) without abandoning F̄ .
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Algorithm 1: Tentative Path UAV-2, Static UE

input: F̄G, qBS, qUE, rCC, r
min
UE , q2[0]

1: Find candidate locations of UAV-2
→ N2 = R(qBS, 2rCC, rCC)

2: Find destinations of UAV-2
→ D2 = R(qBS, 2rCC + rmin

UE , rCC + rmin
UE ) ∩R(qUE, r

min
UE )

3: Construct graph G1 with weights w(q, q′) = ∥q − q′∥
4: return p2 := shortest path(q2[0], D2)

Thus, an edge (Q,Q′) is added to the edge set if Q and Q′ are
nearest neighbors and conditions (i) and (ii) are satisfied. To
numerically check these conditions, one can verify that they
hold for a finite set of points in the line segment between Q
and Q′. Due to the considered objective function, the weight
of an edge between Q = [q1, q2] and Q′ = [q′

1, q
′
2] will be

given by the time that the UAVs require to move from Q to
Q′. Given the speed constraint (4d), this time is determined
by the UAV that traverses the longest distance and, therefore,
equals maxk ∥qk − q′

k∥/vmax.
3) Path Planning in Q-Space: After the nearest-neighbor

graph is constructed, a shortest path is sought from Q0 to
any of the CPs [q1, q2] that satisfy q1 ∈ R(qBS, 2rCC + rmin

UE )
and q2 ∈ R(q1, rCC + rmin

UE ) ∩ R(qUE, r
min
UE ). The resulting

CP sequence P PR will never have a greater objective than the
tentative path PV provided that all consecutive CPs in PV

are connected in the PR graph, which holds so long as F̄G is
sufficiently dense.

C. From the Waypoint Sequence to the Trajectory

Given the waypoint sequence P PR = {Q[0], . . . ,Q[NPR −
1]} obtained in the previous step, it remains only to obtain the
trajectory T PR = {Q(t), t ≥ 0}. To this end, it is necessary
to determine the time at which the UAVs arrive at each of
the waypoints Q[n]. As indicated in Sec. IV-B3, the time it
takes to arrive at Q[n] = [q1[n], q2[n]] from Q[n − 1] =
[q1[n− 1], q2[n− 1]] is maxk ∥qk[n]− qk[n− 1]∥/vmax. Let
tn represent the time at which the UAVs arrive at Q[n] and
let t0 = 0. In this case, it clearly holds that

tn = tn−1 +
maxk ∥qk[n]− qk[n− 1]∥

vmax
. (9)

This provides Q(tn) = Q[n] for n = 0, . . . , NPR − 1. For
t ≥ tNPR−1, one can simply set Q(t) = Q(tNPR−1). The
CPs Q(t) for other values of t will be determined by the
flight controller, which may be provided just a sequence of
waypoints along with their times. For simulation, one can use
linear interpolation to resample Q(t) at uniform intervals.

The scheme is summarized as Algorithm 3 and will be re-
ferred to as PR with feasible initialization (PRFI) for static UE.

V. PATH PLANNING FOR MOVING UE

This section applies the approach in Sec. III to solve (4)
when the UE moves. For the reasons provided in Sec. II-B,
the focus will be on optimizing the outage time (6) and the
amount of transferred data (7).

Algorithm 2: Tentative Path UAV-1, Static UE

input: F̄G, qBS, qUE, rCC, r
min
UE , q1[0], p2

1: for u = 0, 1, . . . do
2: {q́2[0], q́2[1], . . . , q́2[Nu − 1]} := L(u)(p2)
3: Find candidate locations of UAV-1

→ N1[n] = R(qBS, 2rCC) ∩R(q́2[n], rCC)
4: Find destinations of UAV-1 → D1 =

R(qBS, 2rCC + rmin
UE ) ∩R(q́2[Nu − 1], rCC + rmin

UE )
5: Construct extended graph G2 with weights as in

Sec. IV-A2.
6: if path exists((0, q1[0]),N×D1) then
7: {(n0, q1[0]), (n1, q1[1]), . . . , (nÑ−1, q1[Ñ − 1])}

:= shortest path((0, q1[0]),N×D1)
8: Obtain Q[ñ] = [q1[ñ], q́2[nñ]], ñ = 0, 1, . . . , Ñ − 1
9: return PV = {Q[0],Q[1], . . . ,Q[Ñ − 1]}

10: end if
11: end for

Algorithm 3: PRFI for Static UE

input: F̄G, qBS, qUE, rCC, r
min
UE , c, C,Q0, vmax

1: p2 := tentative path for UAV-2 via Algorithm 1
2: PV := combined tentative path via Algorithm 2
3: For each Q ∈ PV, draw ⌊C/Ñ⌋ CPs → N
4: Construct a nearest-neighbor graph from N
5: P PR := shortest path(Q0, {Q : rUE(Q) ≥ rmin

UE })
6: Compute waypoints {(tn,Q(tn))}n as in Sec. IV-C
7: return times and waypoints {(tn,Q(tn))}n

Along the lines of Sec. IV, the algorithm here is referred
to PRFI for moving UE and also plans a tentative path first
and then adapts PR to find a path in Q-space. However, the
algorithm developed in this section significantly differs from
the one in Sec. IV due to the different temporal dynamics of
the problems they address: whereas in Sec. IV the UAVs must
move at maximum speed to reach the destination as fast as
possible, in the case of a moving UE, the time at which the
UAVs must arrive at each waypoint is dictated by the trajectory
of the UE. For this reason, the paths of the UE and UAVs will
be handled by sampling their trajectories at a regular interval τ .
Specifically, the path of the UE will be represented as pUE :=
{qUE[0], qUE[1], . . . , qUE[NUE−1]}, where qUE[n] = qUE(nτ),
n = 0, . . . , NUE − 1. Similarly, the paths of the UAVs will be
planned in such a way that each one is at a point of F̄G at
every sampling instant. This requires that τ is small enough so
that the UAVs can move from one grid point to any adjacent
one in this time.

A. Planning the Tentative Path

As in Sec. IV, the focus will be on the case of two UAVs for
simplicity and because K = 2 allows for reasonable solutions
to (4). Recall that the closer the tentative path to the optimal
combined path, the greater the optimality of the combined path
returned by PR. Therefore, it is desirable that the tentative path
approximately minimizes the adopted metric. In the case of
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the outage time, this can be readily accomplished by planning
the path of both UAVs separately along the lines of Sec. IV.
However, when the metric is the one in (7), such an approach is
not viable because the UE rate is a function of the positions of
both UAVs. As noted in Sec. III, planning such a path jointly
would be computationally prohibitive. Thus, with this metric,
the tentative path will still be planned to minimize the outage
time. PR will then optimize the path in Q-space to maximize
the metric in (7).

1) Path for UAV-2: Given that the goal is to minimize the
outage time, one would ideally like to impose that UAV-2
remains in the set of locations where it can provide rmin

UE to the
UE for a suitable location of UAV-1. Since this set generally
changes over time and, therefore, such an approach need not
be feasible, a reasonable alternative is to encourage UAV-2 to
stay in these sets of locations by planning a path through an
extended graph with properly weighted edges.

To construct such a graph, note that the set of candidate
locations of UAV-2 is N2 ≜ R(qBS, 2rCC, rCC) and does not
depend on the location of the UE. With N̄ 2[n] ≜ {(n, q)|q ∈
N2} denoting the set of extended nodes at time step n, the
node set of the extended graph is N̄ 2 ≜ ∪nN̄ 2[n]. In contrast,
the set of destinations D2[n] ≜ R(qBS, 2rCC + rmin

UE , rCC +
rmin

UE )∩R(qUE[n], r
min
UE ), which comprises those locations where

UAV-2 can provide rmin
UE to the UE, does generally change

over time as it depends on qUE[n]. The corresponding set of
extended nodes at time step n is given by D̄2[n] ≜ {(n, q)|q ∈
D2[n]} ⊂ N̄ 2[n] ⊂ N̄ 2.

In this graph, nodes (n, q) and (n′, q′) are connected
by an edge iff n′ = n + 1 and (q′, q) ∈ EF̄G

. In
this way, a path for UAV-2 is a sequence of extended
nodes (0, q2[0]), (1, q2[1]), . . . , (NUE−1, q2[NUE−1]) where
(n, q2[n]) ∈ N̄ 2[n] and (q2[n], q2[n + 1]) ∈ EF̄G

∀n. The
weight of an edge ((n, q), (n′, q′)), which captures the cost
of traveling from (n, q) to (n′, q′), is given by

w((n, q),(n′, q′)) =


0 if q = q′, q′ ∈ D2[n

′]

1 if q ̸= q′, q′ ∈ D2[n
′]

wp if q′ /∈ D2[n
′],

(10)

where wp is a large positive number that encourages UAV-2 to
stay in D̄2[n] at time step n. Observe that, even when UAV-2
remains in these sets, the cost is greater if it moves.

A shortest path algorithm is used to find the path of UAV-2
from the extended node corresponding to the take-off location
to any extended node in N̄ 2[NUE − 1]. The procedure to find
the path of UAV-2 is summarized as Algorithm 4.

2) Path for UAV-1: With the cost in (10), the number of
time slots where UAV-2 is in a location that can provide rmin

UE
to the UE for a suitable location of UAV-1 is maximized. By
suitable location it is meant that UAV-1 can provide rCC+rmin

UE
to UAV-2. Unfortunately, since the set of suitable locations for
UAV-1 changes with n, it may not be possible for UAV-1 to be
in a suitable location all the time. By finding a path for UAV-
1 so that it stays within these sets as much as possible, the
combined path will approximately minimize the outage time.

To this end, the path must be planned through an extended
graph. Let p2 = {q2[0], q2[1], . . . , q2[NUE − 1]} be the path

of UAV-2 returned by Algorithm 4. The set of candidate
locations of UAV-1 at time step n is N1[n] ≜ R(qBS, 2rCC)∩
R(q2[n], rCC) and the associated set of extended nodes is
N̄ 1[n] ≜ {(n, q)|q ∈ N1[n]}. The node set of the ex-
tended graph is therefore N̄ 1 ≜ ∪nN̄ 1[n]. On the other hand,
the set of destinations of UAV-1 at time step n is given by
D1[n] ≜ R(qBS, 2rCC +rmin

UE )∩R(q2[n], rCC +rmin
UE ) ⊂ N1[n].

As opposed to Sec. IV-A, UAV-2 cannot wait for UAV-1
since that would introduce an offset between a part of p2
and pUE. Nodes (n, q) and (n′, q′) are therefore connected
by an edge iff n′ = n + 1 and (q′, q) ∈ EF̄G

. This means
that the path of UAV-1 in the extended graph will have the
form (0, q1[0]), (1, q1[1]), . . . , (NUE −1, q1[NUE −1]), where
(n, q1[n]) ∈ N̄ 1[n] and (q1[n], q1[n+1]) ∈ EF̄G

∀n. Similarly
to UAV-2, the weight of the edge from (n, q) to (n′, q′) is
given by (10) with D1[n

′] in place of D2[n
′].

The goal is, therefore, to find a path from the extended
node corresponding to the take-off location to any node in
N̄ 1[NUE − 1]. Among such feasible paths, a shortest path
algorithm picks the one that results in the lowest accumulated
cost, hence the lowest outage time if wp is sufficiently large.

Lifting. As in Sec. IV, no path for UAV-1 may exist for
a given p2 such that the combined path is feasible. Similarly
to Sec. IV-A2, one can remedy this by lifting p2 since this
generally expands the sets of candidate locations of UAV-1.
However, the lifting operator to be used here differs from the
one in Sec. IV-A2 since the length of the lifted path must
equal the length of p2 and, consequently, the length of pUE.

Consider an arbitrary path p = {q[0], q[1], . . . , q[N − 1]}.
Let A(p) ≜ {q[0], L(q[0]), L(q[1]), . . . , L(q[N − 1])}, where
L is defined in (8), be an operator that lifts each point and
appends the first one at the beginning. Observe that the length
of A(p) equals the length of p plus 1. Also, let A(1)(p) ≜ A(p)
and A(u)(p) ≜ A(A(u−1)(p)). On the other hand, let Z(p) ≜
{q[0], q[1], . . . , q[n̄ − 1], q[n̄ + 1], . . . , q[N − 1]}, where n̄
is the smallest n such that q[n] = q[n + 1] and n̄ = N − 1
if q[n] ̸= q[n+ 1] for all n. Observe that the length of Z(p)
equals the length of p minus 1. Also, Z(1)(p) ≜ Z(p) and
Z(i)(p) ≜ Z(Z(i−1)(p)). Finally, let L̄(u)(p) ≜ Z(u)(A(u)(p))
and observe that (i) the length of L̄(u)(p) equals the length
of p, and (ii), if p is a path where each pair of consecutive
waypoints are adjacent in G, the same holds for L̄(u)(p).

As in Sec. IV-A2, the lifting operator is iteratively applied
to p2 until a path {q1[0], q1[1], . . . , q1[NUE−1]} for UAV-1 is
found. With u the number of required lifting steps, the tentative
path is then P F = {Q[0], . . . ,Q[NUE − 1]}, where Q[n] =
[q1[n], q́2[n]] for {q́2[0], . . . , q́2[NUE − 1]} ≜ L̄(u)(p2). This
procedure is summarized as Algorithm 5.

3) Theoretical Guarantees: As in Sec. IV-A3, it is possible
to guarantee that the above iterative lifting procedure will
eventually produce a feasible path.

Let hmax be the height of the lowest grid level that is higher
than all obstacles and let F̄max

G ≜ {q ∈ F̄G : [0, 0, 1]q = hmax}
be the grid level of height hmax. Let C(dC) ≜ {[x, y, z]⊤ ∈
R3 : (x − xBS)

2 + (y − yBS)
2 ≤ d2C} be a cylinder of radius

dC centered at qBS and let dC,min be the smallest dC such
that F̄G ⊂ C(dC) or, equivalently, the maximum horizontal
distance from the BS to any point in F̄G.
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Theorem 2: Suppose that Q0 = [qBS, qBS] and let p2 =
{q2[0], q2[1], . . . , q2[NUE−1]} be the path of UAV-2 returned
by Algorithm 4. If hmax ≤ c−1(2rCC) and dC,min ≤ c−1(rCC),
then Algorithm 5 will provide a feasible combined path.

Proof: See Appendix C.
It is also easy to see that, for a sufficiently large wp, the

tentative path is not only feasible but also optimal in terms of
outage time if no lifting steps are required and UAV-1 remains
at destination points throughout the entire path. When it comes
to total transferred data, the tentative path will not generally
be optimal, but can reasonably be expected to be similar to
the optimal path in many cases.

B. Probabilistic Roadmaps with Feasible Initialization

The next step is to find a combined path around the tentative
path that approximately optimizes the considered metric. Since
the set of candidate CPs changes over time, an extended
graph needs to be adopted. To operate on this graph, the PR
algorithm in Sec. III will be generalized.

1) Construction of the Node Set: In addition to the CPs in
the tentative path P F = {Q[0], . . . ,Q[NUE−1]}, the algorithm
draws C ≥ NUE additional CPs. In particular, ⌊C/NUE⌋ CPs
are drawn around each Q[n] as in Sec. IV-B1. With N [n]
representing the set that contains Q[n] and the CPs drawn
around Q[n], the set of extended nodes at time step n is given
by N̄ [n] ≜ {(n,Q)|Q ∈ N [n]}.

2) Construction of the Edge Set: Two extended nodes
(n,Q) and (n′,Q′) are connected by an edge iff n′ = n+ 1,
(q1, q

′
1) ∈ EF̄G

, and (q2, q
′
2) ∈ EF̄G

, where Q = [q1, q2] and
Q′ = [q′

1, q
′
2]. The edge weights depend on the metric to be

optimized. To minimize the outage time, one can set

w((n,Q), (n′,Q′)) = (11)
0 if Q = Q′, rUE(Q

′) ≥ rmin
UE

1 if Q ̸= Q′, rUE(Q
′) ≥ rmin

UE

wp if rUE(Q
′) < rmin

UE ,

where wp is again a large positive number. When it comes to
the total transferred data, observe that the integral in (7) can
be discretized as

J(T ) ≈ −τ

NUE−1∑
n=0

rUE(Q[n], qUE[n]). (12)

Since a shortest path algorithm minimizes the sum of the
weigths of the edges in a path, one can therefore set
w((n,Q), (n′,Q′)) = −rUE(Q

′, qUE[n
′]).

3) Path Planning in Q-Space: A shortest-path algorithm is
then used to find the path P PR = {Q[0],Q[1], . . . ,Q[NUE −
1]} of the UAVs in the extended graph from Q0 to an extended
node in N̄ [NUE − 1] that results in the lowest accumulated
cost. This differs from standard PR, which finds a shortest
path through a nearest-neighbor graph.

C. From the Waypoint Sequence to the Trajectory

As described at the beginning of Sec. V, the produced
path for the UAVs is sampled at regular intervals τ . Thus,
given P PR, the final trajectory T PR = {Q(t), t ≥ 0} satisfies

Algorithm 4: Tentative Path UAV-2, Moving UE

input: F̄G, qBS, rCC, r
min
UE , q2[0],

pUE = {qUE[0], qUE[1], . . . , qUE[NUE − 1]}
1: Find candidate locations of UAV-2

→ N2[n] = R(qBS, 2rCC, rCC)
2: Find destinations of UAV-2 → D2[n] =

R(qBS, 2rCC + rmin
UE , rCC + rmin

UE ) ∩R(qUE[n], r
min
UE )

3: Construct extended graph G3 with weights (10)
4: p2 := shortest path((0, q2[0]), N̄ 2[NUE − 1])
5: return p2 = {q2[0], q2[1], . . . , q2[NUE − 1]}

Algorithm 5: Tentative Path UAV-1, Moving UE

input: F̄G, qBS, rCC, r
min
UE , q1[0],

p2 = {q2[0], q2[1], . . . , q2[NUE − 1]}
1: for u = 0, 1, . . . do
2: {q́2[0], q́2[1], . . . , q́2[NUE − 1]} := L̄(u)(p2)
3: Find candidate locations of UAV-1

→ N1[n] = R(qBS, 2rCC) ∩R(q́2[n], rCC)
4: Find destinations of UAV-1

→ D1[n] = R(qBS, 2rCC +rmin
UE )∩R(q́2[n], rCC +rmin

UE )
5: Form extended nodes → N̄ 1[n] ≜ {(n, q)|q ∈ N1[n]}
6: Construct extended graph G4 with weights given by

Sec. V-A2.
7: if path exists((0, q1[0]), N̄ 1[NUE − 1]) then
8: {(0, q1[0]), . . . , (NUE − 1, q1[NUE − 1])}

= shortest path((0, q1[0]), N̄ 1[NUE − 1])
9: Obtain Q[n] = [q1[n], q́2[n]], n = 0, 1, . . . , NUE − 1

10: Return P F = {Q[0],Q[1], . . . ,Q[NUE − 1]}
11: end if
12: end for

Algorithm 6: PRFI for Moving UE

input: F̄G, qBS, rCC, r
min
UE , c, C,Q0, τ , pUE of length NUE

1: p2 := tentative path for UAV-2 via Algorithm 4
2: P F := combined tentative path via Algorithm 5
3: For each Q[n] ∈ P F, draw ⌊C/NUE⌋ CPs → N̄ [n]
4: Construct extended graph with weights as in Sec. V-B
5: P PR := shortest path((0,Q0), N̄ [NUE − 1])
6: return times and waypoints {(nτ,Q[n])}n.

Q(nτ) = Q[n], n = 0, . . . , NUE − 1. As indicated earlier,
the position of the UAVs at intermediate time instants is
determined by the flight controller.

The complete procedure is summarized as Algorithm 6.

VI. NUMERICAL EXPERIMENTS

This section presents numerical results that validate the
efficacy and assess the performance of the proposed PRFI
algorithms. The developed simulator, the simulation code, and
some videos can be found at https://github.com/uiano/pr for
relay path planning.

https://github.com/uiano/pr_for_relay_path_planning
https://github.com/uiano/pr_for_relay_path_planning
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A. Simulation Setup

In all experiments, the relevant performance metric is
estimated using the Monte Carlo (MC) method with 400
realizations. The simulation scenario consists of an urban envi-
ronment with 25 buildings in a region S = [0, 500]×[0, 500]×
[0, 100] m. After setting the minimum and maximum flight
heights respectively to 12.5 m and htop = 87.5 m, a 12×12×8
rectangular flight grid F̄G is constructed. The UAVs start at
Q0 = [qBS, qBS], where qBS = [20, 470, 0]⊤. For generating
qUE at each MC realization, the distance dUE

BS = ∥qUE−qBS∥ is
first generated uniformly at random in the interval [ďUE

BS , d̂
UE
BS ].

Unless otherwise stated, ďUE
BS = 50 m and d̂UE

BS = 650 m.
Subsequently, qUE is drawn uniformly at random among the
points that (i) are outside the buildings, (ii) are at a distance
dUE

BS from qBS, and (iii) satisfy c(qBS, qUE) ≤ rmin
UE .

The trajectories of the UAVs are constrained by the maxi-
mum speed of vmax = 7 m/s and the need for maintaining a
minimum UAV rate of rCC = 200 kbps.

The BS and UAVs transmit signals of carrier frequency 6
GHz, bandwidth 20 MHz, and transmit power 17 dBm. An
antenna gain of 12 dBi is used at both the transmit and receive
sides to simulate the beamforming gain of an antenna array.
The channel is determined by c, which is generated using the
tomographic channel model [34], [35] with an absorption of
1 dB/m inside the buildings and 0 dB/m outside. The noise
power is -97 dBm.

Unless otherwise stated, the proposed PRFI algorithms use
C = 2000 CPs and 100 neighbors.

B. Static UE

This section studies the performance of the proposed PRFI
algorithm for static UE. Throughout this section, all buildings
have a height of 40 m.

Due to the presence of buildings, no algorithm in the
literature that the authors are aware of can directly ac-
commodate the considered simulation setup. Instead, three
benchmarks will be considered: In Benchmark 1, a single
UAV takes off at qBS vertically to the height of htop and
then moves horizontally in a straight line towards the point
([xBS, yBS, htop]

⊤ + [xUE, yUE, htop]
⊤)/2, which is equidistant

from the BS and UE. In Benchmark 2, two UAVs lift off
at the BS to the height of htop. Then UAV-1 moves to
(2/3)[xBS, yBS, htop]

⊤ +(1/3)[xUE, yUE, htop]
⊤ whereas UAV-

2 moves to (1/3)[xBS, yBS, htop]
⊤ + (2/3)[xUE, yUE, htop]

⊤.
Benchmark 3 is similar to Benchmark 2, but UAV-1 remains
at [xBS, yBS, htop]

⊤ after lifting off whereas UAV-2 follows a
horizontal straight line to [xUE, yUE, htop]

⊤. Recall that, under
the hypotheses of Proposition 1, the resulting path is always
feasible and yields a finite cost. All three benchmarks stop at
the point of their trajectories where the UE rate is maximum.

Fig. 3 compares the mean instantaneous rate E[rUE(Q(t))]
of the considered algorithms. Since all UAVs start from the
BS, the initial rate is the same for all algorithms. Although
Benchmarks 1 and 2 do not reach the target rate, Benchmark
3 does succeed, as dictated by Proposition 1. PRFI (Tentative),
which corresponds to the trajectory produced by Algorithm 2,
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Fig. 3: Expected UE rate E[rUE(Q(t))] vs. t. The proposed
algorithm is the first to attain the target rate rmin

UE (rmin
UE = 90

Mbps, [ďUE
BS , d̂

UE
BS ] = [230, 270] m).

is already significantly faster than Benchmark 3, which corrob-
orates the efficacy of the tentative path. PRFI, which returns
the result of applying PR to the tentative path, is even faster
than PRFI (Tentative). This validates the adoption of PR.

The second experiment studies the influence of rmin
UE on the

expectation of the connection time, which is the cost in (5).
To this end, Fig. 4 plots E[T c(T )|T c(T ) < ∞] and the prob-
ability of failure vs. rmin

UE . The notation E[T c(T )|T c(T ) < ∞]
indicates that only those MC realizations where rmin

UE is attained
are considered in the MC average. The probability of failure
is defined as the ratio between the number of MC realizations
in which rUE(Q(t)) < rmin

UE ∀t and the total number of
realizations. It is mainly determined by the relation between
dUE

BS and rmin
UE .

Observe that Benchmarks 1 and 2 have the lowest connec-
tion time. This is because they only succeed in the easiest
MC realizations, as corroborated by their very high probability
of failure. Benchmark 3, is outperformed by the proposed
algorithm both in terms of probability of failure and mean
connection time. Benchmark 3 also provides a null probability
of failure until rmin

UE ≈ 30 Mbps, in which case the hypotheses
of Proposition 1 no longer hold. Note as well that PRFI
is considerably faster than PRFI (Tentative) in all scenarios.
This again corroborates the efficacy of the proposed approach,
where a feasible tentative path is improved using PR.

The next experiment studies the influence of the distance
dUE

BS = ∥qBS −qUE∥ on the connection time and probability of
failure. To this end, Fig. 5 plots E[T c(T )|T c(T ) < ∞] and the
probability of failure vs. dUE

BS . In this figure, for a given value
d on the x-axis, ďUE

BS = d−20 m and d̂UE
BS = d+20 m. Overall,

it is seen that both the mean connection time and probability of
failure increase with dUE

BS . However, in Fig. 5b, the probability
of failure of Benchmarks 1 and 2 initially decreases. This is
because the MC realizations with good direct channel gains
between the BS and UE are discarded, which promotes that
the BS and UE lie at opposite sides of the buildings when dUE

BS
is low. Finally, observe that PRFI has the lowest connection
time and probability of failure for all the considered values
of dUE

BS .
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Fig. 4: Mean connection time and probability of failure vs.
rmin

UE .

C. Moving UE

This section studies the performance of PRFI for moving
UE; cf. Sec. V. The objective is to maximize the total data
transferred to the UE, which follows a random trajectory
of 300 seconds at a speed of 2 m/s and starting at an
initial position generated as the UE location in Sec. VI-B.
Throughout, the height of each building at each MC realization
is uniformly distributed between 20 m and 75 m.

An example of such a trajectory is shown in Fig. 6.
The following two benchmarks are considered: Benchmark

3 introduced in Sec. VI-B is adapted to serve a moving UE.
In particular, both UAVs take off vertically from qBS to htop.
After that, UAV-1 remains at [xBS, yBS, htop] whereas, at every
time step, UAV-2 flies to the adjacent grid point that is nearest
to the UE. Benchmark 4 is a modified version of PRFI for
static UE where, for every N replan time steps, the UAVs are
given the next N known locations of the UE and a combined
path that approximately minimizes the outage time in the next
N known time steps is found; cf. Appendix D for details. Here,
N replan = 15 and N known = 17.

Fig. 7 plots the mean UE rate vs. time. Observe that PRFI
(Tentative) attains rmin

UE before PRFI. However, the latter results
in a higher rate. This is consistent with the fact that PRFI
(Tentative) aims at minimizing outage time whereas PRFI
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Fig. 5: Mean connection time and probability of failure vs.
mean ∥qUE − qBS∥ (rmin

UE = 90 Mbps).
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Fig. 6: An example of a trajectory of a moving UE.
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Fig. 8: Total transferred data vs. the time horizon T (rmin
UE = 60

Mbps, ďUE
BS = 130 m and d̂UE

BS = 170 m).

pursues the maximization of the total transfered data. The
benchmarks are widely outperformed even by PRFI (Tenta-
tive). The sudden drop at around 140 s for Benchmark 4 is
due to a replanning step.

Fig. 8 plots the total transferred data vs. the time horizon T .
The greatest slope, offered by PRFI, showcases the fact that it
achieves the greatest rate. As a result, the margin by which it
outperforms its competitors will increase as time progresses.

To investigate how to set the parameters of PRFI, Fig. 9
plots the average UE rate and fraction of outage time vs.
rmin

UE for different numbers C of drawn CPs in the PR step.
The fraction of outage time is defined as the fraction of time
where rUE(Q(t), qUE(t)) ≤ rmin

UE . To make differences between
parameter values more conspicuous, an infinite building ab-
sorption is adopted.

As expected, the greater C, the higher the average UE rate.
This is because using more CPs confers more freedom to
PR, which targets maximizing rate. However, this increased
optimality in terms of rate naturally entails a sacrifice in
terms of outage time. Notice also the diminishing returns of
increasing C: for example, the difference between C = 100
and C = 1000 is much more significant than the difference
between C = 1000 and C = 2000. This means that computa-
tional complexity may be significantly reduced at the cost of
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Fig. 9: Performance metrics vs. rmin
UE of the proposed PRFI

(800 MC realizations).

a mild decrease in performance.
To understand the influence of rmin

UE , observe that the optimal
path does not depend on this parameter. However, among
the set of suboptimal paths, the one chosen by PRFI does
depend on rmin

UE because this parameter is used when generating
the tentative path. Thus, it is important to properly set this
parameter to reduce suboptimality as much as possible. To this
end, observe from Fig. 9a that the average UE rate increases
slowly when rmin

UE is below a certain value. Above this value,
the average UE rate decreases quickly. This suggests that it is
preferable to select a reasonably small rmin

UE in practice.
Fig. 10 aims at analyzing the influence of the initial dUE

BS on
performance. For a given value d on the x-axis, ďUE

BS = d−20 m
and d̂UE

BS = d + 20 m. As expected, PRFI provides the
highest average UE rate and PRFI (Tentative) obtains the
lowest fraction of outage time. PRFI still has a lower fraction
of outage time than the benchmarks while PRFI (Tentative)
achieves higher average rates than the benchmarks. These
observations provide further empirical support for the adopted
strategy and quality of the tentative path.

The final experiment studies the influence of the environ-
ment. To this end, Fig. 11 depicts the average UE rate and
the fraction of outage time vs. the mean building height. For
each h on the horizontal axis, the height of each building at
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Fig. 10: Influence of the initial dUE
BS on performance (800

realizations, rmin
UE = 110 Mbps).

each MC realization is uniformly distributed between h−20 m
and h+ 20 m. As expected, a greater height of the buildings
results in a performance degradation. This is because building
size constrains the possible trajectories and impair the prop-
agation conditions by decreasing channel gain, which limits
the locations where the UAVs can provide rmin

UE to the UE and
the CPs where the UAVs receive rCC. Despite that fact, the
proposed algorithm widely outperforms the benchmarks.

VII. CONCLUSIONS

This paper developed a framework for path planning of
multiple aerial relays that approximately optimize communi-
cation metrics while accommodating arbitrary constraints on
the flight region. The idea is to build upon the celebrated
PR algorithm, which finds a shortest path through a random
graph of CPs. To cope with the need for a large number of
CPs in plain PR, a modification was proposed in which the
CPs are drawn around a tentative path. This approach was
applied to serve both a static and a moving user with two
aerial relays. To this end, heuristic rules leading to tentative
paths with theoretical guarantees were proposed. Numerical
results demonstrate the merits of the proposed algorithms.

Future work will develop algorithms with more than two
aerial relays and will investigate alternative sampling strategies
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(a) Average UE rate vs. building height.
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Fig. 11: Experiment with mean building height. rmin
UE = 100

Mbps.

for PR. Another interesting direction is to plan the trajectories
of UAVs to collect data from wireless sensors in urban
environments.
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APPENDIX A
PROOF OF THEOREM 1

Let p2 ≜ {q2[0], q2[1], . . . , q2[N0 − 1]} be the path for
UAV-2 returned by Algorithm 1. Observe that, for a given
hmax, there is a maximum number of times that p2 can be
lifted before the lifting operator returns the same path as its
input, that is, L(u)(p2) = L(u+1)(p2) for a sufficiently large
u. Let U denote the smallest of such values of u, i.e., U ≜
min{u ∈ N : L(u)(p2) = L(u+1)(p2)}.

If Algorithm 2 fails to provide a valid path, it necessarily
fails to find a valid path at all iterations and, in particular, at
the U -th iteration. Therefore, to prove the theorem, it suffices
to show that the algorithm succeeds if it reaches the U -th
iteration, which is the worst case. To this end, suppose that
there is a path for UAV-1 that results in a valid (combined)
path when UAV-2 follows

L(U)(p2) = {q2[0], L
(1)(q2[0]), . . . , L

(U↑)(q2[0]), q
(U)
2 [1], . . . ,

q
(U)
2 [NU − 2], L(U↓)(q2[N0 − 1]), . . . , q2[N0 − 1]}, (13)

where U↑ ≜ min{u ∈ N : L(u)(q2[0]) = L(u+1)(q2[0])},
U↓ ≜ min{u ∈ N : L(u)(q2[N0−1]) = L(u+1)(q2[N0−1])},
and {L(U↑)(q2[0]), q

(U)
2 [1], . . . , q

(U)
2 [NU−2], L(U↓)(q2[N0−

1])} is the shortest path from L(U↑)(q2[0]) to L(U↓)(q2[N0−
1]) in the graph of Sec. IV-A1. Then, there is necessarily a path
from a node corresponding to N1[0] to a node corresponding
to D1 in the extended graph constructed from L(U)(p2). The
combined path is, therefore, feasible. Since Algorithm 2 is
based on a shortest path algorithm and a feasible path exists,
a feasible path will be found. Due to Algorithm 1, q2[N0−1] ∈
R(qBS, 2rCC + rmin

UE , rCC + rmin
UE )∩R(qUE, r

min
UE ), which implies

that this path is also valid. Therefore, to prove the theorem,
it suffices to find any path for UAV-1 such that the combined
path of both UAVs is feasible, and this path needs not be the
one produced by Algorithm 2.

For this reason, the rest of the proof shows that there exists
a path for UAV-1 that results in a combined feasible path
when UAV-2 follows L(U)(p2). This amounts to showing that
there exists a path for UAV-1 such that, when UAV-2 follows
L(U)(p2), the resulting combined path is valid. This path will
be explicitly constructed in such a way that the last point of
this path will also be in R(qBS, 2rCC + rmin

UE ) ∩ R(q2[N0 −
1], rCC + rmin

UE ), which means that the constructed combined
path will be valid so long as it is feasible.

A path will be designed for UAV-1 and the combined path
P ≜ {Q́[0], . . . , Q́[N−1]} will be shown to be feasible. With
Q́[n] = [q́1[n], q́2[n]], this means that the following conditions
hold:
C1: The rate between the BS and UAV-1 is at least 2rCC, i.e.,

c(qBS, q́1[n]) ≥ 2rCC for all n, and
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Fig. 12: Illustration of the trajectory constructed in the proof
of Theorem 1.

C2: The rate from UAV-1 to UAV-2 is at least rCC, i.e.,
c(q́1[n], q́2[n]) ≥ rCC for all n.

To simplify the exposition, the path L(U)(p2) will be separated
into the following subpaths:

p↑ ≜ {q2[0], L
(1)(q2[0]), . . . , L

(U↑)(q2[0])}, (14a)
→
p ≜ {L(U↑)(q2[0]), q

(U)
2 [1], . . . , q

(U)
2 [NU − 2],

L(U↓)(q2[N0 − 1])}, (14b)

p↓ ≜ {L(U↓)(q2[N0 − 1]), . . . , q2[N0 − 1]}. (14c)

For each of them, a subpath will be designed for UAV-1 and
the resulting combined subpath will be shown to satisfy C1
and C2.

Take-off subpath (p↑): In the considered combined path,
when UAV-2 follows p↑, UAV-1 follows p↑ as well. Recall that
the minimum separation between the UAVs was disregarded
in (4) for simplicity. Thus, the combined path of UAV-1 and
UAV-2 is given by

P ↑ ≜
{[

q2[0], q2[0]
]
,
[
L(1)(q2[0]), L

(1)(q2[0])
]
, . . . ,[

L(U↑)(q2[0]), L
(U↑)(q2[0])

]}
. (15)

C1: By hypothesis,

hmax ≤
√
[c−1(2rCC)]2 − [c−1(2rCC + rmin

UE )]
2, (16)

which implies that h2
max ≤ [c−1(2rCC)]

2 or, equivalently, hmax
≤ c−1(2rCC). Thus, since q2[0] = qBS, ∀q́1 ∈ p↑, it follows
that ∥qBS−q́1∥ ≤ ∥qBS−L(U↑)(q2[0])∥ ≤ hmax ≤ c−1(2rCC).
Noting that c is a decreasing function of the distance, yields

c(qBS, q́1) ≥ c
(
qBS, L

(U↑)(q2[0])
)
≥ 2rCC, (17a)

which establishes C1.
C2: trivial.
Top subpath (

→
p ): The combined path will be divided into

two parts:

Part 1: UAV-1 stays at L(U↑)(q2[0]) while UAV-2 follows
→
p in (14b). Note that, as per

→
p , UAV-2 flies at constant height

hmax from L(U↑)(q2[0]) to L(U↓)(q2[N0 − 1]). The combined
path is then
→
P 1 ≜

{[
L(U↑)(q2[0]), L

(U↑)(q2[0])
]
,[

L(U↑)(q2[0]), q
(U)
2 [1]

]
, . . . ,

[
L(U↑)(q2[0]), q

(U)
2 [NU − 2]

]
,[

L(U↑)(q2[0]), L
(U↓)(q2[N0 − 1])

]}
. (18)

C1: It follows from (17a).
C2: To prove that c(L(U↑)(q2[0]), q́2) ≥ rCC,∀q́2 ∈ →

p , it
can be observed that

→
p is the shortest path from L(U↑)(q2[0])

to L(U↓)(q2[N0 − 1]), hence ∀q́2 ∈ →
p ,

∥L(U↑)(q2[0])− q́2∥ ≤ ∥L(U↑)(q2[0])− L(U↓)(q2[N0 − 1])∥.
(19)

Hence, it suffices to prove that ∥L(U↑)(q2[0]) − L(U↓)

(q2[N0 − 1])∥ ≤ c−1(rCC). To this end, recall that q2[N0 −
1] ∈ D2. Thus, when UAV-2 is at q2[N0 − 1], there exists a
location q∗

1 = [q∗1x, q
∗
1y, q

∗
1z]

⊤ for UAV-1 such that

q∗
1 ∈ R(qBS, 2rCC + rmin

UE ) ∩R(q2[N0 − 1], rCC + rmin
UE ).

(20)

It follows that c(qBS, q
∗
1) ≥ 2rCC + rmin

UE and c(q2[N0 −
1], q∗

1) ≥ rCC + rmin
UE , or, equivalently, that

∥qBS − q∗
1∥ ≤ c−1(2rCC + rmin

UE ), and (21a)

∥q2[N0 − 1]− q∗
1∥ ≤ c−1(rCC + rmin

UE ). (21b)

Let q̄∗
1 = [q∗1x, q

∗
1y, hmax]

⊤ and consider three points at the
same height hmax: L(U↑)(q2[0]), L

(U↓)(q2[N0 − 1]), and q̄∗
1.

From the triangle inequality, one has

∥L(U↑)(q2[0])− L(U↓)(q2[N0 − 1])∥

≤ ∥L(U↑)(q2[0])− q̄∗
1∥+ ∥L(U↓)(q2[N0 − 1])− q̄∗

1∥. (22)

Since L(U↑)(q2[0]) = L(U↑)(qBS) and q̄∗
1 are at the same

height, it follows that

∥L(U↑)(q2[0])− q̄∗
1∥ ≤ ∥qBS − q∗

1∥
(21a)
≤ c−1(2rCC + rmin

UE ).
(23)

Similarly, since L(U↓)(q2[N0 − 1]) and q̄∗
1 are at the same

height,

∥L(U↓)(q2[N0 − 1])− q̄∗
1∥ ≤ ∥q2[N0 − 1]− q∗

1∥ (24a)
(21b)
≤ c−1(rCC + rmin

UE ). (24b)

From (23) and (24b),

∥L(U↑)(q2[0])− q̄∗
1∥+ ∥L(U↓)(q2[N0 − 1])− q̄∗

1∥
≤ c−1(2rCC + rmin

UE ) + c−1(rCC + rmin
UE ). (25)

The following result provides an upper bound for the right-
hand side:

Lemma 1: With rmin
UE ≥ 4rCC > 0,

c−1(2rCC + rmin
UE ) + c−1(rCC + rmin

UE ) < c−1(rCC). (26)
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Proof: See Appendix B.
From (19), (22), (25) and Lemma 1, it holds that, ∀q́2 ∈ →

p ,

∥L(U↑)(q2[0])− q́2∥
(19)
≤ ∥L(U↑)(q2[0])− L(U↓)(q2[N0 − 1])∥

(22)
≤ ∥L(U↑)(q2[0])− q̄∗

1∥+ ∥L(U↓)(q2[N0 − 1])− q̄∗
1∥

(25)
≤ c−1(2rCC + rmin

UE ) + c−1(rCC + rmin
UE )

(Lemma 1)
≤ c−1(rCC).

Therefore, c(L(U↑)(q2[0]), q́2) ≥ rCC, which establishes C2.
Part 2: Next, UAV-1 follows a shortest path from

L(U↑) (q2[0]) to q̄∗
1 in F̄G while UAV-2 stays at

L(U↓)(q2[N0 − 1]). Since the flight grid is dense enough,
there exists a sequence of adjacent grid points p̄ ≜{
L(U↑)(q2[0]), q̄

∗
1[1], q̄

∗
1[2], . . . , q̄

∗
1[N̄ − 2], q̄∗

1

}
that are suf-

ficiently close to the line segment from L(U↑)(q2[0]) to q̄∗
1 so

that the rate between the BS and UAV-1 on this path will be
at least c(q2[0], q̄

∗
1). The combined path is then

→
P 2 ≜

{[
L(U↑)(q2[0]), L

(U↓)(q2[N0 − 1])
]
,[

q̄∗
1[1], L

(U↓)(q2[N0 − 1])
]
, . . . , (28)[

q̄∗
1[N̄ − 2], L(U↓)(q2[N0 − 1])

]
,
[
q̄∗
1, L

(U↓)(q2[N0 − 1])
]}

.

C1: Since p̄ is the set of adjacent grid points approximately
on the line segment between L(U↑)(q2[0]) and q̄∗

1, it holds
that, ∀q́1 ∈ p̄,

∥L(U↑)(q2[0])− q́1∥ ≤ ∥L(U↑)(q2[0])− q̄∗
1∥. (29)

Squaring both sides and adding ∥qBS −L(U↑)(q2[0])∥2 yields

∥qBS − L(U↑)(q2[0])∥2 + ∥L(U↑)(q2[0])− q́1∥2

≤ ∥qBS − L(U↑)(q2[0])∥2 + ∥L(U↑)(q2[0])− q̄∗
1∥2.

(30)

From Pythagoras’ theorem, ∀q́1 ∈ p̄, ∥qBS − q́1∥2 ≤ ∥qBS −
q̄∗
1∥2, which in turn implies that

c(qBS, q́1) ≥ c(qBS, q̄
∗
1). (31)

Let proj(q) ≜ [x, y, zBS]
⊤ be the projection of q = [x, y, z]⊤

on the horizontal plane containing the BS. Then, proj(q∗
1) ≡

proj(q̄∗
1). From Pythagoras’ theorem,

∥qBS − q̄∗
1∥2 ≤ h2

max + ∥qBS − proj(q̄∗
1)∥2 (32a)

= h2
max + ∥qBS − proj(q∗

1)∥2 ≤ h2
max + ∥qBS − q∗

1∥2 (32b)
(21a)
≤ h2

max + [c−1(2rCC + rmin
UE )]

2
(16)
≤ [c−1(2rCC)]

2. (32c)

Hence,

c(qBS, q̄
∗
1) ≥ 2rCC. (33)

From (31) and (33), ∀q́1 ∈ p̄,

c(qBS, q́1) ≥ 2rCC, (34)

which proves C1.
C2: Since p̄ comprises grid points sufficiently close to the

line segment between L(U↑)(q2[0]) and q̄∗
1, ∀q́1 ∈ p̄,

∥q́1 − q̄∗
1∥ ≤ ∥L(U↑)(q2[0])− q̄∗

1∥. (35)

From the triangle inequality, ∀q́1 ∈ p̄,

∥q́1 − L(U↓)(q2[N0 − 1])∥

≤ ∥q́1 − q̄∗
1∥+ ∥q̄∗

1 − L(U↓)(q2[N0 − 1])∥ (36a)
(35)
≤ ∥L(U↑)(q2[0])− q̄∗

1∥+ ∥q̄∗
1 − L(U↓)(q2[N0 − 1])∥.

(36b)

Then, from (36b), (25), and Lemma 1, ∀q́1 ∈ p̄,

∥q́1 − L(U↓)(q2[N0 − 1])∥
(36b)
≤ ∥L(U↑)(q2[0])− q̄∗

1∥+ ∥q̄∗
1 − L(U↓)(q2[N0 − 1])∥

(25)
≤ c−1(2rCC + rmin

UE ) + c−1(rCC + rmin
UE )

Lemma 1
≤ c−1(rCC).

Therefore,

c(q́1, L
(U↓)(q2[N0 − 1])) ≥ rCC, (38)

which proves C2.
Landing subpath (p↓): The landing path of UAV-2 is p↓ =

{L(U↓)(q2[N0 − 1]), L(U↓−1)(q2[N0 − 1]), . . . , q2[N0 − 1]}.
Let U↓

1 ≜ min{u ∈ N : L(u)(q∗
1) = L(u+1)(q∗

1) ≜ q̄∗
1}.

If U↓ ≤ U↓
1, q∗

1 has a lower altitude than q2[N0 − 1] and
L(U↓

1−U↓)(q∗
1) and q2[N0−1] are at the same height. The case

when U↓ > U↓
1 can be proven similarly. With U↓ ≤ U↓

1, the
UAVs descend simultaneously following the combined subpath

P ↓
1 ≜

{[
L(U↓

1)(q∗
1), L

(U↓)(q2[N0 − 1])
]
,[

L(U↓
1−1)(q∗

1), L
(U↓−1)(q2[N0 − 1])

]
, . . . ,[

L(U↓
1−U↓+1)(q∗

1), L
(1)(q2[N0 − 1])

]
,[

L(U↓
1−U↓)(q∗

1), q2[N0 − 1]
]}

. (39)

After that UAV-1 continues its descent while UAV-2 stays at
q2[N0 − 1]. The second combined subpath is then

P ↓
2 ≜

{[
L(U↓

1−U↓)(q∗
1), q2[N0 − 1]

]
,[

L(U↓
1−U↓−1)(q∗

1), q2[N0 − 1]
]
, . . . ,[

L(1)(q∗
1), q2[N0 − 1]

]
, [q∗

1, q2[N0 − 1]]
}
. (40)

C1: Proving C1 amounts to showing that c(qBS, L
(u)(q∗

1)) ≥
2rCC for u = 0, . . . , U↓

1. It is easy to see that

c(qBS, L
(u)(q∗

1)) ≥ min
[
c(qBS, L

(0)(q∗
1)), c(qBS, L

(U↓
1)(q∗

1))
]

= min [c(qBS, q
∗
1), c(qBS, q̄

∗
1)] . (41)

From (20), it follows that c(qBS, q
∗
1) ≥ 2rCC+rmin

UE > 2rCC. On
the other hand, from (33), it follows that c(qBS, q̄

∗
1) ≥ 2rCC.

Hence, C1 is proven for P ↓
1 and P ↓

2.
C2: One has, ∀u = 0, . . . , U↓, ∥L(U↓

1−u)(q∗
1) − L(U↓−u)

(q2[N0 − 1])∥ ≤ ∥q∗
1 − q2[N0 − 1]∥, then,

c(L(U↓
1−u)(q∗

1), L
(U↓−u)(q2[N0 − 1])) ≥ c(q∗

1, q2[N0 − 1])
(20)
≥ rCC + rmin

UE > rCC, (42)

which proves C2 for P ↓
1.
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In P ↓
2, UAV-1 descends from L(U↓

1−U↓)(q∗
1) to q∗

1 while
UAV-2 stays at q2[N0 − 1]. Start by noting that L(u)(q∗

1) is
between q∗

1 and L(U↓
1−U↓)(q∗

1), ∀u = 0, . . . , U↓
1 −U↓, which

means that

∥L(u)(q∗
1)− L(U↓

1−U↓)(q∗
1)∥2 ≤ ∥q∗

1 − L(U↓
1−U↓)(q∗

1)∥2.
(43)

From Pythagoras’ theorem,

∥L(u)(q∗
1)− q2[N0 − 1]∥2 = ∥L(u)(q∗

1)− L(U↓
1−U↓)(q∗

1)∥2

+ ∥L(U↓
1−U↓)(q∗

1)− q2[N0 − 1]∥2
(43)
≤ ∥q∗

1 − L(U↓
1−U↓)(q∗

1)∥2 + ∥L(U↓
1−U↓)(q∗

1)− q2[N0 − 1]∥2

= ∥q∗
1 − q2[N0 − 1]∥2. (44)

It follows that c(L(u)(q∗
1), q2[N0−1]) ≥ c(q∗

1, q2[N0−1]) ≥
rCC + rmin

UE > rCC, where the second inequality follows from
(20). This proves C2 for P ↓

2.
The case when U↓ > U↓

1, i.e., q∗
1 has a higher altitude than

q2[N0 − 1], can be proven similarly.
Finally, it is clear that if no lifting and waiting steps are

required in Algorithm 2, then the obtained path is optimal
among all paths on F̄G because in no other path can UAV-
2 fly from q2[0] to D2 in a shorter time. Else, this would
contradict the fact that Algorithm 1 returns the shortest path.

APPENDIX B
PROOF OF LEMMA 1

Let a ≜ rCC/B > 0 and ℓ ≜ rmin
UE /rCC ≥ 4. Then (2rCC +

rmin
UE )/B = (2 + ℓ)rCC/B = (ℓ + 2)a and (rCC + rmin

UE )/B =
(1+ ℓ)rCC/B = (ℓ+1)a. From (3), it follows that the inverse
of c(d) is

c−1(r) ≜

(
A

2r/B − 1

)1/2

. (45a)

As a result,

c−1(2rCC + rmin
UE ) + c−1(rCC + rmin

UE )

=

(
A

2(ℓ+2)a − 1

)1/2

+

(
A

2(ℓ+1)a − 1

)1/2

. (46)

Since a > 0 and ℓ ≥ 4, one has that (ℓ+2)a > (ℓ+1)a > ℓa,
which in turn implies(

A

2(ℓ+2)a − 1

)1/2

<

(
A

2ℓa − 1

)1/2

, or, (47a)(
A

2(ℓ+1)a − 1

)1/2

<

(
A

2ℓa − 1

)1/2

. (47b)

It follows that(
A

2(ℓ+2)a − 1

)1/2

+

(
A

2(ℓ+1)a − 1

)1/2

< 2

(
A

2ℓa − 1

)1/2 (ℓ≥4)

≤ 2

(
A

24a − 1

)1/2

.

(48)

With a > 0, it holds that 22a +1 ≥ 2a +1 ≥ 2, which yields

4A

(2a + 1)(22a + 1)
≤ 4A

2 · 2
= A. (49a)

Multiplying both sides by 1/(2a − 1) and applying simple
manipulations produces

2

(
A

24a − 1

)1/2

≤
(

A

2a − 1

)1/2

. (50a)

Indeed, (
A

2a − 1

)1/2

= c−1(rCC). (51)

From (46), (48), (50a), and (51), it follows that

c−1(2rCC + rmin
UE ) + c−1(rCC + rmin

UE ) < c−1(rCC), (52a)

which concludes the proof.

APPENDIX C
PROOF OF THEOREM 2

This proof follows a similar logic to the one in the
proof of Theorem 1. Algorithm 5 fails iff there is no path
for UAV-1 that results in a feasible combined path at all
iterations, in particular at the U -th iteration, where U ≜
min{u : L̄(u)(p2) = L̄(u+1)(p2)}. Therefore, it suffices to
show that there exists a path for UAV-1 (not necessarily
the one produced by Algorithm 5) that results in a feasible
combined path when UAV-2 follows L̄(U)(p2). To this end,
a path will be designed for UAV-1 and the combined path
P ≜ {Q́[0], . . . , Q́[NUE − 1]}, where Q́[n] ≜ [q́1[n], q́2[n]]
and {q́2[0], . . . , q́2[NUE − 1]} = L̄(U)(p2) will be shown to
be feasible. This means that the following conditions hold:
C1: The rate between the BS and UAV-1 is at least 2rCC, i.e.,

c(qBS, q́1[n]) ≥ 2rCC for all n, and
C2: The rate from UAV-1 to UAV-2 is at least rCC, i.e.,

c(q́1[n], q́2[n]) ≥ rCC for all n.
To simplify the exposition, the path L̄(U)(p2) will be separated
into the following subpaths:

p↑ ≜ {q2[0], L
(1)(q2[0]), . . . , L

(u↑
max)(q2[0])}, (53a)

→
p ≜ {L(u↑

max)(q2[0]), q̄2[1], . . . , q̄2[NUE − u↑
max − 1]}.

(53b)

For each of them, a path will be designed for UAV-1 and the
resulting combined path will be shown to satisfy C1 and C2.
The designed path is illustrated in Fig. 12.

Take-off subpaths (p↑) In the considered combined path,
when UAV-2 follows p↑, UAV-1 follows p↑ as well. Recall that
the minimum separation between the UAVs was disregarded
in (4) for simplicity. Thus, the combined path of UAV-1 and
UAV-2 is given by

P ↑ ≜
{[

q2[0], q2[0]
]
,
[
L(1)(q2[0]), L

(1)(q2[0])
]
, . . . ,[

L(u↑
max)(q2[0]), L

(u↑
max)(q2[0])

]}
. (54)

C1: By hypothesis, hmax ≤ c−1(2rCC). Thus, since q2[0] =

qBS, ∀q́1 ∈ p↑, it follows that ∥qBS − q́1∥ ≤ ∥qBS − L(u↑
max)(

q2[0])∥ ≤ hmax ≤ c−1(2rCC). Noting that c is a decreasing
function of the distance yields

c(qBS, q́1) ≥ c
(
qBS, L

(u↑
max)(q2[0])

)
≥ 2rCC, (55a)
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which establishes C1.
C2: trivial.
Top subpath (→p ): In the considered combined path, when

UAV-2 follows
→
p , UAV-1 stays at L(u↑

max)(q2[0]). This results
in the following combined path

P ↑ ≜
{[

L(u↑
max)(q2[0]), L

(u↑
max)(q2[0])

]
,
[
L(u↑

max)(q2[0]), q̄2[1]
]
,

. . . ,
[
L(u↑

max)(q2[0]), q̄2[NUE − u↑
max − 1]

]}
. (56)

C1: shown previously.
C2: By definition of U , [0, 0, 1]q́2 = hmax,∀q́2 ∈ →

p . Also,
q2[0] = qBS. This means that ∀q́2 ∈ →

p , ∥L(u↑
max)(q2[0]) −

q́2∥ ≤ dC,min ≤ c−1(rCC). Then c(L(u↑
max)(q2[0]), q́2) ≥ rCC,

∀q́2 ∈ →
p .

APPENDIX D
BENCHMARK 4

In this benchmark, for every N replan time steps, the planner
is given the next N known locations of the user, N replan ≤
N known. The following steps will be iteratively implemented
at time steps nN replan, n = 0, 1, . . ..
S1: The planner uses the algorithms in Sec. IV-A to plan a

path for the UAVs to the nearest grid points where they
can serve
• All of the next N known locations of the user.
• If such grid points do not exist, the planner plans a path

to the nearest grid points where the UAVs can serve
the last (N known − 1) known locations of the user, i.e.,
qUE[nN replan + i], i = 1, ..., N known − 1, and so on.

• In the most extreme case when the planner cannot
find grid points to simultaneously guarantee rmin

UE to
multiple locations of the user, the planner plans a path
to the nearest grid point where the UAVs can serve the
last known location of the user, i.e., qUE[nN replan +
N known − 1].

S2: If the length of the path obtained in Step 1 is less than
N replan, the last configuration point of the path is repeated
until the length of the path is N replan. If the length of the
path obtained in Step 1 is greater than N replan, only the
first N replan configuration points of the path are kept.

S3: The last configuration point of the path obtained in Step 2
provides the start locations of the UAVs in the next
iteration, i.e., at time step (n+ 1)N replan.
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