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It has long been understood that dilute samples of chiral molecules such as rarefied gases should
exhibit Rayleigh optical activity. We extend the existing theory by accounting for molecular dy-
namics and correlations, thus obtaining a more general theory of Rayleigh-Brillouin optical activity
applicable to dense samples such as neat liquids.
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I. INTRODUCTION

It was predicted a little over fifty years ago by Barron and collaborators that chiral molecules should exhibit Rayleigh
optical activity (RayOA): differential Rayleigh scattering with respect to left- and right-handed circular polarisations
of light [1–3]. In the theoretical descriptions of RayOA published to date, each molecule is effectively held static
in position and orientation and scattered intensities due to different molecules are added incoherently [1–11]. These
descriptions provide expressions for the total intensity of the analysed signal and are best suited to dilute samples
such as rarefied gases in which correlations between molecules are unimportant [3, 12–15].

In this paper, we extend the existing theory of RayOA by accounting for the translational and rotational dynamics
of the molecules and adding scattered fields due to different molecules coherently, thus obtaining a more general theory
that describes Rayleigh-Brillouin optical activity (RayBOA). Our theory provides expressions for not only the total
intensity of the analysed signal but also the underlying frequency spectrum. It is applicable to dilute samples such as
rarefied gases as well as dense samples such as neat liquids in which correlations between molecules are important.

Raman optical activity (ROA) [1–3, 16–18] is the inelastic sister of RayOA. The theory of ROA does not need to be
extended like the theory of RayOA, however, as one can add Raman scattered intensities due to different molecules
incoherently at essentially all sample densities [3, 19].

(Linear) RayOA is not to be confused with hyper Rayleigh optical activity (HRS OA) [20–24] and its extensions
[25, 26], which are distinct, nonlinear optical phenomena.

For large biological scatterers, the terminology “circular intensity differential scattering” (CIDS) is often used
[27–31] for what is essentially RayOA.

II. THEORY OF RAYBOA

Let us consider weak, monochromatic, off-resonant, planar light incident upon a non-conducting fluid of small,
diamagnetic, chiral molecules, as illustrated in Fig. 1. Fluctuations of the optical properties within the scattering
volume give rise to Rayleigh-Brillouin scattering away from the forward direction [32–54], a fraction of which is analysed
at a detector in the far field. In what follows, we derive expressions for dimensionless circular spectral differentials
and dimensionless circular intensity differentials which serve as convenient measures of the Rayleigh-Brillouin optical
activity exhibited by the sample.

FIG. 1. Our scattering geometry, illustrated for neat (1R,5R)-α-pinene and an SCP configuration.

Our derivation borrows heavily from theoretical descriptions of Rayleigh-Brillouin scattering by Landau and Lifshitz
[12] and Berne and Pecora [13] and is essentially an amalgamation of these with Barron’s mechanism of Rayleigh
optical activity [1–3]. See also [55–58]. We work in an inertial frame of reference with time t and position vector
r = xx̂+yŷ+zẑ, where x, y and z are right-handed Cartesian coordinates and x̂, ŷ and ẑ are the associated unit vectors.
The Einstein summation convention is to be understood with respect to unprimed Greek indices α, β, · · · ∈ {x, y, z}
and primed Greek indices α′, β′, · · · ∈ {X(n), Y (n), Z(n)}, where X(n), Y (n) and Z(n) are molecule-fixed Cartesian
coordinates for the nth molecule. Complex quantities are decorated with tildes and unit vectors are decorated with
carets. We use SI units throughout.
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A. The sample

Within the scattering volume V , we model the sample as a collection of vibronically polarisable molecules that
can translate with position vectors R(n) = R(n)(t) and rotate with Euler angles ϑ(n) = ϑ(n)(t), φ(n) = φ(n)(t) and
χ(n) = χ(n)(t) (n ∈ {1, . . . }) [59]. In the interests of generality, we say nothing about the explicit forms of the positions
and orientations of the molecules, except that they are such that the sample is optically homogeneous and isotropic
on average.

We take the light to satisfy Maxwell’s equations in the form

∇ · D̃ = 0, ∇ · B̃ = 0, ∇× Ẽ = −∂B̃

∂t
∇× B̃ = µ0

∂D̃

∂t
(1)

together with the constitutive relation

D̃ ≈ ϵ0Ẽ+ P̃− 1

iω
∇× M̃,

where D̃ = D̃(r, t), Ẽ = Ẽ(r, t), B̃ = B̃(r, t), P̃ = P̃(r, t) and M̃ = M̃(r, t) are the complex displacement, electric,
magnetic, polarisation and magnetisation fields and ω is the angular frequency of the incident light [3, 6, 60].
Working in the domain of linear optics to first order in multipolar expansions whilst neglecting local field corrections,

we take

P̃α ≈
∑

n

µ̃(n)
α δ3(r−Rn)−

∑

n

1

3
Θ̃

(n)
αβ ∂βδ

3(r−Rn) M̃α ≈
∑

n

m̃′(n)
α δ3(r−Rn)

with

µ̃(n)
α ≈ α

(n)
αβ Ẽ

(n)
β − 1

ω
ϵδγβG

′(n)
αδ ∂γẼ

(n)
β +

1

3
A

(n)
α,βγ∂γẼ

(n)
β , Θ̃

(n)
αβ ≈ A

(n)
γ,αβẼ

(n)
γ m̃′(n)

α ≈ iG
′(n)
βα Ẽ

(n)
β ,

where µ̃
(n)
α = µ̃

(n)
α (t), Θ̃

(n)
αβ = Θ̃

(n)
αβ (t) and m̃

′(n)
α = m̃

′(n)
α (t) are the complex electric dipole, electric quadrupole and

magnetic dipole moments of the nth molecule and α
(n)
αβ = α

(n)
βα = α

(n)
αβ (t), G

′(n)
αβ = G

′(n)
αβ (t) and A

(n)
α,βγ = A

(n)
α,γβ =

A
(n)
α,βγ(t) are the vibronic1 electric dipole-electric dipole, electric dipole-magnetic dipole and electric dipole-electric

quadrupole polarisability tensors of the nth molecule [3, 6]. The laboratory-fixed components of the polarisability
tensors are related to the molecule-fixed components via relations like

α
(n)
αβ = ℓ

(n)
αα′ℓ

(n)
ββ′α

(n)
α′β′ ,

for example, where ℓ
(n)
αα′ = ℓ

(n)
αα′(ϑ(n)(t), φ(n)(t), χ(n)(t)) is the direction cosine tensor for the nth molecule [3, 59].

B. Incident light

We take the incident light (superscript i) to satisfy Maxwell’s equations in the form

∇ · D̃i = 0, ∇ · B̃i = 0, ∇× Ẽi = −∂B̃i

∂t
∇× B̃i = µ0

∂D̃i

∂t
(2)

together with the constitutive relation

D̃i ≈ ϵẼi − γ∇× Ẽi, (3)

where D̃i = D̃i(r, t), Ẽi = Ẽi(r, t), B̃i = B̃i(r, t) are the complex displacement, electric and magnetic fields of the
incident light, ϵ is the average permittivity of the sample and γ is the average optical activity parameter of the sample

1 By “vibronic”, we mean simply that the polarisabilities account for electromagnetic perturbation of the vibrational and electronic degrees
of freedom of the molecules. The initial and final states in the polarisabilities are taken to be the same; the molecules do not undergo
real vibronic transitions.
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[3, 6, 60]. The solutions of (2) and (3) are circularly polarised plane electromagnetic waves and superpositions thereof
[3].

Let us assume that the incident light propagates only a short distance through the sample, as will typically be the
case in an experiment using a small cuvette, for example. Accordingly, we neglect the optical rotation of the incident
light (γ → 0) and take

Ẽi ≈ E(0)ẽiei(κ
i·r−ωt), κi =

ωni

c
ni = nẑ

with

êH = ŷ, êV = x̂, ẽL =
1√
2
(x̂+ iŷ) ẽR =

1√
2
(x̂− iŷ),

where E(0), ẽi, κi and ni are the electric-field amplitude, complex polarisation vector, wavevector and propagation
vector of the incident light and n =

√
ϵ/ϵ0 is the average refractive index of the sample with γ = 0.

C. Scattered light

We take the scattered light (superscript s) to be the difference between the light and the incident light defined
above, as

D̃s = D̃− D̃i, Ẽs = Ẽ− Ẽi B̃s = B̃− B̃i, (4)

where D̃s = D̃s(r, t), Ẽs = Ẽs(r, t), B̃s = B̃s(r, t) are the complex displacement, electric and magnetic fields of the
scattered light [12, 13].

Using (3) and (4), we obtain

D̃s ≈ ϵẼs − γ∇∇∇× Ẽs + δD̃ (5)

with

δD̃ ≈ D̃− (ϵẼ− γ∇× Ẽ),

where δD̃ = δD̃(r, t) embodies fluctuations with respect to the average optical properties of the sample, being the

difference between the displacement field D̃ and the form it would have if the sample had homogeneous and isotropic
constitutive relations (ϵẼ− γ∇× Ẽ).
Using (1), (2), (4) and (5) as well as the vector identity

∇× (∇× D̃s) = −∇2D̃s +∇(∇ · D̃s),

we find that D̃s must satisfy the wave equation

∇2D̃s − n2

c2
∂2D̃s

∂t2
+ µ0γ

∂2(∇∇∇× D̃s)

∂t2
≈ −∇∇∇× (∇∇∇× δD̃), (6)

which shows that the fluctuations embodied by the difference δD̃ drive waves in the displacement D̃s of the scattered
light.

Neglecting multiple scattering2, we take

δD̃ ≈ δD̃i (7)

with

δD̃i
α = ϵ0Ẽ

i
α +

∑

n

α
(n)
αβ δ

3(r−Rn)Ẽ
i(n)
β −

∑

n

(
1

ω
ϵδγβG

′(n)
αδ − 1

3
A

(n)
α,βγ

)
δ3(r−Rn)∂γẼ

i(n)
β

+
∑

n

(
1

ω
ϵδγαG

′(n)
βδ − 1

3
A

(n)
β,αγ

)
∂γδ

3(r−Rn)Ẽ
i(n)
β − (ϵẼi

α + γϵαβγ∂γẼ
i
β), (8)

2 The condition 4πµ2
0ω

4α2NV 1/3 ≪ 1 should be well satisfied in the visible domain by typical small-molecule liquids for a cuvette of
volume V = 1 cm3, say.
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where δD̃i = δD̃i(r, t) embodies fluctuations coupled directly to the incident light.
Let us assume that the scattered light (like the incident light) propagates only a short distance through the sample.

Accordingly, we neglect the optical rotation of the scattered light (γ = 0) and take the solution of (6) with (7) to be

D̃s ≈ 1

4π
∇∇∇×

{
∇∇∇×

[∫∫∫

V

δD̃i(r′, t′)
|r− r′| d3r′

]}
, (9)

where t′ = t − n|r − r′|/c is the delayed time [3, 60]. Let us assume moreover that the fluctuations are slow relative
to the angular frequency ω of the incident light. Accordingly, we simplify (9) by taking

D̃s ≈ 1

4π
∇∇∇×

{
∇∇∇×

[∫∫∫

V

δD̃i(r′, t)eiωte−iωt′

|r− r′| d3r′
]}

, (10)

where we have effectively separated the fast and slow time dependencies of δD̃i by writing

δD̃i(r′, t′) = [δD̃i(r′, t′) exp(iωt′)] exp(−iωt′) → [δD̃i(r′, t) exp(iωt)] exp(−iωt′),

thus retaining delay for the fast dependencies only [12, 13].

D. Analysed signal at the detector

Let us focus now on the form of the scattered light at the detector (superscript d). We take the y-z plane to be the
scattering plane, without loss of generality. It is convenient to introduce unit vectors x̂d = x̂, ŷd = cos θŷ − sin θẑ
and ẑd = sin θŷ + cos θẑ aligned with the detector, where θ is the scattering angle.

As the detector lies in the far field, we take

1

|r− r′| ≈
1

R
ωt′ ≈ ωt− κR+ κd · r′ (11)

with

κ =
ωn

c
, κd =

ωnd

c
nd = nẑd, (12)

where R is the distance from the centre of the scattering volume V to the detector (R ≫ V 1/3, κR ≫ 1) and κ, κd

and nd are the angular wavenumber, wavevector and propagation vector of the scattered light at the detector [3, 60].
Using (10) and (11) as well as the vector identity

−κd × (κd ×V) = (κd · κd)V − κd(κd ·V)

whilst retaining only the leading contributions which fall off as 1/R, we find that the complex electric field Ẽdi = Ẽdi(t)
of the scattered light at the detector has the form

Ẽdi
α ≈ µ0ω

2

4πR
ei(κR−ωt)(δαβ − n̂d

αn̂
d
β)

∫∫∫

V

δD̃i
β(r

′, t)eiωte−iκd·r′d3r′, (13)

where we have taken Ẽdi ≈ D̃di/ϵ, D̃di = D̃di(t) being the complex displacement of the scattered light at the
detector. Substituting (8) explicitly into (13) then integrating by parts and neglecting boundary terms as well as
forward-scattering contributions, we obtain

Ẽdi
α ≈ µ0ω

2E(0)

4πR
ei(κR−ωt)(δαβ − n̂d

αn̂
d
β)

[
α̃βγ ẽ

i
γ − i

c
(G̃′

βϵϵϵδγ ẽ
i
γn

i
δ − G̃′

γϵϵϵδβ ẽ
i
γn

d
δ )

+
iω

3c
(Ãβ,γδ ẽ

i
γn

i
δ − Ãγ,βδ ẽ

i
γn

d
δ )

]
(14)

with

α̃αβ =
∑

n

α
(n)
αβ e

−iq·Rn , G̃′
αβ =

∑

n

G
′(n)
αβ e−iq·Rn Ãα,βγ =

∑

n

A
(n)
α,βγe

−iq·Rn ,
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a b c d 3cA/nK 3cB/nK 3cC/nK 3D/K 3E/K 3F/K

R H L H 24β2
G − 8β2

A 180αG′ − 20β2
G − 12β2

A 180αG′ + 4β2
G + 12β2

A 12β2 0 90α2 + 2β2

R V L V 180αG′ + 28β2
G + 4β2

A 180αG′ − 20β2
G − 12β2

A 0 90α2 + 14β2 0 0

R N L N 90αG′ + 26β2
G − 2β2

A 180αG′ − 20β2
G − 12β2

A 90αG′ + 2β2
G + 6β2

A 45α2 + 13β2 0 45α2 + β2

H R H L 24β2
G − 8β2

A 180αG′ − 20β2
G − 12β2

A 180αG′ + 4β2
G + 12β2

A 12β2 0 90α2 + 2β2

V R V L 180αG′ + 28β2
G + 4β2

A 180αG′ − 20β2
G − 12β2

A 0 90α2 + 14β2 0 0

N R N R 90αG′ + 26β2
G − 2β2

A 180αG′ − 20β2
G − 12β2

A 90αG′ + 2β2
G + 6β2

A 45α2 + 13β2 0 45α2 + β2

R R L L 180αG′ + 52β2
G − 4β2

A 360αG′ − 40β2
G − 24β2

A 180αG′ + 4β2
G + 12β2

A 45α2 + 13β2 90α2 − 10β2 45α2 + β2

TABLE I. Coefficients for some important SCP, ICP and DCPI configurations. The N results are averages of the relevant H
and V results, the N standing for “natural” (unpolarised incident light or unanalysed scattered light). Note that the entries in
rows one through three match the entries in rows four through six, in accord with the principle of reciprocity [3, 61–63].

where α̃αβ = α̃αβ(t), G̃
′
αβ = G̃′

αβ(t) and Ãα,βγ = Ãα,βγ(t) are spatial Fourier transforms of polarisability densities,

evaluated at the wavevector difference q = κd − κi ̸= 0 [12, 13]. Note that q = |q| = 2ωn sin(θ/2)/c.

We take the analysed signal Ãdi = Ãdi(t) at the detector to be

Ãdi = ãd∗α Ẽdi
α (15)

with

âH = ŷs, âV = x̂s, ãL =
1√
2
(x̂s + iŷs) ãR =

1√
2
(x̂s − iŷs),

where ãd is an analysation vector that picks off the desired polarisation component of the electric field Ẽdi.

E. Frequency spectrum and total intensity

The frequency spectrum Idi = Idi(Ω) of the analysed signal Ãdi can be calculated as the temporal Fourier transform

of the autocorrelation of Ãdi, as

Idi =
1

2π

∫ ∞

−∞
⟨Ãdi∗(t)Ãdi(t+ τ)⟩eiΩτdτ, (16)

where the angular brackets denote a time average, Ω is an angular frequency and τ is a correlation time [13]. The
total intensity Idi of the analysed signal can then be calculated as the integral of the frequency spectrum Idi, as

Idi =

∫ ∞

−∞
Idi(Ω)dΩ.

Note that Idi = 0 for Ω < 0, assuming that Ãdi = 0 for Ω < 0.
Substituting (14) and (15) into (16) whilst working to first order in multipolar expansions, we obtain

Idi ≈ 30K

2π

∫ ∞

−∞
⟨α̃di∗(t)α̃di(t+ τ) + α̃di∗(t)χ̃di(t+ τ) + α̃di(t+ τ)χ̃di∗(t)⟩ei(Ω−ω)τdτ (17)

with

K =
1

30

(
µ0ω

2E(0)

4πR

)2

,

α̃di = ãd∗α α̃αβ ẽ
i
β

χ̃di = − i

c
(ãd∗α G̃′

αδϵδγβ ẽ
i
βn

i
γ − ãd∗α G̃′

βδϵδγαẽ
i
βn

s
γ) +

iω

3c
(ãd∗α Ãα,βγ ẽ

i
βn

i
γ − ãd∗α Ãβ,αγ ẽ

i
βn

s
γ),

where K is a prefactor that contains the usual ω4, E(0)2 and 1/R2 scalings characteristic of Rayleigh scattering in
the far field and α̃di = α̃di(t) and χ̃di = χ̃di(t) are convenient shorthands.
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F. Dimensionless circular spectral and intensity differentials

RayOA (and by extension RayBOA) can manifest as an intensity difference with respect to left- and right-handed
circular polarisation states in the scattered light (scattered circular polarisation or SCP) [1], the incident light (incident
circular polarisation or ICP) [2] or both simultaneously (dual circular polarisation or DCPI) [64].

As convenient measures of RayBOA, we identify dimensionless circular spectral differentials ∆ = ∆(Ω) of the form

∆ =
Iab − Icd

Iab + Icd

≈ A + B cos θ + C cos2 θ

D + E cos θ + F cos2 θ
(18)

and circular intensity differentials ∆ of the form

∆ =
Iab − Icd

Iab + Icd

≈
∫∞
−∞ A(Ω)dΩ +

∫∞
−∞ B(Ω)dΩ cos θ +

∫∞
−∞ C(Ω)dΩ cos2 θ

∫∞
−∞ D(Ω)dΩ +

∫∞
−∞ E(Ω)dΩ cos θ +

∫∞
−∞ F(Ω)dΩ cos2 θ

, (19)

where a and c refer to analysed polarisation states of the scattered light, b and d refer to polarisation states of the
incident light and A = A(Ω), B = B(Ω), C = C(Ω), D = D(Ω), E = E(Ω) and F = F(Ω) are coefficients that depend on
the specific configuration being considered. Substituting (17) into (18) and (19) and making use of basic symmetry
arguments, we obtain the results listed in Table I with

α2 =
1

2π

∫ ∞

−∞
⟨1
9
α̃∗
αα(t)α̃ββ(t+ τ)⟩ei(Ω−ω)τdτ,

β2 =
1

2π

∫ ∞

−∞
⟨1
2
[3α̃∗

αβ(t)α̃αβ(t+ τ)− α̃∗
αα(t)α̃ββ(t+ τ)]⟩ei(Ω−ω)τdτ,

αG′ =
1

2π

∫ ∞

−∞
⟨ 1

18
[α̃∗

αα(t)G̃
′
ββ(t+ τ) + α̃αα(t+ τ)G̃′∗

ββ(t)]⟩ei(Ω−ω)τdτ,

β2
G =

1

2π

∫ ∞

−∞
⟨1
4
[3α̃∗

αβ(t)G̃
′
αβ(t+ τ)− α̃∗

αα(t)G̃
′
ββ(t+ τ) + 3α̃αβ(t+ τ)G̃′∗

αβ(t)− α̃αα(t+ τ)G̃′∗
ββ(t)]⟩ei(Ω−ω)τdτ

β2
A =

1

2π

∫ ∞

−∞
⟨ω
4
[ϵαβγα̃

∗
αδ(t)Ãβ,γδ(t+ τ) + ϵαβγα̃αδ(t+ τ)Ã∗

β,γδ(t)]⟩ei(Ω−ω)τdτ, (20)

where α2 = α2(Ω) accounts for isotropic electric dipole-electric dipole scattering, β2 = β2(Ω) accounts for anisotropic
electric dipole-electric dipole scattering, αG′ = αG′(Ω) accounts for isotropic electric dipole-magnetic dipole scatter-
ing, β2

G = β2
G(Ω) accounts for anisotropic electric dipole-magnetic dipole scattering and β2

A = β2
A(Ω) accounts for

anisotropic electric dipole-electric quadrupole scattering. Note that α2 and β2 are chirally insensitive whereas αG′,
β2
G and β2

A have equal magnitudes but opposite signs for enantiomorphic samples. It follows that both ∆ and ∆ have
equal magnitudes but opposite signs for enantiomorphous samples, thus serving as signatures of chirality.

Let us emphasise here that the circular differentials ∆ and ∆ are not simply related to each other, in particular that

∆ ̸=
∫ ∞

−∞
∆(Ω)dΩ.

They provide different insights, as we will see below.
As a quick check on the validity of our results, we note that for the special case of a single molecule held fixed at the

origin, we have α2 → α2δ(Ω−ω), β2 → β2δ(Ω−ω), αG′ → αG′δ(Ω−ω), β2
G → β2

Gδ(Ω−ω) and β2
A → β2

Aδ(Ω−ω), where
α2, β2, αG′, β2

G and β2
A are the usual single-molecule invariants [3, 7]. This sees our results for the circular intensity

differentials ∆ reduce immediately to the (rotationally averaged) results reported previously elsewhere [2–4, 7], as
they should.

III. TOY MODEL

For the sake of illustration, let us now evaluate the circular differentials ∆ and ∆ for a toy model of an enantiopure
neat liquid. This model is not meant to provide accurate predictions for real liquids. Rather, we include it to
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demonstrate the mathematical extraction of spectra, the explicit application of our theory to real liquids being a
challenging task that we will return to in future publications.

Considering molecules with quasi-cylindrical symmetry for the sake of simplicity, we take

α
(n)
αβ = αδαβ +∆α

(
û(n)
α û

(n)
β − 1

3
δαβ

)
,

G
′(n)
αβ = G′δαβ +∆G′

(
û(n)
α û

(n)
β − 1

3
δαβ

)

A
(n)
αβ =

ω

2
ϵαγδA

(n)
γ,βδ

= ∆A

(
û(n)
α û

(n)
β − 1

3
δαβ

)
, (21)

where α and G′ are isotropic polarisabilities; ∆α, ∆G′ and ∆A are polarisability anisotropies and û(n) = û(n)(t) is
a unit vector dictated by the orientation of the nth molecule [3, 13]. Note that ∆α = ∆G′ = ∆A = 0 for molecules
with spherical rather than quasi-cylindrical symmetry. Substituting (21) into (20), we obtain

α2 = α2S, β2 = β2Θ, αG′ = αG′S, β2
G = β2

GΘ β2
A = β2

AΘ

with

S =
1

2π

∫ ∞

−∞
⟨
∑

n

∑

m

eiq·[Rn(t)−Rm(t+τ)]⟩ei(Ω−ω)τdτ

Θ =
1

2π

∫ ∞

−∞
⟨
∑

n

∑

m

1

2
{3[û(n)(t) · û(m)(t+ τ)]2 − 1}eiq·[Rn(t)−Rm(t+τ)]⟩ei(Ω−ω)τdτ,

where α2, β2, αG′, β2 = ∆α2, β2
G = ∆α∆G′ and β2

A = 2∆α∆A/3 are the usual single-molecule invariants [3, 7] and
S = S(Ω) and Θ = Θ(Ω) are dynamic structure factors [13, 65].

A simple hydrodynamic model (neglecting intramolecular relaxation) gives

S ≈ N2V χT kBT

{(
1− 1

γ

)
1

π

DT q
2

(Ω− ω)2 + (DT q2)2
+

1

2γ

[
1

π

Γq2

(Ω− ω + vq)2 + (Γq2)2
+

1

π

Γq2

(Ω− ω − vq)2 + (Γq2)2

]}
,

where N is the average number density, χT is the isothermal compressibility, T is the temperature, γ is the heat
capacity ratio, DT is the thermal diffusivity, v is the adiabatic speed of sound and Γ is the classical sound attenuation
coefficient [12, 13, 15, 54]. A simple rotational diffusion model (neglecting translational effects and orientational
correlations between molecules) gives

Θ ≈ NV
1

π

ΓΘ

(Ω− ω)2 + Γ2
Θ

,

where ΓΘ is a tumbling rate [13, 66]. The time-domain molecular dynamics that underpin these forms for S and Θ
are described explicitly in [12, 13, 15, 54, 66].

Focussing on a right-angled SCP configuration with vertically polarised incident light for the sake of concreteness,
we have

∆ =
nK
3c (180αG

′S + 28β2
GΘ+ 4β2

AΘ)
K
3 (90α

2S + 14β2Θ)
∆ =

nKNV
3c (NχT kBT180αG

′ + 28β2
G + 4β2

A)
KNV

3 (NχT kBT90α2 + 14β2)
.

Note that the circular intensity differential ∆ here reduces to the previously reported result [2–4, 7] when NχT kBT = 1
(as in an ideal gas). For a liquid with NχT kBT < 1, the isotropic (α2,αG′) contributions to ∆ are suppressed relative
to the anisotropic (β2,β2

G,β
2
A) contributions, changing the magnitude of ∆ and perhaps even the sign; a demonstration

of the need for our extended theory. The circular spectral differential ∆ offers more information than ∆ in that the
isotropic and anisotropic contributions can be distinguished as a function of the angular frequency Ω. In the limiting
case where ΓΘ ≫ vq ≫ Γq2 > DT q

2, we find in particular that

∆(ω) ≈ ∆(ω ∓ vq) ≈
nK
3c 180αG

′

K
3 90α

2
lim

|Ω−ω|≫vq
∆ ≈

nK
3c (28β

2
G + 4β2

A)
K
3 14β

2
.
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FIG. 2. Circular spectra predicted for a toy model of an enantiopure neat liquid. The red and blue curves correspond to
opposite enantiomers.

Using typical values [7], this leads us to predict that

|∆(ω)| ≈ |∆(ω ∓ vq)| ∼ 10−4–10−5 lim
|Ω−ω|≫vq

|∆| ∼ 10−3–10−4,

although considerable variation is possible, of course.
These features are illustrated in Fig. 2 for ω = 3.54Prad s−1, n = 1.40, γ = 1.33, NχT kBT = 0.100, DT q

2/2π =
80.0MHz, vq/2π = 3.00GHz, Γq2/2π = 160MHz, ΓΘ/2π = 10.0GHz, β2 = 0.100α2, αG′/c = ∓1.00 × 10−5α2 and
β2
G/c = β2

A/c = ±1.00× 10−4α2, where the upper and lower signs correspond to opposite enantiomers. The circular
spectral sum IRV+ ILV (i.e. the spectrum of the S0 Stokes parameter of the scattered light [3]) is positive and consists
of a narrow Gross (centre) line [53, 54] and narrow Brillouin lines [40, 45, 46, 53] superposed with a broad Rayleigh
wing [47–52]. The circular spectral difference IRV − ILV (i.e. the spectrum of the S3 Stokes parameter of the scattered
light [3]) has opposite signs for opposite enantiomers, appearing inverted at the Gross and Brillouin lines as we have
taken 180αG′ and 28β2

G + 4β2
A to have opposite relative signs. The resulting circular spectral differential ∆ also has

opposite signs for opposite enantiomers and appears inverted at the Gross and Brillouin lines, where it is suppressed
in magnitude in accord with our prediction above.

IV. CONCLUSIONS

We have presented a theory of RayBOA applicable to dense samples such as neat liquids. There are many possible
avenues for future research.
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We have evaluated the circular differentials for a toy model of an enantiopure neat liquid. It remains for us to
consider more realistic models for a variety of different samples. Molecular dynamics simulations have recently been
applied with success to ROA [19, 67, 68] and might be developed for RayBOA as well.

We have adopted a microscopic approach, facilitating comparison with the existing theory of RayOA [1–11]. A
macroscopic approach is also possible [12, 13, 15, 37, 39] and might yield new insights. Care will need to be taken
with the choice of macroscopic constitutive relations [69, 70], which must include electric dipole-electric quadrupole
contributions to describe RayBOA correctly even for isotropic samples.

We have focussed on SCP, ICP and DCPI RayBOA for off-resonant illumination of a fluid by planar light. Interesting
new features should emerge for illumination near resonance [5, 64, 71, 72], anisotropic samples [5] and illumination
by structured light [8, 10, 11, 73]. It should also prove fruitful to consider the influence of static magnetic fields [74],
static electric fields [31, 75] and higher-order multipolar contributions [9, 28].

A particularly interesting question is whether Rayleigh-Brillouin optical activity can be used to detect chiral (acous-
tic) phonons in appropriate samples [19, 76–78].

Although our focus in this paper has been on small molecules, similar ideas can be developed for larger scatterers,
including large biomolecules [27–31].

We will return to these and related tasks elsewhere.
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