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In this paper, we analyze parity-violating effects in the propagation of gravitational waves (GWs).
For this purpose, we adopt a newly proposed parametrized post-Einstenian (PPE) formalism, which
encodes modified gravity corrections to the phase and amplitude of GW waveforms. In particular,
we focus our study on three well-known examples of parity-violating theories, namely Chern-Simons,
Symmetric Teleparallel and Horǎva-Lishitz gravity. For each model, we identify the PPE parameters
emerging from the inclusion of parity-violating terms in the gravitational Lagrangian. Thus, we use
the simulated sensitivities of third-generation GW interferometers, such as the Einstein Telescope
and Cosmic Explorer, to obtain numerical bounds on the PPE coefficients and the physical param-
eters of binary systems. In so doing, we find that deviations from General Relativity cannot be
excluded within given confidence limits. Moreover, our results show an improvement of one order
of magnitude in the relative accuracy of the GW parameters compared to the values inferred from
the LIGO-Virgo-KAGRA network. In this respect, the present work demonstrates the power of
next-generation GW detectors to probe fundamental physics with unprecedented precision.

I. INTRODUCTION

The gravitational wave (GW) observations by binary
black holes (BBH) and/or binary neutron stars (BNS) de-
tected by the LIGO-Virgo-KAGRA (LVK) collaboration
[1–3] have opened a new window to investigate fundamen-
tal physics. In this respect, the degeneracy among differ-
ent theoretical scenarios brings attention to the need for
investigating astrophysical sources via direct manifesta-
tions of gravitational effects. This could yield valuable
physical information on the nature of gravity itself, thus
playing a significant role in probing extra degrees of free-
dom with respect to General Relativity (GR) [4–9]. On
the other hand, the dark energy issue related to the stan-
dard cosmological model further motivated, in the last
years, the search for possible extensions or modifications
of GR [10–17]. The latter typically emerge from high-
energy theories and can lead to small departures from
GR in the infrared limit [18–25].

Different impacts of modified theories of gravity on
GWs can be ascribed to changes in the amplitude and/or
the phase of the GW signal propagation. Changes in the
phase (amplitude) may occur due to modifications of the
real (imaginary) part of the dispersion relations of GWs
[26–29]. An example of the broad class of modified grav-
ity scenarios sharing similar consequences is represented
by gravitational actions that are not invariant under a
parity transformation. Parity-violating theories are char-
acterized by an asymmetry in the propagation amplitude
and speed of the left and right-handed GW polarization
modes, leading to amplitude and phase birefringence, re-
spectively [30–37].
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A well-known example of a parity-violating gravity sce-
nario is the Chern-Simons (CS) theory [38–43], in which
the Einstein-Hilbert action is extended to contain a dy-
namical scalar field coupled to the CS term. The parity-
violating effect is due to the coupling between the (even
parity) cosmological scalar field and the (odd parity)
Pontryagin invariant. CS gravity takes inspiration from
string theory [44] and represents the only case of a met-
ric theory, quadratic in the curvature and linear in the
scalar field, violating parity. Moreover, the CS theory
can be obtained as a limit case of the more general class
of ghost-free scalar-tensor gravity [31, 45, 46], which in-
cludes parity-violating terms arising from higher-order
derivatives of the scalar field.

Additional relevant examples of parity-violating theo-
ries include Symmetric Teleparallel (ST) gravity [47–49],
which is built upon the non-metricity tensor, and some
versions of Hořava-Lifshitz (HL) gravity [50]. First in-
troduced as a renormalizable extension of GR, HL grav-
ity breaks Lorentz invariance and contains higher-order
derivative operators that induce parity violation [51].

A widely adopted framework to explore deviations
from GR in GW propagation is provided by the
parametrized post-Einstenian (PPE) formalism [52].
Similarly to the post-Newtonian scheme, the PPE for-
malism encodes modified gravity corrections to the phase
and amplitude of GR waveforms [53–55]. Thus, the PPE
formalism can reveal a useful tool to probe GR through
GW data. Several non-PPE analyses of GW data to
search for possible parity violations were previously per-
formed only for particular waveform parametrizations
[56–58]. In fact, the first full PPE study of parity-
violating theories has been recently presented in Ref. [37],
where a model-independent framework was introduced to
parametrize parity-violating effects in the GW-modified
gravity propagation under a general scheme.

In light of the theoretical results found in Ref. [37], we
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intend to apply the PPE framework to future GW sim-
ulated observations, in order to obtain forecast bounds
on gravitational parity violation. For this purpose, we
employ in our analysis the experimental sensitivities of
the third-generation (3G) GW detectors, such as the Ein-
stein Telescope (ET) [59, 60] and Cosmic Explorer (CE)
[61, 62] interferometers. The latter have been extensively
used, in recent years, to investigate scenarios beyond GR,
the dark energy problem and many other fundamental
questions in gravitational physics [63–76].

The structure of the paper is as follows. In Sec. II, we
introduce the parity-violating features in the GW prop-
agation. In particular, we present a general paramet-
ric framework for describing parity-violating deviations
from GR in terms of a few coefficients related to the
modified GW amplitude and phase. Then, we take into
account modifications in the GW waveform through the
detector response to binary system signals. Moreover,
we show how to map the PPE parameters to the parity-
violating terms of modified gravity theories. In Sec. III,
we consider the main theoretical frameworks where par-
ity violation can emerge from the high-order corrections
to Einstein-Hilbert action. In particular, we focus our
analysis on three different scenarios: CS, ST and HL
gravity models. In Sec. IV, using the simulated sensi-
tivities of future GW detectors, we place bounds on the
parity-violating coefficients and the PPE parameters of
the aforementioned theories. We conclude our study in
Sec. V with a discussion of the obtained results, and we
draw our final considerations for future developments.

In this work, we set units such that c = G = 1.

II. PARITY VIOLATION IN THE
GRAVITATIONAL WAVE PROPAGATION

We here show how amplitude and speed in GW prop-
agation from BBH and BNS can be parametrized in a
model-independent way. These results can be then used
to probe parity violation in specific modified gravity the-
ories. The gravitational parity-violating contribution can
be encoded by a correction to the Einstein-Hilbert action:

S =
1

2κ

∫
d4x

√−g R+ SPV , (1)

where κ ≡ 8π, g is the determinant of the metric ten-
sor gµν , and R is the Ricci scalar. The term SPV can
be, in general, a function of the curvature and an auxil-
iary scalar field, and is responsible for modifying the GW
dispersion relation.

To study how the field equations get modified, we con-
sider the spatially flat Fridmann-Lemaître-Robertson-
Walker (FLRW) line element:

ds2 = −dt2 + a2(t)δijdx
idxj , (2)

where a is the normalized scale factor as a function of
cosmic time, t.

Thus, we introduce linear perturbations around the
background (2):

ds2 = a2(η)[−dη2 + (δij + hij)dx
idxj ] , (3)

where η is the conformal time, such that dη ≡ dt/a(t),
while hij are tensor perturbations satisfying ∂ihij = 0 =
hii. In particular, in this work, we focus on the two
polarizations corresponding to helicity λR,L = ±1, where
the subscripts {R, L} refer to the right and left-handed
GW polarizations, respectively. In the Fourier space, we
can write

hR,L(η) = AR,L(η) e
−i[φ(η)−kixi] , (4)

where AR,L is the polarization amplitude, φ(η) is the GW
phase and k is the comoving wavenumber. In order to de-
rive the GW propagation equation that violates parity,
although being invariant under translations and spatial
rotation, one could make use of the following assump-
tions:

(i) deviations from GR are small, such that all modifi-
cations can be worked out within an effective field
theory framework;

(ii) only corrections to GR that are parity-violating are
taken into account;

(iii) under the assumption of locality and small devia-
tions from GR, all modifications of Einstein’s grav-
ity are expected to be polynomial in k;

(iv) GW wavelengths are shorter than the Universe ex-
pansion, i.e., k ≫ H, being H ≡ a′/a the confor-
mal Hubble parameter, where the prime denotes the
derivative with respect to η.

Within the above requirements, it was shown in Ref. [37]
that the most general parametrization of parity-violating
deviations in the GW propagation - including up to the
second-order derivatives over time - can be expressed as

h′′R,L +

{
2H+ λR,L

∑
n

kn
[

αnH
(MPVa)n

+
βn

(MPVa)n−1

]}
h′R,L

+ ω2
R,LhR,L = 0 , (5)

where ωR,L is the angular frequency,

ω2
R,L = k2

{
1 + λR,L

∑
m

km−1

[
γmH

(MPVa)m
+

δm
(MPVa)m−1

]}
,

(6)
being n = {1, 3, 5, . . .} and m = {0, 2, 4, . . .}. Here,
k ≡ |⃗k| = 2πν, where ν is the GW frequency. In such
a description, parity violation is quantified by the func-
tions α, β, γ and δ depending on the conformal time,
and MPV is the energy scale of the theory. It is worth
noticing that modified gravity theories that violate parity
usually involve dynamical scalar fields, so the expansion
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coefficients in the effective field framework may show a
non-trivial dependence on these fields and their deriva-
tives. Based on the assumption of small departures from
GR, in our analysis, we consider only the leading-order
corrections to GR, whose GW propagation is recovered
as soon as α = β = γ = δ = 0.

Thus, the modified dispersion relation is obtained by
replacing Eq. (5) into Eq. (4):

φ′′ + i

{
2H+ λR,L

∑
n

kn
[

αnH
(MPVa)n

+
βn

(MPVa)n−1

]}
φ′

+ φ′2 − ω2
R,L = 0 , (7)

where it is assumed that the changes in the GW am-
plitude occur over a very long timescale compared to
those relative to the phase. Considering linear pertur-
bations around the GR background, one can write as
φ = φGR + δφ, where δφ accounts for amplitude and
velocity birefringences in its imaginary and real parts,
respectively:

δφ = −iλR,LδφA + λR,LδφV . (8)

Consequently, a series expansion of Eq. (7) under the
assumptions δφ ≪ φGR, φ′′ ≪ φ′2 and δφ′′ ≪ φGRδφ

′

leads to [77]

δφ′
A =

1

2

∑
n

kn
[

αnH
(MPVa)n

+
βn

(MPVa)n−1

]
, (9)

δφ′
V =

1

2

∑
m

km
[

γmH
(MPVa)m

+
δm

(MPVa)m−1

]
. (10)

The above expressions could be simplified by assum-
ing a slow time-varying behavior for the parity-violating
parameters. The latter can be thus approximated with
its corresponding zeroth-order Taylor series term at the
present time. Then, converting the time derivative into
derivatives with respect to the redshift z by means of the
relation dz/dt = −(1 + z)H(z), integration of Eqs. (9)
and (10) yields

δφA =
∑
n

kn

2
(1 + z)n

[
αn0

Mn
PV
zn +

βn0

Mn−1
PV

Dn+1(z)

]
,

(11)

δφV =
∑
m

km

2
(1 + z)m

[
γm0

Mm
PV
zm +

δm0

Mm−1
PV

Dm+1(z)

]
,

(12)

where we made use of the following definitions [26]:

Dσ(z) = (1 + z)1−σ
∫

(1 + z)σ−2

H(z)
dz , (13)

zσ = (1 + z)−σ
∫

dz

(1 + z)1−σ
. (14)

Therefore, the modifications to the GW polarization
modes can be written as

hR,L = h
(GR)
R,L e∓δφA±i δφV . (15)

A. Waveform modifications

To perform a comparison with GW measurements, we
shall work out the parity-violating modifications in the
standard +/× basis. Specifically, from the circular po-
larization modes, one can define the linear modes

h+ =
hR + hL√

2
, h× = i

hR − hL√
2

. (16)

Thus, expanding Eq. (15) at the first order gives

h+ = h
(GR)
+ − i δφAh

(GR)
× + δφV h

(GR)
× , (17)

h× = h
(GR)
× + i δφAh

(GR)
+ − δφV h

(GR)
+ . (18)

For a given detector, the measured GW response func-
tion may be written as

h̃ = F+h̃+ + F×h̃× , (19)

where the beam functions F+,× depend on the polar-
ization angle and location of the GW source in the sky
[78]. In the PN approximation, we can write the GR
polarization modes in the case of quasi-circular and non-
precessing binaries as [79]

h̃
(GR)
+ = A(1 + ξ2)eiψ , (20)

h̃
(GR)
× = 2Aξei(ψ+π/2) , (21)

where A and ψ are the GW amplitude and phase, re-
spectively, in the stationary phase regime. Moreover,
ξ ≡ cos ι, being ι the inclination angle between the line
of sight and the angular momentum vector of the source.
The detector response as a function of the GW frequency
is given by

h̃GR(ν) = Aν−7/6ei(ψ+δψ), (22)

where

A =

√
5

96π4/3

M5/6

dL(z)

√
F 2
+(1 + ξ2)2 + 4F 2

×ξ
2 , (23)

δψ = tan−1

[
2F×ξ

F+(1 + ξ2)

]
, (24)

being M ≡ (m1m2)
3/5×(m1+m2)

−1/5 the chirp mass of
the binary system composed by the objects with masses
m1 and m2, and dL(z) the luminosity distance1.

Hence, one can feature the parity-violating GW prop-
agation as

h̃ = h̃GR(1 + δAA + δAV )e
i(δψA+δψV ) . (25)

The corrections δψA and δψV are found by plugging
Eqs. (17) and (18) into Eq. (19), and then expanding

1 Following the prescription of Eq. (13), dL(z) = (1 + z)2D2(z),
where D2(z) coincides with the angular diameter distance.
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the resulting expressions for the amplitude and phase at
the linear order in δφA,V . In doing so, we obtain

δAA + δAV = f(F+,×, ξ)δφA − g(F+,×, ξ)δφV , (26)
δψA + δψV = g(F+,×, ξ)δφA + f(F+,×, ξ)δφV , (27)

where we introduced the following auxiliary functions:

f(F+,×, ξ) :=
2(F 2

+ + F 2
×)(1 + ξ2)ξ

4F 2
×ξ

2 + F 2
+(1 + ξ2)2

, (28)

g(F+,×, ξ) :=
F+F×(1− ξ2)2

4F 2
×ξ

2 + F 2
+(1 + ξ2)2

. (29)

In view Eqs. (26) and (27), Eq. (25) finally becomes

h̃ = h̃GR [1 + f(F+,×, ξ)δφA − g(F+,×, ξ)δφV ]

× exp {i [g(F+,×, ξ)δφA + f(F+,×, ξ)δφV ]} . (30)

B. PPE formalism

At this point, we shall show how the parity-violating
modifications in the propagation of GWs can be framed
within the PPE formalism [37, 52]. For this purpose, let
us consider the following PPE waveform:

h̃PPE = h̃GR (1 + αPPEu
aPPE) exp

{
i βPPEu

bPPE
}
. (31)

Here, the parameters aPPE, αPPE, βPPE and bPPE are di-
mensionless coefficients to be mapped to different gravity
models, and u = πνM.

Then, to account for the parity-violating theories, we
can use Eq. (30) with the explicit forms of δφA and δφV .
In this way, one finds the mapping

h̃ = h̃GR

(
1 +

∑
aPPE

uaPPEα(PPE)
aPPE

)
exp

{
i
∑
bPPE

ubPPEβ
(PPE)
bPPE

}
(32)

from which we infer aPPE = bPPE = (n,m). Specifically,
for aPPE = bPPE = n, we have2

α(PPE)
n =

[
2(1 + z)

MMPV

]n
f(F+,×, ξ)

2

[
αn0zn +MPVβn0Dn+1(z)

]
,

(33)

β(PPE)
n =

[
2(1 + z)

MMPV

]n
g(F+,×, ξ)

2

[
αn0

zn +MPVβn0
Dn+1(z)

]
.

(34)

On the other hand, for aPPE = bPPE = m, one has

α(PPE)
m = −

[
2(1 + z)

MMPV

]m
g(F+,×, ξ)

2

[
γm0

zm +MPVδm0
Dm+1(z)

]
,

(35)

β(PPE)
m =

[
2(1 + z)

MMPV

]m
f(F+,×, ξ)

2

[
γm0

zm +MPVδm0
Dm+1

]
.

(36)

2 Notice that u = Mk/2 .

Furthermore, it is possible to frame the GW linear po-
larization modes within the PPE formalism. In particu-
lar, we parametrize the detector response as

h̃+ = h̃
(GR)
+ (1 + δA+)e

iδψ+ , (37)

h̃× = h̃
(GR)
× (1 + δA×)e

iδψ× , (38)

that can be combined with Eqs. (20) and (21) to obtain

h̃+,× = h̃
(GR)
+,×

[
1 + ζ+,×(ξ)δφA

]
eiζ+,×(ξ) δφV , (39)

where we introduced

ζ+(ξ) :=
2ξ

1 + ξ2
, ζ×(ξ) :=

(1 + ξ)2

2ξ
. (40)

Then, in this case, the PPE parameters are aPPE =
n , bPPE = m and

α(PPE)
n =

(
2

MMPV

)n
ζ+,×(ξ)

2

[
αn0zn +MPVβn0Dn+1(z)

]
,

(41)

β(PPE)
m =

(
2

MMPV

)m
ζ+,×(ξ)

2

[
γm0

zm +MPVδm0
Dm+1(z)

]
.

(42)

III. PARITY-VIOLATING THEORIES OF
GRAVITY

In this Section, we briefly describe the main features of
the most relevant parity-violating modified gravity theo-
ries. Thus, we infer the expressions of the PPE parame-
ters for the specific model under consideration.

A. Chern-Simons gravity

As mentioned earlier, the CS theory is one of the most
well-studied scenarios leading to parity violation [80]. In
this case, the modified gravity action is given by

SCS =
1

2κ

∫
d4x

√−g
(
R+

αCS

4
ϑR ⋆R

)
, (43)

where αCS is a coupling constant, ϑ is a dynamical scalar
field, and R ⋆R is the Pontryagin density defined as

R ⋆R =
1

2
Rabcd ε

abefRcdef , (44)

where εabcd is the Levi-Civita tensor.
Considering linear perturbations as in Eq. (3), the

equations of motion for the tensor modes are given by
(see [81] for the details)

Dj
i +

εsjl

a2
[
(ϑ′′ − 2Hϑ′)∂sh′il + ϑ′∂sDil

]
= 0 , (45)
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where we defined

Dij := h′′ij + 2Hh′ij − ∂l∂
lhij . (46)

Moreover, when searching for plane-wave solutions, the
GW polarization modes obey the dispersion relation [77]

iφ̈+ φ̇2 − k2 = −i kλR,LαCSϑ̈

1− kλR,LαCSϑ̇
φ̇ . (47)

Then, making use of the equation of motion for the scalar
field, ϑ̈ + 2Hϑ̇ = 0, and linearizing Eq. (47), one finally
obtains

δφ = −2ikλR,LαCS0
ϑ̇0z . (48)

Since the units of the αCSϑ̇0 term are those of a length,
we operate the redefinition αCS → α̃CS = αCSMPV in
order for Eq. (48) to be dimensionless.

Now, if we compare Eq. (48) to Eq. (8) with the help
of the expressions (11) and (12), we infer3 α1 = 4α̃CSϑ̇,
whereas all the other parity-violating coefficients are van-
ishing. Thus, from Eqs. (33) and (34), we obtain the PPE
parameters corresponding to the CS theory:

α
(PPE)
1 =

f(F+,×, ξ)

MMPV
α10z , (49)

β
(PPE)
1 =

g(F+,×, ξ)

MMPV
α10z . (50)

B. Symmetric Teleparallel gravity

Another relevant parity-violating theory we take into
account in our study is ST gravity. In particular, the ST
Equivalent to GR action is given as [82]

SSTEGR = − 1

2κ

∫
d4x

√−gLSTEGR , (51)

where

LSTEGR = −1

4
QabcQ

abc+
1

2
QabcQ

bac+
1

4
QaQ

a− 1

2
QaQ̃

a .

(52)
Here, Qabc ≡ ∇agbc is the non-metricity tensor, whose
contractions obey the relations

Qa = gbcQabc , Q̃c = gabQabc . (53)

In ST geometry with coupling to a scalar field ϕ, once
introducing perturbations as in Eq. (3), the only non-
vanishing parity-violating Lagrangians that are second-
order in derivatives are (see Ref. [48] for the details)

L
(2)
PV,1 = εabcd∂cϕ∂

fϕQabeQfd
e , (54)

L
(2)
PV,2 = εabcd∂fϕ∂

fϕQabeQcd
e . (55)

3 From Eq. (14), one finds z1 = z(1 + z)−1 .

Hence, the parity-violation action can be written as

S
(2)
PV =

1

2κ

∫
d4x

√−g αST,iL
(2)
PV,i , (56)

where αST,i (i = 1, 2) are arbitrary function of ϕ and
the related kinetic term. One can show that the two
Lagrangians actually differ only by a constant and, thus,
the ST modified gravity action may be written as

S
(2)
ST =

1

2κ

∫
d4x a3

(
L(2)

STEGR + L(2)
PV

)
, (57)

with

L(2)
STEGR =

1

4

(
ḣij ḣij − ∂khij∂kh

ij
)
, (58)

L(2)
PV =

H

a
αST ε

ijkhk
l∂ihjl , (59)

where αST can be thought of as a generic function of time.
Then, the equations of motion for tensor perturbations
are given by

h′′ij + 2Hh′ij − ∂2hij − 4HαST εkl(i∂
khlj) = 0 , (60)

where ∂2 ≡ δij∂
i∂j . Then, the dispersion relation reads

[37]

iφ′′ + 2iHφ′ + φ′2 − k2 + 4kHαSTλR,L = 0 , (61)

and one finds

δφ = −2λR,LαST0
ln(1 + z) . (62)

From the comparison between the latter4 and Eq. (8), we
can map γ0 = −4αST, while all the other parity-violating
coefficients are zero. Moreover, the PPE parameters read

α
(PPE)
0 = −z0γ00

2
g(F+,×, ξ) , (63)

β
(PPE)
0 =

z0γ00
2

f(F+,×, ξ) . (64)

Furthermore, if one considers the third-order terms
in derivatives, the non-vanishing parity-violating La-
grangians are [48]

L
(3)
PV,1 = εabcd∂dϕ∇aQfb

eQf ce , (65)

L
(3)
PV,2 = εabcd∂dϕ∇fQ

fb
aQbce , (66)

L
(3)
PV,3 = εabcd∂eϕ∇aQebfQcd

f . (67)

In this case, the modified gravity action for GW propa-
gation may be written as

S
(3)
ST =

1

2κ

∫
d4x a3

(
β1

a3MPV
L(3)

PV,1 +
β2

aMPV
L(3)

PV,2

+
β3

aMPV
L(3)

PV,3

)
, (68)

4 Notice that, according to Eq. (14), ln(1 + z) = z0.
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where βi (i = 1, 2, 3) are generic time-dependent func-
tions, and

L(3)
PV,1 = εijk∂2hj

l∂ihkl , (69)

L(3)
PV,2 = 2Hεijkḣj

l∂ihkl , (70)

L(3)
PV,3 = εijkḣj

l∂iḣkl . (71)

Thus, the equations of motion read

h′′ij + 2Hh′ij − ∂2hij −
ε(ilk

aMPV

[
(−β1∂2 + β̃1)∂

lhkj)

+ β̃2ḡj)q∂
lh′kq + β3ḡj)q∂

lh′′kq
]
, (72)

where ḡij is the metric tensor for the line element (2),
and we defined

β̃1 ≡ β′
2H+ β2H′ + 3(β′

3H+ β3H′) + β3H2 , (73)

β̃2 ≡ β′
2 + 3β2H . (74)

The dispersion relation is given by [37]

φ′′ + φ′2 + i

[
2H+

λR,LkH
aMPV

(3β2 − 2β3) +
λR,Lk

aMPV
β′
2

]
φ′

− k2
[
1 +

λR,Lk

aMPV
(β1 − β3)

]
= 0 , (75)

and we have

δφ =− iλR,Lk

2MPV

[
β̇20(1 + z)D2(z) + 3(β20 − β30)z

]
+
λR,Lk

2

2MPV
(β10 − β20)(1 + z)2D3(z) . (76)

Therefore, by rescaling β̇2 → ˙̃
β2 = β̇2/MPV, we find that

the non-vanishing parity-violating coefficients are

α1 = 3(β2 − β3) , (77)

β1 =
˙̃
β2 , (78)

δ2 = β1 − β2 . (79)

As far as the PPE coefficients are concerned, we find

α
(PPE)
1 =

f(F+,×, ξ)

2

[
α10

MPV
z + β10(1 + z)D2(z)

]
, (80)

β
(PPE)
1 =

g(F+,×, ξ)

2

[
α10

MPV
z + β10(1 + z)D2(z)

]
, (81)

α
(PPE)
2 = −2g(F+,×, ξ)

M2MPV
δ20(1 + z)2D3(z) , (82)

β
(PPE)
2 =

2f(F+,×, ξ)

M2MPV
δ20(1 + z)2D3(z) . (83)

C. Hořava-Lifshitz gravity

The HL theory of gravity was first proposed in
Ref. [50], where it was shown that both Lorentz symme-
try breaking and parity violation can occur. The most

general form of the gravitational part of the HL action
that is invariant under parity transformations is given by
[83, 84]

SHL =
1

2κ

∫
d4x

√−g N
(
LK − L(R)

V − L(a)
V + LA + Lϕ

)
(84)

where

LK = KijK
ij − λK2 , (85)

L(R)
V =

g0
2κ

+ g1R+ 2κ
(
g2R

2 + g3RijR
ij
)
+ 4κ2g5CijC

ij ,

(86)

L(a)
V = −ξ0aiai + 2κ

[
ξ1(aia

i)2 + ξ2(a
i
i)

2 + ξ3(aia
i)ajj

+ ξ4a
ijaij + ξ5aia

iR+ ξ6aiajR
ij + ξ7a

i
iR
]

+ 4κ2ξ8(∇2ai)2 , (87)

LA =
A

N
(2Λ−R) , (88)

Lϕ = ϕGij(2Kij +∇i∇jϕ+ ai∇jϕ) + (1− λ)×
×
[
(∇2ϕ+ ai∇iϕ)2 + 2

(
∇2ϕ+ ai∇iϕ

)
K
]

+
1

3
Gijlk

[
4(∇i∇jϕ)a(k∇l)ϕ+ 5(a(i∇(jϕ)a(k∇l)ϕ

+ 2
(
∇(iϕ

)
aj)(k∇l)ϕ+ 6Kijal(∇k)ϕ

]
. (89)

Here, Kij and Cij are the extrinsic curvature and the
Cotton tensor, respectively, defined as

Kij :=
1

2N
(−ġij +∇iNj +∇jNi) , (90)

Cij :=
εikl√
g
∇k

(
Rjl −

1

4
Rδjl

)
, (91)

while λ, gi (0 = 2, . . . , 5) and ξi (i = 0, . . . 8) are cou-
pling constants. Also, ai = ∂i(lnN), aij = ∇jai, being
Ni = gijN

j the shift vector and N the lapse function
in the Arnowitt-Deser-Misner decomposition. Moreover,
A and ϕ are the U(1) gauge field and Newtonian prepo-
tential, respectively, whereas Gijlk ≡ gilgjk − gijgkl, and
Gij is the Einstein tensor including the contribution of
the cosmological constant, Λ:

Gij := Rij −
1

2
gijR+ gijΛ . (92)

The parity-violating effects can be studied by including in
the action (84) the fifth and sixth-order spatial derivative
operators [51]:

LPV =
αHL,0

M3
PV

KijR
ij +

αHL,1

MPV
ω3(Γ) +

αHL,2

M3
PV

εijkRil∇2
jR

l
k ,

(93)

where αHL,i (i = 0, 1, 2) are dimensionless constants, and
ω3(Γ) is the three-dimensional CS term:

ω3(Γ) :=
εijk√−g

(
Γmjl∂iΓ

l
km +

2

3
ΓnilΓ

l
jmΓmkn

)
. (94)
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Detector Latitude Longitude
x-arm

azimuth
y-arm

azimuth fini [Hz]
ET-1 0.7615 0.1833 0.3392 5.5752 1
ET-2 0.7629 0.1841 4.5280 3.4808 1
ET-3 0.7627 0.1819 2.4336 1.3864 1
CE1 0.7613 −2.0281 1.5708 0 5
CE2 −0.5811 2.6021 2.3562 0.7854 5

TABLE I. Localization and the power spectral density lowest
frequency of the detectors considered in this study.

It is worth remarking that, in Eq. (84), we neglected extra
fifth-order operators that do not contribute to the tensor
perturbations.

Assuming the metric (3) under the gauge ϕ = 0, one
has N = a(η) and N i = A = 0 [84]. Then, considering
up to the second-order derivatives of the tensor pertur-
bations, the field equations read

h′′ij + 2Hh′ij − α2
HL∂

2hij

+ εi
lk

[
2αHL,1

MPVa
+

αHL,2

(MPVa)3
∂2
]
∂l(∂

2hjk) = 0 , (95)

where α2
HL ≡ 1 + 3αHL,0H/(2M3

PVa). We notice that a
healthy behavior of the theory on infrared scales requires
α2

HL ≃ 1. This implies that one can set αHL,0 = 0 without
any loss of generality. In this case, the GW dispersion
relation can be written as [37]

iφ′′+φ′2+2iHφ′−k2+λR,L

[
2αHL,1

MPVa
− αHL,2k

2

(MPVa)3

]
k3 = 0 ,

(96)
which leads to

δφ =− αHL,10
λR,L

2MPV
k2(1 + z)2D3(z)

+
αHL,20

λR,L

2M3
PV

k4(1 + z)4D5(z) . (97)

Comparing the latter with the general parametrization
framework given in Eq. (8), we find the non-zero parity-
violating coefficients to be

δ2 = −αHL,1 , δ4 = αHL,2 . (98)

Then, the PPE parameters are obtained as

α
(PPE)
2 = −2g(F+,×, ξ)

M2MPV
δ20(1 + z)2D3(z) , (99)

β
(PPE)
2 =

2f(F+,×, ξ)

M2MPV
δ20(1 + z)2D3(z) , (100)

α
(PPE)
4 = −8g(F+,×, ξ)

M4M3
PV

δ40(1 + z)4D5(z) , (101)

β
(PPE)
4 =

8f(F+,×, ξ)

M4M3
PV

δ40(1 + z)4D5(z) . (102)

FIG. 1. Amplitude spectral density for 2G and 3G detectors.

IV. OBSERVATIONAL CONSTRAINTS

In this Section, we study the power constraint of 3G
detectors on parity-violating theories. In particular, we
focus on the capabilities of ET and CE. For ET, we con-
sider a triangular-shaped configuration of 3 independent
detectors co-located in Italy (ET-1, ET-2, ET-3) by us-
ing the 10 km arm ET-D noise curve model. While, for
CE, we consider 2 independent L-shaped detectors: the
first placed in the United States (CE1) and the second
one in Australia (CE2), with 40 and 20 km arm lengths,
respectively. In Fig. 1, we depict the detector’s ampli-
tude spectral density (ASD) for the 2G (LVK) and 3G
detectors5. Furthermore, in Table I, we describe the main
features of the interferometers: the localization, the ori-
entation and the lowest frequency of the power spectral
density6. In the present analysis, we consider the follow-
ing configurations: ET, ET and CE1 (ET + CE1), and
ET along with the two CE detectors (ET + CE1+ CE2).

We model the quantity h̃GR in Eq. (32) with the
IMRPhenomD waveform, considering an orbital configura-
tions with spins aligned with the angular momentum.
Within this prescription, the set of binary parameters is
B = {M, q, dL, ι, tc, ϕc, ψ, χ1, χ2, ra, dec, θPPE}. We
can distinguish the extrinsic and intrinsic parameters.
The former include the sky angles (ra, dec), the inclina-
tion ι, the polarization angle ψ, the phase at coalescence
ϕc, the coalescence time tc, and the luminosity distance
of the source, dL. On the other hand, the intrinsic pa-
rameters are the chirp mass M, the mass ratio q, and the
projection χi of the i-th spin along z. Moreover, θPPE
represents the set of PPE expansion parameters encoding

5 The most recent ASDs of ET and CE can be found, respec-
tively, at https://www.et-gw.eu/index.php/etsensitivities
and https://dcc.cosmicexplorer.org/CE-T2000017/public.

6 The locations and orientations of the interferometers are as re-
ported in Table I of Ref. [85].

https://www.et-gw.eu/index.php/etsensitivities
https://dcc.cosmicexplorer.org/CE-T2000017/public
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FIG. 2. Top panel: waveforms for a GW150914-like event for different values of the θPPE parameters. Bottom panel: residual
strain, i.e., h̃GR − h̃PPE, for the different theories under consideration in this work.

the parity-violating effects of the gravity scenarios under
study. It is worth noticing that θPPE is independent of
the localization parameters (ra, dec, ψ, ι).

To simulate the injection and to analyze the GW wave-
form, we adopt the open software bilby [86, 87]. The
synthetic signal is taken into account by assuming the
system parameters as in the event GW150914 [88]. Fur-
thermore, the PPE parameters are set to their corre-
sponding GR fiducial values. The fiducial values for the
binary parameters are reported in Table II. In Fig. 2, we
highlight the differences in the waveform when the θPPE
parameters are not vanishing.

Assuming the detector noise to be stochastic, station-
ary and a Gaussian function of time, we can evaluate the
signal-to-noise ratio (SNR) through the expression

SNR =
√
⟨h, h⟩ , (103)

where the inner product ⟨·, ·⟩ is defined as

⟨A,B⟩ = 4Re
∫ ∞

0

Ã∗(f)B̃(f)

Sn(f)
df , (104)

and Sn(f) is the one-side power spectrum of the detector.

For a network of N detectors, the total SNR is given by

SNRN =

√√√√ N∑
i=1

SNR2
i . (105)

The estimated SNR values for the injected signal
are 935, 1740 and 1811 for the ET, ET +CE1 and
ET +CE1 + CE2 networks, respectively. Since the SNR
is very high, we expect the localization parameters
(ra, dec, ψ, ι) to be weakly correlated with the intrin-
sic parameters. Hence, adopting the same approach as
that used in the recent work [89], we fix the localization
parameters to their fiducial values. In so doing, the in-
ference parameter set reduces to

B = {M, q, dL, tc, ϕc, χ1, χ2, θPPE}. (106)

Therefore, we sample the posterior distributions by the
bilby-mcmc algorithm [90], using the priors shown in Ta-
ble III. In our numerical analysis, we marginalize over the
phase ϕc and coalescence time tc, and we set the mini-
mum frequency to 10 Hz and the maximum frequency to
1024 Hz and the signal duration of 64 s. Additionally, we
fix H0 = 67.7 km s−1 Mpc−1 and Ωm0 = 0.308 in order
to convert the dL sampling into that over z. In what fol-
lows, we present the numerical constraints on the PPE
parameters for the different theoretical scenarios.
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Parameter Value Parameter Value
M [M⊙] 28.1 ψ [rad] 2.66

q 0.81 ra [rad] 1.38
dL [Mpc] 400 dec [rad] −1.21

χ1 0.31 ι [rad] 0.40
χ2 0.39 ϕc [rad] 1.30
tc [s] 0.00 θPPE 0.00

TABLE II. Injection parameters for the binary system.

Parameter Prior
M [M⊙] U(20, 100)

q U(0.125, 1)
dL [Mpc] U(100, 5000)

χ1 U(−1, 1)

χ2 U(−1, 1)

θPPE U(−500, 500)

TABLE III. Priors for the free parameters of the sampling,
where U indicates a uniform distribution function.

A. Chern-Simons gravity

From Eqs. (49) and (50), the PPE parameter for CS
gravity is

θPPE =
α10

MPV
. (107)

In Table IVa, we present the results of our analysis for
the different detector networks, whereas, in Fig. 3, we
show the 1σ, 2σ and 3σ confidence level (C.L.) regions
and the posterior distributions of the GW parameters.
In particular, we note that the PPE parameter is weakly
correlated with dL and χ1. The PPE parameter is con-
strained with an accuracy of (10.93, 6.70, 5.91)M⊙ for
ET, ET + CE1 and ET + CE1+ CE2, respectively.

In Fig. 4, we compare the results obtained from 3G
detectors with those of the 2G detector network, keeping
the localization parameters fixed at their fiducial values.
Specifically, we quantify the deviations of the posterior
distributions from the injected values of the GW param-
eters. As such, we highlight an improvement on the PPE
parameter of a factor ∼ 18.

B. Symmetric teleparallel gravity

Given Eqs. (80) to (83), we can define the PPE param-
eter set in ST gravity as follows:

θPPE =

{
α10

MPV
, β10 ,

δ20
MPV

}
. (108)

The MCMC results are listed in Table IVb and plotted
in Fig. 5. It is worth noticing that, in all configurations

the quantity α10

MPV
turns out to be unconstrained, as as it

is not characterized by a specific posterior distribution,
which simply reflects the chosen priors. The same be-
havior occurs also by enlarging the priors. On the other
hand, the parameter β10 is bounded with an accuracy
of 0.08, 0.06 and 0.074 under the ET, ET +CE1 and
ET +CE1 + CE2 configurations, respectively. The same
detector networks are capable of constraining δ20

MPV
with

an accuracy of (1.80, 1.70, 1.53)M2
⊙ Mpc−1, respectively.

Similarly to the case of CS gravity, we compare the
results obtained for the 3G and 2G detector networks in
Fig. 6. We note that α10

MPV
remains unconstrained also

for the 2G detectors. Moreover, the two configurations
provide similar accuracy on the parameter β10 . However,
the posterior distribution of the latter from the 3G detec-
tors peaks around 0, while the result of the 2G detectors
is almost flat in the same confidence interval. Finally,
the 3G detector network improves the accuracy on δ20

MPV
by a factor ∼ 15.

C. Hořava-Lifshitz gravity

The PPE parameter set in the case of HL gravity is
provided by Eqs. (99) to (102):

θPPE =

{
δ20
MPV

,
δ40
M3

PV

}
. (109)

We show the posterior distributions in Fig. 7, and the
best-fit values of the GW parameters in Table IVc. We
can see that δ40

M3
PV

is unconstrained, while δ20
MPV

is bounded
with an accuracy of 1.78, 1.08 and 1.00 under the ET,
ET +CE1 and ET +CE1 + CE2 networks, respectively.

Furthermore, also for HL gravity, in Fig. 8 we highlight
the improvement one may obtain through 3G detectors
compared to the 2G detector network. In fact, the accu-
racy on δ20

MPV
increase by a factor ∼ 19.

V. SUMMARY AND DISCUSSION

We considered parity violation in the propagation of
GWs through a newly proposed PPE formalism. In par-
ticular, we framed deviations from GR through a gen-
eral parametrized framework taking into account the
modified amplitude and phase of GWs. We focused
on the cases of CS, ST and HL gravity, where depar-
tures from Einstein’s theory may emerge from additional
parity-violating terms included in the gravitational ac-
tion. Then, we outlined the geometrical and physical
characteristics of future ground-based GW interferome-
ters, such as ET and CE. We showed how they can be
used to probe parity violations, and we described the
method to constrain the PPE expansion parameters.

Using the sensitivities of 3G detectors, we simulated
GW signals from binary systems, such as BBH and BNS,
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Network M [M⊙] q dL [Mpc] χ1 χ2
α10
MPV

[M⊙]

ET 28.09+0.01
−0.01 0.81+0.03

−0.02 400.02+0.58
−0.67 0.29+0.08

−0.11 0.41+0.12
−0.10 1.82+11.04

−10.83

ET+ CE1 28.092+0.003
−0.003 0.81+0.02

−0.02 400.14+0.27
−0.25 0.27+0.05

−0.07 0.44+0.08
−0.07 −0.28+6.91

−6.49

ET+ CE1+CE2 28.092+0.002
−0.002 0.81+0.01

−0.01 399.88+0.20
−0.22 0.29+0.04

−0.04 0.41+0.05
−0.05 −5.27+5.47

−6.35

(a) CS gravity

Network M [M⊙] q dL [Mpc] χ1 χ2
α10
MPV

[M⊙] β10 [Mpc−1]
δ20
MPV

[M2
⊙ Mpc−1]

ET 28.10+0.01
−0.01 0.81+0.01

−0.01 399.50+0.38
−0.38 0.32+0.01

−0.01 0.39+0.01
−0.01 n.c. 0.00+0.08

−0.08 −1.34+1.81
−1.78

ET+ CE1 28.090+0.005
−0.005 0.796+0.006

−0.006 400.39+0.36
−0.34 0.312+0.003

−0.003 0.389+0.005
−0.005 n.c. −0.03+0.09

−0.03 1.79+1.78
−1.63

ET+ CE1+CE2 28.093+0.005
−0.005 0.805+0.006

−0.006 400.26+0.32
−0.33 0.314+0.003

−0.003 0.384+0.005
−0.005 n.c. −0.002+0.074

−0.074 −2.19+1.55
−1.52

(b) ST gravity

Network M [M⊙] q dL [Mpc] χ1 χ2
δ20
MPV

[M2
⊙ Mpc−1]

δ40
M3

PV
[M4

⊙ Mpc−1]

ET 28.08+0.01
−0.01 0.81+0.01

−0.01 400.33+0.33
−0.30 0.31+0.01

−0.01 0.39+0.01
−0.01 −0.44+1.72

−1.84 n.c.

ET+ CE1 28.100+0.007
−0.007 0.80+0.01

−0.01 399.86+0.17
−0.17 0.306+0.004

−0.004 0.393+0.006
−0.006 1.23+1.12

−1.03 n.c.

ET+ CE1+CE2 28.092+0.003
−0.003 0.82+0.01

−0.01 400.07+0.16
−0.17 0.314+0.003

−0.003 0.383+0.004
−0.004 −0.72+1.00

−0.99 n.c.

(c) HL gravity

TABLE IV. Best-fit values and 1σ uncertainties on the GW parameters of the theoretical scenarios under study, for different
detector configurations. n.c. stands for not constrained.

and we obtained 68%, 95% and 99% numerical bounds
on both binary and PPE parameters, for different GW
detector networks. The accuracy of the GW and PPE
parameters increases when more detectors are consid-
ered in the network, independently from the theoreti-
cal framework. As the SNR is very high, the uncer-
tainties on the GW parameters turn out to be quite
low. Indeed, for all models under study, we constrained
the chirp mass and mass ratio with a relative accu-
racy of ∼ (0.04, 0.03, 0.01)% and ∼ (3, 1.5, 1)% for ET,
ET +CE1 and ET+ CE1 +CE2, respectively. Addition-
ally, the precision on dL spans from ∼ 0.2% in the
case of ET alone, to ∼ 0.1% and ∼ 0.08% when ET
is combined with one or two CE detectors. Moreover, we
bounded the spin parameter χ1 with a relative accuracy
of ∼ (20, 10, 3)% and ∼ (20, 10, 2)% for the three de-
tector configurations, respectively. As regards the PPE
parameters, we found that one of them remains uncon-
strained in ST and HL gravity. This feature may be re-
lated to the low-frequency cut-off. In fact, to reduce the
computational time, we fixed the minimum frequency of
10 Hz. However, one might extend the analysis to the
1-10 Hz frequency band, and increase the duration of the
signal, to improve the constraints on GW parameters.

Furthermore, we compared the results of the combined
3G detectors with those of the 2G detector configuration
of LVK interferometers. For each parity-violating model,
we showed the deviations of the posterior distributions

of the fitting parameters with respect to the injected GR
signal. Our results indicate an improvement of roughly
one order of magnitude compared to those obtained for
the 2G detectors. Specifically, from the LVK configura-
tion, we obtained a relative accuracy of 0.5% on M, 7%
on the mass ratio, 1.6% on dL, and 63% and 80% on χ1

and χ2, respectively. We note that the constraint on the
h̃GR waveform parameters are almost independent of the
theoretical model also under the LVK analysis.

Finally, it is worth to stress that the PPE parameters
enter the waveform at higher orders of the PN expan-
sion. Hence, a more accurate waveform would be needed
in the future to detect with greater precision deviations
from GR that arise from parity-violating theories. In fu-
ture investigations, we also plan to perform a more com-
prehensive Bayesian analysis, allowing the localization
parameters to vary freely in the numerical simulations.
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FIG. 3. 68%, 95% and 99% C.L. contours, with posterior distributions, for the free parameters of CS gravity under different
detector configurations. The straight lines indicate the injected values of the GW parameters.
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FIG. 4. Deviations of the posterior probability distributions from the injected values of the GW parameters for CS gravity. The
injected signal is analyzed both for the 3G detector (ET+CE1+ CE2) and 2G detector (LVK) configurations. The horizontal
dashed lines indicate zero deviations from the injected signal.
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FIG. 5. 68%, 95% and 99% C.L. contours, with posterior distributions, for the free parameters of ST gravity under different
detector configurations. The straight lines indicate the injected values of the GW parameters.
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FIG. 6. Deviations of the posterior probability distributions from the injected values of the GW parameters for ST gravity. The
injected signal is analyzed both for the 3G detector (ET+CE1+ CE2) and 2G detector (LVK) configurations. The horizontal
dashed lines indicate zero deviations from the injected signal.
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FIG. 8. Deviations of the posterior probability distributions from the injected values of the GW parameters for HL gravity. The
injected signal is analyzed both for the 3G detector (ET+CE1+ CE2) and 2G detector (LVK) configurations. The horizontal
dashed lines indicate zero deviations from the injected signal.
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