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Abstract

Ferroelectrics are of practical interest for non-volatile data storage due to their reorientable, crystal-
lographically defined polarization. Yet efforts to integrate conventional ferroelectrics into ultrathin
memories have been frustrated by film-thickness limitations, which impede polarization reversal un-
der low voltage. Wurtzite materials, including magnesium-substituted zinc oxide (Zn,Mg)O, have
been shown to exhibit scalable ferroelectricity as thin films. In this work, we explain the origins of
ferroelectricity in (Zn,Mg)O. Large strain fluctuations emerge locally in (Zn,Mg)O, causing a reduc-
tion of up to 45% in the local coercive field. We provide concurrent experimental and computational
evidence of these effects by demonstrating polarization switching in ZnO–(Zn,Mg)O heterostructures.
This work opens up an avenue to develop scalable ferroelectrics by controlling local strain gradients.
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1 Introduction
Ferroelectric thin films can reverse their crystallographically defined polarization states under low
electric bias, making them attractive candidates for storing binary data in energy-efficient (low-
voltage) microelectronics [1, 2]. Cation substitution is an effective approach for promoting polariza-
tion reversal in prototypical ferroelectrics like titanate-based perovskite oxides [3, 4]. For instance,
Pb(Zr,Ti)O3 (Zr-substituted PbTiO3) exhibits enhanced polarizability relative to its PbTiO3 and
PbZrO3 end members [5] due to competing polar structures at the morphotropic (tetragonal-to-
rhombohedral) phase boundary. This phase instability leads to a high dielectric constant, making
it an appealing ferroelectric.

While Pb(Zr,Ti)O3 has been successfully integrated into random-access ferroelectric memories
[6], there exist scaling constraints for film thicknesses below 70 nm, which limit the ferroelectric
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performance and energy efficiency of Pb(Zr,Ti)O3-based thin-film microelectronics [7, 8, 9, 10, 11].
As an alternative to perovskite materials, fluorites [12, 13, 14], including hafnia (HfO2) and its
derivatives (for example, (Hf,La)O2, (Hf,Zr)O2, and (Hf,Gd)O2) [15, 16, 17, 18], have been shown
to be scalable down to 2 nm [16, 17, 18, 19, 20, 21, 22, 23, 24]. Although endurance of up to 1010
cycles have been reported [15, 16, 20], ferroelectricity in hafnia is typically optimized at synthesis
temperatures above 800 ◦C to reduce wake up from a pristine to cycled state, whereas back-end-
of-the-line processing necessitates deposition temperatures below 400 ◦C. Studies into (Hf,Zr)O2

thin films at low annealing temperatures (<400 ◦ C) show ferroelectric responses with a remanent
polarization of 23.5 µC cm−2 and coercive voltage of 1.25 V [19, 25].

Unlike perovskites and fluorites, wurtzites [14, 26, 27, 28, 29] can be synthesized under nominal
processing conditions and exhibit a stable polar phase with no observable Curie temperature below
their melting point [30]. Although wurtzites tend to have significant polarization reversal barriers,
a dopant atom can stress the polar structure to the point of inducing a ferroelectric response at
low bias, as is the case for (Al,Sc)N, which exhibits a remanent polarization of 80 µC cm−2 with a
coercive field of 3.1 MV cm−1 [31, 32, 33, 34]. Similarly, while ZnO adopts a polar wurtzite structure
that is generally not considered to be ferroelectric due to its high coercive field (>7 MV cm−1) [26],
it has been shown experimentally that (Zn,Mg)O, in less than forty cycles [? ], is a ferroelectric
material with a remanent polarization over 100 µC cm−2 and a coercive field as low as 2.7 MV cm−1

[35], although the underlying mechanisms of this induced ferroelectricity remain elusive.
It has been proposed that epitaxial strain can impart ferroelectricity to polar materials like

wurtzite ZnO (Figure 1) [26, 27, 28, 31]. For instance, a biaxial tension orthogonal to the polar
axis of 1.5% can reduce the reversal barrier by 20%. First-principles studies have suggested that
a uniaxial compression of 6.0 GPa along the [0001] direction stabilizes an intermediate hexagonal
phase in ZnO [36]. Using this insight, strain induced by Mg dopants was considered as a possible
mechanism for ferroelectric reversal in (Zn,Mg)O; however, the magnitude of this biaxial strain is
below 0.3%, which cannot explain such a large change in the ferroelectric switching barriers.

In this work, this discrepancy is resolved by showing that local strain fluctuations can unlock
ferroelectric switching in (Zn,Mg)O. The possibility to promote ferroelectricity via local strain
gradients offers a versatile strategy to develop and process low-temperature scalable ferroelectric
thin films and heterostructures for microelectronic memories and switches.

2 Results and discussion

2.1 Influence of cation substitution on strain fluctuations

The formation of (Zn,Mg)O is critically dependent on the solubility of Mg cations in ZnO. To predict
this solubility, the mixing enthalpy of (Zn,Mg)O as a function of Mg content for the end-member
(wurtzite and rocksalt) phases was calculated as ∆Hmix(x) = HZn1−xMgxO − (1− x)HZnO − xHMgO,
where x is the Mg fraction as a decimal, HZn1−xMgxO is the energy of the (Zn,Mg)O configuration per
formula unit, and HZnO and HMgO are the reference enthalpies of ZnO and MgO, respectively. The
results of these calculations, shown in Figure 2(a) and (b), indicate that mixing is favored across
the full composition range for the wurtzite and rocksalt structures. Yet the shallow depths of –17.5
and –20 meV per formula unit (comparable to the thermal energy under processing conditions) for
the wurtzite and rocksalt phases, respectively, and the existence of multiple configurations near the
convex hull suggest that thermal disorder may impact local structural motifs in (Zn,Mg)O.

To include thermal effects, a cluster expansion model [42, 43, 44] was constructed and Wang–
Landau sampling [45, 46, 47] was applied to predict the temperature-dependent Gibbs free energies
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Figure 1: Polarization reversal barriers as a function of biaxial tension ε⊥ and uniaxial compression
ε∥ (orthogonal and parallel to the polar axis, respectively; as shown in the inset) calculated from
first principles. Lattice strains ε⊥ and ε∥ associated with the lowest-energy, fully relaxed (Zn,Mg)O
geometries relative to bulk ZnO up to the solubility limit of Mg (ca. 40%) are also shown as points.

Figure 2: Convex hulls and representative structures at finite temperature of the (a) wurtzite and
(b) rocksalt phases computed from density-functional theory. (c) Calculated phase diagram of
the ZnO:MgO binary constructed from cluster expansions and Monte Carlo simulations via Wang-
Landau sampling. The Gibbs free formation energies, ∆Gf , of each phase were employed to calculate
the phase boundaries, xw and xr, as a function of temperature. Computed phase boundaries and
experimental data (Refs. [37, 38, 39, 40, 41]) are indicated with solid lines and points, respectively.
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Figure 3: (a) Calculated strains of the Zn (grey) and Mg (orange) cations as a function of Mg
fraction. The Zn cations have a mixture of ε⊥ and ε∥, whereas Mg cations predominantly have ε∥.
The strain magnitude increases with Mg fraction and significant local strain fluctuations occur. (b)
Illustration of (Zn,Mg)O structures at 12.5% and 37.5% Mg fraction in addition to the corresponding
strain ellipsoids centered around their respective cations. The inset includes an illustration of a
strain ellipsoid, which represents the rigid rotation and elastic deformation of the local bonding
environment around individual Zn and Mg cations at the atomic scale.

of (Zn,Mg)O configurations containing thousands of atoms, as detailed in Figs. S4 and S5 of the
supplementary information (SI). This stochastic sampling approach simulates the microcanonical
density of states as a function of the ensemble energy and provides accurate estimates for the
configurational entropy assuming vibrational entropy to be negligible. The resulting free energies,
along with representative structures, are shown in Figure 2.

By drawing common tangents between the free energies of formation as a function of composition
at different temperatures [Figs. 2(a) and 2(b)], a phase diagram was constructed for the ZnO:MgO
mixture [Figure 2(c)]. The predicted phase diagram is in close agreement with experimental data
[37, 38, 39, 40, 41] and compares favorably with previous first-principles predictions [48, 49] using a
single adjustable parameter (a uniform shift in the formation energies of the rocksalt configurations
by 0.19 eV per formula unit, f.u.). On average, errors on relative formation energies are in the
range of 0.2-0.8 eV per atom with a mean absolute deviation of 0.26 eV per atom [50]. This single-
parameter correction is thus consistent with the typical error margins of density-functional-theory
calculations.

To quantify Mg-induced distortions, the local strain around individual cations in each structure
was calculated by examining the deformation from an ideal coordination environment of N nearest
neighbors located at positions Rn to the corresponding distorted environment defined by the nearest-
neighbor positions rn:

ε =
1

2

(
JJ⊤ − I

)
=

3

2r̄2
⟨rr⊤⟩ − I

2
, (1)

where ⟨rr⊤⟩ stands for 1
N

∑N
n=1 rnr

⊤
n , J is the (best-fit) deformation matrix from Rn to rn, I is the
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identity matrix, and r̄ is the linear interpolation of the wurtzite O–Zn and O–Mg bond lengths. For
simplicity, these local deformations are visualized as colored ellipsoids, whose shape represents the
directional compression (in blue) or expansion (in red) of the Zn and Mg coordination environments
in three dimensions (Figure 3) (cf. Figure S6, SI). In Figure 3(a), it is seen that Zn and Mg cations
have distinct strain patterns. The strain surrounding Zn cations is a mixture of ε⊥ and ε∥, whereas
that around Mg cations is predominantly of ε∥ character. This phenomenon has previously been
reported in similar cations in perovskite oxides [51]. As the Mg fraction increases, the magnitudes of
ε⊥ and ε∥ increase, showing that Zn and Mg experience higher local strain in (Zn,Mg)O. Fluctuations
of ε⊥ and ε∥ at intermediate concentrations are significantly larger than at dilute concentrations.
These fluctuations can reach up to 1.5% in ε⊥ and –2.5% in ε∥, while the global strain (that is,
their macroscopic average across the periodic supercell) never exceeds 1.0%. Visualizing the strain
ellipsoids [Figure 3(b)] confirms that Mg cations exhibit significantly stronger uniaxial compression
than Zn cations, whereas Zn cations exhibit marginally stronger biaxial tension than Mg cations.
The central conclusion of this analysis is that cation ordering impacts local strain at the atomic
scale by causing strong tetrahedral fluctuations from Mg onto neighboring Zn.

These fluctuations can be rationalized at the electronic-structure level by examining the oxygen–
metal bonds and the hybridization of the oxygen and metal orbitals. (Representative atomic orbitals
of Zn, Mg, and O are shown in Figure S7 of the SI.) As the Mg fraction increases, the average O–Zn
bond length (basal-plane and polar, relative to the [0001] polar axis) increases [cf. Figure S8(a), SI],
implying weakened bond strength. The onset of the smaller Mg cations induces larger O–Zn bond
lengths. The weakening of the bonds was analyzed by calculating maximally localized Wannier
functions [52, 53] in wurtzite ZnO and (Zn,Mg)O at 37.5% Mg to visualize and quantify O–Zn
bonding interactions. A crystal orbital Hamilton population (COHP) [54] analysis was conducted
to assess the strength of these interactions in (Zn,Mg)O (dashed) relative to ZnO (solid) [cf. Figure
S8(b), SI]. Bonds in the basal plane are typically characterized by strong bonding peak intensities
compared to polar bonds. Compared with bonding interactions in ZnO, the peak intensity of the
basal-plane bonding in (Zn,Mg)O drops while the polar anti-bonding peak intensifies.

These results can be understood by considering bond ionicity [55]. The Zn–3d orbitals in ZnO
participate in covalent bonding by partial electron donation while the Mg–3s orbitals fully donate
their electrons to form ionic bonds. Upon substituting Zn for Mg in (Zn,Mg)O, fewer electrons from
Zn–3d orbitals contribute to bonding, thereby distorting bonds across the tetrahedral network and
inducing local strain fluctuations. Understanding the driving force of these fluctuations is critical
to analyzing the pathways of ferroelectric switching in (Zn,Mg)O.

2.2 Influence of strain fluctuations on ferroelectricity

Nudged-elastic-band calculations [56, 57, 58] were conducted to determine the minimum energy
pathways of ferroelectric polarization reversal in (Zn,Mg)O. The spontaneous polarization of each
image along the pathways was calculated (cf. Figure S9, SI). Minimum energy pathways at 0% Mg
and 37.5% Mg are shown in Figure 4(a). In the case of 0% Mg (pure ZnO), there exist little to no
strain fluctuations, leading to uniform switching where all atoms switch simultaneously in one step.
At 37.5% Mg, there exist significant local strain fluctuations such that the structure engages in
sequential switching where cations move consecutively in multiple steps, a phenomenon previously
reported in corundum derivatives [59]. These types of reversal mechanisms are also characterized
by intermediate states passing through a non-polar h-BN crystal structure for uniform reversal and
an anti-polar crystal structure with alternating polar states for sequential reversal. This reversal
mechanism has been recently observed experimentally and computationally in a related wurtzite
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Figure 4: (a) Minimum energy pathways of (Zn,Mg)O simulated using nudged-elastic-band calcula-
tions. Here, Mg fractions of 0% and 37.5% are shown to illustrate the effect of strain fluctuations on
the ferroelectric polarization reversal. While uniform reversal (black) passes through a hexagonal
boron nitride (h-BN) intermediate structure, sequential reversal (purple) passes through an anti-
polar structure with alternating polar states. Sequential reversal reduces the energy barrier between
the bistable states by 40%. (b) Estimates of the coercive field and its variance under uniform and
sequential reversal. If a structure contains larger strain fluctuations, there is a strong likelihood that
it will undergo a sequential ferroelectric reversal under reduced coercive fields. Unless the minimum
energy pathway is the actual pathway, these calculations of the coercive fields are an upper limit of
the experimental coercive field.

material, (Al,B)N [29]. Sequential reversal leads to a 40% reduction in the energy barrier compared
to uniform reversal. This reduction in the reversal barrier is further validated when considering the
estimated coercive field [Figure 4(b)]. Uniform reversal with little strain fluctuations leads to high
coercive fields with little variance in the electric field, whereas sequential reversal with significant
fluctuations is characterized not just by lower coercive fields, but also by a larger variance of these
fields, with a reduction of at least 45%. Unless the minimum energy pathway is the actual pathway,
these calculations of the coercive fields are an upper limit of the experimental coercive field. With
these large spreads, there are opportunities for the most favorably distorted cation to switch first,
prompting nearby cations to switch consecutively.
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Figure 5: Ensemble-learning nonlinear regression of local coercive fields. (a) Comparison of the
computed and predicted reversal barriers from the multivariate regression model. The regression
model predicts local coercive fields with a root mean square error of 2.12 MV cm−1 and a coefficient
of determination of 88%. (b) Feature importance ranking of the regression model including changes
in strain between the bistable states (∆ε) (in orange) and mean strains (ε̄) (in purple). The most
important features are changes in the uniaxial (∆ε∥) and biaxial strain (∆ε⊥). The least important
feature of the model was the atom type (e.g., Zn or Mg).

To confirm the prevalence of strain fluctuations in inducing ferroelectricity in (Zn,Mg)O, a
multivariate nonlinear regression model [60, 61] was applied to the local coercive fields. In this
model, the local strains in the negatively and positively poled states of each cation were parsed
to obtain a database of strain- and cation-dependent input features, namely, the strain in the
initial and final poled states (ε+∥ , ε+⊥, ε−∥ , and ε−⊥), the changes in strain between the bistable states
(∆ε∥ = ε+∥ − ε−∥ and ∆ε⊥ = ε+⊥ − ε−⊥), the mean strains [ε∥ = (ε+∥ + ε−∥ )/2 and ε⊥ = (ε+⊥ + ε−⊥)/2],
and the identity of the switching cation (Zn or Mg). The local coercive field (the output) was
calculated by applying a multi-Gaussian fitting on the nudged-elastic-band pathways. Training and
validation of the regression model are provided in Figure 5(a), resulting in a root mean square
error (RMSE) of 2.12 MV cm−1 and a high coefficient of determination (R2) of 88%. Discrepancies
between simulations and the regression model are limited to the lowest and highest coercive fields,
suggesting that second-nearest-neighbor strain fluctuations may influence local coercive fields to
some extent.

Feature importance ranking reveals that the dominant contributors to the coercive field are
the changes in the uniaxial compression −∆ε∥ and biaxial tension ∆ε⊥ between the poled states
[Figure 5(b)]. As illustrated in the partial dependency plots (Figure S12, SI) [61, 62, 63], the
coercive field is minimized when ∆ε∥ is in the range of −1.2 to −0.4% and ∆ε⊥ is below 0%. The
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regression model also reveals that the identity of the cation (Zn or Mg) has little bearing on the
coercive field. To critically assess this observation, the minimum energy pathway of chemically
pristine, locally strained ZnO was calculated at the nanoscale and mesoscale (Figure S13, SI), in
addition to hysteresis measurements of heterostructures containing (Zn,Mg)O and ZnO thin films
(Figure S14, SI). The calculation and experiment demonstrate that strain fluctuation is in itself a
sufficient driving force for sequential switching under reduced coercive fields in ZnO. In other words,
although chemical substitution is one possible vehicle for strain fluctuations to occur, it does not
directly determine the local coercive fields. This result offers conclusive evidence that longitudinal
strain fluctuations (∆ε∥) can effectively promote ferroelectricity in wurtzites.

3 Conclusion
This work has shown that (Zn,Mg)O exhibits local strains that largely exceed their macroscopic av-
erage. The computed ZnO:MgO phase diagram was found to be consistent with experimental data
using a single corrective parameter, enabling the modeling of representative local configurations
in (Zn,Mg)O. Using the predicted configurations, this study unveiled the atomistic mechanisms of
ferroelectric switching in this material, demonstrating that Mg cations disrupt chemical bonding
along the tetrahedral network; these bond disruptions induce atomic-scale strain fluctuations, which
trigger ferroelectricity via sequential polarization reversal. If cation ordering in (Zn,Mg)O were to
be controlled to maximize strain fluctuation along the polar axis (by, e.g., synthesizing ZnO/MgO
heterostructures or introducing Zn/Mg composition gradients along the polar direction), one could
optimize sequential polarization switching. This approach provides an effective and broadly appli-
cable design principle to unlock ferroelectricity in wurtzites and related families of polar materials.
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