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Abstract: We study on-shell functions in the kinematic space for the Coulomb branch of
N = 4 SYM. We construct BCFW bridges that help us build bigger on-shell functions. As
a consequence, we provide on-shell diagram formulations for BCFW shifts that correspond
to various mass configurations. We will use this to calculate the quadruple cut for the
one-loop amplitude on the Coulomb branch and maximal cuts for higher-loops. We make
preliminary comments on finding the inequivalent set of on-shell functions for the Coulomb
branch.
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1 Introduction

It is well known that the traditional method of using Feynman diagrams to calculate scat-
tering amplitudes becomes unwieldy as one considers higher point functions and/or higher
loop diagrams. This growth in the number of diagrams is one of the reasons why the
perturbative expansion of interacting quantum field theories is at best asymptotic and in
some cases not Borel summable. Perturbative renormalizability of many quantum field the-
ories is not sufficient to tame this growth and new non-perturbative techniques have been
developed to understand this aspect of the perturbation theory.
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A striking aspect of the Feynman diagram technique is that for an n-point ampli-
tude at any loop level it has several diagrams contributing to the scattering amplitude
and each one of them generically leads to a complicated expression. However, the final
scattering amplitude can be written in surprisingly compact form when written in terms
of the spinor helicity variables [1–4]. This observation about four decades ago has led to
a continued activity in unearthing the hidden beauty of the scattering amplitudes. The
on-shell techniques developed a couple of decades ago has been developing rapidly since
then [5, 6]. Although initially these techniques were suitable for computations involving
massless fields, over the years this method has been extended to incorporate massive parti-
cles as well [7–27]. The BCFW recursion relations developed for massless fields have been
generalized to massive theories as well [9, 28–31]. While the BCFW recursion relations help
generate arbitrary point tree amplitudes in an efficient way, a care is needed in generalizing
such a recursion relation at loop level. To build complicated diagrams starting from simpler
ones, the BCFW bridge plays a pivotal role [32–36]. One defines new objects called on-shell
functions where one considers three point amplitudes joined by on-shell internal legs with
integration over their Lorentz invariant phase space. These objects have an intimate rela-
tionship with maximal cuts on loop-amplitudes. The BCFW bridge introduces two vertices
on adjacent external legs of the on-shell function and an on-shell internal line joins these
vertices. Introduction of this bridge corresponds to adding two vertices and adding three
internal propagators. Introduction of such a BCFW bridge amounts to deforming the ex-
ternal momenta and the pole of the original diagram without the bridge. The residue on
this deformed pole unifies different factorisation channels, leading to a relationship between
amplitudes and on-shell functions.

On-shell functions with the BCFW bridge construction allowed one to obtain a recursive
relation for L-loop integrands of planar massless N = 4 super-Yang-Mills theory(sYM)
[33] that lead to the remarkable discovery of the amplituhedron [37]. This was preceeded
by a series of works that computed various loop integral coefficients and illustrated that
amplitudes of N = 4 sYM theory are the simplest amplitudes [38]. A natural progression of
this program was to extend it in two possible directions, one is to look for the next simplest
theory[39] and the other is to extend the formalism from massless theory to massive theory.
One way to study this excursion in the Coulomb branch of the N = 4 sYM theory is
by giving vacuum expectation value(vev) to some of the adjoint scalars. The small vevs
correspond to light masses and this can be treated perturbatively using the massless theory
formalism[40–42] which is not manifestly little group covariant. This is simply because the
massless spinor helicity variables do not transform covariantly under the little group of the
massive particles. A formalism which is manifestly little group covariant was developed in
terms of new massive spinor helicity variables[7] which can be expressed in terms of two
massless spinor helicity variables, which transform between each other under the SU(2) little
group. Tree amplitudes in supersymmetric theories, in particular for the Coulomb branch
of N = 4 SYM were constructed in [8, 9]. Follwing this, recently, the authors of this paper
computed loop amplitudes of this theory by using the unitarity method in [43]1. To compute

1Component loop amplitudes of this theory were constructed in [44, 45].
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more general loop amplitudes on the Coulomb branch, we need to use the technology of
generalised unitarity cuts [38, 46–49]. Obtaining the BCFW bridge construction will pave
the way for this, as it helps us calculate maximal cuts of loop amplitudes.

In this manuscript we will generalise the BCFW bridge construction to massive particles
and apply it to computations of the on-shell functions of N = 4 super-Yang-Mills theory
on the Coulomb branch. As is well known, at a generic point in the Coulomb branch
the gauge symmetry is broken to its Cartan subalgebra, and at certain loci, the gauge
symmetry breaks as U(

∑k
i=1Ni)→

∏
i U(Ni). Consider a simple example, where the gauge

group breaks as U(N +M) → U(N) × U(M). At the loci in the Coulomb branch where
such a symmetry breaking occurs, we find 2NM particles are massive along with their
supersymmetry partners, and N2 + M2 which represent the unbroken symmetry remain
massless. Unlike at the origin of the Coulomb branch where the BCFW bridge necessarily
involves massless bridge, at an arbitrary point in the Coulomb branch away from the origin,
we can have both massive as well as massless bridges. In this work, the BCFW bridge has
been generalised to massive particles, a set up suitable for computing the diagrams in the
Coulomb moduli space away from the origin. For this we need two type of bridges, massless-
massive bridge as well as massive-massive bridge. We use these BCFW bridges to construct
higher on-shell functions by attaching an appropriate number of BCFW bridges to the lower
ones. We then work out the systematics of the massive and massless BCFW bridge in the
ladder diagrams. The manuscript is organized as follows:

In section 2, we will begin with a review of the on-shell techniques and the BCFW
shift. We will first discuss the BCFW bridge construction for massless legs and then review
the BCFW shifts for amplitudes involving massless as well as massive legs. In section 3,
we study on-shell diagrams for scattering amplitudes for massive particles. We use both
the massless-massive and the massive-massive bridge for computation of on-shell diagrams.
Depending on the external particles we find that we need a variety of bridges to get all
possible higher functions. This includes massless bridge on a pair of massless as well as
massive legs or on one massless and one massive legs. We require massive bridge on a pair
of massive legs as well. Another way of constructing the on-shell functions is by employing
maximal cut protocol. For example, a four point one-loop diagram can be obtained by using
quadruple cut and tree level three point amplitudes. Section 4 deals with the maximal cut
method and demonstrates it for one loop and higher loop box diagrams. Massless sYM
theory possesses certain invariance with respece to permutations of external legs. The
square move is one of the equivalence which help us compute the reduced on-shell functions
up to permutations of external legs. This invariance owes its allegiance to the Yangian
symmetry which is at the core of the integrability of the sYM theory. At a non-trivial
point in the Coulomb branch there is an explicit scale due to the vacuum expectation value
and the dual conformal invariance which is a part of the Yangian symmetry is explicitly
broken. Nevertheless one can modify the conformal transformation generators by using the
mass parameters and recover the dual conformal symmetry. A consequence of this is that
the square move can be generalized to the massive box diagrams. Section 5 focusses on
the permutation and square move equivalences. In ection 6 we summarise our results and
speculate on their application for future projects. Appendix A contains the convention used
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in this manuscript. In particular, we cover in detail description of the Lorentz invariant
phase space in terms of the spinor helicity variables. Appendix B contains the bridge
construction and the computation of the maximal cut for the box diagram using non-
covariant spinor helicity variables.

2 Review: on-shell diagrams and BCFW shifts

In this section, we review some of the relevant concepts, starting with the BCFW bridge con-
struction for the massless particles [33] in the supersymmetricN = 4 and non-supersymmetric
case. Afterward, we shall review the BCFW shifts for various mass configurations [9, 28,
29, 31]. We shall give on-shell diagram configurations for the same in later sections.

2.1 BCFW bridge for sYM

One of the key elements in discovering the amplituhedron for sYM is defining new objects
in quantum field theory called ‘on-shell functions’ [32, 33]. The crucial idea is to take
the smallest possible blocks, the three-point amplitudes, and join them together such that
all the internal legs are on-shell legs. As a consequence, one is always working with only
on-shell particles and gauge invariant objects.

One begins with the observation that the theory contains two independent three-point
super-amplitudes, MHV, and anti-MHV, represented below with ‘black’ and ‘white’ dots.

G

G

G

MHV: |1] ∝ |2] ∝ |3]

G

G

G

anti-MHV: |1⟩ ∝ |2⟩ ∝ |3⟩

(2.1)

On-shell functions are then defined as a product of these three-point functions with
the Lorentz invariant phase space integrals for the intermediate on-shell legs. The resulting
object is gauge invariant, as it is constructed in terms of gauge invariant three-point am-
plitudes and integration over the on-shell space of internal legs. A natural question to ask
is how the on-shell functions are related to the familiar quantities in quantum field theory,
such as the scattering amplitude.

The simplest non-trivial on-shell function that one can consider beyond three points,
is a four-point one which joins an MHV and an anti-MHV three-point super-amplitude2.

a

b c

d

I
(2.2)

2Throughout this manuscript, including the review section, we will focus on planar amplitudes. Color
ordering is implicitly assumed.
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The internal momentum of the horizontal leg is determined in terms of the external momenta
using the momentum-conserving delta functions of the three-point amplitudes, along with
overall momentum conservation for the diagram. The on-shell LIPS integral for the internal
legs, therefore, sets a combination of external momentum on-shell as,

∫
d4pI δ(p2I) δ

(4)(pa + pb + pI) δ
(4)(pc + pc − pI)

= δ
(
(pa + pb)

2
)
δ(4)
(
pa + pb + pc + pd

)
, (2.3)

where pa, pb, pc, pd are the external momenta. Thus we can see that we have a factorization
channel of the four-point amplitude, where we have replaced the propagator 1/(pa + pb)

2

by a delta function.

The key idea of on-shell methods for scattering amplitudes is to recover all the in-
formation about the scattering amplitudes without relying on any off-shell objects like
propagators. We shall see that the relationship between on-shell functions and scattering
amplitudes extends well beyond representing factorization channels. Attaching more of the
basic building blocks, the three-point amplitudes, we can construct bigger on-shell func-
tions. We can represent tree and loop amplitudes as on-shell functions using this approach.

Consider an on-shell function f0 having an arbitrary number of external legs. Let a

and b be two adjacent external legs. Now, let us attach an internal leg I connecting a and
b as shown in figure 1. The three-point amplitudes on either side can be chosen to be MHV
and anti-MHV or vice versa. We refer to this construction as a bridge. The resulting bigger
on-shell function is denoted by f .

a b

f(. . . , a, b, . . .) =

f0(. . . , â, b̂, . . .)

I

a b

â b̂

Figure 1. A BCFW bridge construction: given an on-shell function f0, we construct a bridge over
legs a and b to obtain the on-shell function f .

Bridges are the simplest constructions over the existing on-shell diagrams. The massless
bridges have been widely studied and they correspond to a BCFW deformation. â and b̂

are precisely the BCFW deformations of a and b. To see this, let us explicitly calculate
the on-shell function f from figure 1. We integrate over on-shell momenta d4p δ(p2) ≡
d3LIPS(p), and we sum over all the possible particles that can flow in the internal legs. For
supersymmetric theories, the latter amounts to integrating over the Grassmann variable η
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associated with the internal legs. In figure 1, the internal legs are â, b̂ and I, thus we have

f
(
. . . , a, b, . . .

)
=

∫  ∏
u∈{â,b̂,I}

d3LIPS(u) d4η(u)

A(L)(a,−I,−â)A(R)(b, I,−b̂)

× f0
(
. . . , â, b̂, . . .

)
. (2.4)

The left and right three-point amplitudes are denoted as A(L) and A(R) respectively.
Let us remind ourselves that since all the relevant legs are massless here, we are using the

familiar chiral basis where the supersymmetric coherent state is parametrized by Grassmann
variables ηAi , with A = 1, . . . , 4. We are using the following analytic continuation to obtain
the variables for opposite momenta:

| − p⟩ = i|p⟩ , | − p] = i|p] , η(−p) = iη(p) (2.5)

Let us take the left three-point amplitude to be anti-MHV, and the right three-point
amplitude to be MHV. So we have,

A(L)(a,−I,−â) = 1

[aâ][âI][Ia]
δ4
(
[aâ] η(I) + [âI] η(a) + [Ia] η(â)

)
δ4
(
pa − pâ − pI

)
,

A(R)(b, I,−b̂) = 1

⟨bI⟩⟨Ib̂⟩⟨b̂b⟩
δ8
(
|b⟩η(b) + |I⟩η(I) − |b̂⟩η(b̂)

)
δ4
(
pb − pb̂ + pI

)
. (2.6)

Note that the amplitudes contain explicit momentum-conserving delta functions.
We can perform the LIPS integral for the legs pâ and pb̂ by solving for them using the

left and the right momentum conserving delta functions in (2.6), analogous to what we did
in (2.3). This would give us two delta functions, δ(2pa · pI)δ(2pb · pI). Combined with the
on-shell delta function in the LIPS integral for pI , this gives us three delta functions for
the four-momentum pI . Thus pI is determined up to one unknown parameter, which shall
precisely be the BCFW deformation parameter z.

IB ≡
∫ ∏

u∈{â,b̂,I}

d3LIPS(u) δ4
(
pa − pâ − pI

)
δ4
(
pb − pb̂ + pI

)
=

∫
d3LIPS(I) δ(2pa · pI) δ(2pb · pI) . (2.7)

We have solved for pâ and pb̂ using momenta conserving delta functions. Hence we
have determined spinor variables for pâ and pb̂ up to their little group redundancies. For
instance,

pâ = −|â⟩[â| = −|a⟩[a|+ |I⟩[I|. (2.8)

The left three-point amplitude being anti-MHV imposes |â⟩ ∝ |a⟩. Fixing this proportion-
ality constant to be 1 fixes the little group redundancy of pâ, so that we have,

|â⟩ = |a⟩ . (2.9)
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Similarly, for the AR, we have |b̂] ∝ |I], so let us fix the little group such that we have,

|b̂] = |b] . (2.10)

Momentum conservation on the right side imposes the following constraint:

|b]⟨b̂| = |b]⟨b|+ |I]⟨I| . (2.11)

To carry out the integral (2.7), let us write IB in terms of spinor helicity variables. As
explained in Appendix A.1, let us write the measure d3LIPS(I) as follows:

d3LIPS(I) = d2|I⟩d2|I] δ
(
⟨rI⟩ − ⟨ra⟩

)
⟨ra⟩. (2.12)

In order to fix the redundancy in the definition of angle and square brackets due to the
little group, we ‘gauge fix’ the little group for pI using the delta function, and the factor
⟨ra⟩ is the appropriate Jacobian associated with it. We have chosen δ

(
⟨rI⟩ − ⟨ra⟩

)
, for

⟨ra⟩ ≠ 0 as the little group fixing. Since on the left side, we have |a⟩ ∝ |I⟩, the motivation
for this little group fixing is to set the proportionality constant to be 1, so that we shall
have |I⟩ = |a⟩. The following equations make it clear,

IB = d2|I⟩ d2|I] δ
(
⟨rI⟩ − ⟨ra⟩

)
⟨ra⟩ δ

(
[aI]⟨aI⟩

)
δ
(
[bI]⟨bI⟩

)
= −

∫
d[aI] d[bI]

[ab]

d⟨aI⟩ d⟨rI⟩
⟨ra⟩

⟨ra⟩ δ
(
⟨rI⟩ − ⟨ra⟩

)
δ
(
[aI]⟨aI⟩

)
δ
(
[bI]⟨bI⟩

)
= −

∫
d[aI] d[bI]

[ab]

d⟨aI⟩ d⟨rI⟩
⟨ra⟩

⟨ra⟩ δ
(
⟨rI⟩ − ⟨ra⟩

) 1

[aI]
δ
(
⟨aI⟩

) 1

⟨bI⟩
δ
(
[bI]
)

(2.13)

Note to obtain the last equality, we have chosen [aI] ̸= 0 and ⟨bI⟩ ≠ 0. This choice is
equivalent to choosing AL as anti-MHV and AR as MHV. Had we written δ

(
[aI]⟨aI⟩

)
=

δ
(
[aI]

)
/⟨aI⟩, we would have imposed AL to be MHV.

IB = −
∫

d[aI] d[bI]

[ab]
δ
(
[bI]
) 1

[aI]

1

⟨bI⟩

∫
d⟨aI⟩ d⟨rI⟩ δ

(
⟨rI⟩ − ⟨ra⟩

)
δ
(
⟨aI⟩

)
(2.14)

= −
∫

d[aI]

[aI]

1

[ab]⟨bI⟩

∣∣∣∣
[bI]=0

× 1

∣∣∣∣
⟨rI⟩=⟨ra⟩ , ⟨aI⟩=0

(2.15)

=
1

[ab]⟨ab⟩

∫
d[aI]

[aI]

∣∣∣∣
|I⟩=|a⟩ , [bI]=0

. (2.16)

Now, since [bI] = 0, we have |I] = −z|b] and [aI] = −z[ab].

IB =
1

[ab]⟨ab⟩

∫
dz

z

∣∣∣∣
|I⟩=|a⟩ , |I]=−z|b]

(2.17)

Let us use this solution for pI to solve for the spinor variables of â and b̂ as follows:

|â⟩ = |a⟩ , |â] = |a] + z|b] (2.18)

|b̂⟩ = |b⟩ − z|a⟩ , |b̂] = |b] (2.19)
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Recall that we have used the little group fixing for â and b̂ from (2.9) and (2.10) respectively.
Let us summarize what we have done:

IB =

∫
d3LIPS(â, b̂, I) δ4

(
pa − pâ − pI

)
δ4
(
pb − pb̂ + pI

)
=

1

2pa.pb

∫
dz

z

∣∣∣∣ |â⟩ = |a⟩ , |I⟩ = −z|a⟩ , |b̂⟩ = |b⟩ − z|a⟩
|â] = |a] + z|b] , |I] = |b] , |b̂] = |b]

 (2.20)

In (2.4), along with the LIPS integrals, we have η integrals over the Grassmann delta
functions as well. Let us focus on that,

IF =

∫
d4η(I) d

4η(â) d
4η(b̂) δ

4
(
[aâ] η(I) + [âI] η(a) + [Ia] η(â)

)
δ8
(
|b⟩η(b) + |I⟩η(I) − |b̂⟩η(b̂)

)
=

∫
d4η(I) d

4η(â) d
4η(b̂) δ

4
(
z[ab] η(I) + [ab] η(a) − [ab] η(â)

)
× δ8

(
|b⟩η(b) − z|a⟩η(I) − |b⟩η(b̂) + z|a⟩η(b̂)

)
, (2.21)

where we have used the solutions for spinor-helicity variables from the bosonic delta func-
tions. Note that the R-symmetry indices A,B, . . . = 1, . . . , 4 for ηA(a) are suppressed through-
out. We can integrate out ηA(â) using the first four Grassmann delta functions, to obtain,

IF = [ab]4
∫

d4η(I) d
4η(b̂) δ

8
(
|b⟩η(b) − z|a⟩η(I) − |b⟩η(b̂) + z|a⟩η(b̂)

)∣∣∣∣
η(â)=η(a)+zη(I)

,

= [ab]4
∫

d4η(I) d
4η(b̂)

1

⟨ab⟩4
δ4
(
⟨ab⟩η(b) − ⟨ab⟩η(b̂)

)
δ4
(
− z⟨ba⟩η(I) + z⟨ba⟩η(b̂)

)
,

= z4[ab]4⟨ab⟩4
∣∣∣∣(
η(â) = η(a) + zη(b) , η(I) = η(b) , η(b̂) = η(b)

), (2.22)

where from the first line to the second, we have projected the Grassmann delta functions
along different SL(2,C) spinor directions, and from the second line to the third, we have
integrated the Grassmann variables for pI , pb̂ by using the Grassmann delta functions.

Plugging both the integrals and the three-point kinematic factors back in (2.4), we get,

f(. . . , a, b, . . .) =

∫
dz

z

1

[aâ][âI][Ia]

1

⟨bI⟩⟨Ib̂⟩⟨b̂b⟩︸ ︷︷ ︸
Factors from A3

1

⟨ab⟩[ab]︸ ︷︷ ︸
Factor from IB

z4⟨ab⟩4[ab]4︸ ︷︷ ︸
Factor from IF

f0
(
. . . , â, b̂, . . .

)
(2.23)

The above integral is evaluated at the support of the following conditions that we obtained
previously:  |â⟩ = |a⟩ , |I⟩ = −z|a⟩ , |b̂⟩ = |b⟩ − z|a⟩

|â] = |a] + z|b] , |I] = |b] , |b̂] = |b]
η(â) = η(a) + zη(b) , η(I) = η(b) , η(b̂) = η(b)

 (2.24)
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Thus the kinematic factor from the three-point amplitudes becomes,

1

[aâ][âI][Ia]

1

⟨bI⟩⟨Ib̂⟩⟨b̂b⟩︸ ︷︷ ︸
Factors from A3

=
1

z4[ab]3⟨ab⟩3
(2.25)

Thus, we have:

f(. . . , a, b, . . .) =

∫
dz

z
f0
(
. . . , â, b̂, . . .

)
(2.26)

This is the striking result of the BCFW bridge construction [33] where one obtains the
on-shell function f by using a BCFW shifted f0

(
. . . , â, b̂, . . .

)
and performing the BCFW

integral. This also allows us to obtain an on-shell function representation of the tree am-
plitudes. For instance, consider f0 to be a four-point factorization channel, (2.2). Then,
building a bridge over this f0 is equivalent to doing the usual BCFW computation for a
four-point tree amplitude. f in this case shall be a box diagram. Thus, the four-point tree
amplitude can be represented as a box constructed out of four three-point superamplitudes,
with integrations over the LIPS of the internal momenta. It is also clear from (2.7) that the
BCFW bridge is equivalent to performing three cuts on a loop momentum. The absence
of a residue at z → ∞ indicates that there is no triangle contribution at one-loop for the
theory [38].

2.2 Non supersymmetric case

Let us take a moment to appreciate the fact that supersymmetry is not crucial for the
construction of a BCFW bridge. We can have similar structures for pure YM theory,
though not all helicity configurations lead to a valid BCFW shift. Let us consider the
following setup,

pâ

pa

pb̂

pb

pI
+

+

−

−
−

≡
−pâ

−

pa
+

−pI

+

pI
−pb̂

pb

+

−
−

(2.27)

For the configuration depicted in (2.27), the d3LIPS() integrals are identical to the super-
symmetric case dealt with earlier and we have the following solution:(

|â⟩ = |a⟩ , |I⟩ = −z|a⟩ , |b̂⟩ = |b⟩ − z|a⟩
|â] = |a] + z|b] , |I] = |b] , |b̂] = |b]

)
(2.28)

We can calculate the shifted on-shell function as follows:

f(. . . , a, b, . . .) =

∫
dz

z

1

⟨ab⟩[ab]︸ ︷︷ ︸
IB

[aI]3

[âa][Iâ]︸ ︷︷ ︸
AL

⟨Ib⟩3

⟨b̂I⟩⟨bb̂⟩︸ ︷︷ ︸
AR

f0(. . . , â, b̂, . . .) (2.29)

=

∫
dz

z
f0(. . . , â, b̂, . . .) (2.30)
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This corresponds to the [+−⟩ shift. Such constructions do not have information regarding
the validity of the shifts 3. Note that unlike the N = 4 case, we will have various possible
configurations, corresponding to various shifts.

Note that the new on-shell function has the same dz/z factor for all kinds of shifts,
regardless of their validity. The validity of a shift is reflected in the large z behavior of the
shifted on-shell function f0(. . . , â, b̂, . . .).

To illustrate the fact that the configuration (2.27) leads to an invalid shift, let us take
f0 to be a particular four-point factorization channel, as shown in (2.31).

pd

pâ

pc

pb̂

P̂−

+

+

−

− +

(2)

(2.31)

Using the shifts (2.28), the shifted on-shell function has the following form,

zP
z − zP

Â
(3)
L [d−, â+,−P̂−]Â

(3)
R [P̂+, b̂−, c+] =

zP
z − zP

⟨P̂ d⟩3

⟨da⟩⟨aP̂ ⟩
[cP̂ ]3

[P̂ b][bc]

=
zP

zP − z

[bc]⟨b̂d⟩3

⟨ad⟩⟨ac⟩

∣∣∣
P̂=−pb̂−pc

. (2.32)

Note the presence of 1/(z − zP ). This simple pole is equivalent to the holomorphic delta
function imposing the on-shell condition for P̂ . Since ⟨b̂d⟩ ∼ z, we conclude that the shifted
factorization channel scales as z2 rendering the [+−⟩ shift invalid.

2.3 BCFW shifts involving massive particles

Originally BCFW deformation was an on-shell technique to compute amplitudes for mass-
less particles. However, over time, there have been BCFW deformations suggested for
massive particles as well. The massive spinor helicity variables introduced in [7] facilitate
these computations. Here, we shall review the BCFW shifts for the cases when one of the
shifted legs is massless and the other is massive [29], and when both the legs are massive
[9, 31]. It will be useful to refer back to these equations when we construct the on-shell
diagram formulation for these shifts in the later sections.

Let us first consider the massless-massive shift introduced in [29]. Let us consider the
case with ma = mâ = 0 = mI and mb = mb̂ ≡ m. The BCFW conditions require,

2pa · pI = 0,

2pb · pI = 0, (2.33)

3Singularities of on-shell functions for theories without maximal supersymmetry has been studied re-
cently in [50]
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such that we can pick the poles from the intermediate legs correctly. A solution is given by,

|â⟩ = |a⟩ , |I⟩ = |a⟩ , |b̂I⟩ = |bI⟩+
z

m
|a⟩⟨abI⟩

|â] = |a]− z

m
|bI ]⟨bIa⟩ , |I] = z

m
|bI ]⟨bIa⟩ , |b̂I ] = |bI ], (2.34)

where we have gotten the ⟨bIa] shift. We would have gotten ⟨abI ] shift, had we chosen
|â] ∝ |I] ∝ |a] in the beginning. In terms of the on-shell diagram formulation to be given
later, this corresponds to choosing the left three-point amplitude on the bridge to be anti-
MHV or MHV respectively.

For the massive-massive shift introduced in [9], a key feature is that one has to break
the little group covariance, as there are no natural massless spinor-helicity variables to
provide the BCFW shift. A little group frame can be fixed by using4,

|a1⟩ :=
√
α

mb
|b1⟩ , |a2⟩ := ma√

α
|b2⟩ , (2.35)

|b1] :=
√
α

ma
|a1] , |b2] := mb√

α
|a2] , (2.36)

where, α = −pa.pb +
√
(pa.pb)2 −m2

am
2
b (2.37)

which we have elaborated upon in appendix A.2. In this special frame, the BCFW shift is
given by,

pâ = pa − pI , pb̂ = pb + pI ,

pI = −z|a2]⟨b2|. (2.38)

As discussed earlier, the shift breaks little group covariance. However, in [31], auxiliary
SU(2) doublets were defined to write the massive BCFW shift in a form where one can
choose any little group frame. Given two massive legs with momenta pi, pj and masses
mi,mj , they define two SU(2) doublets ηI and ζI , such that ζI |iI ] is shifted and not ηI |iI ]
and vice versa for spinor-helicity variables of the leg j. While these doublets give us massless
spinors to work with, one still has to impose pa · pI = 0 = pb · PI for the shift momentum
pI . This gives conditions on these doublets which are solved in [31] by using massless
spinor helicity representation of massive momentum. We will also use some elements of this
analysis when we analyze the LIPS integrals for the BCFW bridge description of massive
BCFW. Interestingly, we will see that the doublets above have a natural interpretation in
terms of the three-particle special kinematics u-variables given in [9, 51].

3 On-shell diagram formulation of BCFW shifts for massive amplitudes

In this section, we will provide the BCFW bridge construction over the Coulomb branch of
N = 4. These bridges shall correspond to the massive BCFW shifts reviewed in the previous

4Our little group frame is equivalent to the one in [9], although we have chosen different spinors to be
proportional to each other.
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section. Just like the sYM, the basic building blocks are the three-point amplitudes for the
Coulomb branch. We shall write down the three-point amplitudes below.

Note that for the Coulomb branch, the massless super-multiplet G is written in the
non-chiral Grassmann variables, ηc(c = 1, 2), b,c,... being the R-symmetry indices that are
suppressed. The following are the usual sYM three-point massless amplitudes in the non-
chiral basis [9, 42],

AMHV [G(pa) , G(pb) , G(pc)] =
1

⟨ab⟩⟨bc⟩⟨ca⟩
δ4
(
|a⟩ η(a) + |b⟩ η(b) + |c⟩ η(c)

)
× δ2

(
⟨ab⟩ η†(c) + ⟨bc⟩ η

†
(a) + ⟨ca⟩ η

†
(b)

)
δ4 (pa + pb + pc) (3.1)

AMHV [G(pa) , G(pb) , G(pc)] =
1

[ab][bc][ca]]
δ4
(
|a] η†(a) + |b] η

†
(b) + |c] η

†
(c)

)
× δ2

(
[ab] η(c) + [bc] η(a) + [ca] η(b)

)
δ4 (pa + pb + pc) (3.2)

The three-point amplitudes involving massive particles are as follows:

A
[
W(pa),W(pb), G(pc)

]
= − x

m

1

⟨qc⟩2
δ4
(
|aJ ] η(a)J − |bJ ] η(b)J + |c] η†(c)

)
× δ2

(
⟨q|
{
−|aJ⟩ η(a)J − |bJ⟩ η(b)J + |c⟩ η(c)

})
δ4(pa + pb + pc) . (3.3)

m is the mass of the pa and pb, and x is defined as xm |c] = pb |c⟩.

A
[
W(pa),W(pb),W(pc)

]
=

1

⟨q| pa pc |q⟩2
δ4
(
|aJ ] η(a)J − |bJ ] η(b)J + |cJ ] η(c)J

)
× δ2

(
⟨q|
{
−|aJ⟩ η(a)J − |bJ⟩ η(b)J − |cJ⟩ η(c)J

})
δ4(pa + pb + pc) . (3.4)

For more details, refer to [9].

3.1 Massless bridge over massive and massless legs

Let us consider the first non-trivial bridge construction involving only one massive leg. Let
pa and pb be massless and massive external legs respectively for an on-shell diagram, and
consider a massless bridge pI attached to these legs. For this construction, the relevant
legs are depicted in (3.5). Now, we wish to evaluate the new on-shell function f including
the bridge in terms of the older one f0. We shall see that just like the massless case,
the new on-shell function is merely a BCFW deformation of the earlier on-shell function.
As we shall see, the deformation corresponding to this construction turns out to be the
supersymmetrized version of massive massless BCFW shift from [29].

G(pâ)

G(pa)

W(pb̂)

W(pb)

G(pI)
≡

G(−pâ)

G(pa)

G(−pI) G(pI) W(−pb̂)

W(pb)

(3.5)
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As we described in the review, in order to evaluate an on-shell function, we integrate
the on-shell momenta and η variables for each internal leg and include all the building
blocks, the three-point amplitudes. Here, we have I, â, b̂ as the internal legs, so we have

f(. . . , a, b, . . .) =

∫
d3LIPS(â, b̂, I) d4η(â),(b̂),(I)

×AL

[
G(pa), G(pâ), G(pI)

]
AR

[
W(−pb̂),W(pb), G(pI)

]
f0(. . . , â, b̂, . . .) .

(3.6)

There are two possibilities for the left three-point amplitude. It can either be MHV or anti-
MHV. The two choices lead to two different kinds of BCFW deformations. Let us choose
it to be anti-MHV implying |a⟩ ∝ |I⟩ ∝ |â⟩. Consequently, the left and right three-point
amplitudes are as follows:

AL

[
G(pa), G(−pâ), G(−pI)

]
=

1

[aâ][âI][Ia]
δ4
(
|a] η†(a) − |â] η

†
(â) − |I] η

†
(I)

)
× δ2

(
[aâ] η(I) + [âI] η(a) + [Ia] η(â)

)
δ4(pa − pâ − pI) , (3.7)

AR
[
W(−pb̂),W(pb), G(pI)

]
= − x

mb

1

⟨qI⟩2
δ4
(
− |bJ ] η(b)J + |b̂J ] η(b̂)J + |I] η†

)
× δ2

(
⟨q|
{
−|bJ ⟩η(b)J + |b̂J ⟩η(b̂)J + |I⟩η

})
δ4(pb + pI − pb̂) . (3.8)

Let us reiterate that we are using the analytic continuation (A.2) with uniform i for
square and angle spinor variables. The x variable is defined as follows:

xmb|I] = pb|I⟩ . (3.9)

Plugging in the AL/R back in (3.6), we have d3LIPS() integrals and Grassmannian integrals
to perform. Let us address them one by one.

Phase Space Integral

The bosonic integral over momenta conserving delta functions from (3.6) is as follows:

IB =

∫
d3LIPS(â, b̂, I) δ4(pa − pâ − pI) δ

4(pb + pI − pb̂)

=

∫
d3LIPS(I) d4pâ δ(p2â) d

4pb̂ δ(p
2
b̂
+m2

b) δ
4(pa − pâ − pI) δ

4(pb + pI − pb̂)

=

∫
d3LIPS(I) δ(−2pa.pI) δ(2pb.pI) . (3.10)

This analysis follows closely the usual massless massless bridge construction in section
2.1. Since we have solved for pâ and pb̂ using momenta conserving delta functions, we
have determined spinor variables for pâ and pb̂ up to their little group redundancies. For
instance,

pâ = −|â⟩[â| = −|a⟩[a|+ |I⟩[I|. (3.11)
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The left three-point amplitude being anti-MHV imposes |â⟩ ∝ |a⟩. Fixing this proportion-
ality constant to be 1 fixes the little group redundancy of pâ, so that we have ,

|â⟩ = |a⟩ . (3.12)

Let us use the measure d3LIPS(I) from Appendix A.1 and choose δ
(
⟨rI⟩ − ⟨ra⟩

)
, for

⟨ra⟩ ≠ 0 as little group fixing. Rewriting the IB in terms of spinor helicity variables, we
have

IB =

∫
d2|I⟩ d2|I] δ

(
⟨rI⟩ − ⟨ra⟩

)
⟨ra⟩ δ

(
− ⟨aI⟩[aI]

)
δ
(
⟨bJI⟩[bJI]

)
. (3.13)

Now, since we know that ⟨aI⟩ = 0, we have [aI] ̸= 0, so

IB = −
∫

d2|I⟩ ⟨ra⟩ δ
(
⟨rI⟩ − ⟨ra⟩

)
δ
(
⟨aI⟩

) ∫
d2|I] 1

[aI]
δ
(
⟨bJI⟩[bJI]

)
. (3.14)

Projecting out |I⟩ along |r⟩ and |a⟩ directions, we can integrate out |I⟩:∫
d2|I⟩ ⟨ra⟩ δ

(
⟨rI⟩ − ⟨ra⟩

)
δ
(
⟨aI⟩

)
= 1||I⟩=|a⟩ , (3.15)

allowing us to write,

IB = −
∫

d2|I] 1

[aI]
δ
(
⟨bJI⟩[bJI]

) ∣∣∣∣
|I⟩=|a⟩

. (3.16)

From here on out, all the expressions are understood to be evaluated at the solution of the
delta functions, namely, |I⟩ = |a⟩, and we shall be omitting ||I⟩=|a⟩.

There are two integrals and one delta function in (3.16), so we expect one undetermined
parameter worth of solutions for |I]. We claim that the undetermined parameter is precisely
the x variable from (3.9), and irrespective of the solution |I⟩ = |a⟩, the following equality
holds ∫

dx δ2
(
x|I]− 1

mb
pb|I⟩

)
= mb δ

(
⟨bJI⟩[bJI]

)
. (3.17)

To check the validity of this, we can carry out the integral on LHS by projecting out the
delta function in |b1] and |b2] directions:∫

dx δ2
(
x|I]− 1

mb
|bJ ]⟨bJI⟩

)
=

∫
dx [b1b2] δ

(
x [b1I] + ⟨b2I⟩

)
δ
(
x [b2I]− ⟨b1I⟩

)
= −mb δ

(
−⟨b2I⟩[b2I]− ⟨b1I⟩[b1I]

)
= mb δ

(
⟨bJI⟩[bJI]

)
. (3.18)

Using this information back in (3.16), we obtain the following:

IB = −
∫

d2|I] 1

[aI]

∫
dx

1

mb
δ2
(
x|I]− 1

mb
|bJ ]⟨bJI⟩

)
. (3.19)
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Recalling that |I⟩ = |a⟩, and integrating out |I],

IB = − 1

[aI]

∫
dx

1

x2mb

∣∣∣∣
|I]= 1

xmb
pb|a⟩

=
1

2pa.pb

∫
dx

x
(3.20)

Before looking at the Grassmannian side of the story, let us recollect all the solutions:

|I⟩ = |a⟩ , |I] = 1

xmb
pb|a⟩ (3.21)

|â⟩ = |a⟩ , |â] = |a]− |I] = |a]− 1

xmb
pb|a⟩ (3.22)

Similarly for pb̂, we can fix the little group redundancy such that |b̂K ] = |bK ], so as to have
the following solution for pb̂:

|b̂K⟩ = |bK⟩ − 1

xmb
|a⟩⟨bKa⟩ , |b̂K ] = |bK ] (3.23)

Let us compare these solutions with (2.34). At this point, we notice that these solutions
are precisely the massless-massive shift from [29] with the deformation parameter z being
z = 1/x.

Grassmannian Integral

Let us have a look at the Grassmannian integral from (3.6):

IF =

∫
d4η(â),(b̂),(I)δ

4
(
|a] η†(a) − |â] η

†
(â) − |I] η

†
)
δ2
(
[aâ] η + [âI] η(a) + [Ia] η(â)

)
× δ4

(
− |bJ ] η(b)J + |b̂J ] η(b̂)J + |I] η†

)
δ2
(
⟨q|
{
−|bJ ⟩η(b)J + |b̂J ⟩η(b̂)J + |I⟩η

})
(3.24)

Here we refer to η(I) as η for brevity. Note that we shall be using (3.21), (3.22), and (3.23)
throughout this computation. Let us integrate out the η(b̂) by projecting out the following
delta function in |b1] and |b2] directions:∫

d4η(b̂) δ
4
(
− |bJ ] η(b)J + |bJ ] η(b̂)J + |I] η†

)
= m2

b

∫
d4η(b̂) δ

4

(
ηK
b̂
− ηK(b) −

1

mb
[bKI]η†

)
= m2

b . (3.25)

We have the following solution for ηb̂,

η(b̂)K = η(b)K +
1

xmb
⟨bKa⟩η†. (3.26)

Substituting this back and projecting another δ4 along |a] and |I] directions, and using
eq.(3.21), (3.22), and (3.23) we have,

IF =

∫
d2η(â) d

2η†(â) d
2η d2η†

m2
b

[aI]2
δ2
(
[aâ] η†(â) + [aI] η†

)
δ2
(
[Ia]η†(a) − [Iâ] η†(â)

)
× δ2

(
[aâ] η + [âI] η(a) + [Ia] η(â)

)
δ2
(
⟨qa⟩

[
η +

1

x
η† +

1

xmb
⟨abJ⟩η(b)J

])
= m2

b [Ia]
4⟨qa⟩2. (3.27)
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From the above four delta function constraints and using eq.(3.21), (3.22), and (3.23), we
have the following solutions for the Grassmann variables,

η†(â) =
[Ia]

[Iâ]
η†(a) = η†(a), η(â) = η(a) − η, (3.28)

η† =
[aâ]

[Iâ]
η†(a) = η†(a), η = −1

x
η†(a) −

1

xmb
⟨abJ⟩η(b)J . (3.29)

After assembling all the integration results, we have the final on-shell function f in
terms of the shifted on-shell function f0 as following,

f(. . . , a, b, . . .) = IB IF
−x

mb ⟨qI⟩2 [aâ][âI][Ia]
f0(. . . , â, b̂, . . .)

=
−1

2pa · pb

∫
dx

x
xmb [aI] f0(. . . , â, b̂, . . .)

=

∫
dz

z
f0(. . . , â, b̂, . . .). (3.30)

To get the last equality we use eqs.(3.21), (3.22) and introduced z ≡ 1/x to match with
(2.34). The following are the η deformations:

η†(â) = η†(a) , η(â) = η(â) + z η†(a) +
z

mb
⟨abJ⟩ η(b)J (3.31)

η(b̂)J = η(b)J +
z

mb
⟨bJa⟩ η†(a) . (3.32)

3.2 Massless bridge over massive and massive legs

For any spontaneous symmetry breaking scenarios on the Coulomb branch of N = 4, there
are always massive as well as massless particles. Therefore, we can construct higher on-shell
functions using a massless bridge. We will now consider the case where BCFW bridge is
attached to two massive legs, the bridge momentum is massless. We could directly proceed
to the most general case ofcourse, but this case is of interest as it corresponds to the
massive-massive BCFW shifts introduced in [9]. As we shall see, the three-particle special
kinematics provide a crucial insight into the derivation of the BCFW bridge using the x

variables just like in the previous section.
Discussions below also apply to BCFW computation of adjoint QCD amplitudes, in the

non-supersymmetric case. In our setup momenta pa and pb are massive with masses ma and
mb respectively and the bridge momentum pI is taken to be massless. This intermediate
massless bridge connects two three point amplitudes with massive momenta pa and pâ in
the left and with massive momenta pb and pb̂ in the right. From color structure of the
external particles or from central charge conservation for the Coulomb branch amplitude,
one obtains

mâ = ma, mb̂ = mb. (3.33)
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For concreteness, let pa be BPS, and pb be anti-BPS. The setup is depicted in (3.34).

W(pâ)

W(pa)

W(pb̂)

W(pb)

G(pI)
≡

W(−pâ)

W(pa)

G(−pI) G(pI) W(−pb̂)

W(pb)

(3.34)

The shifted on-shell function written in terms of the original f0 is as follows:

f(. . . , a, b, . . .) =

∫
d3LIPS(â, b̂, I) d4η(â),(b̂),(I)

×AL[W(pa),W(−pâ), G(−pI)
]
AR[W(−pb̂),W(pb), G(pI)

]
f0(. . . , â, b̂, . . .)

(3.35)

The left and right three-point amplitudes are as follows: (Note that for brevity, we refer to
η(I) as η.)

AL[W(pa),W(−pâ), G(−pI)
]
= − xL

ma

1

⟨q(−I)⟩2
δ4
(
|aJ ] η(a)J − |âJ ] η(â)J − |I] η†

)
× δ2

(
⟨q|
{
−|aJ ⟩η(a)J + |âJ ⟩η(â)J − |I⟩η

})
δ4(pa − pI − pâ) (3.36)

AR[W(−pb̂),W(pb), G(pI)
]
= −xR

mb

1

⟨qI⟩2
δ4
(
− |bJ ] η(b)J + |b̂J ] η(b̂)J + |I] η†

)
× δ2

(
⟨q|
{
−|bJ ⟩η(b)J + |b̂J ⟩η(b̂)J + |I⟩η

})
δ4(pb + pI − pb̂) (3.37)

When we analytically continue spinor-helicity variables for momenta in opposite directions,
we do so with uniform i factors for square and angle spinor variables.

Phase space integral, exploiting three-point special kinematics

Unlike the cases considered in the earlier sections, let us remind ourselves that the external
momenta here do not provide us with any natural massless spinor-helicity variable to de-
scribe pI . In such a case, a natural thing to do is to express the massive momenta as linear
combination of two null momenta. Let us choose the two null momenta to be constructed
out of the massive spinor helicity variables for pa and pb. We refer to the process of choosing
this particular little group frame as simultaneous gauge fixing for the external spinor helic-
ity variables, as this gauge fixing can not be implemented consecutively on momenta pa, pb
as the square (angle) brackets of pb (pa) are fixed to be proportional to square brackets of
pa (pb) [9]. We elaborate on this in Appendix A.2.

To obtain some hints regarding the relation between the BCFW bridge construction
and three particle special kinematics, let us relate the BCFW shift of [9], in the notation
of section 2.3 to the three particle special kinematics variables by explicit comparison. We
have,

pa = |a1]⟨a2| − |a2]⟨a1|
pb = |b1]⟨b2| − |b2]⟨b1|
pI = −z|a2]⟨b2|. (3.38)
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We can choose the GL(1) little group of the massless momentum pI to fix,

|I] = z|a2], |I⟩ = |b2⟩. (3.39)

Note tha pa, pâ,−pI follow three particle special kinematics of two equal mass and one
massless leg. They have an associated x-variable, originally defined in [7]. Explicitly,

2pa · pI = [I|pa|I⟩ = 0 =⇒ |I] ∝ pa|I⟩. (3.40)

Therefore, we can define,

xL pa|I] = −ma|I⟩ , xR mb|I] = pb|I⟩. (3.41)

We can act the momentum pa, pb on the spinor helicity variables from (3.39) and make use
of the simultaneous gauge fixing relations (A.31), (A.32) to obtain,

xL =
1

z

√
α

ma
, xR = −1

z

mb√
α

. (3.42)

Note that a combination of xL and xR gives rise to the variable α which is determined in
terms of the external kinematic data:

xL
xR

= − α

mamb
. (3.43)

The variable α is a solution to the quadratic equation,

α2 + α 2pa · pb +m2
am

2
b = 0. (3.44)

We saw the above equation as a solution to the simultaneous gauge fixing procedure in
appendix A.2. Let us try to understand this equation in terms of three particle kinematics.
The above quadratic equation implies the following relations on the three particle kinematics
variables: (√

mambxL
xR

−
√

mambxR
xL

)2

= 2pa · pb − 2mamb = −sab. (3.45)

In terms of the u-variables defined in [9], reviewed in appendix A, this relation is nothing
but the relation, (

uLP+u
R
P− − uRP+u

L
P−
)2

= −sab, (3.46)

where we have suppressed the subscript I for the internal bridge momentum pI to not
confuse it with the little group index, and for the little group we have taken the helicity
projections +,− appropriate for the massless limit. This three-particle special kinematics
relation was crucial in the calculation of the Coulomb branch tree amplitudes using BCFW.
Thus we just observed that the simultaneous gauge fixing condition, constructed for our
convenience, has a nice interpretation for the case of a massless bridge. Namely, three-
particle special kinematics tells us that when two three-point amplitudes, each having two
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equal mass legs, share the same massless leg then the simultaneous little group frame above
is preferred due to the three-particle special kinematics. Namely, one can argue that the
three particle kinematics relation above already forces to have,

[u(L)u(R)] = 0 = ⟨u(L)u(R)⟩, (3.47)

thus relating the spinor-helicity variables for the external momenta pa, pb and thereby forc-
ing us to choose a simultaneous gauge fixing condition.

We can now proceed to perform the LIPS integrals. The bosonic part of the LIPS
integrals reads,

IB =

∫
d2|I] d2|I⟩
Vol(GL(1))

δ
(
2pa.pI

)
δ
(
2pb.pI

)
(3.48)

Let us use the same technique as section 3.1 to write down the following relations:∫
dxR δ(2)

(
xR|I] +

|bJ ]⟨bJI⟩
mb

)
= mb δ

(
[IbJ ]⟨IbJ⟩

)
,∫

d

(
1

xL

)
δ(2)

(
1

xL
|I⟩+ |a

J⟩[aJI]
ma

)
= ma δ

(
[IaJ ]⟨IaJ⟩

)
. (3.49)

Refer to (3.18) for the proof of these equations. Let us substitute these relations back in IB,
and decompose d2|I⟩ along two independent directions, |b1⟩, |b2⟩ to obtain the following,

IB =

∫
dxR d

(
1

xL

)
d2|I] d⟨b

1I⟩ d⟨b2I⟩
⟨b1b2⟩

δ
(
mb − ⟨b1I⟩

) mb

mamb
δ(2)

(
xR|I] +

|bJ ]⟨bJI⟩
mb

)
× δ(2)

(
1

xL
|I⟩+ |a

J⟩[aJI]
ma

)
, (3.50)

where we have gauge fixed the little group for pI by setting ⟨b1I⟩ = mb. We can now
perform the d2|I] integration to obtain,

IB =

∫
dxR d

(
1

xL

)
d⟨b2I⟩ 1

mamb

1

x2R
δ(2)

(
1

xL
|I⟩ − |a

J⟩[aJbK ]⟨bKI⟩
mambxR

)
, (3.51)

To simplify the delta function above, we make use of the simultaneous gauge fixing for the
external spinor-helicity variables to obtain,

δ(2)
(

1

xL
|I⟩ − |a

J⟩[aJbK ]⟨bKI⟩
mambxR

)
= δ(2)

(
1

xL
|I⟩ −

√
α|a1⟩⟨b2I⟩
mambxR

+
|a2⟩mb√
αxR

)
= δ

(
1

xL
+

mamb

αxR

)
δ

(
⟨b2I⟩

(
1

xL
+

α

mambxR

))
(3.52)

We can use the first delta function to integrate 1/xL in the bosonic phase space integral.
We can use the second delta function to integrate ⟨b2I⟩ to obtain,

IB =
1√

sab(sab − 4mamb)

∫
dxR
xR

, (3.53)
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where we have used (A.35) to write the answer in terms of generalized Mandelstam variables.
From the delta functions that we have used, we can see that we have,

|I⟩ = |b2⟩

|I] = pb|b2⟩
mbxR

= −mb|a2]√
αxR

. (3.54)

Therefore, if we define z = − mb√
αxR

then we indeed get,

IB =
1√

sab(sab − 4mamb)

∫
dz

z
, (3.55)

with, |I⟩ = |b2⟩, |I] = z|a2] =⇒ pI = −z|a2]⟨b2|. (3.56)

Alternate approach for the phase space integral

Here, we present an alternative approach to perform the LIPS integral over the momentum-
conserving delta functions:

IB =

∫
d3LIPS(â, b̂, I) δ4

(
pa − pI − pâ

)
δ4
(
pb + pI − pb̂

)
=

∫
d3LIPS(I) δ

(
2pa.pI

)
δ
(
2pb.pI

)
(3.57)

Let us use the same little group fixing for pI as the earlier analysis so that we have,

d3LIPS(I) = d2|I] d2|I⟩ δ
(
⟨Ib1⟩ − ⟨b2b1⟩

)
⟨b1b2⟩

=
1

ma
d⟨Ib2⟩ d[a1I] d[a2I]

∣∣∣∣
⟨b1I⟩=mb

(3.58)

Let us employ the simultaneous little group fixing, (A.34) for pa and pb, such that all the
square variables |·] are in terms of |aK ], and all the angle variables |·⟩ are in terms of |bK⟩.
Thus we can obtain:

−2pa.pI = ⟨IaJ⟩[aJI] = −
√
α

mb
⟨Ib1⟩[a2I] + ma√

α
⟨Ib2⟩[a1I] (3.59)

−2pb.pI = ⟨IbJ⟩[bJI] = −
mb√
α
⟨Ib1⟩[a2I] +

√
α

ma
⟨Ib2⟩[a1I] (3.60)

Since we have gauge fixed ⟨Ib1⟩, we have three quantities to integrate over, ⟨Ib2⟩ and [aKI].
Plugging everything back in (3.57), we get:

IB =

∫
1

ma
d⟨Ib2⟩ d[a1I] d[a2I] δ

(√
α [a2I] +

ma√
α
⟨Ib2⟩[a1I]

)
δ

(
m2

b√
α
[a2I] +

√
α

ma
⟨Ib2⟩[a1I]

)
=

1

ma
√
α

∫
d⟨Ib2⟩ d[a1I] δ

(
m2

b√
α
[a2I] +

√
α

ma
⟨Ib2⟩[a1I]

) ∣∣∣∣
[a2I]=−ma

α
⟨Ib2⟩[a1I]

=
α

α2 −m2
am

2
b

∫
d⟨Ib2⟩ d[a1I] δ

(
⟨Ib2⟩[a1I]

)
(3.61)
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The solution of the on-shell conditions dictates that [a2I] ∝ ⟨Ib2⟩[a1I], which vanishes on
the support of the remaining delta function. Both [a2I] and [a1I] can not vanish, which
would imply that |I] = 0. Thus, δ

(
⟨Ib2⟩[a1I]

)
implies that ⟨Ib2⟩ = 0. Thus we obtain the

following:

IB =
α

α2 −m2
am

2
b

∫
dz

z

∣∣∣∣
⟨Ib2⟩=0 , ⟨b1I⟩=mb, [a2I]=0 , [a1I]:=−zma

=
1√

sab(sab − 4mamb)

∫
dz

z

∣∣∣∣
pI=−z |a2]⟨b2|

(3.62)

Note that we used (A.35) to obtain the last equality. The solution for pI is again: |I] = z|a2]
and |I⟩ = |b2⟩. It is evident that we have recovered the massive massive shift from [9].

Supercharge Integral

Let us turn our attention to the Grassmann integrals from (3.35), which are as follows:

IF ≡
∫

d4η(â) d
4η(b̂) d

2η d2η†

δ4
(
|aJ ] η(a)J − |âJ ] η(â)J − |I] η†

)
δ2
(
⟨q|
{
−|aJ ⟩η(a)J + |âJ ⟩η(â)J − |I⟩η

})
δ4
(
− |bJ ] η(b)J + |b̂J ] η(b̂)J + |I] η†

)
δ2
(
⟨q|
{
−|bJ ⟩η(b)J + |b̂J ⟩η(b̂)J + |I⟩η

})
(3.63)

Let us have the following little group fixing for convenience: |âK ] := |aK ] and |b̂K ] :=

|bK ]. We can carry out the η(â) and η(b̂) integrals as follows:

δ4
(
|aJ ] η(a)J − |âJ ] η(â)J − |I] η†

)
= m2

a δ4
(
η(â)J − η(a)J +

[IaJ ]

ma
η†
)

, (3.64)

δ4
(
− |bJ ] η(b)J + |b̂J ] η(b̂)J + |I] η†

)
= m2

b δ4
(
η(b̂)J − η(b)J +

[IbJ ]

mb
η†
)

. (3.65)

Thus, we have (the following expression is evaluated at the solutions of already solved delta
functions.)

IF = m2
am

2
b

∫
d2η d2η† δ2

(
⟨q|
{
|aJ ⟩η(a)J − |âJ ⟩η(â)J + |I⟩η

})
δ2
(
⟨q|
{
|bJ ⟩η(b)J − |b̂J ⟩η(b̂)J − |I⟩η

})
= m2

am
2
b ⟨qI⟩2

∫
d2η†δ2

(
⟨q|
{
|aJ ⟩η(a)J + |bJ ⟩η(b)J − |âJ ⟩η(â)J − |b̂J ⟩η(b̂)J

})
(3.66)

We can substitute the solutions for η(â),(b̂) to simplify the argument of the last delta function
as follows:

−|âJ ⟩η(â)J − |b̂J ⟩η(b̂)J = −|âJ ⟩
(
η(a)J +

1

ma
[âJI]η

†
)
− |b̂J ⟩

(
η(b)J +

1

mb
[b̂JI]η

†
)

= −|âJ ⟩η(a)J − |b̂J ⟩η(b)J − z

(
α+mamb

mb
√
α

)
|I⟩ η† (3.67)
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To obtain the last equality, we used special three-body kinematics to write pâ|I] and pb̂|I]
in terms of |I⟩. Afterwards, we substitute xL and xR from (3.42). Substituting (3.67) back
in (3.66), we can carry out the η† integral to obtain the following:

IF = m2
am

2
b ⟨qI⟩4 z2

(
α+mamb

mb
√
α

)2

= m2
a ⟨qI⟩4 z2 sab (3.68)

Thus we have carried out the integral IF and solved for the deformations of Grassmann
variables η(â),(b̂). We can use (3.64), (3.65) and (3.67) to write down the expressions. Let us
remind ourselves that analogous to the deformation of spinor helicity variables preserving
total momentum, total supercharge is preserved by the deformation of Grassmann variables.
The shifts that we obtain here η(â),(b̂) shall be the same as the ones from [9], though here
we have used a different little group fixing compared to [9].

Bringing all the ingredients together in (3.35), we can relate the two on-shell functions
f and f0 as follows:

f(. . . , a, b, . . .) = IBIF
(
− xL
ma

1

⟨q(−I)⟩2

)(
−xR
mb

1

⟨qI⟩2

)
f0(. . . , â, b̂, . . .) (3.69)

Let us substitute IB and IF from (3.62) and (3.68) respectively, and xL/R from (3.42) to
obtain the following:

f(. . . , a, b, . . .) =

√
sab

sab − 4mamb

∫
dz

z
f0(. . . , â, b̂, . . .) . (3.70)

We can also rewrite this result as follows:

f(. . . , a, b, . . .) =

√
pa.pb −mamb

pa.pb +mamb

∫
dz

z
f0(. . . , â, b̂, . . .) . (3.71)

Notice the presence of the factor depending on Mandelstam variables in front of dz/z. Once
we take the external masses to zero, this reverts back to the bridge construction for sYM
where the factor multiplying the integral above is one, as well as for the massless-massive
BCFW on-shell diagram which we considered in the previous section.

3.3 Massive bridge over massive and massive legs

Let us consider the massive bridge built over two massive legs coming out of an on-shell
function f0(. . . ,W(pa),W(pb), . . .). We depict the relevant particles in figure (3.72).

W(pâ)

W(pa)

W(pb̂)

W(pb)

W(pI)
≡

W(−pâ)

W(pa)

W(−pI) W(pI) W(−pb̂)

W(pb)

(3.72)

Naturally, in this setting, the masses of the external particles also get shifted as follows:

pâ = pa − pI , pb̂ = pb + pI , (3.73)

mâ = ma −mI , mb̂ = mb −mI . (3.74)
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To handle the little group redundancy in defining the spinor helicity variables, let us
gauge fix all the angle variables |·⟩ as follows:

|b̂J⟩ :=
√

mb̂

mb
|bJ⟩ , |âJ⟩ :=

√
mâ

mb
|bJ⟩ (3.75)

|I1⟩ := mI

mb
|b1⟩ , |I2⟩ := |b2⟩ (3.76)

The gauge fixing for |IK⟩ is tuned so as to have a well-defined mI → 0 limit.
Inserting an integration measure, d3LIPS(·) d4η·, for each internal line, and relevant

three-point amplitudes for each vertex, we can compute the new on-shell function f(. . .) in
terms of the original f0(. . .) as follows:

f(. . . , a, b, . . .) =

∫
d3LIPS(â, b̂, I) d4η(â),(b̂),(I) A

L[W(−pI),W(pa),W(−pâ)
]

AR[W(−pb̂),W(pb),W(pI)
]
f0(. . . , â, b̂, . . .) . (3.77)

The three-point amplitudes involved are as follows:

AL[W(−pI),W(pa),W(−pâ)
]
=

1

⟨q| pI pâ|q⟩
δ4
(
|aJ ] η(a)J − |IJ ] η(I)J − |âJ ] η(â)J

)
× δ2

(
⟨q|
{
|IJ⟩ η(I)J − |aJ⟩ η(a)J + |âJ⟩ η(â)J

})
δ4
(
pa − pâ − pI

)
,

(3.78)

AR[W(−pb̂),W(pb),W(pI)
]
=

−1
⟨q| pb̂ pI |q⟩

δ4
(
|b̂J ] η(b̂)J − |b

J ] η(b)J + |IJ ] η(I)J
)

× δ2
(
⟨q|
{
|b̂J⟩ η(b̂)J − |b

J⟩ η(b)J − |IJ⟩ η(I)J
})

δ4
(
pb − pb̂ + pI

)
. (3.79)

Let us compute the various integrals involved.

Phase Space Integral

Let us evaluate the integral over momentum conserving delta functions involved in the
bridge:

IB =

∫
d3LIPS(â, b̂, I) δ4

(
pa − pI − pâ

)
δ4
(
pb + pI − pb̂

)
=

∫
d3LIPS(I) δ(−2pa.pI − 2mamI) δ( 2pb.pI − 2mbmI) . (3.80)

Notice that the two delta functions are merely δ(saI)δ(−sbI). Recall that we have fixed the
little group redundancy for pI as (3.76), and this helps us to write d3LIPS(I) as follows:

d3LIPS(I) = mI d
3I] . (3.81)

Refer to Appendix A.1 for the details of d3LIPS(I). As we are expressing all the square
variables |·] in terms of |aK ], let us do the same for |IK ] as follows:

|IK ] =
1

ma

(
|a1][a2IK ]− |a2][a1IK ]

)
≡ 1

ma

(
|a1] aI2K −|a2] aI1K

)
, (3.82)

where, aIJK ≡ [aJIK ] . (3.83)
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Now we can trade off the integration variable |IK ] in favor of aIIK :

d3I] = d2|I1] d2|I2] δ
(
[I2I1]−mI

)
=

1

m2
a

d4aI δ

(
1

ma
(aI11 aI22− aI12 aI21)−mI

)
. (3.84)

Note that we have fixed the little group redundancies for pa, pb (A.34), pâ, pb̂ (3.75), and
pI (3.76). Along with the aforementioned, using (3.82), we can readily calculate 2pa.pI and
2pb.pI in terms of external data and aIIK ,

2pa.pI = ⟨aJIK⟩[aJIK ] = mI
ma√
α

aI12−
√
α aI21 , (3.85)

2pb.pI = ⟨bJIK⟩[bJIK ] =

√
α

ma
mI aI

12−
m2

b√
α

aI21 . (3.86)

Let us assemble different parts of IB:

IB =

∫
d3LIPS(I) δ(−2pa.pI − 2mamI) δ( 2pb.pI − 2mbmI)

= mI
1

m2
a

∫
d4aI δ

(
1

ma
(aI11 aI22− aI12 aI21)−mI

)
δ

(
mI

ma√
α

aI12−
√
α aI21+2mamI

)
δ

(√
α

ma
mI aI

12−
m2

b√
α

aI21−2mbmI

)
. (3.87)

The integral over aI12 and aI21 can be carried out in a straightforward way, and we obtain:

IB =
mI

m2
a

∫
daI11 daI22 δ

(
1

ma
(aI11 aI22− aI12 aI21)−mI

)
1

mImb

1(
α

mamb
− mamb

α

) ,

(3.88)

and the solution for aI12 and aI21 satisfying the delta functions is as follows:

aI12 =
2
√
αmamb

α−mamb
, aI21 =

2
√
αmIma

α−mamb
. (3.89)

For the aI11 and aI22 integrals, let us integrate aI22, leading to:

aI11 = maz , aI22 =
mI

z

(
α+mamb

α−mamb

)2

.

⇒ IB =
mI

m2
b

ma

∫
dz

z

1

mImb

1(
α

mamb
− mamb

α

) . (3.90)

Simplifying, and using the definition of α (A.33), we obtain the following,

IB =
1√

sab(sab − 4mamb)

∫
dz

z
(3.91)

This is the same answer as the massless internal leg case, mI = 0, (3.62). So, the bosonic
integral IB is independent of mI .
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The solution for pI is as follows:

pI =
1

ma
|b2⟩

(
[a1| aI21−[a2| aI11

)
− mI

mamb
|b1⟩

(
[a1| aI22−[a2| aI12

)
(3.92)

aI11 = maz , aI22 =
mI

z

(
sab

sab − 4mamb

)
, (3.93)

aI12 =
2
√
αmamb

α−mamb
, aI21 =

2
√
αmIma

α−mamb
(3.94)

pI = −z |b2⟩[a2|+ 2mI√
sab − 4mamb

(
|b2⟩[a1|+ |b1⟩[a2|

)
− 1

z

m2
I

mamb

(
sab

sab − 4mamb

)
|b1⟩[a1|

(3.95)

One can readily take the mI = 0 limit, to obtain pI = −z|b2⟩[a2|, which matches the earlier
result (3.62).

Supercharge Integral

Here, we perform the integration over all the supercharge conserving delta functions. Read-
ing from (3.77), we have,

IF =

∫
d4η(â),(b̂),(I) δ

2
(
⟨q|
{
|IJ⟩ η(I)J − |aJ⟩ η(a)J + |âJ⟩ η(â)J

})
× δ4

(
|aJ ] η(a)J − |IJ ] η(I)J − |âJ ] η(â)J

)
δ4
(
|b̂J ] η(b̂)J − |b

J ] η(b)J + |IJ ] η(I)J
)

× δ2
(
⟨q|
{
|b̂J⟩ η(b̂)J − |b

J⟩ η(b)J − |IJ⟩ η(I)J
})

(3.96)

We can carry out the ηâ and ηb̂ integrals as follows:∫
d4ηâ δ

4
(
|aJ ] η(a)J − |IJ ] η(I)J − |âJ ] η(â)J

)
=

∫
d4ηâm

2
â δ

4

(
ηKâ −

1

mâ

(
−[âKaJ ]η(a)J + [âKIJ ]η(I)J

))
= m2

â

∣∣
ηKâ =(−[âKaJ ] η(a)J + [âKIJ ] η(I)J)/mâ

. (3.97)

∫
d4ηb̂ δ

4
(
|b̂J ] η(b̂)J − |b

J ] η(b)J + |IJ ] η(I)J
)
= m2

b̂

∣∣
ηK
b̂
=(−[b̂KbJ ] η(b)J + [b̂KIJ ] η(I)J )/mb̂

.

(3.98)

Plugging these back in (3.96), we get:

IF =

∫
d4η(I)m

2
âm

2
b̂
δ2
(
⟨q|
{
|IJ⟩ η(I)J − |aJ⟩ η(a)J + |âJ⟩ η(â)J

})
× δ2

(
⟨q|
{
|b̂J⟩ η(b̂)J − |b

J⟩ η(b)J − |IJ⟩ η(I)J
})

(3.99)
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Let us plug in the solutions for ηâ and ηb̂ to obtain:

− |IJ⟩ η(I)J + |aJ⟩ η(a)J − |âJ⟩ η(â)J

= − 1

mâ

(
ma|IK⟩+ pa|IK ]

)
η(I)K −

1

mâ

(
mI |aK⟩+ pI |aK ]

)
η(a)K ,

− |b̂J⟩ η(b̂)J + |bJ⟩ η(b)J + |IJ⟩ η(I)J

= − 1

mb̂

(
−mb|IK⟩+ pb|IK ]

)
η(I)K −

1

mb̂

(
mI |bK⟩ − pI |bK ]

)
η(b)K . (3.100)

Using these expressions back in (3.99), we get:

IF =

∫
d4η(I) δ

2

(
⟨q|
{(

ma|IK⟩+ pa|IK ]
)
η(I)K +

(
mI |aK⟩+ pI |aK ]

)
η(a)K

})
× δ2

(
⟨q|
{(
−mb|IK⟩+ pb|IK ]

)
η(I)K +

(
mI |bK⟩ − pI |bK ]

)
η(b)K

})
(3.101)

We can readily integrate this by changing the variables of integration from η(I)K to
⟨q|
(
ma|IK⟩+ pa|IK ]

)
η(I)K and ⟨q|

(
−mb|IK⟩+ pb|IK ]

)
η(I)K to obtain the following:

IF =

(
⟨q|
(
ma|IK⟩+ pa|IK ]

)
⟨q| (−mb|IK⟩+ pb|IK ])

)2

= ⟨q| (mambmI +ma pIpb −mb papI −mI papb) |q⟩2 (3.102)

The solution for η(I) can be obtained by solving the two Dirac delta functions in (3.101).

Looking back at (3.77), we have carried out all the integrals ((3.91) and (3.102)). Thus
we have the following:

f(. . . , a, b, . . .) =

∫
dz

z

⟨q| (mambmI +ma pIpb −mb papI −mI papb) |q⟩2

−⟨q| pI pâ|q⟩⟨q| pb̂ pI |q⟩
1√

sab(sab − 4mamb)
f0(. . . , â, b̂, . . .) (3.103)

Since the above expression is supposed to hold for all |q⟩ such that ⟨uLq⟩ ̸= 0 ̸= ⟨uRq⟩, we
can choose certain |q⟩ and calculate it. For the choices, |q⟩ ∝ |b1⟩ or |q⟩ ∝ |b2⟩, we obtain:

⟨q| (mambmI +ma pIpb −mb papI −mI papb) |q⟩2

−⟨q| pI pâ|q⟩⟨q| pb̂ pI |q⟩
= 2mamb − 2pa.pb = sab . (3.104)

Eventually, bringing everything together, we have the following result:

f(. . . , a, b, . . .) =

√
sab

sab − 4mamb

∫
dz

z
f0(. . . , â, b̂, . . .) (3.105)

Note that the multiplicative factor is independent of mI , and thus matches well with
the mI → 0 limit.
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One key thing to notice in the massive bridge is that we can not set z → 0 to ‘turn
off’ the shift : (3.95) has a term containing 1/z. This is because the massive bridge shifts
the momenta pa/b, such that the masses ma/b are changed as well. So, unlike the massless
case, the limit z → 0 of the deformed amplitude/on-shell function does not give us the
undeformed amplitude/on-shell function. Since the deformed amplitude/on-shell function
has legs with deformed masses, we need to take the limit mI → 0 as well. Note that all the
expressions have well-defined mI → 0 limit, though since masses are generated using SSB,
mI takes discrete values and there is no smooth way to take mI → 0 keeping the vacuum
expectation values of scalars fixed.

Note that the validity of this deformation is yet to be determined. We shall see in
the upcoming section that we can construct the four-point amplitude over the Coulomb
branch using this deformation. This is equivalent to the fact that there are no triangle
contributions at one loop for four-point amplitudes, as seen in [43]. However, the use of
this deformation for higher point amplitudes is yet to be checked. We leave this, proof of
the validity or invalidity of this deformation for future works.

3.3.1 Revisiting massive three-body special kinematics

Due to the lack of any insight from the special three-body kinematics, the analysis of the
massive bridge over both massive legs has not been very illuminating so far, especially
(3.95). Refer to [9] for the details of all massive three-body special kinematics However,
since we are bridging together two three-body special kinematics together, let us analyze
the special kinematics, and see if we can learn something new about this mass-deforming
shift.

Consider the right three-point amplitude involving (b, b̂, I). Special three body kine-
matics tell us that the following matrix should have zero determinant:

[bJIK ]− ⟨bJIK⟩ = uJ(b)u
K
(I) . (3.106)

We can write all the spinor variables in terms of |bK⟩ and |aK ] using (A.32), (3.76) and
(3.82). Thus, we can explicitly calculate the aforementioned matrix:

[bJIK ]− ⟨bJIK⟩ = uJ(b)u
K
(I) =

(
u1(b)u

1
(I) u

1
(b)u

2
(I)

u2(b)u
1
(I) u

2
(b)u

2
(I)

)

=

 z
√
α mb

(
α+mamb
α−mamb

)
mI

(
α+mamb
α−mamb

)
mImb

z
√
α

(
α+mamb
α−mamb

)2
 . (3.107)

Note that, in principle, there is a GL(1) redundancy in definition of u(b) and u(I). But this
is fixed by demanding that u(b)J |bJ⟩ = u(I)J |IJ⟩. We can see that the following u(b) and
u(I) indeed satisfy all the requirements:

u(b) =
(
u1(b) , u2(b)

)
=

(√
z
√
α ,

mI√
z
√
α

(
α+mamb

α−mamb

))
, (3.108)

u(I) =
(
u1(I) , u2(I)

)
=

(√
z
√
α ,

mb√
z
√
α

(
α+mamb

α−mamb

))
. (3.109)
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|uR⟩ = u(b)J |bJ⟩ = u(I)J |IJ⟩ = −
mI√
z
√
α

(
α+mamb

α−mamb

)
|b1⟩+

√
z
√
α |b2⟩ , (3.110)

|uR] = −u(b)J |bJ ] = u(I)J |IJ ] =
mI

ma

√√
α

z

(
α+mamb

α−mamb

)
|a1]−mb

√
z√
α
|a2] . (3.111)

Let us repeat the same analysis for the left three point amplitude as well.

[aJIK ] + ⟨aJIK⟩ =

(
u1(a)u

1
(I) u

1
(a)u

2
(I)

u2(a)u
1
(I) u

2
(a)u

2
(I)

)

=

 ma z
√
α
(
α+mamb
α−mamb

)
mamI√

α

(
α+mamb
α−mamb

)
mI
z

(
α+mamb
α−mamb

)2
 . (3.112)

u(a) =
(
u1(a) , u2(a)

)
=

(√
z
√
α ,

mI√
z
√
α

(
α+mamb

α−mamb

))
, (3.113)

uL(I) =
(
u1(I) , u2(I)

)
=

(
ma

√
z√
α

,

√√
α

z

(
α+mamb

α−mamb

))
. (3.114)

|uL⟩ = u(a)J |aJ⟩ = uL(I)K |I
K⟩ = −mI

mb

√√
α

z

(
α+mamb

α−mamb

)
|b1⟩+ma

√
z√
α
|b2⟩ , (3.115)

|uL] = u(a)J |aJ ] = uL(I)K |I
K ] = − mI√

z
√
α

(
α+mamb

α−mamb

)
|a1] +

√
z
√
α |a2] . (3.116)

From here, we can check the following:

pI =
1
√
sab

(
|uL⟩[uR| − |uR⟩[uL|

)
(3.117)

Let us emphasize that this form for pI is expected as the left three-point special kinematics
dictate that pI ∼ |uL⟩[•| + |•⟩[uL|, while the right three-body special kinematics dictate
that pI ∼ |•⟩[uR|+ |uR⟩[•|. Note that once pI is written as (3.117), it looks like there is no
distinct undetermined z factor, rather the special kinematics u spinors have that degree of
freedom in them, they are not completely determined in terms of pa and pb.

A takeaway from (3.117) is that once we write pa as |uL⟩[aw|+ |aw⟩[uL|, in accord with
[9], the shift is along |aw⟩ and |aw] directions. pâ and pa share the same |uL⟩ and |uL].
Similarly the shift is along |bw⟩ and |bw] directions on the right side. When the bridge is
massless, the above form continues to hold except that the two terms in (3.117) become
equal to one another. This then resembles the massive BCFW shift introduced in [31] with
auxiliary little group vectors. Here, the auxiliary little group vectors are given meaning in
terms of the three particle special kinematics variables from the bridge. Usage of auxiliary
little group vectors to define a BCFW shift can also be seen in the case of six dimensional
BCFW construction [51].
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In this section, we have considered cases with increasing generality to finally obtain the
most general BCFW bridge construction for on-shell functions on the Coulomb branch of
N = 4 SYM. This natural construction of the BCFW bridge between smaller and bigger
on-shell functions leads to a novel BCFW shift where the shift momentum is massive and
external particle masses are therefore shifted. In the massless case, the BCFW bridge
construction allowed one to compute maximal cuts of scattering amplitudes. Further, it
also allowed one to relate various on-shell functions enabling an enumeration of on-shell
functions for N = 4 SYM. Thus the BCFW bridge construction allowed one to relate on-
shell functions to scattering amplitudes while also elucidating the redundancy in the on-shell
function data. In the next sections, we will use the above BCFW bridge construction as a
tool to compute maximal cuts for the Coulomb branch of N = 4 SYM as well as investigate
the redundancy in its on-shell functions.

4 Maximal cuts of loop amplitudes

The bridge construction for any generic mass configuration, considered in the previous
section, paves the way for the development of a wide class of on-shell functions. Note that
the maximal cut of any graph sets all the intermediate legs on-shell making it an on-shell
function. In this section, we apply the bridge construction to calculate maximal cuts of loop
amplitudes in the Coulomb branch of N = 4 SYM which are made out of box subgraphs.
In this section, we demonstrate the identical nature of the computation of the maximal cut
of the one-loop box diagram and the BCFW computation for four-point tree amplitude.
In this process, we also use the mass deforming shift from section 3.3 to calculate the tree
amplitude. Later on, we obtain a recursive relation for computing the maximal cut of an
L loop ladder graph.

4.1 Quadruple Cut for simplest SSB

Consider the simplest case of spontaneous symmetry breaking, U(n+m)→ U(n)×U(m).
In the colored double-line notations, we refer to this situation as the presence of only two
colors. There are no three massive vertex or amplitude possible in this case, as color
structure forbids it. In this setting, let us explore various maximal cuts of a one-loop
four-point function.

All massive external legs

Figure 2. Two possible diagrams for one loop four particle amplitude

Consider the four particle amplitude: A
[
W(pa),W(pb),W(pc),W(pd)

]
at one loop.

We can use the Passarino Veltman reduction to express this one-loop amplitude in terms
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of scalar integrals. For N = 4, and in the Coulomb branch, there are no tadpoles, bubbles,
or triangle diagrams, only the box diagram contributes. Since two possible colors can run
in the loop, there are two distinct diagrams as depicted in figure 2.

We are interested in the maximal cut of these one-loop amplitudes. Let us calculate
one representative quadruple cut for this class of on-shell functions, given in figure 3.

W(pa)

W(pd) W(pc)

W(pb)

l =
pI + pb + pc

pI

W(pâ) W(pb̂)
≡

Bridge

G(l) G(−l)

W(pa)

W(pd) W(pc)

W(pb)
pI

W(pâ) W(pb̂)

Figure 3. Quadruple cut for one loop four particle amplitude in the simplest possible symmetry
breaking case. Interpreting this maximal cut as a BCFW bridge over a factorization channel.

As depicted in the adjoined figure, the maximal cut for one loop amplitude is a bridge
over a factorization channel, which makes it a BCFW factorization. Thus we expect the
answer to be proportional to Atree

4 , and we wish to find the exact proportionality factor.
Let us remind ourselves that for massless sYM, the maximal cut of the box diagram is
identically equal to the four-point tree amplitude.

The maximal cut corresponding to figure 3 is as follows:

∆ ≡
∫ 4∏

i=1

(
d3LIPS(li) d4η(li)

)
ALB ALT ARB ART (4.1)

Here, ALB, ALT , ARB and ART refer to ‘Left Bottom’, ’Left Top’, ’Right Bottom’ and
’Right Top’ three-point amplitudes respectively. Let us make use of the BCFW bridge
computation from section 3.2, where we carry out the integrals for three internal legs. Note
that the notations and momentum labels are similar to section 3.2. Integrals over three
loop legs from ∆: d3LIPS(â) d3LIPS(b̂) d3LIPS(I) d4ηâ d4ηb̂ d

4ηI , are the same as (3.35),
which have been evaluated to get (3.70).

We have to carry out the integral only over the fourth leg, l. Thus, we can rewrite ∆

as follows,

∆ =

∫
d3LIPS(l) d2ηl d2η

†
l√

sab
sab − 4mamb

∫
dz

z
ALB

[
W(pâ),W(pd), G(l)

]
ARB

[
W(pc),W(pb̂), G(−l)

]
,

(4.2)
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where the three-point amplitudes are,

ALB

[
W(pâ),W(pd), G(l)

]
= − xL

ma

1

⟨rl⟩2
δ4
(
|âJ ]η(â)J − |dJ ]η(d)J + |l] η†l

)
δ4(pâ + pd + l)

δ2
(
⟨r|
{
−|âJ⟩η(â)J − |dJ⟩η(d)J + |l⟩ ηl

})
, (4.3)

ARB

[
W(pc),W(pb̂), G(−l)

]
= −xR

mb

1

⟨r(−l)⟩2
δ4
(
|cJ ]η(c)J − |b̂J ]η(b̂)J − |l] η

†
l

)
δ4(pb̂ + pc − l)

δ2
(
⟨r|
{
−|cJ⟩η(c)J − |b̂J⟩η(b̂)J − |l⟩ ηl

})
. (4.4)

Here x satisfy the following equations:

xL pd|l] = ma|l⟩ , xR pb̂|l] = mb|l⟩ (4.5)

Solving momenta constraints

With a maximal cut, all the internal loop momenta are completely determined. Let us
focus on the bosonic momentum conserving delta functions in order to determine z:

∆B =

∫
dz

z
d3LIPS(l) δ4(pâ + pd + l) δ4(pb̂ + pc − l)

=

∫
dz

z
d4l δ(l2) δ4(pâ + pd + l) δ4(pb̂ + pc − l)

=

∫
dz

z
δ
(
(pâ + pd)

2
)
δ4(pâ + pb̂ + pc + pd)

= δ4 (pa + pb + pc + pd)

∫
dz

z
δ
(
− 2pI .pd − sad

)
. (4.6)

Using the solution of pI from (3.62), we have

−2pI .pd = −[I|d|I⟩ = −z[a2|d|b2⟩. (4.7)

Plugging this in the expression of maximal cut we obtain

∆B = δ4
(∑

pi

)∫ dz

z
δ
(
−z[a2|d|b2⟩ − sad

)
= δ4

(∑
pi

) 1

sad

∣∣∣∣
z=−sad/[a2|d|b2⟩

(4.8)

It will be convenient to express pd and pc in terms of |aK ] and |bK⟩, just like all the rest of
the momenta,

pd = dIK |bI⟩[aK | , d11d22 − d12d21 =
m2

d

mamb
=

ma

mb
. (4.9)

The latter condition is the consequence of pd being on-shell, p2d = −m2
d = −m2

a. Now we
have [a2|d|b2⟩ = mamb d11.

Note that apart from the on-shell condition, p2d = −m2
a, there is a further constraint

on pd, the on-shell condition for pc: p2c = (−pa − pb − pd)
2 = −m2

b . The counting for the
on-shell degrees of freedom in four particle scattering is as follows: 4 × 4 (four 4-vectors)
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- 4 (momentum conservation) - 4 (four on-shell conditions) = 8. Out of these 8, |aK ] and
|bK⟩ (with constraints ⟨b1b2⟩ = mb and [a2a1] = ma) comprises of 6 of them, two on-shell
4-vectors worth. Thus, pd is supposed to have the rest of the two kinematic degrees of
freedom. p2c = −m2

b leads to the following constraint on dIK :

d21

(
α+m2

b

mb
√
α

)
− d12

(
α+m2

a

ma
√
α

)
=

mb

ma
− ma

mb
−

(α+m2
a)(α+m2

b)

mambα
(4.10)

Determining z in terms of external momenta determines pI in terms of external mo-
menta, and henceforth we can use this information to solve for l in terms of external
momenta:

l = −pâ − pd = −pa − pd + pI

= −
(
−
√
α

mb
|b1⟩[a2|+ ma√

α
|b2⟩[a1|

)
−
(
dIK |bI⟩[aK |

)
+

(
sad

mambd11
|a2]⟨b2|

)
(4.11)

We have made use of the (A.34) for pa. Now, with some algebra, we can show that we can
write l as follows:

l = −
[
d11|b1⟩+

(
ma√
α
+ d21

)
|b2⟩
] [

[a1| − 1

d11

(√
α

mb
− d12

)
[a2|
]
≡ −|l⟩[l| (4.12)

Thus we have solved for all the internal loop momenta in terms of external momenta. Also
since we have fixed the quantities in the square braces as |l⟩ and |l], there is no further little
group redundancy associated with l.

Now, we wish to solve for xL/R (4.5). Let us compute pd|l] to determine xL:

pd |l] =
(
dI1|bI⟩[a1|+ dI2|bI⟩[a2|

)(
|a1]− 1

d11

(√
α

mb
− d12

)
|a2]
)

= dI1|bI⟩ma
1

d11

(√
α

mb
− d12

)
+ dI2|bI⟩ma, (4.13)

which yields

1

ma
pd |l] = d11|b1⟩

1

d11

(√
α

mb
− d12

)
+ d21|b2⟩

1

d11

(√
α

mb
− d12

)
+ d12|b1⟩+ d22|b2⟩

=
1

d11

√
α

mb

[
d11|b1⟩+

(
ma√
α
+ d21

)
|b2⟩
]
=

1

d11

√
α

mb
|l⟩ . (4.14)

Since we have xL pd|l] = ma|l⟩, we have

xL = d11
mb√
α

. (4.15)

Similarly, to find xR, let us calculate pb̂ |l] as follows,

pb̂ |l] = (pb + pI) |l]

=

(
−mb√

α
|b1⟩[a2|+

√
α

ma
|b2⟩[a1|+ sad

mambd11
|b2⟩[a2|

)(
|a1]− 1

d11

(√
α

mb
− d12

)
|a2]
)

= −mb√
α
|b1⟩ma +

sad
mbd11

|b2⟩+
√
α

ma
|b2⟩ma

1

d11

(√
α

mb
− d12

)
(4.16)
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We can write 2pa.pd, and hence sad, in terms of dIK . Afterwards, using the relation (4.10),
we can show that we get the following expression,

pb̂|l] = −
mamb√

α

1

d11
|l⟩. (4.17)

Since we have xR pb̂|l] = mb|l⟩, we can read off xR,

xR = −d11
√
α

ma
. (4.18)

For future purposes, we note that

xL
xR

= −mamb

α
. (4.19)

Supercharge conservation

Let us collect all the supercharge conserving delta functions, and integrate over η
(†)
l from

(4.2). Then we obtain,

∆F =

∫
d2ηl d

2η†l δ4
(
|âJ ]η(â)J − |dJ ]η(d)J + |l] η†l

)
δ2
(
⟨r|
{
−|âJ⟩η(â)J − |dJ⟩η(d)J + |l⟩ ηl

})
δ4
(
|cJ ]η(c)J − |b̂J ]η(b̂)J − |l] η

†
l

)
δ2
(
⟨r|
{
−|cJ⟩η(c)J − |b̂J⟩η(b̂)J − |l⟩ ηl

})
= ⟨rl⟩2

∫
d2η†l δ4

(
|âJ ]η(â)J − |dJ ]η(d)J + |cJ ]η(c)J − |b̂J ]η(b̂)J

)
δ4
(
|cJ ]η(c)J − |b̂J ]η(b̂)J − |l] η

†
l

)
δ2
(
⟨r|
{
−|âJ⟩η(â)J − |dJ⟩η(d)J − |cJ⟩η(c)J − |b̂J⟩η(b̂)J

})
(4.20)

Since the shifts preserve supercharge, we have

|âJ ]η(â)J − |b̂J ]η(b̂)J = |aJ ]η(a)J − |bJ ]η(b)J , (4.21)

−|âJ⟩η(â)J − |b̂J⟩η(b̂)J = −|aJ⟩η(a)J − |bJ⟩η(b)J . (4.22)

Using the above equations, ∆F becomes

∆F = ⟨rl⟩2 δ4 (Q) δ2
(
⟨r|Q†

)∫
d2η†l δ4

(
|cJ ]η(c)J − |b̂J ]η(b̂)J − |l] η

†
l

)
. (4.23)

Performing η†l integrals we get

∆F = ⟨rl⟩2 δ4 (Q) δ2
(
⟨r|Q†

)∫
d2η†l δ4

(
QR

)
= ⟨rl⟩2 δ4 (Q) δ2

(
⟨r|Q†

)∫
d2η†l

1

m4
b⟨lr⟩2

δ2
(
⟨l|pc|QR]

)
δ2
(
⟨r|pc|QR]

)
=

1

m4
b

δ4 (Q) δ2
(
⟨r|Q†

)
δ2
(
⟨l|pc|QR]

) ∫
d2η†l δ2

(
⟨r|pc|QR]

)
. (4.24)
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In order to obtain the last equality, we note that ⟨l|pc ∝ [l|, and thus ⟨r|pc|QR] ∝ [lQR] is
independent of η†l . Integrating the η†l , we then obtain the following,

∆F =
1

m4
b

δ4 (Q) δ2
(
⟨r|Q†

)
δ2
(
⟨l|pc|QR]

)
⟨r|pc|l]2

=
1

m4
b

δ4 (Q) δ2
(
⟨r|Q†

)
δ2
(
⟨l|pc|QR]

) m2
b

x2R
⟨lr⟩2

=
⟨lr⟩2

m2
b

1

x2R
δ4 (Q) δ2

(
⟨r|Q†

)
δ2
(
⟨l|pc|QR]

)
. (4.25)

We can manipulate δ2
(
⟨l|pc|QR]

)
as follows. Using special kinematics, we have ⟨l|pc =

xR mb [l| and ⟨l|pd = −xLma [l|. Therefore,

⟨l|pc|QR] =
xR mb

xLma
⟨l|pd|QR] (4.26)

On support of δ4(Q), we have QL +QR = 0. This lets us write,

⟨l|pc|QR] =
xR mb

xLma
⟨l|pd|QR] = −

xR mb

xLma
⟨l|pd|QL]

⇒
(
1 +

xL
xR

)
⟨l|pc|QR] = ⟨l|pc|QR]−

mb

ma
⟨l|pd|QL]. (4.27)

Special three body kinematics leads to the fact that not all of the supercharges Q and Q†

are independent and they are related as follows, [9]

⟨l|pd|QL] = ma⟨lQ†
L⟩, ⟨l|pc|QR] = −mb⟨lQ†

R⟩. (4.28)

From the above equations we obtain,(
1 +

xL
xR

)
⟨l|pc|QR] = ⟨l|pc|QR]−

mb

ma
⟨l|pd|QL] = −mb⟨lQ†

R⟩ −mb⟨lQ†
L⟩ = −mb⟨lQ†⟩

⇒ ⟨l|pc|QR] = −mb

(
1 +

xL
xR

)−1

⟨lQ†⟩. (4.29)

Using the above relation Eq.(4.25) simplifies to

∆F =
⟨rl⟩2

m2
b

1

x2R
δ4 (Q) δ2

(
⟨rQ†⟩

)
m2

b

(
1 +

xL
xR

)−2

δ2
(
⟨lQ†⟩

)
= ⟨rl⟩4 1

x2R

(
1 +

xL
xR

)−2

δ4 (Q) δ4
(
Q†
)
. (4.30)

Maximal cut

Collecting all the ingredients, Eq.(4.2) takes the form

∆ =

√
sab

sab − 4mamb

(
− xL
ma

xR
mb

1

⟨rl⟩4

)(
1

sad
δ4 (P )

)
×

(
⟨rl⟩4 1

x2R

(
1 +

xL
xR

)−2

δ4 (Q) δ4
(
Q†
))

= − 1

sad

√
sab

sab − 4mamb

(
1

mamb

xL
xR

)(
1 +

xL
xR

)−2

δ4(P ) δ4(Q) δ4
(
Q†
)
. (4.31)
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Using (4.19), we can check that the following equation holds,

− 1

mamb

xL
xR

(
1 +

xL
xR

)−2

=
1

sab
. (4.32)

Thus, finally we get the following expression for the maximal cut of four point one loop
Coulomb branch amplitude, A1 loop

4 ,

∆ =

√
sab

sab − 4mamb

1

sabsad
δ4(P )δ4(Q)δ4

(
Q†
)

=

√
sab

sab − 4mamb
Atree

4

= sabsadAtree
4 LS(IBox

4 ). (4.33)

The leading singularity of the four point one loop scalar box master integral, LS(IBox
4 ) =

1
sabsad

√
sab

sab−4mamb
, is nothing but the maximal cut of the scalar master integral, IBox

4 . This
result perfectly matches with the earlier double cut result for one loop Coulomb branch
amplitude [43] and gives the correct box coefficient in the Veltman-Passarino reduction,

Double Cut (A1 loop
4 ) = sabsadAtree

4 [Double Cut (IBox
4 )]. (4.34)

The maximal cut becomes ∆ = Atree
4 , with zero external masses, ma = mb = 0. This

simple configuration with all the vanishing external masses dictates that the quadruple cut
of one loop N = 4 Coulomb branch box diagram also matches with the leading singularity
in massless N = 4 sYM theory [52].

4.2 All massive box maximal cut

Let us calculate the maximal cut for a one-loop box diagram with all external and internal
legs massive. All the external masses are kept arbitrary. Specifying the mass for one of the
internal lines fixes the mass in all of the internal lines due to central charge conservation.
The statement is equivalent to choosing one color running in the internal loop, that fixes
the masses in all of the internal legs. Figure 4 depicts the setup. We can imagine any one
of the internal lines as a bridge. Thus, the maximal cut of a massive one-loop diagram is
equivalent to a massive bridge over a factorization channel. Let us spell out all the mass
relations due to the central charge conservation,

ma −mb +mc −md = 0,

mâ = ma −mI ,

mb̂ = mb −mI ,

ml = mI −mb +mc = mI −ma +md.

(4.35)

We are interested in calculating the maximal cut, given by

∆ ≡
∫ 4∏

i=1

(
d3LIPS(li) d4η(li)

)
ALB ALT ARB ART . (4.36)
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W(pa)

W(pd) W(pc)

W(pb)

W(l)

l =
pI + pb + pc

W(pI)

W(pâ) W(pb̂)
≡

Bridge

W(l) W(−l)

W(pa)

W(pd) W(pc)

W(pb)
W(pI)

W(pâ) W(pb̂)

Figure 4. Quadruple cut for arbitrary one loop four particle amplitude. Interpreting this maximal
cut as a BCFW bridge over a factorization channel.

Note that this setup and all the conventions are exactly the same as the massive bridge
from section 3.3. So, we can readily use the results from there and write ∆ as follows,

∆ =

∫
d3LIPS(l) d4ηl

√
sab

sab − 4mamb

×
∫

dz

z
ALB

[
W(pâ),W(pd),W(l)

]
ARB

[
W(pc),W(pb̂),W(−l)

]
. (4.37)

In the last subsection, we worked out the Grassmann integral for the intermediate leg in
detail. However, it is clear that the Grassmann computation is identical to the BCFW
computation for four-point tree-level amplitude. Omitting the details of the total super-
charge conservation, which one can find in the BCFW computation in [9], we argue that
the following equalities hold,∫

d4ηlALB

[
W(pâ),W(pd),W(l)

]
ARB

[
W(pc),W(pb̂),W(−l)

]
=

1

sab
δ4(Q) δ4

(
Q†) δ4(P ) δ4(pâ + pd + l)

= sadAtree
4 δ4(pâ + pd + l) . (4.38)

Note that we are keeping explicit momentum-conserving delta functions throughout. The
above relation merely relies on the fact that shifts preserve momenta and supercharges. For
instance, using the momenta conservation and mass relations (4.35), we can check that

sâb̂ = −2pâ.pb̂ + 2mâmb̂ = −2pa.pb + 2mamb = sab . (4.39)

Thus, making use of (4.38), we have

∆ =

√
sab

sab − 4mamb
sadAtree

4

∫
dz

z
d3LIPS(l) δ4(pâ + pd + l)

= Atree
4 sad

√
sab

sab − 4mamb

∫
dz

z
δ
(
(pI − pa − pd)

2 + (mI −ma +md)
2
)

= Atree
4 sad

√
sab

sab − 4mamb

∫
dz

z
δ
(
− 2pI .pd + 2mdmI − sad

)
. (4.40)
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Note that to obtain the last equality, we have used the fact that pI satisfies 2pa.pI+2mamI =

0. Using the expression for pI from (3.95), we can calculate pI .pd, and proceed to calculate
the z integral5 as follows,

2pd.pI
mamb

=
2mI√

sab − 4mamb
(d12 + d21) + z d11 +

1

z

m2
I

mamb

(
sab

sab − 4mamb

)
d22 (4.41)

Thus, we can rewrite the ∆ as

∆ = Atree
4 sad

√
sab

sab − 4mamb

∫
dz

z
δ

(
A

z
+B + Cz

)
, (4.42)

where we define

A = −m2
I d22

(
sab

sab − 4mamb

)
,

B = 2mImd − sad −
2mImamb√
sab − 4mamb

(
d12 + d21

)
,

C = −mamb d11 .

(4.43)

We carry out the z integral as follows:∫
dz

z
δ

(
A

z
+B + Cz

)
=

∫
dz δ(A+Bz + Cz2)

=
1

C

∫
dzδ
(
(z − z1)(z − z2)

)
(4.44)

Note that there are two poles (holomorphic delta functions) in z, and the leading singularity
is the residue around the pole, which gives the correct massless limit [53]. Thus, we have:∫

dz

z
δ

(
A

z
+B + Cz

)
=

1

C

1

|z1 − z2|
=

1√
B2 − 4AC

(4.45)

Upon substituting (4.43) in the above equation, we can see that B2−AC depends only on
d12, d21 and the product d11d22. Since we have the relation d11d22 − d12d21 = m2

d/(mamb),
we can express B2 − 4AC only in terms of d12 and d21. Now we claim that d12 and d21 are
in fact not independent and can be determined in terms of sad.

pc = −pa − pb − pd

= −d11|b1⟩[a1|+
(√

α

mb
+

mb√
α
− d12

)
|b1⟩[a2|

−
(
ma√
α
+

√
α

ma
+ d21

)
|b2⟩[a1| − d22|b2⟩[a2|. (4.46)

5Recall from the Appendix A.2 that for pc = cIK |bI⟩[aK | and pd = dIK |bI⟩[aK |, we have 2pc.pd =

−mamb cIKdIK = mamb(−c11d22 − c22d11 + c12d21 + c21d12). This leads to the fact that −m2
d = p2d =

mamb(−d11d22 + d12d21)
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This implies

m2
c

mamb
= d11d22 +

(√
α

mb
+

mb√
α
− d12

)(
ma√
α
+

√
α

ma
+ d21

)
⇒ (md +mb −ma)

2

mamb
=

m2
d

mamb
+ d12d21 +

(√
α

mb
+

mb√
α
− d12

)(
ma√
α
+

√
α

ma
+ d21

)
=

m2
d

mamb
+

(√
α

mb
+

mb√
α

)(
ma√
α
+

√
α

ma

)
+ d21

(√
α

mb
+

mb√
α

)
−d12

(
ma√
α
+

√
α

ma

)
. (4.47)

Similarly, we can write sad in terms of dIK as follows,

sad = −2pa.pd + 2mamd = mamb

(√
α

mb
d21 −

ma√
α
d12

)
+ 2mamd. (4.48)

Thus, we can use the two linear equations for d12 and d21: Eq.(4.47) and Eq.(4.48), to write
d12 and d21 in terms of external masses, α and sad. Hence we can express B2 − 4AC in
terms of the external data as well. Thus, upon simplification we obtain,

∆ = Atree
4 sad

√
sab

sab − 4mamb

1√
B2 − 4AC

≡ Atree
4 X , (4.49)

where χ is defined as

X =

√
sabsad

sabsad − 4mâmb̂sad − 4mImlsab
. (4.50)

Let us take a step back and relabel all the legs in the box diagram as figure 5. The maximal

p1

p4 p3

p2

l1

l3

l4 l2

Figure 5. Generic one loop box diagram

cut for the diagram reads as,

Maximal Cut
(
A1 loop box

4

)
≡ ∆ = Atree

4

√
s12s14

s12s14 − 4ml1ml3s12 − 4ml2ml4s14

(4.51)

The beauty of the (4.51) is that it manifests the cyclic symmetry of the amplitude and
the on-shell function. We can equally well see any of the loop leg li to be a bridge over a
factorization channel. For instance, let l4 be the massless bridge, then the proportionality
factor becomes

√
s14/(s14 − 4ml1ml3), which is what we expect from the massless bridge
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analysis. Roughly we can state that this proportionality factor is cyclic generalization of
the massless case:√

s12
s12 − 4ml2ml4

cyclic gen.−−−−−−→
√

s12s14
s12s14 − 4ml1ml3s12 − 4ml2ml4s14

cyclic gen.←−−−−−−
√

s14
s14 − 4ml1ml3

(4.52)

Note that the maximal cut of one loop box is proportional to the leading singularity
of the box (scalar master integral). We can look back at our analysis of the massive bridge
and the massive box, and isolate the leading singularity corresponding to the generic box
diagram from figure 5:

LS
(
IBox
4

)
=

1

s12s14

√
s12s14

s12s14 − 4ml1ml3s12 − 4ml2ml4s14
(4.53)

Thus, using the tedious route of generalized unitarity, we have obtained the coefficient
of the box diagram in Veltman-Passarino reduction of four point one loop amplitude, which
shall be the ratio of (4.51) and (4.53), namely, s12s14Atree

4 . This coefficient matches well
with our earlier (unitarity) two-cut analysis from [43]. Note that unitarity two-cut analysis
is oblivious to the explicit answer for leading singularity, (4.53).

4.3 Bigger on-shell functions

We have all the ingredients to calculate bigger on-shell functions readily. With the tech-
niques developed in earlier sections, we can in principle calculate the maximal cut of any
loop graph made purely of box subgraphs, for example, arbitrary ladder diagrams. After-
ward, we can employ the generalized unitarity to calculate the coefficients of higher loop
scalar integrals. For instance, here we shall show that for arbitrary n loops, the coefficient
of sab channel ladder graph is snabsad.

Two loops

Let us calculate the maximal cut of a two-loop diagram depicted in figure 6.

pd pc

pa pb

=

pâ pb̂

pd pc
l1

l3

l4 l2

pI
pa pb

Figure 6. Maximal cut of two loop box diagram is equivalent to a bridge over smaller on-shell
function.
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Looking at figure 6, the maximal cut of a two-loop graph is one extra BCFW bridge
attached to the shifted maximal cut of a one-loop graph. The bigger on-shell function is
merely one extra rung attached to the smaller one.

Using the mass deforming shift from section 3.3, we can write the following,

Max Cut
(
A2 boxes

4 [a, b, c, d]
)
=

√
sab

sab − 4mamb

∫
dz

z
Max Cut

(
A1 box

4 [â, b̂, c, d]
)

(4.54)

We use the expression for the maximal cut of the one-loop graph from (4.51),

Max Cut
(
A2 boxes

4 [a, b, c, d]
)

=

√
sab

sab − 4mamb

∫
dz

z
Âtree

4 [â, b̂, c, d]

√
sabsâd

sabsâd − 4ml1ml3sab − 4ml2ml4sâd

= Atree
4 [a, b, c, d]

√
sab

sab − 4mamb

∫
dz

z

sad
sâd

√
sabsâd

sabsâd − 4ml1ml3sab − 4ml2ml4sâd

= Atree
4

sab sad√
sab − 4mamb

∫
dz

z

1√
sâd (sabsâd − 4ml1ml3sab − 4ml2ml4sâd)

(4.55)

Note that to obtain the second equality, we use the fact that the shifts preserve supercharge
and momentum, leading to Âtree

4 [â, b̂, c, d] = Atree
4 [a, b, c, d] sad/sâd. Unlike the cases with

simple poles that we have encountered so far, we have a branch cut here in z. Instead of
grappling with this integral, we note that if we are interested in finding the coefficient to
this particular scalar graph, then we don’t need to calculate the explicit integral. Since
the dz/z integrals are essentially due to the momentum d3LIPS(·) integrals, they appear
identically in the leading singularities of the scalar integrals.

To calculate the leading singularity for the scalar master integral, we need to look at
the IB part of the bridge integral only, namely (3.91).

LS
(
I2 boxes
4 [a, b, c, d]

)
=

1√
sab(sab − 4mamb)

∫
dz

z
LS
(
I1 box
4 [â, b̂, c, d]

)
=

1√
sab(sab − 4mamb)

∫
dz

z

1

sabsâd

√
sab sâd

sabsâd − 4ml1ml3sab − 4ml2ml4sâd

=
1

sab
√
sab − 4mamb

∫
dz

z

1√
sâd (sabsâd − 4ml1ml3sab − 4ml2ml4sâd)

(4.56)

Comparing (4.55) and (4.56), we conclude that once we expand the full two-loop am-
plitude in scalar integrals, the coefficient of the diagram 6 is s2absad. This matches well with
the unitarity two-cut analysis from [43].

Higher loops

Repeating the same procedure, and making use of the following recursive structure, we
can calculate the maximal cuts and leading singularities (of the scalar master integrals) for
arbitrary ladder diagrams.

Max Cut
(
A(n)

4 [a, b, c, d]
)
=

√
sab

sab − 4mamb

∫
dz

z
Max Cut

(
A(n−1)

4 [â, b̂, c, d]
)

(4.57)

LS
(
I
(n)
4 [a, b, c, d]

)
=

1√
sab(sab − 4mamb)

∫
dz

z
LS

(
I
(n−1)
4 [â, b̂, c, d]

)
(4.58)
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Let us recall that I
(n)
4 denotes the ladder graph with n boxes (loops). This corresponds to

a ladder with n+ 1 rungs. We already have the (n = 1) results, (4.51) and (4.52), to start
the recursion:

Max Cut
(
A(1)

4 [a, b, c, d]
)
= Atree

4

√
s12s14

s12s14 − 4ml1ml3s12 − 4ml2ml4s14
(4.59)

LS
(
I
(n)
4 [a, b, c, d]

)
=

1

s12s14

√
s12s14

s12s14 − 4ml1ml3s12 − 4ml2ml4s14
(4.60)

From here, we can prove via induction that the coefficient for sab channel ladder diagram
is going to be snabsad, where n is the number of boxes in the ladder.

The above statements can be illustrated neatly for the simplest symmetry-breaking
case, where all the rungs of the ladder are massless. For instance, in (4.55), it corresponds
to setting ml1 = ml3 = mI = 0. In this case, we merely have dz/z×1/sâd, and the massless
shift is such that 1/sâd only has a simple pole. Thus we can carry out the z integral as
(4.8):

∫
dz

z

1

sâd

∣∣∣∣
mI=0

=
1

sad
(4.61)

Thus, using the above integral and the recursive equation (4.58), we can obtain the leading
singularities for ladders with massless rungs as follows:

b

a

c

d
LS(n=0) =

1

sad
(4.62)

b

a

c

d
LS(n=1) =

1√
sab(sab − 4mamb)

∫
dz

z

1

sâd

=
1√

sab(sab − 4mamb)

1

sad
(4.63)

. . .

b

a

c

d
LS(n) =

1

[sab(sab − 4mamb)]
n/2

1

sad
(4.64)

The above result is in agreement with the leading singularity calculation done in [53].

Along with the fact that the shifts keep the supercharges invariant and sâb̂ = sab, we
make use of the following identity for the massless shifts to calculate the maximal cut of a
ladder with massless rungs:

∫
dz

z
Atree

4 [â, b̂, c, d]

∣∣∣∣
mI=0

= Atree
4 [a, b, c, d]

∫
dz

z

sad
sâd

= Atree
4 [a, b, c, d] (4.65)
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b

a

c

d
MaxCut(n=1) =

(
sab

sab − 4mamb

)1/2

Atree
4 [a, b, c, d] (4.66)

b

a

c

d
MaxCut(n=2) =

(
sab

sab − 4mamb

)1 ∫ dz

z
Atree

4 [â, b̂, c, d]

=

(
sab

sab − 4mamb

)1

Atree
4 [a, b, c, d] (4.67)

. . .

b

a

c

d
MaxCut(n) =

(
sab

sab − 4mamb

)n/2

Atree
4 [a, b, c, d]

(4.68)

Comparing the maximal cuts for loop amplitude and the leading singularity of the
scalar integral graph, it is evident that the coefficient is snabsad.

Looking back at the expression for maximal cut for two-box diagram, (4.55), note that
the branch cut in the integral goes away if either ml3 = 0 or ml1 = 0. So, if we also have
a massless bridge, mI = 0, we merely have a pole in z in the form of 1/sâd. Thus, for the
following diagram,

b

a

c

d
ml4

ml2

(4.69)

we obtain the following maximal cut,

MaxCut(n
′=2) =

(
sab√

sab − 4mamb
√
sab − 4ml2ml4

)
Atree

4 =
sab

(sab − 4mamb)
Atree

4 (4.70)

To obtain the last equality, we make use of the observation that ml2 = mb and ml4 = ma.
Thus, extending this idea to bigger on-shell functions, we have,

Max Cut

 . . .

b

a

c

d
 =

(
sab

sab − 4mamb

)n/2

Atree
4 [a, b, c, d] (4.71)

LS

 . . .

b

a

c

d
 =

1

[sab(sab − 4mamb)]
n/2

1

sad
(4.72)

Notice that the maximal cuts and leading singularities of these particular diagrams are
insensitive to the mass of one massive rung.

We can also calculate the ladder on-shell function with two massive rungs, using the
phase space integral (4.45) for an all-massive box diagram. For instance, in (4.55), if
ml3 = 0, but mI ̸= 0, then we need to use (4.45) for the z integral. Thus, we can obtain
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the leading singularities and maximal cut corresponding to the following graphs,

. . .

b

a

c

d
. (4.73)

Omitting the details, we have the following:

Max Cut

 . . .

b

a

c

d

l3 l1

l2

l4


= Atree

4

s
n/2
ab

(sab − 4ml2ml4)
(n−1)/2

√
sad

sabsad − 4ml2ml4sad − 4ml1ml3sab
(4.74)

LS

 . . .

b

a

c

d

l3 l1

l2

l4


=

1

sad s
n/2
ab (sab − 4ml2ml4)

(n−1)/2

√
sad

sabsad − 4ml2ml4sad − 4ml1ml3sab
(4.75)

Note that n is the number of ‘boxes’ in the graph.
The above result is of interest as it applies to a particularly interesting symmetry

breaking scenario on the Coulomb branch. Consider the gauge group breaking U(M+N)→
U(M) × U(N), and an amplitude with U(M) gauge fields as the external particles, such
that N ≫ M . For such amplitudes the IR divergence properties are suppressed and they
are known to have exact extended dual conformal invariance[45]. These are precisely the
graphs from (4.73) once all the external masses are set to zero. Further, these graphs
are also closely related to the amplitudes that correspond to the deformed amplituhedron
discussed recently in [54].

5 Permutations, equivalences of on-shell functions

As we have seen in the earlier sections, on-shell functions have an intimate relationship
with scattering amplitudes. In particular, we have discussed the on-shell diagram repre-
sentation of the tree amplitudes on the Coulomb branch of N = 4 SYM. Beyond their
utility in formulating BCFW and calculating maximal cuts for loop amplitudes, an attrac-
tive feature of the on-shell functions for sYM is that the set of the inequivalent and reduced
on-shell diagrams for a given number of external legs is isomorphic to the permutations of
the external legs. Reduction is the process of making bubbles wherever possible through
equivalence transformations, and afterward deleting them. The equivalences are imposed
by square moves and mergers.

The isomorphism with permutations has far-reaching consequences tied together to the
integrability of the planar maximal sYM, owing to the underlying Yangian symmetry. The
explicit presence of vacuum expectation values and hence masses in the Coulomb branch
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breaks the super-conformal symmetry, and we don’t expect it to have Yangian invariance.
However, dual superconformal invariance is expected to be true on the Coulomb branch,
as one can argue that the amplitudes are dimensional reductions of amplitudes in six-
dimensional (1, 1) SYM which is known to be dual superconformal invariant [55]. Moreover,
as discussed in the previous section, one can have symmetry-breaking scenarios where the
unbroken group is U(M)×U(N) with N ≫M , and then the U(M) gauge boson amplitudes
in this theory have exact dual superconformal symmetry [45]. Very recently, a deformed
amplituhedron structure was also discovered for a related gauge group breaking scenario
[54]. These scenarios provide a way of probing the dual superconformal invariance at the
origin of the moduli space as well, in the small mass limit, by treating the Coulomb branch
as a regulator that does not break dual superconformal invariance [44].

In this section, we review some of the on-shell functions that we computed earlier and
we study their equivalences, generalization of the square move, and present some thoughts
on the general structures of on-shell functions in spontaneously broken gauge theories.
For many of these cases, it is useful to consider the gauge group breaking U(M + N) →
U(M)× U(N), and some simplifications happen upon taking the limit N ≫M .

No mergers, and reduction

At the origin of moduli space, the three-point amplitudes are either MHV (black dot) or
anti-MHV (white dot). If one joins two dots of the same color then one can merge the
vertices, as it doesn’t matter in which ‘channel’ one joins them. One can also transform an
on-shell function without a bubble into another one with a bubble by using this merger.
To see if these properties hold on the Coulomb branch, let us first consider the case of the
simplest symmetry breaking, U(M +N)→ U(M)×U(N). Here, in addition to MHV and
anti-MHV massless three-point amplitudes, one also has a WWG three-point amplitude.
Any three-point amplitude with a massive particle can not be labeled black or white. In
fact, this WWG amplitude reproduces both MHV and anti-MHV amplitudes in the high-
energy limit. As (5.1) depicts, the one corresponding to s-channel imposes s12 = 0, whereas
the one corresponding to t-channel imposes s14 = 0.

4

1

3

2

(s12 = 0)

This will put hspace

4

1

3

2

(s14 = 0)

(5.1)

Note that in the massless case, with two black dots being merged, we have |1] ∝ |2] ∝
|3] ∝ |4], hence p1.p2 = p1.p3 = p1.p4 = 0. This leads to the equivalence of the two
factorization channels. But for the on-shell diagrams above, this is not true and they
calculate distinct factorization channels. Hence we can not merge and re-expand vertices
with massive particles. This reflects the fact that in the massless limit, the WWG three-
point amplitude has both the MHV and anti-MHV contained.

Note that a bubble on a line is merely a bridge attached at two points of a single line.
So, just like for sYM, we shall still be able to do bubble deletion, as bubble deletion is
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essentially equivalent to the omission of the (·)dz/z factor due to the bridge. This helps
us to reduce the on-shell function. However, without a merger, we can’t morph on-shell
functions without bubbles into the ones with bubbles. Thus, we can’t reduce a generic
Coulomb branch on-shell function into a smaller function, unless it has bubbles to begin
with.

Square move

In our BCFW bridge construction, we see in (4.51) that we can calculate the box on-
shell diagram for an arbitrary box on the Coulomb branch. However, unlike the massless
case, there is a non-trivial kinematic factor that accompanies the integration over z. The
box graph carries information regarding the mass in the on-shell function internal lines.
However, note that, when we consider two different on-shell functions with the same external
masses but different internal masses, they are equivalent as one merely needs to replace their
mass values which are parameters that don’t affect the LIPS integral. We can write this as

ml1

ml3

ml4 ml2

4

1

3

2

=


ml1

ml3

ml4 ml2

4

1

3

2
ml1 → ml1 , ml2 → ml2

ml3 → ml3 , ml4 → ml4


(5.2)

We can therefore say that square on-shell functions with the same external mass are
equivalent, even as subgraphs.

Square move in Coulomb branch:

 ml1

ml3

ml4 ml2


are equivalent ∀ (5.3)

But we should be cautious, as there are crucial proportionality factors, which are trivially
1 in the massless case. If we have box on-shell functions with some of the masses set to
zero, the replacement of mass parameters does not follow in a straightforward manner. For
instance, consider the box diagrams in the simplest symmetry-breaking case,

1

4 3

2

= Atree
4

√
s12

s12 − 4m2
(5.4)

1

4 3

2

= Atree
4

√
s14

s14 − 4m2
(5.5)
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We can not merely replace the masses in this case. Though, we have the following equiva-
lence,

1

4 3

2

=

√
s12 (s14 − 4m2)

s14 (s12 − 4m2)

1

4 3

2

. (5.6)

Now, when these box diagrams are present as subgraphs in a bigger on-shell function, the
proportionality factor is to be integrated inside the LIPS integrals for legs p1, . . . , p4. So,
we can not replace mass parameters in the integrated expression for the on-shell function to
obtain another one with a rotated subgraph. However, such a move exists for an integrated
on-shell function with all massive particles.

Note that if we consider N ≫ M , and massless external legs for U(M) gluons, then
one of the above diagrams is sub-dominant and therefore, we do not need to worry about
the square move.

Revisiting the permutations

Let us consider the simplest symmetry-breaking case, with only two colors. There are no
WWW amplitudes in this case, hence a massive line is not branching out into two massive
lines. The presence of any such massive line divides the on-shell diagram into two regions,
and all the diagrams are two-colorable. Note that these statements are based purely on color
structure, and also hold for non-supersymmetric symmetry broken gauge theory amplitudes
and on-shell diagrams. Double-lined graphs with different colors representing different
unbroken gauge groups make this statement clear. Since the masses of W excitations are
determined by the SSB, the color structure dictates the masses and thus the consistent
color structure is equivalent to the central charge conservation.

In the massless N = 4, the space of on-shell functions is isomorphic to the set of
permutations of the external legs. One can associate a unique permutation to an on-shell
function using the so-called left right rules. We refer the readers to [33] for details. For the
Coulomb branch on-shell functions, motivated by the fact that a massive line divides the
on-shell function into two different regions, we can associate a permutation to each colored
region of the on-shell function as follows: along with the usual left right rules, we take a
U-turn once we hit a massive line. Figure 7 illustrates one such case.

Note that the primitive rules mentioned here do not prescribe any permutations for the
massive legs. Also, we reiterate the fact that massless particles in a given colored region are
mapped to other massless particles in the same colored region. The use of a square move
defined earlier preserves the associated permutation. Figure 8 depicts this.

Unlike the massless case, we do not expect to have a bijection between the space of
permutations and the reduced on-shell functions. We can see that this is indeed the case
with the crude permutation rules we have set up. Figure 9 depicts this. The region R in the
figure can have any arbitrary structure, without affecting the associated permutations of
the external particles. Such an island can be an on-shell function in its own right, with an
arbitrary number of legs, and can have other color subregions inside it. Thus the space of
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Figure 7. An on-shell function [WGGGWGG]. Associating a permutation to it: along with left
right rules, we take a U-turn once we hit a massive line.

Figure 8. Illustrating the use of square move on an on-shell function WWGWWG. Note that it
preserves the permutation.

all possible on-shell functions is much larger in the Coulomb branch compared to massless
sYM.

Figure 9. The permutation rules are insensitive to the island region R, which can have arbitrary
structure.

For an arbitrary symmetry breaking: G →
∏n

i=1Hi, i.e., the presence of n colors
corresponding to each Hi, the on-shell function will be n-colorable. We can extend our
rudimentary permutation rules to associate permutation with each color region. We spec-
ulate that the underlying geometric structures present at the origin of the moduli space
may have been split down into different colored components. Figure 10 depicts a generic
on-shell function for G→ H1 ×H2 ×H3.

– 47 –



6 Discussion

The BCFW recursion relation has played a critical role in uncovering underlying structure
of on-shell amplitudes for massless theories. These techniques have been generalised to
study loop amplitudes as well as have been extended to study massive theories. Although
this recursion relation has simplified computation of higher point functions, computation
of arbitrary higher point functions is still quite involved. The BCFW bridge provides an
elegant way of implementing the recursion not only for higher point functions but also for
loop amplitudes.

Like the original BCFW recursion, the bridge was also designed for deriving higher
on-shell functions from the lower ones. It has been generalised to massive theories as well
which in turn provides an unified approach to deriving on-shell functions. In this paper we
studied massless BCFW bridge joining one massless and one massive leg, a massless bridge
joining two massive legs as well as a massive BCFW bridge joining massive legs. The basic
formulation of the bridge involves three particle kinematics and we show that using the
u-spinor description the structure of the bridge can be elucidated. We also note that the
massive bridge joining two massive legs is the most general form of the BCFW bridge and
other bridges can be obtained by taking appropriate limits of the bridge or of the external
legs.

We used these bridges to study loop amplitudes in theN = 4 sYM theory at certain loci
in the Coulomb branch of the U(N) theory. The loci we considered for example break U(N)

to
∏

i U(Ni). We used the bridge to study the box diagrams, with massless and massive
internal legs as well as all massive internal legs, using quadruple cuts. Again the expression
of the all massive internal legs box diagram contains information about massive-massless and
massless box diagrams in appropriate limits. We also computed ladder diagrams with two
massive particles connected by massless internal legs using the maximal cut prescription.

The computation of on-shell diagrams can be streamlined by using certain equivalences
generated by mergers and square moves. These are related to the dual conformal symmetry
of the theory at the origin of the Coulomb moduli space. Prima facie, this symmetry
does not exist away from the origin of the moduli space, however, in the Coulomb branch
massive states are BPS, which are supposed to be massless states in higher dimensions.
If the symmetry breaking pattern is U(N + M) → U(N) × U(M) then it corresponds

Figure 10. A generic symmetry breaking on-shell function WGWGGWG
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to two dimensionful parameters (vevs), which can be interpreted in terms of momenta
p4 and p5 of the six dimensional massless theory. Since six dimensional (1,1) sYM theory
possesses dual conformal invariance, the on-shell diagrams in four dimensional theory in the
Coulomb branch can inherit that invariance [40, 41]. This requires appropiately modifying
the conformal generators using p4 and p5 or equivalently two dimensionful parameters. We
then showed that the massive square move gives the most general equivalence relation and
other square moves can be derived by setting internal leg masses to zero. For more general
symmetry breaking patterns, it will be interesting to see the relation of the four dimensional
theory by embedding it into ten dimensional N = 1 sYM and studying the implications of
the associated dual conformal invariance [56].
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A Conventions

We will note down a few essential conventions here. Throughout the text, we make use of
generalised Mandelstam variables, defined as,

sab = −2pa · pb ± 2mamb, (A.1)

where the sign is minus if the central charges are of the same sign, and plus otherwise.
For spinor-helicity variables, we follow the same conventions as the appendix of [43]. In
particular, when we consider spinor-helicity variables for opposite momenta, we relate them
by the following analytic continuation:

| − P J ] = i|P J ], | − P J⟩ = i|P J⟩, ηa−PJ = iηaPJ . (A.2)

In the text, we make use of the two equal mass, one massless three particle special kinematics
x variable defined in [7]. For a threee particle process with momenta p1, p2, p3 with masses
m1 = m2 = m,m3 = 0, the x variable is defined as,

xm|3] = p2|3⟩ = −p1|3⟩. (A.3)

When we consider three particle kinematics of three legs that satisfy central charge conser-
vation, we make use of special little group frame u-spinors defined in [9]. The key fact is
that in such a case, the matrix [iIjJ ]±⟨iIjJ⟩ has vanishing determinant due to the central
charge conservation. One then defines,

[iIjJ ]± ⟨iIjJ⟩ = uIi u
J
j , (A.4)
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and we have,

u1I |1I ] = −u2I |2I ] = u3I |3I ],
u1I |1I⟩ = u2I |2I⟩ = u3I |3I⟩, (A.5)

where we have taken the second leg to be anti-BPS for illustration. The u-variables provide
massless spinor helicity variables for massive amplitudes when the masses obey central
charge conservation6. For details, see [9, 10].

A.1 Lorentz Invariant Phase Space (LIPS)

We define the d3LIPS(p), for some generic p as follows:

d3LIPS(p) = d4pαβ̇ δ(det p−m2) = dφ1 dφ2 dφ3 dφ4 δ(φ1φ4 − φ2φ3 −m2)

= dφ1 dφ2 dφ3
1

φ1
, (A.6)

where, pαβ̇ ≡

(
φ1 φ2

φ3 φ4

)
. (A.7)

LIPS measure for massless momentum

We can decompose the momentum matrix pαβ̇ into the spinor helicity variables as follows:

pαβ̇ =

(
φ1 φ2

φ3 φ2φ3/φ1

)
=

(
φ1/t

φ3/t

)(
t tφ2/φ1

)
≡

(
|p⟩1

|p⟩2

)(
[p|1 [p|2

)
(A.8)

Note that φ1,2,3 are the three degrees of freedom for onshell momenta, and t is the little
group redundancy. Since we have the spinor helicity variables in terms of the momentum
matrix elements, we can calculate the Jacobian to obtain the following:

d2|p⟩ d2|p] = dφ1 dφ2 dφ3
1

φ1

dt

t
(A.9)

Comparing with (A.6), we get the following:

d2|p⟩ d2|p] = d3LIPS(p) dt/t = d3LIPS(p)Vol GL(1) (A.10)

⇐⇒ d3LIPS(p) =
d2|p⟩ d2|p]
Vol GL(1)

(A.11)

One way to handle the volume of little group in the denominator is to fix the little group
redundancy in the definition of spinor helicity variables. A convenient way to gauge fix is
by introducing δ(ζ −⟨bp⟩) along with d2|p⟩d2|p]. One can check that this is a ‘good’ gauge
fixing condition: it intersects each gauge orbit only once. Note that b is some arbitrary
momentum, such that ⟨bp⟩ ̸= 0. We can equally well insert δ(ζ − [bp]) according to our
convenience. Let us work out the corresponding Jacobian factor:

d3LIPS(p) = d2|p⟩ d2|p] δ(ζ − ⟨bp⟩) (Jacobian) (A.12)

6In non-supersymmetric adjoint QCD, the same relation holds as a consequence of the color structure,
where the above u variables are again useful.
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The unknown Jacobian factor may depend on the p spinor variables. We can obtain this
factor by evaluating the following:

d2|p⟩d2|p] δ(ζ − ⟨bp⟩) = d⟨ap⟩ d⟨bp⟩
⟨ab⟩

d2|p] δ(ζ − ⟨bp⟩) = 1

⟨ab⟩
d⟨ap⟩ d2|p]

∣∣∣∣
⟨bp⟩=ζ

(A.13)

We wish to change the variables of integrals to φ1,2,3:

ζ = ⟨bp⟩ = |b⟩1|p⟩2 − |b⟩2|p⟩1 = |b⟩1φ3/t− |b⟩2φ1/t ⇒ t =
1

ζ

(
|b⟩1φ3 − |b⟩2φ1

)
(A.14)

φ1

φ2

φ3

 −→
⟨ap⟩ = |b⟩1φ3/t− |b⟩2φ1/t

[p|1 = t

[p|2 = tφ2/φ1


t= 1

ζ
(|b⟩1φ3−|b⟩2φ1)

, (A.15)

Differentiating, taking determinant, we obtain the following Jacobian factor:

⇒ d2|p] d⟨ap⟩|⟨bp⟩=ζ = dφ1 dφ2 dφ3
⟨ab⟩
ζφ1

, (A.16)

⇒ d2|p⟩d2|p] δ(ζ − ⟨bp⟩) ζ = dφ1 dφ2 dφ3
1

φ1
= d3LIPS(p) (A.17)

Thus, we shall be using the following form for massless LIPS integral:

d3LIPS(p) = d2|p⟩ d2|p] δ
(
⟨bp⟩
ζ
− 1

)
, (A.18)

or equivalently, d3LIPS(p) = d2|p⟩ d2|p] δ
(
[bp]

ζ
− 1

)
(A.19)

LIPS measure for massive momentum

pαβ̇ =

(
φ1 φ2

φ3 φ4

)
det=m2

= M.M−1.

(
φ1 φ2

φ3 φ4

)
det=m2

(A.20)

Assuming that detM = m, we can identify M as |pI⟩α:

pαβ̇ = (M)Iα
(
M−1.

[
φ1 φ2

φ3 φ4

]
det=m2

)β̇

I

= |pI⟩α[pI |β̇ (A.21)

Since M is by construction invertible, it is an element of SL(2,C). Strictly speaking,
M/
√
m has determinant 1, and belongs to SL(2,C).

Let us define the integral measures of massive spinor helicity variables as follows:

d3p⟩ ≡ d3|pI⟩α = d|p1⟩1 d|p2⟩1 d|p1⟩2 d|p2⟩2 δ
(
det|p⟩ −m

)
≡ d4|pI⟩ δ

(
det|pI⟩ −m

)
(A.22)

d3p] ≡ d3|pI ]α̇ = d|p1]1̇ d|p2]1̇ d|p1]2̇ d|p2]2̇ δ
(
det|pI ]−m

)
≡ d4|pI ] δ

(
det|p]−m

)
(A.23)
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Since we have constructed |pI ] such that it contains entire information about p, we can
change variables of integration from |pI ]α̇ to φ1,2,3. This will relate d3p] to d3LIPS(p). We
can employ Mathematica to obtain this Jacobian factor, and obtain the following:

d3p] = dφ1 dφ2 dφ3 dφ4
1

m
δ(det p−m2) (A.24)

Note that d3p] and d3p⟩ have mass dimensions +1, as is clear from (A.22), (A.23). Thus,
if we gauge fix pI⟩ to some spinor, we have the following:

d3LIPS(p) = m d3p] = m d3p] d3p⟩δ3(|pI⟩ − |bI⟩) (A.25)

One could have equivalently gauge fixed |pI ] to obtain the following:

d3LIPS(p) = m d3p⟩ = m d3p] d3p⟩ δ3(|pI ]− |bI ]) (A.26)

Note that we have defined δ3(|pI⟩ − |bI⟩) such that d3p⟩δ3(|pI⟩ − |bI⟩) = 1.

A.2 Simultaneous massive little group fixing

To evaluate the phase space integrals, we need to deal with the little group freedom in
defining the spinor helicity variables. One way to sort this out is by fixing the redundancy
in spinor helicity variables. For massive particles, the little group is SU(2), and either one
of |pI ] or |pI⟩ can be gauged out completely. For our purpose, we have pa and pb. Let us fix
the little group such that all the angle variables |·⟩ are in terms of |bK⟩, and all the square
variables |·] are in terms of |aK ]. So, let us have,

|a1⟩ = ζ |b1⟩ , |a2⟩ = 1

ζ

ma

mb
|b2⟩ ⇒ ⟨a1a2⟩ = ma , (A.27)

|b1] = ξ|a1] , |b2] = 1

ξ

mb

ma
|a2] ⇒ [b2b1] = mb , (A.28)

⇒ 2pa.pb = ⟨aIbJ⟩[aIbJ ] = −⟨a2b1⟩[a1b2]− ⟨a1b2⟩[a2b1]

= −1

ζ
ma .

1

ξ
mb − ζmb . ξma (A.29)

⇒ 1

ζξ
+ ζξ = −2 pa.pb

mamb
(A.30)

There are no further constraints on the definitions of spinor helicity variables, thus we
choose one particular solution:

|a1⟩ :=
√
α

mb
|b1⟩ , |a2⟩ := ma√

α
|b2⟩ , (A.31)

|b1] :=
√
α

ma
|a1] , |b2] := mb√

α
|a2] , (A.32)

where, α = −pa.pb +
√
(pa.pb)2 −m2

am
2
b (A.33)

Thus, we have:

pa = −
√
α

mb
|b1⟩[a2|+ ma√

α
|b2⟩[a1| , pb = −

mb√
α
|b1⟩[a2|+

√
α

ma
|b2⟩[a1| (A.34)
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We have essentially abandoned the little group covariant massive spinor helicity vari-
ables in favor of the old massive spinor helicity, where a massive vector is written as sum
of two massless vectors: |b1⟩[a2| and |b2⟩[a1|.

Some useful relations are as follows:(
α−mamb

α+mamb

)
=

√
sab − 4mamb

sab√
α

α+mamb
=

1
√
sab√

α

α−mamb
=

1√
sab − 4mamb

(A.35)

Now that we can express any momenta in terms of |bK⟩ and |aK ], the following
identities will come in handy. For pc = cIK |bI⟩[aK | and pd = dIK |bI⟩[aK |, we have
2pc.pd = −mamb cIKdIK = mamb(−c11d22 − c22d11 + c12d21 + c21d12). This leads to the
fact that −m2

d = p2d = mamb(−d11d22 + d12d21).

B Bridge and leading singularity using projective approach

In this section, we will deal with the bridge construction and the leading singularity compu-
tation by using non-covariant massive spinor helicity variables. We write massive momenta
as sum of two massless momenta, and the LIPS integrals are performed by using massless
spinor helicity techniques where one has integration over CP1 variables [57]. The results of
this section provide important consistency checks for the results in section 3.3.

B.1 Massive loop with massive external states

Let the massive external momenta are p1, p2, p3 and p4 satisfying p2i = −m2
i , ∀i. All external

momenta are taken to be outgoing. The loop momentum flows anticlockwise and we choose
to label the momentum of the internal propagator between external legs 1 and 2 as ℓ with
mass m. If we denote the internal masses as m,m′

1,m
′
2,m

′
3 (in anticlockwise fashion) then

p2

p3 p4

p1

m′
2

ℓ,m

m′
1 m′

3

BPS constraint implies

m1 −m′
3 +m = 0,

−m2 −m+m′
1 = 0,

m3 −m′
1 +m′

2 = 0,

−m4 −m′
2 +m′

3 = 0. (B.1)
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In this case we have chosen first and third states to be BPS and second and fourth to be
anti-BPS, such that m1 −m2 +m3 −m4 = 0.

We can expand the massive momenta in the basis of two massless momenta, k1 and k2
as follows:

p1 = k1 + ak2, p2 = k2 + bk1. (B.2)

The above equations imply

a = − m2
1

2 k1 · k2
, b = − m2

2

2 k1 · k2
. (B.3)

Now taking the scalar product of the two massive momenta, we obtain

p1 · p2 = (1 + ab) k1 · k2 ⇒ 2k1 · k2 = p1 · p2 ±
√

(p1 · p2)2 −m2
1m

2
2. (B.4)

The solution with the relative negative sign vanishes when the external states are taken
massless. Demanding that a and b to vanish in the massless limit, we can pick the solution
with the positive sign. We define

2k1 · k2 := γ = p1 · p2 +
√
(p1 · p2)2 −m2

1m
2
2. (B.5)

Note that, the variable above is related to the variable α defined in (A.33) as, γ = −m2
1m

2
2

α .
We note that the null momenta can be expressed in terms of the massive external momenta,

k1 =
γ

γ2 −m2
1m

2
2

(
γp1 +m2

1p2
)
, k2 =

γ

γ2 −m2
1m

2
2

(
γp2 +m2

2p1
)
. (B.6)

We can parameterize the massive loop momentum as sum of two null vectors in the following
way,

ℓ = ℓ̃+ zq, (B.7)

where we define

ℓ̃αα̇ = t
{
|1⟩[2|+ ρ|2⟩[2|+ β|1⟩[1|+ ρβ|2⟩[1|

}
αα̇

, qαα̇ = |2⟩α[1|α̇, (B.8)

where ki,αα̇ = |i⟩α[i|α̇. From the above equation we can check,

2ℓ̃ · q = −tγ. (B.9)

From Eq.(B.7) the measure can be worked out as follows,

d4ℓ = dzd4ℓ̃δ(+)
(
ℓ̃2
)(

2ℓ̃ · q
)
= dz tdt⟨ℓ̃dℓ̃⟩[ℓ̃dℓ̃]

(
2ℓ̃ · q

)
= dz tdtγdρdβ

(
2ℓ̃ · q

)
, (B.10)

where the measures ⟨ℓ̃dℓ⟩ and [ℓ̃dℓ] are SL(2,C) covariant measures on CP1. We have from
the above,

d4ℓδ(+)
(
ℓ2 +m2

)
= dz tdtγdρdβ

(
2ℓ̃ · q

)
δ(+)

(
2zℓ̃ · q +m2

)
= dz tdtγdρdβ δ

(
z − m2

γt

)
.

(B.11)

– 54 –



Leading singularity for box diagram is obtained by putting all the internal propagators
on-shell,

∆LSI4 =

∫
d4ℓ δ(+)

(
ℓ2 +m2

)
δ(+)

(
(ℓ− p2)

2 +m
′2
1

)
δ(+)

(
(ℓ− p2 − p3)

2 +m
′2
2

)
δ(+)

(
(ℓ+ p1)

2 +m
′2
3

)
=

∫
d4ℓ δ(+)

(
ℓ2 +m2

)
δ(+) (2ℓ · p2 + 2mm2)

δ(+) (2ℓ · p3 − 2p2 · p3 + 2mm3 − 2m2m3) δ
(+) (2ℓ · p1 + 2mm1) .(B.12)

To obtain second equality we have used Eq.(B.1).
We can solve for ρ and β using the second and fourth delta functions in Eq.(B.12),

ρ = − 2mm1

t (γ −m1m2)
, β = − 2mm2

t (γ −m1m2)
. (B.13)

A Jacobian factor of t2
(
γ2 −m2

1m
2
2

)
from the two delta functions. Putting all the factors

together, we then obtain

∆LSI4 =
γ2

γ2 −m2
1m

2
2

∫
dt

t
δ

(
At+B +

C

t

)
=

γ2

γ2 −m2
1m

2
2

∫
dt

δ (t− t±)

2At+B
, (B.14)

where we have defined

A = ⟨1|3|2]γ,

B =

{
− 2m

γ −m1m2
(2k2 · p3m1 + 2k1 · p3m2)− 2p2 · p3 + 2mm3 − 2m2m3

}
γ,

C =
(γ +m1m2)

2

(γ −m1m2)
2 ⟨2|3|1]m

2. (B.15)

The above equations can be simplified by observing

(γ ±m1m2)
2 = 2γ (p1 · p2 ±m1m2) . (B.16)

There are two solutions to the delta function constraints in Eq.(B.14), which are t± =
−B±

√
B2−4AC
2A . If we include both the poles, the integration vanishes. However, considering

the limit where external states and internal propagators are massless, we find t+ → 0. This
solution is inconsistent with the massless case analyzed in the previous section. Contribution
from t = t− gives

∆LSI4 = −
γ2

γ2 −m2
1m

2
2

1√
B2 − 4AC

. (B.17)

This is nothing but the result obtained in (4.49). Therefore (4.51) is the result for the
leading singularity. We consider two sub cases below where the analysis differs in some
details.
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B.2 Massive loop with massless external states

In this case we can consider
p1 = k1, p2 = k2. (B.18)

Delta functions furnish the following set of equations

2ℓ · k1 = 0, 2ℓ · k2 = 0. (B.19)

This will give ρ = β = 0. Substituting these values in the remaining delta function will
yield

∆LSI4 =

∫
dt

t
δ

(
At+B +

C

t

)
= − 1√

B2 − 4AC
, (B.20)

where we define

A = 2k1 · k2⟨1|3|2], B = −4k1 · k2 k2 · k3, C = ⟨2|3|1]m2. (B.21)

B.3 Massless loop and massless external states

The massless loop momentum can be parameterized by

ℓαα̇ = tλαλ̃α̇, (B.22)

where we choose
λα = |1⟩α + α|2⟩α, λ̃α̇ = [2|α̇ + β[1|α̇. (B.23)

Measure for the phase space integral becomes

d4ℓδ(+)
(
ℓ2
)
= tdt⟨λ dλ⟩[λ̃ dλ̃] = γtdtdρdβ. (B.24)

After finding ρ = β = 0 from the delta functions, the t integral gives,

∆LSI4 =
1

γ

∫
dt

1

t⟨1|3|2]
δ

(
t− ⟨23⟩
⟨13⟩

)
=

1

s12s14
. (B.25)

Thus it matches the expected leading singularity in the massless case.
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