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SUBSETS OF GROUPS WITH CONTEXT-FREE PREIMAGES

ALEX LEVINE

Abstract. We study subsets E of finitely generated groups where the set of all words over a given
finite generating set that lie in E forms a context-free language. We call these sets recognisably

context-free. They are invariant of the choice of generating set and a theorem of Muller and Schupp
fully classifies when the set {1} can be recognisably context-free. We show that every conjugacy
class of a group G is recognisably context-free if and only if G is virtually free. We also show that
a coset whose Schreier coset graph is quasi-transitive is recognisably context-free if and only if the
Schreier coset graph is quasi-isometric to a tree.

1. Introduction

For each finitely generated group, it is possible to define a wide variety of natural formal languages
arising from different aspects of the group. One of the most widely studied is the word problem
of a group, which is the language of all words over a given finite generating set that represent
the identity. Anisimov first introduced the word problem and showed that the word problem of
a group G is a regular language if and only if G is finite [1]. The class of groups with context-
free word problem was shown to be the class of virtually free groups by Muller and Schupp [24]
along with a result of Dunwoody [8]. Herbst also showed that a group has a one-counter word
problem if and only if it is virtually cyclic, and Holt, Owens and Thomas showed that a group
is virtually abelian of rank k if and only if its word problem is the intersection of k one-counter
languages [14]. Various attempts have also been made to classify groups with word problems that
are poly-context-free languages [4], multiple context-free languages [19, 27] and the languages of
blind k-counter automata [9].

A subset E of a finitely generated group is called recognisably context-free if the language of all
words representing elements of E is context-free. Recognisably context-free sets were introduced
by Herbst [11], although Muller and Schupp had already studied them in the guise of context-free
word problems. Asking if the set {1} is recognisably context-free is equivalent to asking if a word
problem is context-free, and thus the Muller-Schupp Theorem fully classifies in which groups {1} is
recognisably context-free. Whilst a group must be finitely generated in order to define recognisably
context-free subsets, the choice of generating set does not matter.

The complement of the word problem, called the coword problem has also been widely studied, and
asking if the coword problem is context-free is equivalent to asking if the set G\{1} is recognisably
context-free in G. Many examples exist of non-virtually free groups with a context-free (but not
deterministic) coword problem, including virtually abelian groups [16], Higman-Thompson groups
and Houghton groups [21]. There is a conjecture that a finitely generated group has a context-free
coword problem if and only if it embeds into Thompson’s group V [3, 22].
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2 ALEX LEVINE

Herbst’s study of recognisably context-free sets showed that if a group G has the property that a
subset R ⊆ G is rational if and only if R is recognisably context-free, then G is virtually cyclic [11].
Various other lemmas were shown, including that the recognisably context-free sets are not affected
by changing generating set, and are stable under multiplication by rational sets. A corollary to this
is that in virtually free groups, rational sets are recognisably context-free. Herbst also studied the
case when a finite set is recognisably (deterministic) context-free, showing that admitting a finite
recognisably context-free subset, admitting a finite deterministic recognisably context-free subset
and being virtually free are all equivalent [12].

Carvalho studied recognisably context-free subsets, showing that a group is virtually free if and only
if for all finitely generated subgroups H of G and all subsets K ⊆ H, K is recognisably context-free
in G if and only if K is recognisably context-free in H [5].

Ceccherini-Silberstein and Woess studied when subgroups can be recognisably context-free (albeit
using different nomenclature), and showed that a subgroup is recognisably context-free if and only
if the corresponding Schreier coset graph is a context-free graph [6]; a condition dependant on the
structure of the ends of the graph.

We first consider conjugacy classes. Whilst we do not fully classify all cases when a conjugacy
class can be recognisably context-free, we do are able to classify the class of groups where every
conjugacy class is recognisably context-free.

Theorem 4.10. Let G be a finitely generated group. Then every conjugacy class of G is recognis-
ably context-free if and only if G is virtually free.

Our final section considers subgroups and cosets where the corresponding Schreier coset graph is
quasi-transitive. It is not difficult to use the Muller-Schupp Theorem to answer the question for
normal subgroups, however arbitrary subgroups require more work. Using a version of Stallings’
Theorem for quasi-transitive graphs [10], we show the following:

Theorem 5.4. Let G be a finitely generated group, H ≤ G and g ∈ G be such that the Schreier
coset graph of (G,H) is quasi-transitive. Then Hg is recognisably context-free if and only if the
Schreier coset graph of (G,H) is a quasi-tree.

Since completing this paper, the author has been made aware of a result of Rodaro, released a few
months earlier that proves the same result [26], when taken together with the result of Ceccherini-
Silberstein and Woess [6] that classifies when a Schreier coset graph is a context-free graph. Ro-
daro’s method uses the context-free graphs introduced by Muller and Schupp [25], whereas our
method is proved using a recent generalisation of Stallings’ Theorem [10], avoiding context-free
graphs entirely.

We begin with the preliminary knowledge required for later sections in Section 2. Section 3 gives
a collection of basic properties of recognisably free subsets. We then discuss conjugacy classes in
Section 4 and conclude with our results on subgroups and cosets in Section 5.

2. Preliminaries

We introduce concepts that will be used later. Please note that functions will always be written to
the right of their arguments.
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q0 q1a
b

c

Figure 1. Finite state automaton for for {ambcn | m, n ∈ Z≥0}, with start state
q0 and accept state q0.

2.1. Formal languages. A language over an alphabet (a finite set) Σ is a subset of the free monoid
Σ∗; the set of finite sequences of elements of Σ, denoted a1 · · · an, rather than (a1, . . . , an). Words
over Σ are elements of Σ∗. We will use ε to denote the empty word. Since group elements can be
represented as words over a finite monoid generating set, to avoid confusion between group elements
and abstract words, when writing the length of a word w we use |w|; when writing the length of
a group element g we write ‖g‖. To avoid similar confusion between equivalence as words, and as
group elements, we write u =G v if u and v are words representing the same element of a group G
and u ≡ v if u and v are equivalent as words.

2.2. Regular languages. We give a very brief introduction to regular languages. We refer the
reader to [15, Section 2.5] or [17, Chapters 2-4] for more information.

Definition 2.1. Let Σ be an alphabet (a finite set) and let Γ be a (Σ ∪ {ε})-edge-labelled graph.
A word w ∈ Σ∗ traces a path in Γ from a vertex u ∈ V (Γ) to v ∈ V (Γ) if there is a path γ in Γ
from u to v such that concatenating the labels of the edges in γ (in order) yields w.

Definition 2.2. A finite-state automaton is a tuple A = (Σ, Γ, q0, F ), where

(1) Σ is an alphabet;
(2) Γ is a finite edge-labelled directed graph with labels from Σ ∪ {ε};
(3) q0 ∈ V (Γ) is called the start state;
(4) F ⊆ V (Γ) is called the set of accept states.

We call vertices in Γ states. A word w ∈ Σ∗ is accepted by A if there is a path in Γ from q0 to
a state in F , where w is the word obtained by concatenating the labels of the edges in the path.
The language accepted by A is the set of all words accepted by A. A language is called regular if
it accepted by a finite-state automaton.

Example 2.3. We will show that the language L = {ambcn | m, n ∈ Z≥0} is regular over {a, b, c}.
The finite-state automaton defined in Figure 1 accepts a language that is contained in L, as reading
any word in the automaton results in reading any number of as, followed by one b, followed by
any number of cs. Moreover, if w = ambcn ∈ L, then we can use this automaton to accept w by
traversing the labelled by a at q0 m times, then reading one b to transfer to q1, then traversing the
c edge n times, before being accepted. Thus this automaton accepts L, and L is a regular language.

2.3. Context-free languages. We define context-free languages. We give a very brief introduction
to this class, but the reader can find more information in [15, Section 2.6] or [17, Chapters 5-7].

Definition 2.4. A context-free grammar is a tuple G = (Σ, V,P,S), where

(1) Σ is a finite alphabet;
(2) V is a finite alphabet, disjoint from Σ, called the set of non-terminals;
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(3) P is a finite subset of V × (Σ ∪ V )∗, called the set of productions. The production (A, ω)
is usually denoted A → ω.

(4) S ∈ V is called the start symbol.

An application of a production A → ω to a word ν ∈ (Σ ∪ V )∗ that contains A is the action that
replaces an occurrence of A in ω. A word w ∈ Σ∗ is generated by G, if w can be obtained from S,
by a finite sequence of applications of productions. The language generated by G, denoted L(G),
is the set of all words generated by G. A language that is generated by a context-free grammar is
called context-free.

A derivation in G is a finite sequence of applications of productions. We write A ⇒∗ ω, for A ∈ V
and ω ∈ (Σ∪V )∗, if there is a derivation that takes A to ω. A non-terminal A in G is called useless
is there is no derivation in G taking the start symbol S to a word in the terminals via a word (in
any combination of terminals and non-terminals) containing A.

Example 2.5. The language

L = {w ∈ {a, a−1}∗ | w contains the same number of occurrences a as a−1}

is context-free. We give an example of a context-free grammar for L. Let G = ({a, a−1}, {S},P,S)
be a context-free grammar, where P contains the productions:

S → SaSa−1S, S → Sa−1SaS, S → ε.

We claim that G generates L. Firstly, note that every word in L can be obtained from the empty
word ε by a finite sequence of free expansions; that is, by iteratively inserting a subword of the
form aa−1 or a−1a. By using the first two productions, we can therefore start with S and end with
every word in w ∈ L with a number of occurrences of S ‘mixed in’. We can use the third production
to remove all occurrences of S, to end up with w. Conversely, any word that G generates must be
obtainable from ε by a finite sequence of free expansions, from the construction of G, and so G only
generates words in L. Thus G generates L, as required.

The following lemma collects the standard closure properties of context-free languages.

Lemma 2.6 ([15, Propositions 2.6.26, 2.6.32 and 2.6.34]). The class of context-free languages is
closed under finite union, intersection with a regular languages, concatenation, Kleene star closure,
image under free monoid homomorphism and preimage under free monoid homomorphism.

It is useful to be able to assume some context-free grammars we use are in Chomsky normal form.
We give the definition below.

Definition 2.7. A context-free grammar (Σ, V, P, S) is in Chomsky normal form if every pro-
duction is of the form A → BC or A → α, where A, B, C ∈ V and α ∈ Σ.

Lemma 2.8 ([15, Theorem 2.6.14]). Every context-free language is accepted by a context-free gram-
mar in Chomsky normal form with no useless non-terminals..

We will also need the fact the context-free languages are closed under substitutions of context-free
languages.

Definition 2.9. Let L and M be languages over an alphabet Σ and let a ∈ Σ. The substitution of
a in L for M is the language of all words obtained from a word in L by replacing each occurrence
of a with a word in M . That is,

{u0v1u1v2 · · · vnun | u0au1a · · · aun ∈ L, u0, . . . , un ∈ (Σ \ {a})∗, v1, . . . , vn ∈M}.
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Lemma 2.10 ([17, Theorem 7.23]). Let L and M be context-free languages over an alphabet Σ and
let a ∈ Σ. Then the substitution of a in L for M is context-free.

2.4. Pushdown automata. An alternative definition for the class of context-free languages is the
class of languages accepted by a pushdown automaton. We give the definition below. We refer the
reader to [17, Chapter 6] for a more detailed introduction.

We informally describe a pushdown automaton before we give the definition. The idea is much the
same as a finite-state automaton, with the exception that there is some memory - in the form of a
finite word called the stack. When transitioning from one state to another, instead of just looking
at what state one is currently in along with the letter (or word) being read, the top of the stack
is also considered. When transitioning, one can remove (‘pop’) a (possibly empty) word from the
top of the stack; that is remove a suffix. If the correct suffix does not exist in the stack, then the
transition in question cannot be used. After popping a word, a new (again, possibly empty) word
can be added (‘pushed’) to the end of the stack. All transitions take this form, and again the set of
words that trace a path in the set of states, starting with the stack empty (we take empty stacks
to contain precisely one letter, the bottom of stack symbol) and ending in an accept state (with
any stack).

There are multiple (equivalent) definitions of pushdown automata. Some have bottom of stack
symbols, whilst others do not. Most standard definitions only allow one letter (or ε) to be read at a
time. We allow any word to be read at a time, and thus this is what some authors call a generalised
pushdown automaton.

Definition 2.11. A pushdown automaton is a 7-tuple A = (Q,Σ, χ,⊥, δ, q0, F ), where

(1) Q is a finite set, called the set of states;
(2) Σ is a (finite) alphabet;
(3) χ is a finite alphabet, disjoint from Σ, called the stack alphabet ;
(4) ⊥∈ χ is called the bottom of stack symbol ;
(5) δ ⊆ (Q × Σ∗ × χ∗) × (Q × χ∗) is a finite set called the transition relation. We must have

that pairs in δ can only have at most one occurrence of ⊥ in each tuple in the pair, and
if it occurs in one pair, it must occur in the other. This is to ensure that the bottom of
stack symbol always tells us when the stack (the ‘memory’) is empty, and can never be
removed. Transitions can be thought of as (not well-defined) functions, from Q× Σ∗ × χ∗

to Q × χ∗; they are not (necessarily) well-defined as each point in the ‘domain’ can have
multiple ‘images’.

(6) q0 ∈ Q is called the start state;
(7) F ⊆ Q is called the set of accept states.

We say that Q is deterministic if for all stack words ν ∈ χ∗, all states q ∈ Q and all w ∈ Σ∗,
there is a unique transition (or sequence of transitions) from q reading w for this given stack word
ν. The language accepted by A is the language of all words w over Σ∗ such that there is a finite
sequence of transitions taking (q0,⊥) to (qf , ν) whilst reading w, such that qf ∈ F and ν ∈ χ∗

is any stack. We write Q(A) and χ(A) for the set of states and stack alphabet, respectively of a
pushdown automaton A.

Example 2.12. We saw in Example 2.5 that the language

L = {w ∈ {a, a−1}∗ | w contains the same number of occurrences a as a−1}

is context-free. We now define a pushdown automaton that accepts L. This idea of the pushdown
automaton is to use the stack to track the freely reduced form of the word read so far, and then
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q0 q1

(a,⊥)/x ⊥

(a, x)/xx

(a, x−1)/ε

(a−1,⊥)/x−1 ⊥

(a−1, x)/ε

(a−1, x−1)/x−1x−1

(ε,⊥)/ ⊥

Figure 2. Pushdown automaton defined in Example 2.12 that accepts L = {w ∈
{a, a−1}∗ | w contains the same number of occurrences a as a−1}. The start state
is q0 and the accept state is q1. Each transition from a state to a state is written in
the form (b, α)/β, where b is the (terminal) letter read, α is the stack word popped
from the top of the stack and β is the stack word pushed to the top of the stack.

only accept when the stack is empty. We formally define the automaton, but Figure 2 contains a
graphical representation. Our set of states will be {q0, q1}, where q0 is the start state and q1 is the
(unique) accept state. The stack alphabet will be χ = {⊥, x, x−1}, with ⊥ the bottom of stack
symbol. We then have six transitions from q0 to q0 and one transition from q0 to q1:

(1) (q0, a,⊥) → (q0, x ⊥);
(2) (q0, a, x) → (q0, xx);
(3) (q0, a, x

−1) → (q0, ε);
(4) (q0, a

−1,⊥) → (q0, x
−1 ⊥);

(5) (q0, a
−1, x) → (q0, ε);

(6) (q0, a
−1, x−1) → (q0, x

−1x−1);
(7) (q0, ε,⊥) → (q1,⊥);

The first six transitions simply track the freely reduced form of the word read so far (except using
x rather than a) and the last transition confirms that the stack is empty; that is, that the word
indeed equals the identity of the group 〈a |〉 (that is, it lies in L) before moving to the accept state.
If we move to q1 before finishing reading our word, we can never accept, as there are no transitions
out of q1 that allow the rest of the word to be read.

Lemma 2.13 ([15, Theorem 2.6.10]). A language is context-free if and only if it is accepted by a
pushdown automaton.

Definition 2.14. A language is called deterministic context-free if it is accepted by a deterministic
pushdown automaton.

Lemma 2.15 ([15, Propositions 2.6.30 and 2.6.34]). The class of deterministic context-free lan-
guages is closed under complement and preimage under free monoid homomorphism.
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We will need the following lemma when classifying recognisably context-free cosets.

Lemma 2.16. Let L be a context-free language. Then L is accepted by a pushdown automaton A,
such that whenever an accept state in A is reached, the stack is always empty.

Proof. As L is context-free, there is a pushdown automaton A accepting L, with set of accept
states F , stack alphabet χ and bottom of stack symbol ⊥. We modify A to obtain a new pushdown
automaton B as follows. We start by adding two new states q1 and q2 to A, and redefine the set of
accept states to be {q2}. We then add an ε-transition from each q ∈ F to q1 that does not alter the
stack. For each α ∈ χ \ {⊥} we add an ε-transition from q1 to q1 that pops α from the stack. We
then add a ε-transition from q1 to q2 that pops ⊥ from the stack and then pushes ⊥ back onto the
stack. By construction, B can only accept when the stack is empty and B must accept the same
language as A. �

2.5. Recognisable and rational sets. Before we formally define recognisably context-free sets,
we first cover their regular analogues: recognisable sets. We give the definition below.

Definition 2.17. Let G be a group with a finite generating set Σ and let π : Σ∗ → G be the
natural homomorphism. A subset E ⊆ G is called recognisable with respect to Σ if Eπ−1 is a
regular language.

Using the same argument as the proof of Lemma 2.21, we have that changing finite generating sets
in a finitely does not affect whether a given subset is recognisable. Herbst and Thomas completely
characterised recognisable subsets of groups in the following result.

Proposition 2.18 ([13, Proposition 6.3]). A subset E of a finitely generated group G is recognisable
if and only if E is a finite union of cosets of some finite-index subgroup of G.

A dual notion to recognisable sets is the concept of rational sets. Rather than having a regular full
preimage, these are the image of a regular language under the natural map π, or equivalently.

Definition 2.19. Let G be a group with a finite generating set Σ, and let π : Σ∗ → G be the
natural map. A subset E ⊆ G is called rational of E = Lπ for some regular language L ⊆ Σ∗.

As with recognisable sets, a similar argument to that in the proof of Lemma 2.21 shows that the
class of rational sets is invariant under changing finite generating set.

2.6. Recognisably context-free sets. The earliest reference we can find to recognisably context-
free sets is in a paper of Herbst [11]. While they are not given a name, the set of all recognisably
context-free subsets of a group is denoted CF(G). Carvalho uses the term context-free instead of
recognisably context-free [5]; we avoid this to maintain a clear distinction between recognisably
context-free subsets of groups and context-free languages. We instead use the term recognisably
context-free from [7]. We begin with the definition.

Definition 2.20. Let G be a finitely generated group, Σ be a finite monoid generating set, and
π : Σ∗ → G be the natural homomorphism. A subset E ⊆ G is called recognisably (deterministic)
context-free with respect to Σ if the full preimage Eπ−1 is (deterministic) context-free.

The following lemma is well-known (see, for example [11, Lemma 2.1]). We include a short proof
for completeness.
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Lemma 2.21. Let G be a finitely generated group. If E ⊆ G is recognisably (deterministic) context-
free with respect to one finite monoid generating set of G, then E is recognisably (deterministic)
context-free with respect to all finite monoid generating sets of G.

Proof. Let Σ and ∆ be finite monoid generating sets for G, and πΣ : Σ
∗ → G and π∆ : ∆∗ → G

be the natural homomorphisms. Suppose that E is (deterministic) recognisably context-free with
respect to Σ. For all a ∈ ∆ there exists ωa ∈ Σ∗, such that ωa =G a. Define the free monoid
homomorphism:

φ : ∆∗ → Σ∗

a 7→ ωa.

Then Eπ−1
∆ = (Eπ−1

Σ )φ−1, which is context-free as the class of (deterministic) context-free lan-
guages is closed under preimages of free monoid homomorphisms (Lemma 2.6 and Lemma 2.15). �

As Lemma 2.21 shows, whether or not a subset of a group is recognisably context-free is not
affected by the choice of generating set. Thus we can say that a subset of a group is recognisably
context-free, omitting the generating set. As the above proof only relies on the fact that the class
of languages is closed under preimages of free monoid homomorphisms, it holds for recognisable
(regular) sets as well, so we will also omit the generating set when referring to such sets.

2.7. Quasi-isometries, trees and triangulations. Quasi-isometries between metric spaces are
a central notion to geometric group theory. In the later sections we will show certain groups are
virtually free is by showing that their Cayley graphs are quasi-isometric to trees. We give a brief
definition along with a characterisation of graphs that are quasi-isometric to trees. We refer the
reader to [23, Section 11] for an in-depth introduction to quasi-isometries from the viewpoint of
geometric group theory.

Definition 2.22. Let X and Y be metric spaces. A function f : X → Y is a quasi-isometry if
there exist constants λ ≥ 1 and µ ≥ 0, such that:

(1) For all x1, x2 ∈ X, 1
λ
d(x1, x2)− µ ≤ d((x1)f, (x2)f) ≤ λd(x1, x2) + µ;

(2) For all y ∈ Y there exists x ∈ X, such that d((x)f, y) ≤ µ.

If a quasi-isometry from X to Y exists, we say X and Y are quasi-isometric.

Remark 2.23. The property of being quasi-isometric is symmetric, reflexive and transitive.

A particular class of graphs we will be using frequently is the class of graphs that are quasi-isometric
to trees.

Definition 2.24. A graph is called a quasi-tree if it is quasi-isometric to a tree.

As most of the graphs we deal with will be locally finite, we define this concept as well.

Definition 2.25. A graph is called locally finite if the degree of every vertex is finite.

We now define a triangulation. The definition of a triangulation is the one used in [2]. Triangulations
are a key part in the proof of the result of Muller and Schupp. Showing that there exists m ∈ Z>0

such that every circuit in a given graph is m-triangulable is sufficient to show that this graph is a
quasi-tree. This is often easier than explicitly constructing a quasi-isometry.
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v1

v2
v3

→
v1

v2
v3

Figure 3. Triangulations

Definition 2.26. Let Γ be a graph. Let m, n ∈ Z>0. An m-sequence of length n in Γ is a
sequence (v0, . . . , vn) of elements of V (Γ), such that v0 = vn, and dΓ(vi, vi+1) ≤ m for all i. An
m-sequence is called m-reducible, if there exists i ∈ {1, . . . , n− 1}, such that dΓ(vi−1, vi+1) ≤ m.
In such a case, anm-reduction of thism-sequence at i, is the operation that outputs them-sequence
(v0, . . . , vi−1, vi+1, . . . , vn).

An m-triangulation of an m-sequence is a finite sequence of m-reductions that results in an m-
sequence of length at most 4 (with 3 distinct points, as the first and last are equal), called the core
of the triangulation. An m-sequence that admits an m-triangulation is called m-triangulable. Note
that as 1-sequences are m-sequences, we can say that a 1-sequence is m-triangulable.

Remark 2.27. The m-reductions in an m-triangulations can be depicted by drawing a line. This
lets us depict the entire triangulation as a number of lines added to our circuit (see Fig. 3).

Part of the proof of the Muller-Schupp Theorem involves showing that the Cayley graphs in groups
with a context-free word problem are m-triangulable for some m ∈ Z>0. It is well-known that this
property is equivalent to being quasi-isometric to a tree:

Theorem 2.28 ([2, Theorem 4.7]). A graph is m-triangulable for some m ∈ Z>0 if and only if it
is a quasi-tree.

After this, Stalling’s Theorem, together with Dunwoody’s accessibility result [8] can be used to
show that groups whose Cayley graphs are quasi-isometric to trees are virtually free.

2.8. Cayley graphs and Schreier coset graphs. We briefly recall the definitions of Cayley
graphs and Schreier coset graphs.

Definition 2.29. Let G be a group with a finite inverse closed generating set Σ. The (right) Cayley
graph of G with respect to Σ is the directed Σ-edge-labelled graph whose vertices are the elements
of G, and with an edge labelled a from g to ga for all g ∈ G and a ∈ Σ.

Theorem 2.30 ([2, Theorem 4.7]). A finitely generated group is virtually free if and only if it has
a Cayley graph that is a quasi-tree.

Definition 2.31. Let G be a group with a finite inverse closed generating set Σ and let H ≤ G.
The (right) Schreier coset graph of (G,H) with respect to Σ is the directed Σ-edge-labelled graph
whose vertices are the right cosets of H in G, and with an edge labelled a from each coset Hg to
Hga for all a ∈ Σ.
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Remark 2.32. As with Cayley graphs, Schreier coset graphs are dependent on the choice of
generating set, however different Schreier coset graphs for the same pair (G,H), where G is finitely
generated will be quasi-isometric. We will thus refer to the Schreier coset graph of (G,H) when
talking about properties of graphs that are invariant under quasi-isometries.

Definition 2.33. A graph Γ is called (vertex) transitive if for all u, v ∈ V (Γ) there exists φ ∈ Aut(Γ)
with (u)φ = v; that is, Γ has a unique automorphic orbit. We say Γ is quasi-transitive if it has
finitely many automorphic orbits.

2.9. Tree amalgamations. The Muller-Schupp Theorem was proved by first showing that if a
finitely generated group has a context-free word problem, then its Cayley graph is quasi-isometric
to a tree. Then Stallings’ Theorem together with Dunwoody’s (later) accessibility result showed
that a finitely generated group that is quasi-isometric to a tree is virtually free. At this point,
the proof can be completed by showing that virtually free groups have (deterministic) context-free
word problems.

In Section 5, we extend this result to show that a coset of a subgroup of a finitely generated group
whose Schreier coset graph is quasi-transitive, is recognisably context-free if and only if the Schreier
coset graph is a quasi-tree. For this, we a generalisation of Stallings’ Theorem to quasi-transitive
graphs. Thus gives us an alternative characterisation of quasi-trees which can be used to show that
the ‘language’ of a transitive quasi-tree is context-free.

The definitions in the subsection are from Section 5 of [10]. We begin with the definition of a
tree amalgamation. All of the graphs used here are considered to be simple graphs (that is, no
multiple edges, loops or directions). Since we only use tree amalgamations to show graphs are
quasi-isometric, and since forgetting directions of Cayley and Schreier graphs of groups does not
affect the metric, this is sufficient for our purposes. Since we have at most one edge between two
vertices, we can define edges to be subsets of the set of vertices of size 2; the two vertices in each
edge being its endpoints.

Definition 2.34. Let Γ1 and Γ2 be graphs. Let (Si
k)i∈Ii be a collection of subsets of V (Γi), for

i ∈ {1, 2}, where each Ii is an index set, such that all Si
k have the same cardinality and I1∩ I2 = ∅.

For each k ∈ I1 and l ∈ I2 let φkl : S
1
k → S2

l be a bijection, and let φlk = φ−1
kl .

Let T be the (|I1|, |I2|)-semiregular tree; that is the bipartite tree whose vertices are partitioned
into V (T ) = V1 ∪ V2 such that all vertices in Vi have degree |Ii|. Let D(T ) be the set of directed
edges obtained from T by taking each edge {u, v} and taking its two directed versions (u, v) and
(v, u). We also attach a labelling f : D(T ) → I1 ∪ I2 such that for all t ∈ Vi the set of labels of the
incident is precisely the set Ii and each label occurs on precisely one incident edge.

For each t ∈ Vi let Γt be an isomorphic copy of Γi. Let S
t
k denote the copy of Si

k within Γt. Let Λ
be the disjoint union the graphs Γt for all t ∈ V (T ). We now quotient Λ as follows. For each edge
(s, t) ∈ D(T ) with (s, t))f = k and (t, s)f = l, identify all vertices v ∈ Ss

k with the vertex (v)φkl in
St
l . The quotient graph obtained is called the tree amalgamation of Γ1 with Γ2 over the connecting

tree T , and denoted Γ1 ∗ Γ2.

These functions φkl called the bonding maps of the tree amalgamation and the sets Si
k are called

the adhesion sets. If all adhesion sets within a tree amalgamation are finite, the tree amalgamation
is said to have finite adhesion. The identification size of a vertex v ∈ V (Γ1 ∗ Γ2) is number of
vertices in V (Λ) that are identified when quotienting to obtain Γ1 ∗Γ2. The tree amalgamation has
finite identification if all identification sizes are finite.
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We refer the reader to [10, Examples 5.2-5.6] for a variety of examples of tree amalgamations.

As with groups we also require an accessibility result; it is not enough to say graphs can successively
be expressed as tree amalgamations, this process must terminate, and the resultant graphs must
be sufficiently understood. We combine these concepts in the following definition.

Definition 2.35. A graph Γ is said to admit a terminal factorisation of finite graphs if there exists
a finite collection of finite graphs from which Γ can be built by a finite sequence of successive tree
amalgamations with finite adhesion and finite identification.

We state two results which together give a classification of connected quasi-transitive locally finite
quasi-trees. These theorems mention the property of having only thin ends. When combined
together, this property is not present, so we do not define it here.

Theorem 2.36 ([18, Theorem 5.5]). A connected quasi-transitive locally finite graph has only thin
ends if and only if it is a quasi-tree.

Theorem 2.37 ([10, Theorem 7.5]). A connected quasi-transitive locally finite graph has only thin
ends if and only if it admits a terminal factorisation of finite graphs.

Combining Theorem 2.36 with Theorem 2.37 gives the following.

Theorem 2.38. A connected quasi-transitive locally finite graph is a quasi-tree if and only if it
admits a terminal factorisation of finite graphs.

3. Basic properties

This section covers various basic (closure) properties of recognisably context-free sets. We begin
with a result of Herbst.

Proposition 3.1 ([11], Lemma 4.1). Let G be a finitely generated group, let A ⊆ G be recognisably
context-free and let R ⊆ G be rational. Then AR and RA are recognisably context-free.

We rarely use Proposition 3.1 in its full generality. It is mostly used when R is a singleton (which
is always rational as the image of a one-word language). We thus state it in this restricted form to
make it clear which rational subset we are using.

Corollary 3.2. Let G be a finitely generated group, and let A ⊆ G be recognisably context-free.
For all g ∈ G, Ag and gA are recognisably context-free.

An interesting corollary to Proposition 3.1 is that rational subsets of virtually free groups are
recognisably context-free. The converse is not true - recognisably context-free subsets of virtually
free groups are not always rational. Conjugacy classes provide one such counter-example (see for
example Theorem 4.10). In fact, Herbst showed that the class of groups such that a subset is
rational if and only if it is recognisably context-free is precisely the class of virtually cyclic groups
[11, Theorem 3.1].

Theorem 3.3 ([11], Lemma 4.2 and Theorem 3.1). In a finitely generated virtually free group,
every rational subset is recognisably context-free. A finitely generated group G has the property that
the classes of rational and recognisably context-free sets coincide if and only if G is virtually cyclic.
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Using the fact that context-free languages are stable under intersections with regular languages, we
can make the following observation.

Lemma 3.4. The intersection of a recognisably context-free set with a recognisable set is recognis-
ably context-free.

Proof. Let G be a finitely generated group, C ⊆ G be recognisable context-free, and R ⊆ G be
recognisable. Fix a finite monoid generating set Σ for G, and let π : Σ∗ → G be the natural
homomorphism. Then Cπ−1 ∩Rπ−1 = (C ∩R)π−1. As the intersection of a context-free language
with a regular language, this language is context-free (Lemma 2.6). Thus C ∩ R is recognisably
context-free. �

Using Lemma 3.4 along with the fact that cosets of finite-index subgroups are always recognisable,
we can classify recognisably context-free subsets of a group in terms of recognisably context-free
subsets of any of its finite-index subgroups.

Proposition 3.5 ([5, Proposition 3.6]). Let G be a finitely generated group, and H be a finite-index
subgroup. Let T be a (finite) right transversal for H in G. Suppose C is a recognisably context-free
subset of G. Then for each t ∈ T there exists a recognisably context-free Ct of H, such that

C =
⋃

t∈T

Ctt.

It is well-known that the class of context-free languages is stable under preimages of free monoid
homomorphisms. We prove an analogous statement holds for recognisably context-free subsets of
a given group.

Proposition 3.6. Let G and H be a finitely generated groups and φ : G → H be a epimorphism.
If A ⊆ H is a recognisably context-free subset of H, then Aφ−1 is a recognisably context-free subset
of G.

Proof. Fix a finite monoid generating set Σ for G. Then Σφ is a finite monoid generating set for
H. Let πG : Σ∗ → G and πH : (Σφ)∗ → H be the natural homomorphisms. Let φ̄ : Σ∗ → (Σφ)∗ be
the homomorphism that extends a 7→ aφ for all a ∈ Σ. We will show that Aφ−1π−1

G = Aπ−1
H φ̄−1.

To show this, we need to show that wφ̄πH ∈ A if and only if wπGφ ∈ A. But this is true, as the
element of H that wφ̄ represents is wπGφ. �

4. Conjugacy classes

The aim of this section is to classify all finitely generated groups where every conjugacy class is
recognisably context-free, which ends up being the class of virtually free groups. We do not provide
a full classification of when conjugacy classes are recognisably context-free, although we briefly
discuss the case when a group admits a recognisably context-free conjugacy class.

Most of the work in this section is therefore to prove that conjugacy classes in finitely generated
virtually free groups are recognisably context-free. Since virtually free groups always admit finite-
index normal free subgroups, we can define the multiplication in a finitely generated virtually free
group using a finite-index free normal subgroup, a (finite) right transversal, and the action (by au-
tomorphisms) of the transversal on the normal subgroup. We begin with the definition of a φ-cyclic
permutation, where φ is an automorphism of a free group; a generalisation of cyclic permutations.
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Thus before we can show that conjugacy classes in virtually free groups are recognisably context-
free, we must first show that φ-twisted conjugacy classes are recognisably context-free in free groups,
where φ is a virtually inner automorphism. We start by defining virtually inner automorphisms.

Definition 4.1. Let F be a finite rank free group. We say an automorphism φ ∈ Aut(F ) is virtually
inner if there exists k ∈ Z≥0 such that φk is an inner automorphism.

Definition 4.2. Let F be a finite rank free group with basis Σ, and φ ∈ Aut(F ). Define ∼φ on
the set of freely reduced words in (Σ ∪Σ−1)∗ to be the transitive closure of the binary relation

{(uv, v(uφ)) | u, v ∈ Σ∗ freely reduced} ∪ {(v(uφ)), uv) | u, v ∈ Σ∗ freely reduced},

where uv is the freely reduced word obtained by concatenating and freely reducing, and v(uφ) is
the freely reduced word obtained by applying φ, concatenating and freely reducing.

As ∼φ is defined on the set of freely reduced words, we can therefore define ∼φ on F as well. We say
g is a φ-cyclic permutation if g ∼φ h. We say g is a φ-twisted conjugate of h if there exists x ∈ F
such that x−1g(xφ) = h. A φ-twisted conjugacy class is an equivalence class of the equivalence
relation of being φ-twisted conjugate.

Virtually inner automorphisms and twisted conjugacy classes have been used before to study vari-
ants of the conjugacy problem in virtually free groups; for example in [20] to study the generalised
conjugacy problem.

We start by studying the set of φ-cyclic permutations of a given element.

Lemma 4.3. Let F be a finite rank free group and φ ∈ Aut(F ) be virtually inner. Let g ∈ F . Then
there is a finite set X ⊆ F and an element h ∈ F such that the set of φ-cyclic permutations of g is

{h−nphn | n ∈ Z, p ∈ X}.

Proof. Since φ is virtually inner, there exists k ∈ Z>0 such that φk = ψ for some inner automorphism
ψ. Then every φ-cyclic permutation of g = x1 · · · xm, where each xi is a generator of F , has the
form

v(xi+1φ
n)(xi+2φ

n) · · · (xmφ
n)(x1φ

n+1) · · · (xi−1φ
n+1)(uφ),

for some n ∈ Z, where u, v ∈ Σ∗ are such that uv = (xi)φ
n. In addition, as φk = ψ, we can rewrite

this as

v(xi+1φ
(nmod k)ψ⌊

n
k ⌋) · · · (xmφ

(nmod k)ψ⌊
n
k ⌋)(x1φ

(nmod k)+1ψ⌊
n
k ⌋) · · · (xi−1φ

(nmod k)+1ψ⌊
n
k ⌋)(uφ),

where uv = (xi)φ
(nmod k)ψ⌊

n
k ⌋. Since ψ is inner, it is defined by conjugation by some element

h ∈ F . Let r =
⌊

n
k

⌋

. Then the above expression becomes

(1) vh−r(xi+1)φ
(nmod k) · · · (xmφ

(nmod k))(x1φ
(nmod k)+1) · · · (xi−1φ

(nmod k)+1)hr(uφ),

where uv = h−r(xi)φ
(nmod k)hr. We have u = h−ru′hr and v = h−rv′hr, where u′ and v′ are freely

reduced, and h−ru′v′hr = uv = h−r(xi)φ
nmod khr, and so u′v′ = (xi)φ

nmod k. Since ψ is a power of
φ, they commute, and so uφ = (h−ru′hr)φ = h−r(u′φ)hr. We can therefore rewrite (1) as

h−rv′(xi+1)φ
(nmod k) · · · (xmφ

(nmod k))(x1φ
(nmod k)+1) · · · (xi−1φ

(nmod k)+1)(u′φ)hr,

Thus every φ-cyclic permutation of g is an hr-conjugate of an expression of the form

v′(xi+1)φ
(nmod k) · · · (xmφ

(nmod k))(x1φ
(nmod k)+1) · · · (xi−1φ

(nmod k)+1)(u′φ).

Since there are finitely many possibilities for i, u′, v′ and nmod k, these expressions define finitely
many elements of F . Moreover, all such expressions represent φ-cyclic permutations of g, and so
the set of φ-cyclic permutations of g is in the stated form. �
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Before we can show that the set of φ-cyclic permutations of a given element forms a recognisably
context-free set, we need the following lemma.

Lemma 4.4 ([11, Lemma 4.6]). Let F be a free group with free basis Σ and natural homomorphism
π : (Σ ∪ Σ−1)∗ → F . Let E ⊆ F be such that there is a context-free language L ⊆ Eπ−1 that
contains the freely reduced forms of every element of E. Then E is recognisably context-free.

We use Lemma 4.3 and Lemma 4.4 to show the following.

Lemma 4.5. Let F be a finite rank free group and φ ∈ Aut(F ) be virtually inner. Let Σ be a free
basis for F and let w ∈ (Σ∪Σ−1)∗ be freely reduced. Let E ⊆ F denote the set of all elements that
can be written as φ-cyclic permutations of w. Then E is recognisably context-free.

Proof. Lemma 4.3 tells us that there is a finite set X ⊆ F and an element h ∈ F such that
E = {h−nphn | n ∈ Z, p ∈ X}. Since finite unions of context-free languages are context-free
(Lemma 2.6), it suffices to show that if p ∈ F , then Ep = {h−nphn | n ∈ Z} is recognisably context-
free. Using Lemma 4.4, it suffices to show that there exists a context-free language L ⊆ Epπ

−1

that contains all freely reduced words in Epπ
−1. We construct a context-free grammar for L.

Let u denote the freely reduced form h. Note that there is a finite set Y of words such that the
freely reduced words in Epπ

−1 are the freely reduced words in the set

{u−nvun | n ∈ Z, v ∈ Y }.

Thus if we take L = {u−nvun | n ∈ Z, u ∈ Y }, then L ⊆ Epπ
−1 and L contains all freely reduced

words in Epπ
−1, and so it suffices to show that L is context-free. Again, since finite unions of

context-free languages are context-free (Lemma 2.6), it suffices to show that for any freely reduced
v ∈ Y , Lv = {u−nvun | n ∈ Z} is context-free.

Fix v ∈ Y . We define a context-free grammar for Lv. Our set of non-terminals will be {S,T,U},
with S the start symbol. The set of productions P is defined by

P = {S → T,S → U,T → u−1Tu,T → v,U → uUu−1,U → v}.

Any derivation using these productions and starting at S, either goes straight to T or to U. When
in T, we can add u−1 at the beginning and u at the end, or replace the T with v. Thus the set
of words derived with first production S → T is {u−nvun | n ∈ Z≥0}. By symmetry, those derived
through U are {u−nvun | n ∈ Z≤0}, and so the grammar (Σ ∪ Σ−1, {S,T,U},P,S) generates Lv,
as required. �

We now use the fact that the set of φ-cyclic permutations of a given element is recognisably context-
free to prove that the φ-twisted conjugacy classes in free groups are recognisably context-free in
finite extensions corresponding to the automorphism φ.

The conjugacy problem in free groups can be solved using two facts: every conjugacy class has
only finitely many cyclically reduced words, and every freely reduced word representing an element
of a conjugacy class can be expressed in the form uxu−1, with u a freely reduced word and x a
cyclically reduced word. The first fact we replace with Lemma 4.7, and the following result is an
analogue of the latter for φ-twisted conjugates.

Proposition 4.6. Let F be a finite rank free group with basis Σ, and let φ ∈ Aut(F ). Let C be a
φ-twisted conjugacy class of F . Let X be the set of freely reduced words representing the minimal
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length elements in C and their φ-cyclic permutations. Let Cred be the set of freely reduced words
over Σ ∪ Σ−1 representing elements of C. Then

(2) Cred ⊆ {v1uv2 | u ∈ X, v1, v2 are freely reduced representatives for g−1, gφ, for some g ∈ F}.

Proof. Note that in the expression (2), we mean equality as words; there is no free reduction
involved. Let w ∈ Cred. Then w is φ-twisted conjugate to some element h ∈ F such that the freely
reduced representative for h lies in X. Thus w can be obtained from v1uv2 by freely reducing,
where u ∈ X is of minimal length, and v1 and v2 are the freely reduced representatives for g−1 and
gφ, respectively for some g ∈ F . If there is no free reduction between v1 and u, and u and v2, we
will have shown (2). So we will modify the expression to show that such a form will always exist.

We have u ≡ xu′y, v1 ≡ v′1x
−1, v2 ≡ y−1v′2 and w ≡ v′1uv

′
2, for some freely reduced x, y, u′, v′1, v

′
2 ∈

(Σ ∪Σ−1)∗. If the word w ≡ v′1uv
′
2 is of the form z−1p(zφ), for freely reduced words p, z, zφ, and

z 6= ε then it suffices to show that p lies in the form stated in (2). Since |p| < |w| and p ∈ Cred, we
can use induction to conclude that p is of the form stated in (2).

Thus we can assume that w is not of the form z−1p(zφ). We have that (after freely reducing v−1
1 φ),

that v−1
1 φ ≡ v2, and so (v′1)

−1φ (after being freely reduced) and v′2 are both suffixes of v2. However,
since we are assuming that w is not of the form z−1p(zφ), for freely reduced words p, z, zφ, we
have that v′2 and (the freely reduced form of) (v′1)

−1φ must not have a common suffix. Since they
are both suffixes of the same word, we conclude that one must be empty. If (v′1)

−1φ is empty, then
v′1 is empty, since φ is an automorphism of F . We can therefore split into the cases when v′1 or v′2
are empty.

Case 1: v′1 = ε.

Then w ≡ u′v′2, and v1uv2 ≡ x−1xu′yy−1v′2. Since xφ ≡ v−1
1 φ =F v2 ≡ y−1v′2, we can φ-cyclically

permute u ≡ xu′y to u′yy−1v′2 =F u′v′2 ≡ w. Thus wπ is a φ-cyclic permutation of uπ, and u ∈ Cred,
as required.

Case 2: v′2 = ε.

Then w ≡ v′1u
′ and v1uv2 ≡ v′1x

−1xu′yy−1. Since v−1
1 φ =F v2 ≡ y−1, we have that yφ−1 =F v1 ≡

v′1x
−1. Thus u ≡ xu′y is a φ-cyclic permutation (using the relation ‘backwards’) of (yφ−1)xu′ =F

v′1x
−1xu′ =F v′1u

′ ≡ w. Thus wπ is a φ-cyclic permutation of uπ, and u ∈ Cred, as required. �

Lemma 4.7. Let G be a finitely generated virtually free group. Let F be a finite-index normal
free subgroup of G, and T be a right transversal for F in G. Let Σ be a basis for F and let
# /∈ Σ ∪ Σ−1 ∪ T be a new letter. Let φ ∈ Aut(F ). Then the language

{u#v | u, v ∈ (Σ ∪Σ−1 ∪ T )∗, u−1φ = v}

is context-free.

Proof. We construct a pushdown automaton accepting the language Lφ stated in the lemma. We
start by constructing a pushdown automaton A that accepts gπ−1 for some g ∈ G. We first describe
the automaton A. Our description is based on the proof of the Muller-Schupp Theorem in [15],
and generalises Example 2.12. The idea is given a word, we track the normal form ht of the prefix
‘read so far’, by storing the freely reduced form on the stack, and having a state qt for each t ∈ T .
Let t0 be the unique element of T ∩F . Thus our stack alphabet will be {⊥}∪Σ∪Σ−1, where ⊥ is
the bottom of stack symbol. We add an additional state p to be our unique accept state, and have
a transition from qth with stack w to p, where tg ∈ T is the unique coset representative such that
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g = hgtg for some (unique) hg ∈ F , and w is the freely reduced form of hg. Our start state will
simply be qt0 .

It remains to add transitions between the states qt for each t ∈ T . We will be using Σ∪Σ−1 ∪ {χ}
as our stack alphabet, with χ the bottom of stack symbol. For each a ∈ Σ ∪ Σ−1 ∪ T and each
t ∈ T , we have that ta = ht′ for some h ∈ F and t′ ∈ T . Thus when in state qt and reading a,
we want to transition to state qt′ , then add the freely reduced form µh of h to the stack, and then
freely reduce. Since we cannot simply freely reduce the stack, we have multiple transitions from qt
to qt′ when reading a; one transition for each pair (ω, x), where ω is a suffix of the freely reduced
form of h−1 (that is, ω−1 is a prefix of µh) and x ∈ Σ ∪ Σ−1 is such that xω is not a suffix of µ−1

h .
This transition then pops xω from the stack, and pushes x followed by the ‘remainder’ of µh; that
is the (unique) freely reduced word ν, such that µh ≡ ω−1ν. To deal with the case when the stack
is empty (that is, it contains only the symbol ⊥, we add the transition from qt to qt′ when reading
a that pops ⊥ and pushes ⊥ µh.

We now construct a pushdown automaton accepting Lφ. We start by taking two (disjoint) copies
of the automaton A: A1 and A2. The automaton A1 will be for gπ−1 for some fixed g ∈ G with
its accept state considered not an accept state (and so the choice of g does not matter), and A2

will be for 1π−1. We modify the transitions of A1, so that whenever we read a ∈ Σ ∪ Σ−1 ∪ T , we
instead use the transition for a−1. That is, if we were in state t with stack µh, we would end up in
the state and stack corresponding to µhta

−1. Similarly, we modify A2 so that whenever we read a
we act as if we read aφ. Again, this means that in state t with stack µh, we move to the state-stack
pair corresponding to µht(aφ). Our start state will be the start state of A1, and our accept state
will be the accept state of A2.

We add an additional transition between every state in A1 to the corresponding state in A2 that
does not alter the stack (that is, it pushes and pops ε from the stack) when reading #. �

We can now show that φ-twisted conjugacy classes of free groups are recognisably context-free in
finite-index overgroups.

Proposition 4.8. Let F be a finite rank free group and φ ∈ Aut(F ) be virtually inner. Let G be
such that F is a finite-index normal subgroup of G. Then every φ-twisted conjugacy class of F is
recognisably context-free in G.

Proof. Let Σ be a free basis for F and π : (Σ ∪ Σ−1)∗ → F be the natural map. Let Cφ be a
φ-twisted conjugacy class. Using Lemma 4.4, in order to show that Cφ is recognisably context-free,
it suffices to construct a context-free language L ⊆ Cφπ

−1 that contains every freely reduced word
in Cφπ

−1. Proposition 4.6, shows us that all such words are of the form v1uv2, where v1 and v2 are
freely reduced representative for g−1 and gφ, for some g ∈ F , and u is a φ-cyclic permutation of a
minimal length word in Cφ.

It therefore suffices to show that the language of all words of the form v1uv2 where v1 and v2 are
(not necessarily freely reduced) representatives for g−1 and gφ, for some g ∈ F , and u is a φ-cyclic
permutation of a minimal length word in Cφ, is a context-free language. Lemma 4.7 tells us that

{u#v | u, v ∈ (Σ ∪Σ−1 ∪ T )∗, u−1φ = v}

is context-free. In addition, if E ⊆ F denotes the set of elements that can be expressed as φ-
cyclic permutations of a minimal length word in Cφ, then Lemma 4.5, together with the fact that
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finite unions of context-free languages are context-free (Lemma 2.6) shows that Eπ−1 is context-
free. Since context-free languages are closed under substitutions by other context-free languages
(Lemma 2.10), the language

L = {uxv | u, v ∈ (Σ ∪Σ−1 ∪ T )∗, u−1φ = v, x ∈ Eπ−1}

is context-free. As L ⊆ Cgπ
−1, and by construction contains every freely reduced word in Cgπ

−1,
Lemma 4.4 tells us that Cg is recognisably context-free. �

We can now show that conjugacy classes in finitely generated virtually free groups are recognisably
context-free.

Proposition 4.9. Let G be a finitely generated virtually free group. Then every conjugacy class of
G is recognisably context-free.

Proof. Let F be a finite-index normal free subgroup of G. Fix a finite right transversal T for F in
G. We have that every element of G can be written in the form ht where h ∈ F and t ∈ T . Since F
is finitely generated free, we can write every element of F uniquely as a freely reduced word with
respect to a (finite) basis Σ. We will use Σ ∪ Σ−1 ∪ T as our (monoid) generating set. Since F is
normal and finite-index, elements of G (in particular elements of T ) act on F by automorphisms
of finite order. For each t ∈ T we write φt to denote the automorphism of F defined by h 7→ tht−1.
Note that for each t ∈ T there exists k ∈ Z>0 such that tk ∈ F , and so φkt : x 7→ t−kxtk, and we
have shown that φkt is an inner automorphism of F . Thus all automorphisms φt are virtually inner.

Fix a conjugacy class C of G, and a representative h0t0 ∈ C. Let ht ∈ G. We have that ht ∈ C
if and only if there exists x ∈ G such that xh0t0x

−1 = ht. We can write any such x = ys, where
y ∈ F and s ∈ T . So

(3) ht = ysht0s
−1y−1 = y(h0φs)(y

−1φ−1
s φt0φs)st0s

−1.

Thus ht ∈ C if and only if there exists y ∈ F and s ∈ T such that (3) is satisfied. Moreover, if
we fix s ∈ T , then (3) becomes a twisted conjugacy class of F , using the (fixed) automorphism φs,
multiplied by a fixed element of F and then a fixed element of T ; that is, the normal form for the
fixed element st0s

−1. Since finite unions of context-free languages are context-free (Lemma 2.6),
it is sufficient to show that the set of elements that lie in a set of the form Cφhs is recognisably
context-free, where Cφ is a φ-twisted conjugacy class of F , h ∈ F and s ∈ T . This follows from
Corollary 3.2 together with the fact that Cφ is recognisably context-free (Proposition 4.8). �

Combining Proposition 4.9 with the fact that {1} is a conjugacy class that is recognisably context-
free in a group G if and only if G is virtually free (by the Muller-Schupp Theorem), we have the
following:

Theorem 4.10. Let G be a finitely generated group. Then every conjugacy class of G is recognisably
context-free if and only if G is virtually free.

The following example, due to Corentin Bodart, shows that there exist non-virtually free groups
that admit recognisably deterministic context-free conjugacy classes (they are in fact recognisable).

Example 4.11. Let H be a finitely generated abelian group and let

G = 〈H ∪ {t} | {tht = h−1 | h ∈ H} ∪ {t2 = 1}〉.

We look at the conjugacy class of t in G. Since th = h−1t for all h ∈ H, we have for all h ∈ H
that h−1th = h−2t. In particular, the conjugacy class of t contains the coset H2t. Conversely,
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ifh2t ∈ H2t, then h2t = hth−1, and so h2t is conjugate to t. We can thus conclude that the
conjugacy class of t is equal to the coset H2t.

In addition, H is index 2 in G and H2 is finite index in H, and so H2 is finite-index in G. By
Proposition 2.18, H2t is recognisable in G, and so the conjugacy class of t is recognisable in G.

5. Subgroups and cosets

We conclude by giving a classification of when subgroups and cosets with quasi-transitive Schreier
coset graphs of finitely generated groups are recognisably context-free. Ceccherini-Silberstein and
Woess provided a full classification by showing that a subgroup (and hence coset, using Corol-
lary 3.2) is recognisably context-free if and only if the Schreier coset graph is what is called a
context-free graph [6], a term introduced by Muller and Schupp [25] which depends on the ends of
a graph. Woess continued the study of these graphs in [28].

As mentioned earlier, since the release of this work, the author has been made aware of a result of
Rodaro, released a few months earlier that proves the main result of this section [26], when taken
together with the result of Ceccherini-Silberstein and Woess [6] that classifies when a Schreier coset
graph is a context-free graph. Rodaro’s method uses the context-free graphs introduced by Muller
and Schupp [25]. We prove this using a recent generalisation of Stallings’ Theorem [10], avoiding
the notion of a context-free graph.

We consider the case when a Schreier coset graph is quasi-transitive; that is, it has finitely many
automorphic orbits, and show that a coset with quasi-transitive coset graph is recognisably context-
free if and only if the corresponding Schreier coset graph is a quasi-tree. If the subgroup in question
were normal, we could use the Muller-Schupp Theorem to show that the Cayley graph of the
quotient group must be a quasi-tree. Since this is always isomorphic to the Schreier coset graph,
this proves the result. Stated in terms of properties of the quotient rather than Schreier coset graphs
this is a coset Hg within a group G is recognisably context-free if and only if G/H is virtually free.

Extending this to the non-normal case requires more work. In light of Corollary 3.2, it is sufficient
to answer the question for subgroups. The fact that a subgroup H being recognisably context-
free implies that the Schreier coset graph of H is a quasi-tree is not too difficult to show using
the same argument as the Muller-Schupp Theorem. The converse of this is much more difficult.
The main stumbling block arises from the fact that the Muller-Schupp proof shows that groups
with context-free word problem have Cayley graphs quasi-isometric to trees, then uses Stallings’
Theorem and Dunwoody’s accessibility result to show that these groups must be virtually free,
and then shows that virtually free groups have context-free word problem. The difficulty we have
here is replacing Stallings’ Theorem and Dunwoody’s accessibility result, as we are working with
Schreier coset graphs rather than groups.

A recent result of Hamann, Lehner, Miraftab and Rühmann does prove a version of Stallings’
Theorem for connected quasi-transitive graphs [10]. In addition, they show that such quasi-trees
will be ‘accessible’ in their sense. We state these results in Subsection 2.9.

We begin with the more straightforward direction.

Proposition 5.1. Let G be a finitely generated group and H ≤ G be such that the Schreier coset
graph of H is quasi-transitive. If H is recognisably context-free then the Schreier coset graph of H
in G is a quasi-tree.
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Proof. Fix a finite monoid generating set Σ for G and let π : Σ∗ → G be the natural homomorphism.
As Hπ−1 is context-free, Lemma 2.8 tells us there is a context-free grammar G = (V, Σ, P, S)
that is in Chomsky normal form and has no useless non-terminals, such that the language of G is
Hπ−1. Let A ∈ V , and suppose w1, w2 ∈ Σ∗ are such that A ⇒∗ w1 and A ⇒∗ w2. Then there
exist σ, τ ∈ Σ∗ such that (σw1τ)π, (σw2τ)π ∈ H. So (σw1w

−1
2 σ−1)π = (σw1ττ

−1w−1
2 σ−1)π ∈ H.

We have thus shown that (w1w
−1
2 )π is conjugate to an element of H. Moreover, a conjugating

element is σπ.

For each A ∈ V choose a word wA ∈ Σ∗ such that A ⇒∗ wA (such a derivation always exists as
A is not useless). Let M = max{|wA| | A ∈ V }. Suppose u ∈ Hπ−1. Then w labels a circuit
in the Schreier coset graph Γ of H, with basepoint H. Suppose in a derivation of u in G we have
S ⇒∗ σAτ ⇒∗ σvτ ≡ w. Note that (v−1wA)π ∈ Hσπ. In particular, (v−1wA)π lies in the stabiliser
of H(σπ). So replacing σvv−1wAτ also traces a circuit in Γ with basepoint H, and so σwAτ does
as well. Since |wA| ≤ M , this will be an M -reduction. We can therefore apply the Muller-Schupp
method to M -triangulate every circuit in Γ with basepoint H by replacing subwords derived from
each non-terminal A with wA.

To achieve this, we go through the derivation of a word u in Hπ−1, (ignoring productions of the
form A → a), and for each production of the form A → BC, we have an M -reduction from the
start of the subword of u derived from BC to the end (using the label wA).

To show that every circuit in Γ is triangulable, not just those with a basepoint in H, it is sufficient
to show that for all automorphic orbits of the Schreier coset graph there is a basepoint Ht such
that every circuit with a basepoint Ht is triangulable. Fix a set T of representatives for these
automorphic orbits. Since Γ is quasi-transitive, we can choose T to be finite.

Let Ht ∈ T and let u ∈ Σ∗ trace a path in Γ from Ht to Ht. Fix a word wt ∈ Σ∗ representing t.
Then wtuw

−1
t labels a path in Γ from H to itself, and so this circuit is M -triangulable. Thus the

circuit traced by u with basepoint Ht is (M + |wt|)-triangulable. Let K = maxHt∈T |wt|. We can
conclude that the Schreier graph of H in G is (M +K)-triangulable, and so by Theorem 2.28, it is
a quasi-tree. �

We now prove that if a Schreier coset graph of a subgroup of a finitely generated group is a quasi-
tree, then then the subgroup is recognisably context-free. We first need some definitions, based on
definitions in [25].

Definition 5.2. A finitely generated graph is a Σ-labelled graph, where Σ is an alphabet, such that

(1) Γ is connected;
(2) Γ has uniformly bounded degree (that is, there exists d > 0 such that the degree of every

vertex is at most d);
(3) Σ is finite.

Let Γ be a finitely generated graph, with edges labelled using an alphabet Σ. Fix a vertex v0 and
a finite set F of vertices of Γ. The language of Γ with respect to the origin v0 and accepting states
F is the set of all words that trace a path in Γ from v0 to a vertex in F .

We now show that taking a ‘nice’ tree amalgamation of finitely generated graphs that both have
context-free languages yields a graph with a context-free language.
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Lemma 5.3. Let Γ1 and Γ2 be finitely generated quasi-transitive graphs with edges labelled from an
alphabet Σ, whose languages are context-free with respect to any origin and any finite set of accepting
states. Then every tree amalgamation of Γ1 and Γ2 with finite adhesion and finite identification
also has a context-free language with respect to any origin and any finite set of accepting states.

Proof. Let (Si
k)k∈Ii be the adhesion sets of the tree amalgamation in Γi, for each i ∈ {1, 2}, and

assume I1 and I2 are disjoint. Let T be the connecting tree. Note that as finite unions of context-
free languages are context-free (Lemma 2.6), it suffices to show that the language of Γ1 ∗ Γ2 is
context-free with respect to any origin and any singleton set of accepting states.

Fix an origin vertex u0 in Γ1 ∗Γ2. This lies in a copy of Γ1 or Γ2; without loss of generality assume
it lies in a copy of Γ1, corresponding to a pair of vertices (v0, t0) ∈ V (Γ1) × V (T ). Since Γ1 has
a context-free language with respect to any origin and any finite set of accepting states, for each
u ∈

⋃

k∈I1
S1
k, there is a pushdown automaton that accepts the language of Γ1 with respect to the

origin v0 and the accepting state u.

We can then take the finite union of these pushdown automata across all u ∈
⋃

k∈I1
S1
k , to obtain

a pushdown automaton A0 that accepts the language of all words that trace a path in Γ1 from v0
to a vertex in

⋃

k∈I1
S1
k . Moreover, as we constructed this as a (disjoint) finite union of pushdown

automata, we can assume that the set of accept states is partitioned into the vertices lying in
⋃

k∈I1
S1
k.

Now let i ∈ {1, 2}. Since the language of Γi is context-free with respect to any origin and any set of
accepting states, for each u, v ∈

⋃

k∈Ii
Si
k, we can construct a pushdown automaton Bi,u,v accepting

the language of all words that trace a path in Γi from u to v.

Fix an accepting state q ∈ V (Γ1 ∗Γ2). Recall that the directed edge ‘version’ D(T ) of T admits an
edge-labelling using I1⊔ I2. Since D(T ) is the directed ‘version’ of a tree, there is a unique minimal
path in D(T ) from t0 to each vertex t ∈ V (T ). This path traces a word wt ∈ (I1 ⊔ I2)

∗, and thus
we can uniquely describe each vertex in T using a word over I1 ⊔ I2. Let tq ∈ V (T ) and vq ∈ Γi be
a (not necessarily unique) pair, such that q is the image of vq under the canonical map from the
copy of Γ1 or Γ2 corresponding to tq to Γ1 ∗ Γ2. Fix jq ∈ {1, 2} such that Γjq is the corresponding
graph.

Similar to the pushdown automata Bi,u,v for each vertex u ∈
⋃

k∈Ijq
Si
k, we construct a pushdown

automaton Cu to be the pushdown automata that accept the language of all words that trace a
path in Γjq from u to vq.

We can assume that all of the pushdown automata we have defined have pairwise disjoint sets of
states and stack alphabets. We also assume the stack alphabets are all pairwise disjoint from I1 and
I2. By Lemma 2.16, we can assume that whenever a word is accepted by any of these pushdown
automata, the stack is empty; that is, the only symbol on the stack is the bottom of stack symbol.

We now use the pushdown automata Bi,u,v, Cx and A0 to construct a (non-deterministic) pushdown
automaton D accepting the language of Γ1 ∗ Γ2 as follows:

(1) Our set of states will be

Q(A0) ⊔
⊔

i∈{1,2}

⊔

u,v∈
⋃

k∈Ii
Si
k

Q(Bi,u,v) ⊔
⊔

u∈
⋃

k∈Ijq
S
jq

k

Q(Cu) ⊔ {p}



SUBSETS OF GROUPS WITH CONTEXT-FREE PREIMAGES 21

where p is a new state.
(2) Our alphabet will be Σ.
(3) Our start state will be the start state q0 of A0.
(4) Our accept state will be p.
(5) Our stack alphabet will be

χ(A0) ⊔
⊔

i∈{1,2}

⊔

u,v∈
⋃

k∈Ii
Si
k

χ(Bi,u,v) ⊔
⊔

u∈
⋃

k∈Ijq
S
jq

k

χ(Cu) ⊔ I1 ⊔ I2.

(6) Our bottom of stack symbol will be the bottom of stack symbol ⊥0 of A0.
(7) Our transitions will be all of those of the following forms:

(a) All transitions entirely within A0 or some Bi,u,v or Cu;
(b) For each i ∈ {1, 2}, each u, v ∈

⋃

k∈Ii
Si
k, and each bonding map φ such that v ∈ domφ,

there is an ε-transition from each accept state of Bi,u,v to the start state of Bj,vφ,x, where

j ∈ {1, 2}\{i} and for every x ∈
⋃

k∈Ij
Sj
k. Since all of the automata A0 and Bi,u,v have

empty stacks when arriving in an accept state, when making this transition, the stack
will have the form ⊥0 w ⊥i,u,v, where w ∈ (I1 ⊔ I2)

∗ and ⊥i,u,v is the start symbol
of Bi,u,v. We pop ⊥i,u,v from the stack, along with the topmost symbol k in w. If
domφ 6= Si

k, we push k back onto the stack, followed by the (unique) l ∈ Ii such that

imφ = Sj
l , and then the bottom of stack symbol for Bj,vφ,x. If domφ = Si

k, then we
don’t push k back onto the stack; we only push the bottom of stack symbol for Bj,vφ,x.

(c) There are transitions analogous to those in (b), except starting in A0 and ending in
some Bi,u,v. To avoid any ambiguity, we formally state these as well. As mentioned
earlier, the accept states of A0 are partitioned into parts corresponding to the vertices
u ∈

⋃

k∈I1
S1
k. Fix such a vertex u. For each bonding map φ such that u ∈ domφ, there

is an ε-transition from each accept state of A0 that lies in the part of the partition
corresponding to u to the start state of B2,vφ,x for all x ∈

⋃

l∈I2
Sl
k. In such a case the

stack will be of the form ⊥0, and we pop ⊥0 from the stack then push ⊥0 l, where
l ∈ I2 is unique such that im φ = S2

l .
(d) There are transitions analogous to those in (b), except starting in some Bi,u,v and

ending in some Cx. Naturally, these only start in automata Bi,u,v where i 6= jq, as Cx
corresponds to Γjq .

(e) If jq 6= 1, then there are transitions analogous to those in (c), starting in A0 and ending
in some Cu.

(f) From each accept state of each Cu, there is an ε-transition to p, that pops ⊥0 wtq$u,
where $u is the bottom of stack symbol of Cu. We then push ⊥0 back onto the stack.

The automaton D works as follows. The automata A0, Bi,u,v and Cx simulate the copies of Γ1

and Γ2 used to define Γ1 ∗ Γ2. We use the stack (behind the bottom of stack symbol of whichever
automaton we are currently in) to track the position within the connecting tree T that we are
in, with t0 being used as a root. The transitions between each of the automata A0, Bi,u,v and Cx
simulate the bonding maps, as they identify vertices in Γ1 and Γ2. We need A0 to be a separate
automaton to deal with the multiple accepting vertices we can start with (after that, we just pass
to a different automaton Bi,u,v) for different accepting states v). The automaton Cx is separate to
make transitioning to the accept state p more straightforward. Transitioning from Cx to p requires
us to be in the vertex vq corresponding to q, and the transition confirms that our stack reads tq;
that is, we are in the correct position within T , before accepting. �

Using Theorem 2.38, we can build any Schreier coset graph by iteratively taking tree amalgamations,
starting with a collection of finite graphs. Lemma 5.3 tells us that each of these tree amalgamations
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preserves the property of having a context-free language. We can thus use this to show that a
subgroup whose Schreier coset graph is a quasi-transitive quasi-tree will be recognisably context-
free. We now formally state the characterisation of recognisably context-free cosets of subgroups
with quasi-transitive Schreier coset graphs we have been working towards.

Theorem 5.4. Let G be a finitely generated group, H ≤ G and g ∈ G be such that the Schreier
coset graph of (G,H) is quasi-transitive. Then Hg is recognisably context-free if and only if the
Schreier coset graph of (G,H) is a quasi-tree.

Proof. In light of Corollary 3.2, it suffices to show that H is recognisably context-free if and only
if the Schreier coset graph Γ of (G,H) is a quasi-tree. The fact that H is recognisably context-free
implies that Γ is a quasi-tree is Proposition 5.1. So it remains to show that if Γ is a quasi-tree tree,
then H is recognisably context-free.

Suppose Γ is a quasi-tree. Since Γ is quasi-transitive, we can apply Theorem 2.38 to show that Γ
can be built from a (finite) collection of finite graphs by successive tree amalgamations with finite
adhesion and finite identification. Each of the finite graphs will have a context-free language with
respect to any origin and any set of accepting states, as the languages of finite graphs are always
regular. We can then apply Lemma 5.3 to show that each of the successive tree amalgamation
preserves the properties of having a context-free language with respect to any origin and any set
of accepting states. Thus Γ has a context-free language with respect to any origin and any set of
accepting states. In particular, the language of all words that trace a path in Γ from H to H is
context-free. Since this is precisely the set of words in Hπ−1, H is recognisably context-free. �

Remark 5.5. Recall that Herbst and Thomas proved that a subset E of a group G is recognisable
if and only if E is a finite union of cosets of some finite-index subgroup of G (Proposition 2.18). In
light of Theorem 5.4 (or alternatively the classification of when generic subgroups are recognisably
context-free due to Ceccherini-Silberstein and Woess [6]) it is natural to ask whether an analo-
gous statement may be true for recognisably context-free subsets, using subgroups with quasi-tree
Schreier coset graphs in place of finite-index subgroups (and not necessarily use a fixed subgroup).
If we consider Z, then it is easy to see that such a statement cannot be true. As the coword problem
of Z is context-free (by the Muller-Schupp Theorem), Z \ {0} is a recognisably context-free subset
of Z. The only subgroups of Z with Schreier coset graphs that are quasi-trees are infinite ones.
Their cosets are of the form {ax + b | x ∈ Z} with a ∈ Z \ {0} and b ∈ Z. It is not difficult to see
that any finite union of these sets that does not contain zero, must necessarily miss infinitely many
elements.
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I would like to thank Corentin Bodart, André Carvalho, Gemma Crowe, Luke Elliott, Matthias
Hamann, Mark Kambites, Alan Logan, Carl-Fredrik Nyberg Brodda, Davide Perego and Nóra
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