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Abstract

Let Γ denote a distance-regular graph with diameter D ≥ 3. Jurǐsić and Vidali conjectured that if Γ is

tight with classical parameters (D, b, α, β), b ≥ 2, then Γ is not locally the block graph of an orthogonal

array nor the block graph of a Steiner system. In the present paper, we prove this conjecture and,

furthermore, extend it from the following aspect. Assume that for every triple of vertices x, y, z of Γ,

where x and y are adjacent, and z is at distance 2 from both x and y, the number of common neighbors

of x, y, z is constant. We then show that if Γ is locally the block graph of an orthogonal array (resp. a

Steiner system) with smallest eigenvalue −m, m ≥ 3, then the intersection number c2 is not equal to m2

(resp. m(m+ 1)). Using this result, we prove that if a tight distance-regular graph Γ is not locally the

block graph of an orthogonal array or a Steiner system, then the valency (and hence diameter) of Γ is

bounded by a function in the parameter b = b1/(1+ θ1), where b1 is the intersection number of Γ and θ1

is the second largest eigenvalue of Γ.
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1 Introduction

Let Γ denote a distance-regular graph with diameter D ≥ 3, intersection numbers ai, bi, ci (0 ≤ i ≤ D), and

eigenvalues k = θ0 > θ1 > · · · > θD. Jurǐsić, Koolen, and Terwilliger [8] showed that Γ satisfies the following
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inequality:
(

θ1 +
k

a1 + 1

)(

θD +
k

a1 + 1

)

≥ −
ka1b1

(a1 + 1)2
. (1)

We say Γ is tight whenever Γ is nonbipartite and equality holds in (1). Tight distance-regular graphs have

been studied with considerable attention and characterized in various ways; see [6, 7, 16, 17]. A notable

characterization is that, for each vertex x in a tight distance-regular graph, its local graph at x is a connected

strongly regular graph with eigenvalues

a1, r := −1−
b1

1 + θD
, s := −1−

b1
1 + θ1

, (2)

see [8, Theorem 12.6]. Suppose that Γ is tight with D ≥ 3, and let ∆ denote a local graph of Γ. We observe

that ∆ is a connected strongly regular graph with eigenvalues a1, r, s. Throughout this paper, we assume

that r and s are integers. Because if they are not, ∆ is a conference graph, which implies that Γ is a Taylor

graph; see [12, 13]. Therefore, further discussion of Γ in this paper is unnecessary when r and s are not

integers.

Suppose that s ≤ −2, that is, the smallest eigenvalue of ∆ is less than or equal to −2. For notational

convenience, we set m := −s and n := r− s. By Sims’ result (cf. [15, Theorem 5.1]), ∆ belongs to one of the

following families: (i) complete multipartite graphs with classes of size m, (ii) block graphs of orthogonal

arrays OA(m,n), (iii) block graphs of Steiner systems S(2,m,mn+m−n), (iv) finitely many further graphs.

If Γ has classical parameters (D, b, α, β), then in case (i), Γ is the complete multipartite graph K(n+1),m with

D = 2 [3, Proposition 1.1.5]. For cases (ii) and (iii), when Γ has diameter D = 3, we must have b = 1. This

restriction implies that Γ is one of the following three graphs: the Johnson graph J(6, 3), the halved 6-cube,

or the Gosset graph E7(1); see [11, Section 7]. Hence, our focus lies on cases where D ≥ 4 and b ≥ 2. Jurǐsić

and Vidali posed the following conjecture:

Conjecture 1.1 ([11, Conjecture 2]). Let Γ be a tight distance-regular graph with classical parameters

(D, b, α, β), b ≥ 2, and diameter D ≥ 4. For a vertex u of Γ, the local graph of Γ at u is not the block graph

of an orthogonal array or a Steiner system.

In the present paper, we prove this conjecture and extend it to the case where a tight distance-regular

graph Γ has no classical parameters; see Theorem 6.3 and Corollary 5.6. Furthermore, we extend the

conjecture from the following viewpoint. Let Γ be a distance-regular graph with diameter D ≥ 3. Note that

a tight distance-regular graph is 1-homogeneous in the sense of Nomura [8, Theorem 11.7]. We consider a

regular property for Γ that is a more general concept than the 1-homogeneous property: we say the (triple)

intersection number γ(Γ) exists if, for every triple of vertices (x, y, z) of Γ such that x and y are adjacent

and z is at distance 2 from both x and y, the number of common neighbors of x, y, and z is constant and

equal to γ(Γ). To avoid the degenerate case, we assume that there exists at least one such triple (x, y, z) in

Γ (i.e., a2 6= 0) when we say γ(Γ) exists. The result of our extension is the main result of this paper and is

as follows:

Theorem 1.2. Let Γ be a distance-regular graph with diameter D ≥ 3, valency k, and intersection number

c2. Assume that Γ is locally strongly regular with smallest eigenvalue −m, where m ≥ 3, and the intersection

number γ(Γ) exists. Then the following (i) and (ii) hold.
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(i) If Γ is locally the block graph of an orthogonal array and k > m2, then c2 6= m2.

(ii) If Γ is locally the block graph of a Steiner system and k > m(m+ 1), then c2 6= m(m+ 1).

Theorem 1.2 is relevant to the problem of determining an upper bound on the diameter of a tight distance-

regular graph. In the theory of distance-regular graphs, establishing an upper bound for the diameter of

distance-regular graphs in terms of some intersection numbers is an important problem. In particular, with

respect to the valency k = b0, various bounds for the diameter have been known and have contributed to the

theory of distance-regular graphs; see [14]. One of the significant results of these contributions is the proof

of the Bannai-Ito conjecture [1, p. 237] by Bang, Dubickas, Koolen, and Moulton [2].

Bannai-Ito Conjecture. There are finitely many distance-regular graphs with fixed valency at least three.

To prove this conjecture, they demonstrated that the diameter of the distance-regular graph is bounded by a

univariate function with the variable valency k. Returning our attention to the present paper, we will discuss

an upper bound on the diameter in a tight distance-regular graph using a specific parameter, distinct from

valency k. Specifically, by utilizing the result of Theorem 1.2, we will show that when a tight distance-regular

graph is not locally the block graph of an orthogonal array or a Steiner system, its diameter is bounded by

a function of the parameter b = b1/(1 + θ1). We present this finding in the following theorem.

Theorem 1.3. Let Γ be a tight distance-regular graph with diameter D ≥ 3, intersection number b1, and

eigenvalues k > θ1 > · · · > θD. Define

b := b1/(1 + θ1).

We assume b ≥ 2. If a local graph of Γ is neither the block graph of an orthogonal array nor the block graph

of a Steiner system, then the valency k (and hence diameter D) of Γ is bounded by a function of b.

In Remark 7.3, we give an explicit bound in terms of b for the valency of Γ. From Theorem 1.3, it follows

that the diameter of a tight distance-regular graph with classical parameters (D, b, α, β), D ≥ 3, and b ≥ 2,

is bounded by a function of b; see Corollary 7.4.

This paper is organized as follows. In Section 2, we present basic definitions and some known results

about distance-regular graphs. Section 3 discusses the block graph of an orthogonal array and its properties.

We then analyze the structure of the µ-graph of an amply regular graph that is locally the block graph of

an orthogonal array. Following that, Section 4 covers the block graph of a Steiner system and its properties.

We also analyze the structure of the µ-graph of an amply regular graph that is locally the block graph of a

Steiner system. In Section 5, we revisit results related to the triple intersection number of a distance-regular

graph and dedicate this section to proving our main result, Theorem 1.2. We conclude this section with a

discussion of the case of tight distance-regular graphs with diameter three. Section 6 provides the proof of

Conjecture 1.1 using Theorem 1.2. Finally, the paper concludes in Section 7 with the proof of Theorem 1.3

and a discussion of further direction.

2 Preliminaries

In this section, we review the basic definitions and some known results concerning distance-regular graphs

that we will use later. For more background information, refer to [3].
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Throughout this section, let Γ denote a finite, undirected, connected, and simple graph. We denote V (Γ)

by the vertex set of Γ. For vertices x, y ∈ V (Γ), the distance between x and y, denoted as ∂(x, y), is the

length of a shortest path from x to y in Γ. The diameter D of Γ is the maximum value of ∂(x, y) for all

pairs of vertices x and y of Γ. Suppose that Γ has diameter D. For x ∈ V (Γ) and an integer 0 ≤ i ≤ D,

define Γi(x) = {y ∈ V (Γ) | ∂(x, y) = i}. Abbreviate Γ(x) = Γ1(x). For an integer k ≥ 0 we say Γ is regular

with valency k (or k-regular) if |Γ(x)| = k for every x ∈ V (Γ).

We now recall some special regular graphs. We say the graph Γ is distance-regular whenever for all

integers 0 ≤ h, i, j ≤ D and for all vertices x, y ∈ V (Γ) with ∂(x, y) = h, the number phi,j = |Γi(x) ∩ Γj(y)|

is independent of x and y. The numbers phi,j are called the intersection numbers of Γ. By construction, we

observe that phi,j = phj,i for 0 ≤ i, j, h ≤ D. We abbreviate

ci = pi1,i−1, ai = pi1,i, bi = pi1,i+1, (0 ≤ i ≤ D).

Observe that Γ is regular with valency k = b0. Moreover, we note that a0 = bD = c0 = 0, c1 = 1, and

ai + bi + ci = k for 0 ≤ i ≤ D. We refer to the sequence {b0, b1, . . . , bD−1; c1, c2, . . . , cD} as the intersection

array of Γ. Next, consider the following regularity properties of the graphs below:

(i) Every pair of adjacent vertices has precisely λ common neighbors.

(ii) Every pair of vertices at distance 2 has precisely µ common neighbors.

(iii) Every pair of nonadjacent vertices has precisely µ common neighbors.

Let Γ be κ-regular with ν vertices. We say Γ is amply regular with parameters (ν, κ, λ, µ) if (i) and (ii)

hold. We also say Γ is strongly regular with parameters (ν, κ, λ, µ) if (i) and (iii) hold. Observe that every

distance-regular graph is amply regular with λ = a1 and µ = c2. Moreover, every distance-regular graph

with D ≤ 2 is strongly regular. If Γ is a connected strongly regular graph with parameters (ν, κ, λ, µ) and

diameter two, then it has precisely three distinct eigenvalues κ > r > s, satisfying

ν =
(κ− r)(κ− s)

κ+ rs
, λ = κ+ r + s+ rs, µ = κ+ rs. (3)

The following is an example of a strongly regular graph for later use in this paper.

Example 2.1. A generalized quadrangle is an incidence structure such that: (i) every pair of points is on

at most one line, and hence every pair of lines meets in at most one point, (ii) if p is a point not on a line L,

then there is a unique point p′ on L such that p and p′ are collinear. If every line contains s+1 points, and

every point lies on t+ 1 lines, we say that the generalized quadrangle has order (s, t), denoted by GQ(s, t).

The point graph of a generalized quadrangle is the graph with the points of the quadrangle as its vertices,

where two points are adjacent if and only if they are collinear. The point graph of a GQ(s, t) is strongly

regular with parameters

ν = (s+ 1)(st+ 1), κ = s(t+ 1), λ = s− 1, µ = t+ 1.

We recall the notion of a complete multipartite graph. A clique in Γ is a subset of V (Γ) such that every

pair of distinct vertices is adjacent. A clique of size n is referred to as a complete graph Kn. A coclique of
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Γ is a subset of V (Γ) such that no two vertices are adjacent. A complete bipartite graph Km,n is a graph

whose vertex set can be partitioned into two cocliques, say an m-set M and an n-set N , where each vertex

in M is adjacent to all vertices in N . A complete multipartite graph Kt×n is a graph whose vertex set can

be partitioned into cocliques {Mi}
t
i=1 of size n, where each vertex in Mi is adjacent to all vertices in Mj

(1 ≤ j 6= i ≤ t). We note that K2×m is the same as Km,m.

Next, we recall the concepts of a local graph and a µ-graph. For a vertex x ∈ V (Γ), let ∆(x) denote the

subgraph of Γ induced on Γ(x). We call ∆(x) the local graph of Γ at x. Let P be a property of a graph or a

family of graphs. We say Γ is locally P whenever every local graph of Γ has the property P or belongs to the

family P . For example, we say Γ is locally complete multipartite or locally strongly regular. Suppose that

Γ is amply regular with parameters (ν, κ, λ, µ). For two vertices x, y with ∂(x, y) = 2, the subgraph of Γ

induced on Γ(x) ∩ Γ(y) is called a µ-graph of Γ. If Γ is distance-regular, a µ-graph is often called a c2-graph

of Γ.

Lemma 2.2 ([3, Proposition 1.3.2]). Let Γ be a regular graph with v vertices, valency k, and smallest

eigenvalue −m.

(i) If C is a coclique of Γ, then |C| ≤ v(1 + k/m)−1, with equality if and only if every vertex outside C

has exactly m neighbors in C.

(ii) If Γ is strongly regular and C is a clique of Γ, then

|C| ≤ 1 + k/m, (4)

with equality if and only if every vertex outside C has exactly µ/m neighbors in C, where µ is the

number of common neighbors of any two nonadjacent vertices.

The upper bound for the size of a clique in (4) is called the Hoffman bound (or Delsarte bound). If a clique

C in a distance-regular graph attains the Hoffman bound, we call C a Delsarte clique.

Lemma 2.3. Let Γ be an amply regular graph with parameters (ν, k, a1, c2). Assume that Γ is locally strongly

regular with parameters (k, a1, λ, µ). For a vertex x of Γ, let ∆(x) be the local graph of Γ at x with smallest

eigenvalue −m. If C is a Delsarte clique of ∆(x), then a vertex at distance two from x either has 1 + µ/m

neighbors in C or no neighbors in C.

Proof. Let z be a vertex of Γ at distance two from x. Suppose that the Delsarte clique C has a neighbor of

z. We will show that the number of neighbors of z in C is 1 + µ/m. Select a vertex y ∈ C that is adjacent

to z. Consider the local graph ∆(y) in Γ, and note that ∆(y) is strongly regular with smallest eigenvalue

−m. Now, consider the vertex subset C′ = C ∪ {x} \ {y} in Γ. Obviously, C′ forms a clique in ∆(y) of the

same size as C. Hence, C′ is a Delsarte clique of ∆(y). Since ∆(y) is strongly regular and z ∈ ∆(y) is not

an element of C′, Lemma 2.2(ii) implies that z has µ/m neighbors in C′. Therefore, z has precisely 1+µ/m

neighbors in C. �

We recall the Q-polynomial property. Let Γ be distance-regular with diameter D ≥ 3. We abbreviate

the vertex set as X = V (Γ). We denote MatX(R) as the R-algebra consisting of real matrices, where both

5



rows and columns are indexed by X . For each integer 0 ≤ i ≤ D, define the matrix Ai ∈ MatX(R) with

(x, y)-entry 1 if ∂(x, y) = i and 0 otherwise. Observe that

AiAj =
D
∑

h=0

phi,jAh (0 ≤ i, j ≤ D).

It is known that the matrices {Ai}
D
i=0 form a basis for a commutative subalgebra M of MatX(R). We call

M the Bose-Mesner algebra of Γ. The algebra M has a second basis {Ei}
D
i=0 such that EiEj = δi,jEi

(0 ≤ i, j ≤ D), where the matrices Ei (0 ≤ i ≤ D) are called the primitive idempotents of Γ. We note that

M is closed under the entrywise multiplication ◦ since Ai ◦Aj = δi,jAi. Thus, there exist real numbers qhi,j

such that

Ei ◦ Ej = |X |−1
D
∑

h=0

qhi,jEh (0 ≤ i, j ≤ D).

An ordering {Ei}
D
i=0 is called Q-polynomial whenever for all distinct h, j (0 ≤ h, j ≤ D) we have qh1,j = 0 if

and only if |h− j| 6= 1. We say Γ is Q-polynomial whenever there is a Q-polynomial ordering of the primitive

idempotents; cf. [3, p. 235]. Suppose Γ is a tight distance-regular graph. In [16], several characterizations

of Γ with the Q-polynomial property were introduced. In [8, Section 13(vi)], the authors provided many

examples of Γ, both with and without the Q-polynomial property. Here, we recall one example of Γ that

does not have the Q-polynomial property, which will be used later in this paper.

Example 2.4 ([3, Section 13.2.D]). The graph 3.O7(3) is distance-transitive with 1134 vertices and has

intersection array {117, 80, 24, 1; 1, 12, 80, 117}. The graph 3.O7(3) is tight but not Q-polynomial. Each local

graph of 3.O7(3) is strongly regular with parameters (117, 36, 15, 9), and has nontrivial eigenvalues r = 9,

s = −3.

We finish this section with one comment. Let Γ be a graph with valency k and diameter D. It is

well-known that the number of vertices is bounded in terms of k and D:

|V (Γ)| ≤ 1 + k + k(k − 1) + · · ·+ k(k − 1)D−1 =











1 +
k((k − 1)D − 1)

k − 2
k > 2;

2D + 1 k = 2.

(5)

The right-hand side of (5) is called the Moore bound. We call Γ a Moore graph if the equality in (5) holds.

For more detailed information about Moore graphs, see [14].

3 The block graph of an orthogonal array

In this section, we discuss the block graph of an orthogonal array and its properties. We then analyze the

structure of the µ-graphs of an amply regular graph that is locally the block graph of an orthogonal array.

An orthogonal array, denoted as OA(m,n), is a structured m × n2 array with entries chosen from the set

{1, . . . , n}. It possesses the property that the columns of every 2× n2 subarray contain all possible n2 pairs

exactly once. In other words, for each pair of rows, every pair of elements from the set {1, . . . , n} appears

precisely once in a column. The block graph of an orthogonal array is a graph whose vertices are the columns
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of OA(m,n), where two columns are adjacent if and only if there exists a row where they share the same

entry. We note that the block graph of OA(m,n) is the same concept as the Latin square graph Lm(n); see

[4, Section 8.4].

Lemma 3.1 (cf. [5, Theorem 5.5.1]). If OA(m,n) is an orthogonal array with n ≥ m, then its block graph

is a strongly regular graph with parameters

(

n2, m(n− 1), (m− 1)(m− 2) + n− 2, m(m− 1)
)

. (6)

Moreover, the spectrum of the block graph of OA(m,n) is
(

m(n− 1) n−m −m

1 m(n− 1) (n− 1)(n+ 1−m)

)

.

Using Lemma 2.2(ii) and Lemma 3.1, we find that the maximum clique size in the block graph of OA(m,n) is

n. Constructing a Delsarte clique in the block graph of OA(m,n) is straightforward: for each i ∈ {1, . . . , n},

consider the set Sr,i, which consists of the columns of OA(m,n) containing the entry i in row r. Note that

these sets naturally form cliques. Furthermore, as each element in {1, . . . , n} appears exactly n times in each

row, the size of each clique Sr,i is n for all i and r. These cliques are referred to as the canonical cliques of

the block graph of OA(m,n).

Lemma 3.2. Let Γ be an amply regular graph with parameters (v, k, a1, c2) and locally the block graph of an

orthogonal array OA(m,n). If c2 = m2, then every c2-graph of Γ is the block graph of an orthogonal array

OA(m,m), and therefore, is complete m-partite.

Proof. Observe that for each row r (1 ≤ r ≤ m) in OA(m,n), the set Sr,i (1 ≤ i ≤ n) forms a canonical

clique of size n. Fix a vertex x of Γ, and let ∆ denote the local graph of Γ at x. By construction of OA(m,n),

∆ consists of n (disjoint) canonical cliques

Sr,1, Sr,2, . . . , Sr,n (1 ≤ r ≤ m).

Note that every vertex of ∆ belongs to exactly m canonical cliques. Fix a row r = 1 and observe that each

S1,i is a canonical clique in ∆. Select a vertex z of Γ at distance two from the vertex x. Let M = M(x, z)

denote the c2-graph of Γ induced by the vertices x and z. Since c2 = m2, M consists of m2 columns obtained

from the orthogonal array OA(m,n). Let O be the m × m2 array consisting of the vertices of M. We

claim that O has the structure of an orthogonal array OA(m,m), which implies that M is a block graph of

OA(m,m). To prove this claim, we will show that in each row of O, precisely m distinct symbols occur, each

exactly m times.In other words, it is equivalent to proving that M consists of m disjoint canonical cliques,

with each vertex of M being incident to precisely m canonical cliques.

For 1 ≤ i ≤ n, define Ci := S1,i ∩ Γ(z). Applying Lemma 2.3, we find that for each i, the size of Ci is either

m or 0. Observe that Ci forms a canonical clique of M if its size is m. Therefore, {Ci | 1 ≤ i ≤ n,Ci 6= ∅}

is a partition of the vertex set of M into m canonical cliques of size m. Note that, without loss of generality,

we may permute the entries of OA(m,n) so that Ci = ∅ for all i > m, and thus O consists of the entries

{1, 2, . . . ,m} and each vertex in M is incident to m canonical cliques. Therefore, we conclude that M is the

block graph of OA(m,m). �
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4 The block graph of a Steiner system

In this section, we discuss the block graph of a Steiner system and its properties. We then analyze the

structure of µ-graph of an amply regular graph that is locally the block graph of a Steiner system. A Steiner

system S(2,m, n) is a 2-(n,m, 1) design, that is, a collection of m-sets taken from a set of size n, satisfying

the property that every pair of elements from the n-set is contained in exactly one m-set. In this context,

the elements of the n-set are referred to as points, and the m-sets are referred to as blocks of the system.

A straightforward counting argument reveals that the number of blocks in a Steiner system S(2,m, n) is

given by n(n− 1)/m(m− 1), and each point occurs in exactly (n− 1)/(m− 1) blocks. A Steiner system

S(2,m, n) is said to be symmetric if the number of points is equal to the number of blocks; otherwise, it is

regarded as non-symmetric. The block graph of a Steiner system S(2,m, n) is defined as the graph whose

vertices correspond to the blocks of the system. Two blocks are adjacent in this graph if and only if they

intersect at exactly one point.

Lemma 4.1 (cf. [5, Theorem 5.3.1]). The block graph of a non-symmetric Steiner system S(2,m, n) is a

strongly regular graph with parameters

(

n(n− 1)

m(m− 1)
,
m(n−m)

m− 1
, (m− 1)2 +

n− 1

m− 1
− 2, m2

)

. (7)

Moreover, the spectrum of this graph is

(

m(n−m)
m−1

n−m2

m−1 −m

1 n− 1 n(n−1)
m(m−1) − n

)

. (8)

The block graph of a Steiner system S(2,m,mn+m−n) with n ≥ m+1 is called a Steiner graph Sm(n).

By Lemma 4.1, the graph Sm(n) is strongly regular with parameters

(

(m+ n(m− 1))(n+ 1)

m
, mn, m2 − 2m+ n, m2

)

. (9)

Using (4) and (8), we can determine that the size of a maximum clique in the block graph of a Steiner

system S(2,m, n) is (n− 1)/(m− 1). Constructing a Delsarte clique in the block graph of S(2,m, n) is

straightforward: for each i ∈ {1, . . . , n}, we define Si as the set of all blocks in the design that contain the

point i. These cliques Si are referred to as the canonical cliques of the block graph.

Lemma 4.2. Let Γ be an amply regular graph with parameters (v, k, a1, c2) and locally the block grpah of a

Steiner system S(2,m, n). If c2 = m(m+1), then every c2-graph of Γ is the block graph of a Steiner system

S(2,m,m2), and therefore, is complete (m+ 1)-partite.

Proof. For a vertex x of Γ, let ∆ denote the local graph of Γ at x, that is, the block graph of a Steiner system

S(2,m, n). We denote its corresponding Steiner system by (P ,B), where P denotes the set of points and B

denotes the set of blocks. Observe that B is the vertex set of the local graph ∆, and furthermore, |P| = n

and |B| = n(n− 1)/(m(m− 1)). Select a vertex y of Γ at distance two from the vertex x. Let M(x, y) denote

the c2-graph of Γ induced by the vertices x and y. Let B′ denote the vertex set of M(x, y). Observe that B′
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is a subset of B with cardinality m(m+ 1) since c2 = m(m+ 1). We define the subset P ′ of P by

P ′ =

{

p ∈ P

∣

∣

∣

∣

∣

p ∈
⋃

B∈B′

B

}

.

We claim that |P ′| = m2. To prove this claim, let us consider a vertex B in M(x, y). Since B is a block in

B′, we can write it as B = {p1, p2, . . . , pm}, where pi ∈ P ′ (1 ≤ i ≤ m). Now, for the point p1 we consider

the canonical clique Sp1
of ∆. By Lemma 4.1 and (7), ∆ is strongly regular with µ = m2. Applying Lemma

2.3, we find that there are exactly m + 1 neighbors of y in Sp1
, denoted as B = B0, B1, . . . , Bm. Observe

that each Bi contains m − 1 points, excluding the common point p1. It implies that the total number of

points in
⋃m

i=0 Bi is m
2. Since each Bi belongs to B′, all m2 points are elements of P ′. Therefore, we have

|P ′| ≥ m2.

Suppose that |P ′| > m2. Recall the vertices B = {p1, p2, . . . , pm}, B1, . . . , Bm. For 1 ≤ i ≤ m, let Spi
denote

the canonical clique of ∆ corresponding to the point pi. By construction, the canonical cliques containing the

vertex B are precisely Sp1
, Sp2

, . . . , Spm
, and each Spi

has precisely m neighbors of y besides B. Therefore,

we obtain m2 + 1 vertices of M(x, y). Now, choose a point q ∈ P ′ such that q /∈ Bi for all 0 ≤ i ≤ m. Such

a point can be chosen because |
⋃m

i=0 Bi| = m2 and by our assumption |P ′| > m2. Note that none of the

points of p1, p2, . . . , pm equals q. Consider the corresponding canonical clique Sq of ∆. It follows that none

of Sp1
, Sp2

, . . . , Spm
equals Sq. By Lemma 2.3, Sq has m + 1 neighbors of y, denoted as B̌0, B̌1, . . . , B̌m.

These blocks {B̌i}
m
i=0 belong to B′, and each block B̌i contains the point q, so we obtain m+1 new vertices

in M(x, y). This implies that the number of vertices of M(x, y) is at least (m2 +1)+ (m+1) = m2 +m+2.

However, this contradicts the fact that |B′| = c2 = m2 +m. Hence, we conclude that |P ′| = m2, as claimed.

Next, we consider the pair (P ′,B′). We will show that this pair forms a 2-(m2,m, 1) design, that is, each

pair of points in P ′ is contained in exactly one block of B′. For each pair of distinct points p and q in P ′,

let Bp,q denote the (unique) block in B that contains both p and q. We define B′′ as the collection of blocks

in B that contain pairs of points from P ′, i.e., B′′ = {Bp,q ∈ B | p, q ∈ P ′}. We assert that B′ = B′′. First,

it is clear that B′ is a subset of B′′. Next, we determine the cardinality of B′′. To do this, consider the set
{

({p, q}, B)
∣

∣

∣
B ∈ B′′, {p, q} ∈

(

B
2

)

}

. Through double-counting the pairs ({p, q}, B), we find

(

m

2

)

|B′′| ≤

(

|P ′|

2

)

.

Simplifying this inequality, we obtain |B′′| ≤ m(m+1). On the other hand, since B′ ⊆ B′′ and |B′| = m(m+1),

it follows that |B′′| = m(m + 1). Therefore, we have B′ = B′′, as asserted. Consequetly, the pair (P ′,B′)

possesses the structure of a 2-(m2,m, 1) design. The result follows. �

5 Proof of Theorem 1.2

In this section, we prove Theorem 1.2. To do this, we first recall and present some lemmas required for the

proof without providing their proofs.
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Lemma 5.1 (cf. [10, Lemma 4]). For integers t, n ≥ 2 let Γ be a connected graph of diameter at least 2, in

which every µ-graph is isomorphic to Kt×n. Then Γ is regular. Moreover, for an arbitrary vertex x of Γ,

the local graph ∆ of Γ at x satisfies the following properties:

(i) ∆ is regular;

(ii) ∆ has diameter 2 and every µ-graph of ∆ is isomorphic to K(t−1)×n;

(iii) ∆ is strongly regular if t ≥ 3;

(iv) if the intersection number γ(Γ) exists, then γ(Γ) > 0 and the intersection number γ(∆) exists with

γ(∆) = γ(Γ)− 1.

Lemma 5.2 (cf. [10, Theorem 8]). For integers t, n ≥ 2 let Γ be a connected graph in which every µ-graph

is isomorphic to Kt×n. If the intersection number γ(Γ) exists with γ(Γ) ≥ 2, then γ(Γ) = t.

Lemma 5.3 (cf. [10, Theorem 11]). For an integer n ≥ 3 let Γ be a connected graph in which every µ-graph

is isomorphic to Kn,n. If the intersection number γ(Γ) exists and γ(Γ) = 2, then Γ is locally GQ(λ/n, n−1).

In particular, Γ has diameter 2 if and only if Γ is locally GQ(n− 1, n− 1).

Lemma 5.4 (cf. [10, Theorem 12]). For integers t ≥ 1 and n ≥ 3 let Γ be a connected graph in which every

µ-graph is isomorphic to Kt×n. If the intersection number γ(Γ) exists, then t ≤ 4. Moreover, equality holds

only if Γ is the unique distance-regular graph 3.O7(3), which is locally locally locally GQ(2, 2).

Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. Let ∆ denote the local graph of Γ at a vertex x ∈ V (Γ). Since ∆ is strongly regular,

we denote its parameters as (k, a1, λ, µ) and its eigenvalues as a1 > r > −m, where a1 is the intersection

number of Γ. For notational convenience, we let n = r +m. Now, we consider each case: (i) ∆ is the block

graph of an orthogonal array, and (ii) ∆ is the block graph of a Steiner system.

Case (i): Suppose ∆ is the block graph of an orthogonal array with k > m2. Assume that c2 = m2; we will

derive a contradiction from this assumption. To this end, we consider the c2-graphs of Γ. By Lemma 3.2,

every c2-graph of Γ is the block graph of OA(m,m), which is isomorphic to Km×m, where m ≥ 3.

We claim that m = 3. To show this, we consider the (triple) intersection number γ(Γ). We assert that

γ(Γ) ≥ 2. Suppose that γ(Γ) = 1. Choose a vertex z at distance two from x, and then choose a vertex y

that is adjacent to both x and z. Next, choose a Delsarte clique C of ∆ that contains y. Consider the subset

Nz := C ∩ Γ(z) of C. Note that Nz is not empty since y ∈ Nz. By Lemma 2.3, and since µ = m(m− 1) by

(6), we have |Nz| = 1+µ/m = m. Since n > m, one can choose a vertex y′ ∈ C \Nz. Considering the triple

of vertices (x, y′, z) and using the assumption γ(Γ) = 1, it follows that Nz = {y}. Thus, |Nz| = m = 1, which

contradicts m ≥ 3. Therefore, we have γ(Γ) ≥ 2, as asserted. Since the c2-graph of Γ is isomorphic to Km×m

and the intersection number γ(Γ) exists with γ(Γ) ≥ 2, by applying Lemma 5.2 to Γ we obtain γ(Γ) = m.

In addition, applying Lemma 5.4 to Γ and considering the given condition m ≥ 3, we have 3 ≤ m ≤ 4. If

m = 4, by Lemma 5.4, Γ must be the distance-regular graph 3.O7(3). In this case, referring to Example 2.4,
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∆ has the smallest eigenvalue −3, namely m = 3, contradicting the given m = 4. Therefore, we rule out the

case m = 4. Consequently, we have m = 3, as claimed.

From the claim, it follows that the c2-graph of Γ is isomorphic to K3×3. With this comment, we apply

Lemma 5.1 to Γ, obtainining that every µ-graph of ∆ is isomorphic to K2×3, and the intersection number

γ(∆) exists with γ(∆) = γ(Γ) − 1 = 3 − 1 = 2. Subsequently, by applying Lemma 5.3 to ∆, we conclude

that ∆ is locally GQ(2, 2).

However, this is impossible for the following reasons. Choose a vertex v in ∆ and consider the local graph

∆(v) of ∆ at v. Then ∆(v) is GQ(2, 2), a strongly regular graph with parameters (15, 6, 1, 3). By (4), the

maximal size of a clique of ∆(v) is 3. But we can find a clique of size 5 within ∆(v) as follows. Consider a

Delsarte clique C of ∆ containing v. Since |∆(v)| = 15, it follows that a1 = 15, which is the valency of ∆.

Recall m = 3, where −m is the smallest eigenvalue of ∆. By (4), we have |C| = 1+ a1/m = 6. Since C \ {v}

is a clique in ∆(v), we find that ∆(v) contains a clique of size 5. This contradicts the requirement that the

maximal size of a clique in ∆(v) is 3. Therefore, ∆ cannot be locally GQ(2, 2). Consequently, we conclude

c2 6= m2.

Case (ii): The proof is similar to Case (i). Suppose ∆ is the block graph of a Steiner system with

k > m(m + 1). Assume that c2 = m(m + 1). By Lemma 4.2, every c2-graph of Γ is the block graph of a

Steiner system S(2,m,m2), which is isomorphic to Km×(m+1). We determine the intersection number γ(Γ).

Using the same argument as in the proof of Case (i), we find that γ(Γ) = m = 3. Therefore, every c2-graph

of Γ is isomorphic to K3×4. By Lemma 5.1, every µ-graph of ∆ is isomorphic to K2×4 and the intersection

number γ(∆) is 2. Therefore, by Lemma 5.3, ∆ is locally GQ(3, 3). However, this is impossible for the

following reasons. Choose a vertex v in ∆. Then, the local graph ∆(v) of ∆ at v is GQ(3, 3), a strongly

regular graph with parameters (40, 12, 2, 4). Therefore, the valency of ∆ is 40. By (7) and since m = 3,

the valency of ∆ is 3(n − 3)/2. From these comments, we have 3(n − 3)/2 = 40, which implies n = 89/3.

This contradicts the fact that n is an integer. Therefore, ∆ cannot be locally GQ(3, 3). Consequently, we

conclude c2 6= m(m+ 1). The proof is now complete. �

Remark 5.5. In Theorem 1.2, we assumed that Γ is locally strongly regular with smallest eigenvalue −m,

where m ≥ 3. In the proof of the theorem, assuming c2 = m2 (resp. c2 = m(m+ 1)), we obtained that each

c2-graph of Γ is the block graph of the orthogonal array OA(m,m) (resp. the Steiner system S(2,m,m2))

from Lemma 3.2 (resp. Lemma 4.2), and derived a contradiction from its structure. It is worth noting that

the existence of an orthogonal array OA(m,m) is equivalent to the existence of a projective plane of order

m. Similarly, the existence of a Steiner system S(2,m,m2) is equivalent to the existence of a projective

plane of order m. Thus, if m is a number for which no projective plane of order m exists, then the c2-graph

of Γ does not exist, and hence we do not need the assumption that the intersection number γ(Γ) exists.

Next, we apply Theorem 1.2 to tight distance-regular graphs, resulting in the following.

Corollary 5.6. Let Γ be a tight distance-regular graph with diameter D ≥ 3, intersection numbers b1, c2,

and eigenvalues k > θ1 > · · · > θD. Define

b := b1/(1 + θ1).
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Assume b ≥ 2. Then the following (i) and (ii) hold.

(i) If Γ is locally the block graph of an orthogonal array and k > (b+ 1)2, then c2 6= (b+ 1)2,

(ii) If Γ is locally the block graph of a Steiner system and k > (b + 1)(b+ 2), then c2 6= (b + 1)(b+ 2).

Proof. Since Γ is tight, it is locally connected strongly regular with smallest eigenvalue −1 − b. Moreover,

the tight property implies that Γ is 1-homogeneous, from which it follows that the intersection number γ(Γ)

exists. With these comments, apply Theorem 1.2 to Γ. The result follows. �

Remark 5.7. From Corollary 5.6, we conclude that a distance-regular graph Γ with diameter at least 3 and

b = b1/(1+θ1) ≥ 2 cannot be tight if (i) Γ is locally the block graph of an orthogonal array and c2 = (b+1)2,

or (ii) Γ is locally the block graph of a Steiner system and c2 = (b+ 1)(b+ 2).

We give a comment on the case when Γ has diameter D = 3 in Corollary 5.6. Recall a Taylor graph,

that is, a distance-regular graph with intersection array {k, c2, 1; 1, c2; k} with c2 < k − 1. We note that a

nonbipartite distance-regular graph with diameter 3 is tight if and only if it is a Taylor graph [9, Theorem

3.2]. Let Γ be a Taylor graph. Then Γ is locally strongly regular with parameters (k, a1, λ, µ) and eigenvalues

a1 > r > s. Since Γ is a Taylor graph, its local graphs satisfy

a1 = k − c2 − 1, λ = (3a1 − k − 1)/2, µ = a1/2, (10)

and

k = −(2r + 1)(2s+ 1). (11)

In Corollary 5.6, the graph Γ with D = 3 corresponds to a Taylor graph. In this case, referring to the above

discussion, it can yield the following stronger result.

Proposition 5.8. Let Γ be a Taylor graph with intersection numbers a1, c2. Let a1 > r > s denote the

eigenvalues of a local graph of Γ. Set m = −s and n = r − s. The following (i)–(iii) are equivalent:

(i) Γ is locally strongly regular with the parameters of the block graph of OA(m,n),

(ii) n = 2m− 1, and

(iii) c2 = 2m(m− 1).

Furthermore, the following (iv)–(vi) are equivalent:

(iv) Γ is locally strongly regular with the parameters of the Steiner graph Sm(n),

(v) n = 2m, and

(vi) c2 = 2(m+ 1)(m− 1).

Proof. Throughout this proof, let ∆ denote a local graph of Γ with parameters (k, a1, λ, µ). Using (10), (11)

along with µ = a1 + rs from (3), the parameters (k, a1, λ, µ) are expressed in terms of m and n:

(

(2n− 2m+ 1)(2m− 1), 2m(n−m), (n−m)(m+ 1)−m, m(n−m)
)

. (12)
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First, we show that (i)–(iii) are equivalent.

(i) ⇒ (ii): Suppose ∆ has parameters (6) of the block graph of OA(m,n). Then we have µ = m(m − 1).

Since ∆ is the local graph of Γ, it also has the parameter µ = m(n−m) from (12). From these two formulas

for µ, it follows that n = 2m− 1.

(ii) ⇒ (iii): Suppose that n = 2m− 1. Recall the parameters (12) of ∆. Substituting n = 2m− 1 into (12),

we obtain the parameters

(

(2m− 1)2, 2m(m− 1), m2 −m− 1, m(m− 1)
)

. (13)

Observe that c2 = k − a1 − 1 from the first equation in (10). Evaluate c2 using the parameters in (13) and

simplify the result to get c2 = 2m(m− 1).

(iii) ⇒ (i): Using c2 = 2m(m− 1) and the parameters in (12), express the equation c2 = k− a1 − 1 in terms

of m and n to obtain

2m(m− 1) = (2n− 2m+ 1)(2m− 1)− 2m(n−m)− 1. (14)

Simplify (14) to get the equation (m − 1)(n − 2m+ 1) = 0. We note that m 6= 1 since −m is the smallest

eigenvalue of ∆. Therefore, we have n = 2m − 1. Using this equation, we find that the parameters in (6)

and (13) are equal. Therefore, ∆ has the same parameters as the block graph of OA(m,n).

Next, we show that (iv)–(vi) are equivalent.

(iv) ⇒ (v): Suppose that ∆ has parameters (9) of the Steiner graph Sm(n). Then we have µ = m2. Since

∆ is the local graph of Γ, it also has the parameter µ = m(n−m) from (12). From these two formulas for

µ, it follows that n = 2m.

(v) ⇒ (vi): Suppose that n = 2m. Substituting n = 2m into (12), we obtain the parameters

(

4m2 − 1, 2m2, m2, m2
)

. (15)

Evaluate c2 = k − a1 − 1 using the parameters in (15) and simplify the result to get c2 = 2(m+ 1)(m− 1).

(vi) ⇒ (iv): Using c2 = 2(m+ 1)(m− 1) and the parameters in (12), express the equation c2 = k − a1 − 1

in terms of m and n to obtain

2(m+ 1)(m− 1) = (2n− 2m+ 1)(2m− 1)− 2m(n−m)− 1. (16)

Simplify (16) to get the equation (m− 1)(n− 2m) = 0. Since m 6= 1, we have n = 2m. Using this equation,

we find that the parameters in (9) and (15) are equal. Therefore, ∆ has the same parameters as the Steiner

graph Sm(n). �

Example 5.9. (i) The Johnson graph J(6, 3) has intersection array {9, 4, 1; 1, 4, 9}. Its local graph is strongly

regular with parameters (9, 4, 1, 2) and eigenvalues 4, 1,−2. Note that m = 2 and n = 3. Thus, every local

graph of J(6, 3) has the same parameters as the block graph of OA(2, 3). Indeed, J(6, 3) is locally the block

graph of OA(2, 3) since the structure of the local graphs is determined by their parameters.

(ii) The halved 6-cube has intersection array {15, 6, 1; 1, 6, 15}. Its local graph is strongly regular with

parameters (15, 8, 4, 4) and eigenvalues 8, 2,−2. Note that m = 2 and n = 4. Thus, every local graph of the

halved 6-cube has the same parameters as the Steiner graph S2(4). By the same reason as in (i), the halved
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6-cube is locally the Steiner graph S2(4).

(iii) The Taylor graph from the Kneser graph K(6, 2) has intersection array {15, 8, 1; 1, 8, 15}. Its local graph

is strongly regular with parameters (15, 6, 1, 3) with eigenvalues 6, 1,−3. Note that m = 3 and n = 4. Neither

n = 2m− 1 nor n = 2m is satisfied. Therefore, the Taylor graph from K(6, 2) is not locally the block graph

of an orthogonal array or a Steiner graph.

6 Proof of Conjecture 1.1

In this section, we consider tight distance-regular graphs with classical parameters and prove Conjecture 1.1.

We begin by recalling the notion of classical parameters. For a non-zero integer b, we define

[

i

1

]

=

[

i

1

]

b

:= 1 + b+ b2 + · · ·+ bi−1.

Let Γ be a distance-regular graph with diameter D ≥ 3. We say Γ has classical parameters (D, b, α, β)

whenever its intersection array {b0, b1, . . . , bD−1; c1, c2, . . . , cD} satisfies

bi =

([

D

1

]

−

[

i

1

])(

β − α

[

i

1

])

(0 ≤ i ≤ D − 1),

ci =

[

i

1

](

1 + α

[

i− 1

1

])

(1 ≤ i ≤ D).

We note that if Γ has classical parameters (D, b, α, β), then Γ is tight if and only if β = 1 + α
[

D−1
1

]

and

b, α > 0; see [11, Proposition 2].

Lemma 6.1 (cf. [11, Theorem 7]). Let Γ be a tight distance-regular graph with valency k, intersection

number a1, and classical parameters (D, b, α, β). Then, its local graphs are strongly regular with parameters

(k, a1, λ, µ), where

µ = α(b + 1), λ = (α− 1)(b+ 1) + αb

[

D − 2

1

]

,

and eigenvalues a1 > r > s, where

a1 = α(b+ 1)

[

D − 1

1

]

, r = αb

[

D − 2

1

]

, s = −1− b. (17)

Remark 6.2. Let Γ be a tight distance-regular graph with classical parameters (D, b, α, β) and smallest

eigenvalue s. From the equations s = −1− b1/(1 + θ1) in (2) and s = −1− b in (17), Γ satisfies

b =
b1

1 + θ1
. (18)

Now, we are ready to prove Conjecture 1.1.

Theorem 6.3 (cf. [11, Conjecture 2]). Let Γ be a tight distance-regular graph with classical parameters

(D, b, α, β), where D ≥ 3 and b ≥ 2. Then, a local graph of Γ is neither the block graph of an orthogonal

array or a Steiner system.
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Proof. For a vertex x ∈ V (Γ), let ∆ denote the local graph of Γ at x. Since Γ is tight and by Lemma

6.1, ∆ is a strongly regular graph with eigenvalues a1, r, s from (17). From Remark 6.2, Γ satisfies that

b = b1/(1 + θ1). Set m := −s = 1+ b and n := r− s = αb
[

D−2
1

]

+ 1+ b. Observe that n > m and ∆ has the

smallest eigenvalue −m with m ≥ 3. Now, we consider two cases: (i) ∆ is the block graph of an orthogonal

array; (ii) ∆ is the block graph of a Steiner system.

Case (i): Suppose ∆ is the block graph of an orthogonal array. Consider the parameter µ of ∆. By Lemma

3.1 we have µ = m(m−1) and by Lemma 6.1 we have µ = α(1+b). By these comments and since m = 1+b,

it follows α = b. Thus, the intersection number c2 of Γ is given by

c2 =

[

2

1

](

1 + α

[

1

1

])

= (1 + b)(1 + α) = (1 + b)2.

However, this contradicts the result of Corollary 5.6(i).

Case (ii): The argument is similar to Case (i). Suppose ∆ is the block graph of a Steiner system S(2,m, n).

Consider the parameter µ of ∆. By Lemma 4.1 and Lemma 6.1, we have µ = m2 = α(b+1). Since m = b+1,

it follows α = b+ 1. Thus, the intersection number c2 of Γ is given by

c2 =

[

2

1

](

1 + α

[

1

1

])

= (1 + b)(1 + α) = (1 + b)(2 + b).

However, this contradicts the result of Corollary 5.6(ii).

Consequently, ∆ is neither the block graph of an orthogonal array nor the block graph of a Steiner system.

The result follows. �

7 Proof of Theorem 1.3

In this section, we prove Theorem 1.3. To do this, we recall some known results that we need in the proof.

Lemma 7.1 (cf. [15, Theorem 3.1]). Let Γ be a primitive strongly regular graph with parameters (v, k, λ, µ)

and integral eigenvalues k > r > s = −m. Then

µ ≤ m3(2m− 3). (19)

If equality holds, then n = m(m− 1)(2m− 1), where n = r − s.

Lemma 7.2 (cf. [4, Theorem 8.6.3]). Let Γ be a primitive strongly regular graph with parameters (v, k, λ, µ)

and integral eigenvalues k > r > s. For convenience, we set m := −s and n := r − s. Let f(m,µ) =
1
2m(m− 1)(µ+ 1) +m− 1. Then

(i) If µ = m(m− 1) and n > f(m,µ), then Γ is the block graph of an orthogonal array OA(m,n).

(ii) If µ = m2 and n > f(m,µ), then Γ is the block graph of a Steiner system S(2,m,mn+m− n).

(iii) (Claw bound) If µ 6= m(m− 1) and µ 6= m2, then n ≤ f(m,µ).

Now we prove Theorem 1.3.
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Proof of Theorem 1.3. Let ∆ denote a local graph of Γ at a vertex x ∈ V (Γ). Then ∆ is strongly regular

with parameters (k, a1, λ, µ) and eigenvalues a1, r, s from (2). Set m := −s and n := r − s. By the given

condition, ∆ is neither the block graph of an orthogonal array nor the block graph of a Steiner system. By

Lemma 7.2, we find

n ≤
1

2
m(m− 1)(µ+ 1) +m− 1. (20)

Substitute n = r +m into (20) and simplify the result to obtain

r ≤
1

2
m(m− 1)(µ+ 1)− 1. (21)

Apply (19) to (21) to obtain

r ≤
1

2
m(m− 1)(m3(2m− 3) + 1)− 1. (22)

Next, we recall the equation µ = a1 + rs from (3). Eliminate µ in (19) using this equation and simplify the

result using s = −m to obtain

a1 ≤ m3(2m− 3) + rm. (23)

Eliminate r in the right-hand side of (23) by applying the inequality (22) and then simplify the result to

obtain

a1 ≤ g(m), (24)

where g(m) = 1
2

(

m3(2m − 3) + 1
)(

m2(m − 1) + 2
)

−m − 1. We note that a1 is the valency of ∆ and the

diameter of ∆ is two. Thus, by (5) we have

|V (∆)| = k ≤ 1 + a21. (25)

Applying the inequality (24) to the right-hand side of (25), we find

k ≤ 1 + g(m)2.

Since m = 1 + b, the valency k of Γ is bounded by a function in b. Since the diameter of a distance-regular

graph is bounded in terms of its valency (cf. [2, Section 4]), we conclude that the diameter of Γ is bounded

by a function in b. The result follows. �

Remark 7.3. Referring to the proof of Theorem 1.3, the valency k is bounded by a function ϕ in the

variable b, where

ϕ(b) =
1

4

[(

(1 + b)3(2b− 1) + 1
) (

b(1 + b)2 + 2
)

− 2b− 4
]2

+ 1.

Since b = m− 1, we also find that the diameter of Γ is bounded by a function in the variable m, where −m

is the smallest eigenvalue of a local graph of Γ.

Corollary 7.4. Let Γ be a tight distance-regular graph with classical parameters (D, b, α, β), D ≥ 3, b ≥ 2.

Then, the diameter of Γ is bounded by a function in b.

Proof. Let k > θ1 > . . . > θD be eigenvalues of Γ. From Remark 6.2, Γ satisfies that b = b1/(1 + θ1). By

Theorem 6.3, a local graph of Γ is neither the block graph of an orthogonal array nor the block graph of

a Steiner system. Therefore, by Theorem 1.3, the diameter of Γ is bounded by a function in b. The result

follows. �
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We conclude the paper with a brief summary and a discussion of further direction. We considered a

distance-regular graph Γ with diameter D ≥ 3. Assuming that Γ is locally strongly regular with smallest

eigenvalue −m, where m ≥ 3, and the intersection number γ(Γ) exists, we have shown our main result that if

Γ is locally the block graph of an orthogonal array (resp. a Steiner system), then the intersection number c2

is not equal to m2 (resp. m(m+1)). In particular, when Γ is tight with classical parameters, it is not locally

the block graph of an orthogonal array or a Steiner system. Additionally, using the main result, we have

proven that if Γ is tight and not locally the block graph of an orthogonal array or a Steiner system, then the

diameter of Γ is bounded by a function of the parameter b = b1/(1+ θ1). As we mentioned in Section 1, it is

a significant problem to determine an upper bound for the diameter of distance-regular graphs using some

intersection numbers of Γ. Our future goal is to generalize Theorem 1.3, demonstrating that the diameter of

tight distance-regular graphs is bounded by a function of the variable b. We present the following conjecture.

Conjecture 7.5. Let Γ be a tight distance-regular graph. Let b = b1/(1 + θ1), where b1 is the intersection

number of Γ and θ1 is the second largest eigenvalue of Γ, and assume b ≥ 2. Then, the diameter of Γ is

bounded by a function in b.

Remark 7.6. To prove Conjecture 7.5, according to Theorem 1.3, it suffices to prove that for tight distance-

regular graphs with D ≥ 3 which are locally the block graphs of orthogonal arrays or Steiner systems, their

diameters are bounded by a function in b, provided b ≥ 2. Furthermore, it is worth noting that, except

for the halved 2D-cubes and the Johnson graphs J(2D,D), all known tight distance-regular graphs have

diameter at most 4.
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