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ABSTRACT This paper considers the change point detection problem under dependent samples. In
particular, we provide performance guarantees for the MMD-CUSUM test under exponentially «, £,
and fast ¢-mixing processes, which significantly expands its utility beyond the i.i.d. and Markovian cases
used in previous studies. We obtain lower bounds for average-run-length (ARL) and upper bounds for
average-detection-delay (ADD) in terms of the threshold parameter. We show that the MMD-CUSUM test
enjoys the same level of performance as the i.i.d. case under fast ¢-mixing processes. The MMD-CUSUM
test also achieves strong performance under exponentially o/3-mixing processes, which are significantly
more relaxed than existing results. The MMD-CUSUM test statistic adapts to different settings without
modifications, rendering it a completely data-driven, dependence-agnostic change point detection scheme.
Numerical simulations are provided at the end to evaluate our findings.

INDEX TERMS Change point detection, kernel method, mixing processes

I. INTRODUCTION
Change point detection studies the problem of monitoring for
abrupt changes in the statistical properties of an observation
sequence, which has been widely considered in the literature
[1, 2, 3, 4]. Change point detection has a diverse application
that spans many areas, including cybersecurity, network in-
trusion detection, automated fault monitoring, factory quality
control, etc. In many of these application scenarios, one
may face various challenges, such as complex unknown
dynamics, noisy non-i.i.d observations, and unknown pre-
and post-change distributions. Ideally, a completely data-
driven method with very few distributional assumptions
(independence, density functions, etc.) would be preferred.
The goal of this paper is to study the change point de-
tection problem under a completely data-driven setting. To
tackle this problem, we employ the MMD-CUSUM statistic
proposed in [5] and analyze its performance under three
common mixing conditions, namely «, §, and ¢-mixing.
The MMD-CUSUM statistic is an extension of the well-
known CUSUM statistic [6] with the maximum mean dis-
crepancy (MMD). MMD has wide adoption in statistical two-
sample tests [7] and the training of generative adversarial
networks [8]. As a probability distance, MMD can be easily

estimated from samples on general domains (continuous or
discrete) without the need for a density function. Thus, it is
well suited for change point detection under the completely
data-driven setting where pre- and post-change distributions
can be unknown. Additionally, kernel methods have wide
compatibility [9, 10] due to the diversity of kernel functions
with different data structures, such as discrete data, contin-
uous data, graphical data, etc. Thus, the kernel base method
has vast application potential in designing completely data-
driven change point detection schemes. In particular, the
sequential testing procedures using the maximum mean dis-
crepancy (MMD) have sparked some research interests lately
[11, 12, 13, 14, 5]. Most of the existing studies focus on
studying the properties of the MMD-based procedures under
the i.i.d. case. For continuous state space Markov chains, the
MMD-CUSUM test is proposed in [5] for uniformly ergodic
Markov chains, which is known to be hard to satisfy in
practice.

Thus, more relaxed assumptions need to be considered
to meet the demands of the completely data-driven setting.
The main challenge in generalizing the performance analysis
of MMD-CUSUM lies in the dependence of samples. Our
proposal assumes the mixing property of the stochastic pro-

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME 00, 2024


https://orcid.org/0000-0003-2811-6518
https://orcid.org/0000-0003-1117-325X
https://orcid.org/0000-0001-6811-984X
https://orcid.org/0000-0002-4606-6879
mailto:chen.6945@osu.edu

H. CHEN ET AL.: Model-Free Change Point Detection for Mixing Processes

cesses generated by the dynamic system. Mixing measures
the dependence in the process by its definition [15], and it is
widely considered in extending various results in probability
theory to dependent time series [16, 17, 18]. Thus, establish-
ing the performance bounds under various mixing conditions
is a natural choice. Furthermore, the mixing conditions we
assume highlight the fundamental limit for MMD-CUSUM
to achieve a good performance; that is, the speed and strength
of the mixing condition the processes satisfy.

In the current paper, we analyze the performance of
MMD-CUSUM under three common mixing conditions,
namely «, 3, and ¢-mixing. We provide bounds on the
average-run-length (ARL) and average-detection-delay (ADD)
which are the common performance metrics [19]. ARL
characterizes how frequently the false alarm occurs and ADD
characterizes the quickness of the reaction. As outlined in
[20], the information-theoretic lower bounds are O(exp(b))
for ARL and O(b) for ADD for large b > 0, where b is
the threshold parameter. We show that under the fast ¢-
mixing condition, the MMD-CUSUM achieves these lower
bounds and thus is order optimal. Under the exponential
o/ B-mixing, ADD is bounded by O(b) where ARL is bounded
by O(exp b7/(+1), where v > 0 controls the mixing speed
(more details in IV).

The rest of the paper is organized as follows. Section
II introduces the necessary background about reproducing
kernel Hilbert space and mixing processes. Section III states
the problem setting for online change point detection and
introduces the MMD-CUSUM test statistic. Section IV es-
tablishes the main results of this paper. Section V presents
the experiments of the MMD-CUSUM test on synthetic
datasets. We conclude the paper with discussions of the
limitations and future work in Section VI and VIIL.

A. Related works

Continuous efforts have been made to adapt the kernel
two-sample test to a sequential setting, i.e., change point
detection. Early work has been focused on detection change
in a stream of i.i.d. samples [11, 12, 13, 14]. In [11, 12], the
authors developed a Shewhart chart-type [21] procedure that
maintains a running estimate of the MMD between a set of
curated reference data and incoming samples within a fixed
sliding window. Analysis shows strong performance guaran-
tees with an O(exp(b?)) average-run-length (ARL) and an
O(b) average detection delay (ADD), where b is the thresh-
old. However, testing schemes with sliding windows suffer
from loss of information as older samples are discarded.
To maintain history information, kernel-based CUSUM-type
statistics were proposed in [14] with an O(exp(b)) average-
run-length (ARL) and an O(b) average detection delay (ADD).
In [13], the authors devised a neural network-based kernel
selection strategy that finds a kernel whose MMD can best
separate the nominal distribution from an adversarial one.
The testing scheme is to estimate the MMD with the selected
kernel on two adjacent sliding windows. Empirical studying

shows promising performance, albeit without theoretical
guarantees.

The analysis of the above methods is based heavily on the
ii.d. assumption. Their technique and results do not carry
over naturally to the non-i.i.d. case. Due to the ubiquity
of time series data in machine learning, signal processing,
economics, and dynamic systems, the i.i.d. assumption limits
the application of these methods. More recently, researchers
have been adapting the kernel-based change point detection
to dependent data. In [5], the MMD-CUSUM test is proposed
and analyzed under the setting of uniformly ergodic Markov
chains on general state space. Recently, [22] extended the
analysis of MMD-CUSUM to noisy observations of uni-
formly ergodic Markov chains, i.e., hidden Markov models
(HMM). Both cases are special cases of ¢-mixing processes
[15]. In fact, we show that the same performance can be
obtained even when the Markovian and HMM structures
are ignored. In other words, the Markov chain and HMM
assumptions are not necessary for the performance of the
MMD-CUSUM test. Our work even extends to the «/f3-
mixing processes, which have never been considered for the
MMD-CUSUM test previously.

More broadly, our study falls under the umbrella of the
quickest change detection (QCD) theory [23]. Studies on the
QCD problem can be split into two categories: the Bayesian
and minimax formulation, depending on the assumption of
the change point. The Bayesian formulation, pioneered by
[24, 25], places a prior on the distribution of the change point
(usually a geometric distribution). Whereas the minimax
formulation, first considered by [26], assumes the change
point is unknown and deterministic. Under both formula-
tions, the different notions of detection delay are minimized
while constrained on the probability of false alarm or the
false alarm rate (1/ARL). A well-known Bayesian QCD
formulation is Shiryaev’s problem [24], which seeks the
stopping rule that minimizes the average detection delay
(under the change point prior) while constrained on the
probability of false alarm. The minimax formulations include
Lorden’s problem [26] and Pollak’s problem [27], where
the former minimizes the worst-case average delay and the
latter minimizes the conditional average delay while both
contained on the false alarm rate.

Although the CUSUM statistic was first proposed as a
heuristic for the minimax formulation under i.i.d. setting
by [6], strong optimality properties have been shown for
CUSUM statistic under various settings. Under the i.i.d.
setting, exact optimality was shown by [28, 29] for Lorden’s
problem. For general non-i.i.d. settings, [20] has shown
that an extension of the CUSUM statistic achieves the
information-theoretic lower bound on the conditional average
delay (as well as the worst case delay) asymptotically as the
false alarm rate goes to O.

However, the optimality result mentioned previously re-
quires specific knowledge of the pre-and post-change dis-
tributions. Furthermore, the QCD problems are intractable
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for general stochastic processes due to the lack of problem
structure [20]. Thus, the numerous studies on QCD for non-
ii.d settings [1, 20, 30, 31, 2, 19, 3, 32, 33, 34, 35, 36] cannot
be easily converted to the completely data-driven setting.

B. Contributions

As a non-parametric model-free change point detection
procedure, the MMD-CUSUM test exhibits great potential
in completely data-driven applications where distributional
assumptions may be difficult to verify. Our performance
guarantees under general mixing conditions establish its
robustness under dependent samples and further strengthen
its capability as a model-free testing scheme. The mixing
conditions considered in this paper not only subsume the
i.i.d., Markov chain, and HMM settings but also greatly
expand beyond those appearing in previous studies on the
performance of the MMD-CUSUM test. Our results indicate
that the Markovian or HMM structures are not necessary
for the strong performance of the MMD-CUSUM test.
Additionally, we provide the first performance guarantee for
the MMD-CUSUM test under exponentially «/3 and fast
¢-mixing processes. Note that stationary exponentially (-
mixing processes include the geometrically ergodic Markov
chains as a special case, which violates Doeblin’s condition
[37, page 402]. In stark contrast, Doeblin’s condition is the
core assumption for the performance analysis of the MMD-
CUSUM test in [5] and [22].

Il. BACKGROUND

In this section, we introduce the necessary background for
our discussion. Section A collects the usual facts about re-
producing kernel Hilbert space (RKHS) and maximum mean
discrepancy (MMD). Section B presents the two notions
of mixing used to obtain the main results. Our standard
reference is [38] for RKHS and [15] for mixing processes.

A. RKHS and MMD

Let (X,X,P) be a measure space with Borel o-algebra
X and o-finite measure P. Let P(X) denote the set of
probability measures over the o-algebra X'. The supremum
norm of f is written as || f||oc = sup,ex | f(«)| and its span
is written as span(f) = sup, ex |f(z) — f(2)].

A reproducing kernel Hilbert space (RKHS) H(X) on X
with kernel k£ : X x X — R is a Hilbert space of real-valued
functions on X equipped with inner product (-, )4/ x). The
corresponding Hilbert space norm || f H?{(x) = |||| The kernel
function k satisfies the reproducing property:

k(z,-) € H(X) and (f(-), k(z, ))nex) = f(2),
The current paper relies on a particular application of

RKHS — Hilbert space embeddings of probability measure.
The Hilbert space embedding of p under & is written as

UG () = / Kz, )dp,

where U () is also called the kernel mean embedding of .
Suppose v € P(X) is another probability measure. One can

for x € X.
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define a distance function between y and v using the Hilbert
space metric between U (p) and U(v)

MMDy (1, v) = [U(1) = UW) l3x)
which is known as the maximum mean discrepancy (MMD)
[7]. The kernel k such that MMDy, (u,v) = 0 < p = v for all
w,v € P(X) is call a characteristic kernel [39]. MMDy, with
a characteristic kernel k is a metric on P(X).

MMD enjoys a computational advantage, compared with
other probability distance functions, such as KL divergence
[40] and total variation metric (Definition 7), that allows it to
be easily estimated empirically for distributions on general
domains [9, 10].

Let X; ~ pand X; ~ v fori = 1,---,m and
j = 1,---  n. Define their empirical measures as fi,,, Un,
respectively. The consistent estimation of the squared MMD
is

. 1
MMD%(ﬂmaVn):W Z k(Xian)

1<ij<N
1 / / 2 /
T Z k(Xij)*%Zk(Xqu),
1<i,j<M 4,7

This was first used by [7] to propose the kernel two-sample
test, and it is the core component of the MMD-CUSUM test
studied in the current paper.

Throughout the paper, we assume the kernel £ is
real-valued, measurable, characteristic, and bounded, i.e.,
sup,ex k(z,2) = k < oo. The boundedness ensures MMDy,
is well-defined.

B. Mixing processes

The definitions of the mixing process require the following
necessary notations. Consider the space of X-valued dou-
bly infinite stochastic processes as (X°°, X, P) where the
indices of a process X = {X;}icz € X are allowed to
be —oo and oo. For each index ¢ € Z, let A denote
the o-algebra generated by {X;}°, and X! __ is the o-
algebra generated by {X,}i____. We use X7 to denote
the o-algebra generated by {X;}7___ U {X;}2 . ,. The
marginal probability measure on {X;}2°, is written as P§°
and the joint probability measure on {X;}!_ _ as P! __.
With these notations, we have the definitions of «, 3, and
¢-mixing coefficients following [41, 15].

Definition 1 (a-mixing coefficient). The a-mixing coeffi-
cient [42] of a stationary process X is defined as

a(n) = sup sup IP(AN B) —P(A) - P(B)|.

t Aex! | Bexpy,

X is called a-mixing if a(n) — 0 as n — oo.

The following S-mixing coefficient provides a stronger no-
tion of decaying dependence. It can be shown that 2c(n) <

B(n) [41].
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Definition 2 (3-mixing coefficient). The 8-mixing coefficient
[16] of a stochastic process X is defined as

B(n)=sup sup [P(C) —PL @ BX,(0)].

tocertpt
X is called B-mixing if S(n) — 0 as n — oo. The S-mixing

coefficient can be equivalently written as

B0) =swpBze_| sup [PEE,(CIA ) - B,(C)]].
t = cexz,

Comparing the second definition of S-mixing with the fol-
lowing definition of ¢-mixing, we can see that 5(n) < ¢(n).

Definition 3 (¢-mixing coefficient). The ¢-mixing coefficient
[18] of a stochastic process X is defined as

sup B9, (C|B) — I%(C)@ .

cexge,

¢(n) =sup sup [
t BeXx!

X is called ¢-mixing if ¢(n) — 0 as n — oo.

We say X is stationary with respect to u € P(X) if
the one-dimensional marginal probability of X; equals u for
Vi € Z. For stationary processes, the supremum over ¢ in
the above definitions can be ignored, and one can set ¢t =
0 without loss of generality. To maintain the simplicity of
the presentation, we focus on stationary stochastic processes
with a, 3, and ¢-mixing properties in the sequel. However,
the results put forward in the current paper can be extended
to asymptotically stationary processes, which is discussed in
Section VI.

The decay rates of the mixing coefficients play an im-
portant role in our discussion. The following definitions
introduce the exponential «/3-mixing condition and fast ¢-
mixing, which are used throughout the paper.

Definition 4 (exponential «/(-mixing). X is said to be
exponential « or S-mixing, if the « or S-mixing coefficient
satisfies

or f(n)
for &, 3,7, ¢ > 0.

Definition 5. [fast ¢-mixing] X is said to be fast ¢-mixing,
if the ¢-mixing coefficient satisfies

o= Z d(n) < co.
n=0

An exponentially decaying ¢-mixing coefficient is cer-
tainly summable and thus is covered under the above defi-
nition. Definition 4 and 5 form the basic assumption on the
mixing processes studied in the current paper.

To bridge the notions of mixing with RKHS, it is con-
venient to consider the following kernel mixing coefficient
introduced in [43].

Definition 6 (kernel mixing coefficient). Let X be a sta-
tionary process with distribution p. For n € N, define the

kernel mixing coefficient as
pr(n)
E<k(XTL7 ) - E/tk(X’ ')v k(X()v ) - Eltk(Xa )>7~£ (D

We denote the cumulative sum of the kernel mixing coeffi-
cient as ¥, := Y7 pr(n).

If we treat {k(X;,-)}icz as a sequence of Hilbert space
valued stochastic process, then as shown by [44, Lemma 2.2]
pr(n) can bounded by a constant multiple of the c-mixing
coefficient, i.e., pr(n) < 10a(n)k?. Thus, we get 3, < oo
under the assumptions of exponential a-mixing, exponential
[-mixing, and fast ¢-mixing.

C. Examples of mixing processes

One notable example of ¢-mixing processes is the uniformly
ergodic Markov chain. A Markov chain is said to be uni-
formly ergodic if it is aperiodic and satisfies Doeblin’s con-
dition [37]. Thus, it is also called the Doeblin chain. A g¢-th
order autoregressive (AR) process is ¢-mixing if the Markov
chain generated by stacking g consecutive states is a Doeblin
chain. The ¢-mixing coefficient decays exponentially for
uniformly ergodic Markov chains, therefore satisfying the
fast ¢-mixing condition in Definition 5.

Examples of exponential S-mixing processes include V-
geometrically ergodic Markov chains. The Markov transition
kernel P : X x X — [0, 1] with stationary distribution 7 is
said to be V-geometrically ergodic if it satisfies

TV(P"(z, ), m) < V(a)pt"/™, foralln,  (2)

where V' : X — [1,00) is a measurable function, m is an
constant integer, and p € [0,1). When V is bounded on
X, it becomes the uniform ergodicity condition. From a dy-
namic system perspective, V-geometrically ergodic Markov
chains subsume stable nonlinear systems with finite variance
additive noise [see 45, Section 3.5]. The aforementioned
examples all work as examples of exponential a-mixing
processes. Additionally, measurable functionals of «, 3, and
¢-mixing processes are also «, 3, and ¢-mixing processes.
The mixing coefficients are bounded by those of the original
processes [45, Lemma 3.6].

lll. PROBLEM FORMULATION
In this section, we first introduce the online change point
detection problem and the commonly used performance
metrics [see 19, 4]. Later, we discuss the proposed MMD-
CUSUM test and its properties.

In the sequel, we make the following assumption and
restrict our attention to stochastic processes satisfying the
exponential «/S-mixing and fast ¢-mixing conditions in
Definition 4, 5.

Assumption 1. The stochastic processes considered in what
follows satisfy one of the three mixing conditions in Defini-
tion 4 and 5.
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A. Online change point detection

The online change point detection problem is often formu-
lated as a sequential two-sample test which has been widely
considered in the past [6, 26, 21, 24]. Given a sequence
of samples {X;} from a stationary mixing process X with
distribution g, at each time step, the following null and
alternative hypotheses are proposed

Hj : p remains the same, Hi : p has changed.

Test statistics are calculated using the samples collected up
to the current time step. To detect the change quickly and
accurately, one attempts to reject the null hypothesis Hy via
a threshold rule at every time step.

More formally, consider a stationary stochastic process
X = {X,}iez € X adapted to its natural filtration with
unknown distribution y. At some unknown but deterministic
time index 7 € Z, we have X; ~ p for 0 < ¢ < 7 and
X; ~vfori>7+1, where p,v € P(X) and p # v.
This can be conceptually thought of as having a separate
and independent stochastic process X' € X following
unknown distribution v running alongside X. From the
outside, one can only observe X up to time 7, and at time
T, the observation is immediately switched to X",

Suppose the null hypothesis is rejected at time 7'(b), which
is a stopping time adapted to the filtration {X* };c7 and
a function of the threshold b. If we use E., and E; to
denote the expectation under Hy and H; respectively, then
the average-run-length ARL and the average-detection-delay
ADD can be written in terms of the stopping time T as
follows

ARL = E[T(b)]

Unlike the Bayesian formulation, we assume the change
point 7 is unknown and deterministic, and thus we set 7 = 0
without loss of generality. ARL measures the robustness of
the test against false alarms. Whereas ADD measures the
quickness of the test in response to an abrupt change. The
overall goal of online change point detection is to have a
ARL that grows with b as fast as possible and a ADD that
grows with b as slowly as possible.

B. MMD-CUSUM test

The MMD-CUSUM test is a sequential adaptation of the
kernel two-sample test. Consider a bounded, measurable,
characteristic, reproducing kernel £ : X x X — R. Denote
the reference dataset as D, = {X/}, of size h. The
detection algorithm processes the incoming data in blocks
of size r, which is denoted as B, (t) = {X; ZT:Zt171)r for an
integer t > 1. Let 75, and i, denote the empirical measure
constructed using the dataset Dy, and B, (t). Define the MMD

and ADD = Eo[T(b)].
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between these two empirical measures as
MMD [, D]
1
= <7"2 Z k'(X(tfl)r+nfl7 X(tfl)Ter*l)
1<n,m<r

1

+ ﬁ Z k(lem X;n)
1<n,m<h

2 / :

_ % ’ Z k(X(tfl)r+n717 Xm) ’ @)

1<n<r,
1<m<h

At time step ¢ = ¢ - r, the algorithm computes the following
test statistic; otherwise, it collects the new observations and
remains idle. Let integer M > r be the minimum number
of samples required to perform the test. We write the test
statistics at time step ¢ as

Slir) = JAX Snsli/r] “4)
Li/r]
Sn:li/r| = Z {MMD[ﬂTaﬁh] - A}v

t=n
where A > 0 is a tunable parameter that keeps the summand
slightly blew 0 under the null hypothesis. The corresponding
stopping rule with threshold b and M minimum samples is
written as

T(b,M):%inf{tZM/r:ét>b}. 5)

We make the following remarks regarding the above
MMD-CUSUM statistics.

a: Convergence of Empirical MMD

To correctly configure the offset parameter A, we need to
determine the envelope of the deviation of the empirical
MMD from the true one. The result collected in the following
lemma shows that the estimation error is bounded by a term
diminishing in the sample size plus a small margin, almost
surely for all three mixing conditions. Note that the empirical
MMD can be equivalently written as the MMD between
empirical measures. For probability measures p and v, we
write MMD(p, ) as MMD(ji,., 5,) Where fi,., 7, are empirical
measures of p and v with r and h samples, respectively.

Lemma 1. Let X and X' be two independent processes
with stationary distribution p and v satisfying the mixing
conditions introduced before. Given 6 > 0, there exist
constant C(r, h) such that the following holds almost surely
for sufficiently large h,

EMMD (fir, 0 )[ D] = MMD (p, v) | < C(r, h) + 6,

where C(r,h) = O(\/ng 1/ %) and E[-|Dy,] denotes
the expectation taken over the randomness in fi,, conditioned
on the reference dataset Dy,.

Proof:
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Applying triangle inequality, we get the following two ex-
pressions:

MMD {1y, ) — MMD(j1, ) < MMD(fiy, ) + MMD (v, 4,),
MMD(p, v) — MMD (i, D) > —MMD(fiyr, 1) — MMD(v, Dp,).

Let us consider the first inequality above, and the other
one follows similarly. Suppose we take expectation over the
randomness of [i,, and due to independence we have,

E[MMD (fir., 5, )| Dp] — MMD (1, v)
< EMMD(fiy, 1)) + MMD (v, 03
On the right hand side, the term Ex[MMD(fi,,u)] <
\/ 222 by Lemma 7.1 of [43] for all » > 0 and X which
satisfies ¥,, < oo. It remains to bound MMD(v,7;) for a
particular ,. Observe that

MMD (v, 7)) = h™*

-
Z b5 i )
4 Hie

where {H; = k(X;,-) — E,k} is a Hilbert space valued
stochastic process and { H; } enjoys the same mixing property
as X' since H; is a measurable function of X/. Thus, we can
apply the law of iterated logarithm for Hilbert space valued
a-mixing processes [44, Theorem 6] or [46, Theorem 2] to
conclude there exists constant ¢y > 0 such that almost surely

ZHi < cgy/hloglogh.
i=1 Hi

Note that the hypothesis of [44, Theorem 6] holds in
our case under the assumption of bounded kernel £ and
exponential «/S-mixing and fast ¢—mixing. Thus, there

exists a constant C(r, h) = O(\/I + 4/ 8l0el) guch that

MMD(fiy, Up) — MMD(u,v) < C(r,h) + 0 for sufficiently
large h. Similar, MMD(u, v) —MMD(fi., 75, ) can bounded from
below with —C(r, h) — 0, and the proof is complete. [ |

Lemma 1 indicates that under the null hypothesis (no
change), the bias of empirical MMD is bounded by a positive
quantity decaying at rate o(r—'/2 + h=/2loglogh) plus
a small margin for sufficiently large reference data. To
maintain a low value of the MMD-CUSUM statistics under
the null hypothesis, it is necessary to apply a certain negative
offset to the empirical MMD so that the cumulative sum in
(4) does not blow up when change is absent which leads to
the second remark regarding the parameter A.

lim sup
r—00

b: Offset parameter A

We shall determine the appropriate range for the offset
parameter A in (4) using Lemma 1. Note that A needs
to be sufficiently large under the null hypothesis such that
the MMD-CUSUM statistic does not blow up due to the
estimation error of the empirical MMD. As suggested by
Lemma 1, if A is strictly larger than C(r, h), i.e., A >
C(r,h) + ¢ for some margin § > 0, then the empirical
MMD is bounded by A almost surely for sufficiently large
sample size. On the other hand, the upper bound for A

appears under the alternative hypothesis (with post-change
distribution v). As we shall see in Theorem 3, A should
be strictly less than MMDy(u,v) — C(r,h) — & otherwise
the ADD can be unbounded. To tune A in practice, one
can simulate the pre-change scenario with different values
of A > C(r,h) + § using the reference dataset. For each
value of A, the ARL can be estimated with multiple runs of
the experiment. Then, choose the smallest A that yields the
acceptable ARL performance. Keeping the A small allows
the MMD-CUSUM to achieve better ADD.

IV. MAIN RESULTS
In this section, we establish the detection performance of
the MMD-CUSUM test using the metrics introduced in the
previous section. The average-run-length ARL characterizes
the average interval between false alarms, which is lower-
bounded in Theorem 2. The average detection delay mea-
sures the quickness of the detection, and an upper bound is
given in Theorem 3. The proofs are omitted due to the page
limit, and they can be found in the Supplementary Material’s
Appendix.

Before we state the results, let us briefly summarize the
technique we employed. Recall E,, denotes the expectation
under Hy. We can expand the E.[T(b, M)| as follows

t=1

=M + i <1—JP>OO{ Llj {T(b,M):t}}>

I=M+1 t=M+1

[eS) l t—M
I=M+1 t=M+1 k=1

00 l t—M
>M + Z (1 Z Z Poo{sk:t > b}> )
I=M+1 t=M+1 k=1
where union bound is applied to the last inequality. At
this point, it suffices to obtain an upper bound on the
tail probability Po.{sk.; > b} using Proposition 4, 5. The
tail probability bounds in Proposition 4, 5 offers simple
explicit subGaussian decay rates with linear or sublinear
dependency' on the sample size n inside the exponential.
This kind of decay rate is necessary for our analysis as it
dictates the scaling of ARL in threshold b. As we shall see
in the theorem below, the slower decay rate of Proposition
5 causes the difference in ARL between exponential a/[3-
mixing and fast ¢-mixing processes.

We note that the existing concentration inequalities ob-
tained for generic purposes are not well-suited for the task at
hand. For example, the classic concentration inequalities for
a-mixing, such as [45, Theorem 3.5], have tail bound with
an additive term in addition to the common exponential term

'Linear or sublinear dependency of sample size means a tail bound of
O(exp(—g(n)e?)) where g(n) grows linearly or sublinearly. By writing it
this way, we assume the tail probability measures the event {31 | X, —
nEX > ne} where the deviation scales with sample size n.
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seen in the usual Hoeffding’s inequality. When combined
with our technique, it leads to a prohibitively cumbersome
derivation of the ARL. The a-mixing concentration inequal-
ity in [47, Theorem 2] gives the tail bound on the relative
deviation (scaled by variance) instead of the absolute devia-
tion. The 5-mixing results in [48] and the a-mixing results in
[49] provide a subexponential bound of O(exp(—e¢)) which
is a weaker dependency on e than we desired. The detailed
discussion of the concentration inequalities we derived is
postponed until the main results are introduced.

We now state the main result on the upper bound of ARL
under the mixing condition described in Definition 4.

Theorem 2. The average-run-length for test statistics (4)
and stopping rule (5) under the null hypothesis has the
following lower bounds.

1) Suppose X is o/ -mixing satisfying Definition 4, then
ARL[T (b, M)]

S M1+ exp <bv116m)(1 +o(1), (6

2) Suppose X is ¢-mixing satisfying Definition 5, then
ARL[T(b,M)] > M — 1+ exp(bd)(1 +o(1)), (7)

where ~y is defined in Definition 4, and § > 0 is defined in
Lemma 1 and depends on A, h.

Proof:
Appendix D ]

Theorem 2 establishes the first ARL bound for the MMD-
CUSUM test under o/f/¢-mixing processes. The perfor-
mance of the MMD-CUSUM test under o/3-mixing case has
not been considered in the literature before, and Equation
6 provides the first exponential lower bound on the ARL.
In previous studies, ¢-mixing processes are considered in
certain specific cases, such as the uniformly ergodic Markov
chains [5] and hidden Markov models (HMM) [22]. Equation
7 generalizes the ARL bound therein to the broader ¢-mixing
processes without loss of performance. It also indicates that
Markovian or HMM structures are not necessary for the
exponential lower bond of the ARL.

The ARL bound in Equation 6 has a dependency on
v, which controls the mixing speed (Definition 4). This
dependency on -~y also is the result of applying the concen-
tration bound in Proposition 5. Suppose the o or S-mixing
coefficient has a decay rate of O(exp(—n)), i.e., v =1, the
ARL then achieves a Q(exp(b!/25%/2)) lower bound which
is slighted degraded in terms of the threshold b compared to
Equation 7.

Surprisingly, the ARL under the fast ¢-mixing condition
(Equation 7) achieves the (exp(b)) lower bound (same as
Markovian samples) while only requiring a summable ¢-
mixing coefficient. In comparison, the ARL lower bounds
in [5] and [22] are obtained under the Doeblin’s condition
[37, page 402], which corresponds to exponential ¢-mixing
conditions.
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To measure the quickness of the MMD-CUSUM test, we
estimate the expected value of the stopping time T'(b, M)
under the alternative (Hj). Recall that [Ey denotes the expec-
tation under H;. We can write the Eq[T'(b, M)] as follows

Eo[T'(b, M)] = > Pol3; <b] <> Pylsi:y < ]

to o0
= ZPO[Sl:t < b+ Z Pols1:+ < D],
=1 t=to+1

where the first inequality is due to s1.; < §;. Splitting the
summation at tg and trivially bound the first term with .
With a certain choice of tg, the second term can be shown
to be ultimately negligible or o(1) compared to ¢, using the
concentration inequality in Proposition 4 and 5.

Theorem 3. Suppose X is a mixing process satisfies Defini-
tion 4 or 5 and pre and post change stationary distribution
w and v satisfy MMDg(u,v) > C(r,h) + A + 0 for some
0 > 0. The average-detection-delay for test statistics (4) and
stopping rule (5) under the alternative hypothesis has the
following upper bounds.

ADD[T'(b, M)]

SmaX{M7D(,u,7I/)b—A—5}(1+O(1))7 (8)

where D(u,v) = MMDg(p,v) — C(r,h), and C(r,h) is
defined in Lemma 1.

Proof:
Appendix E ]

Theorem 3 gives the first O(b) upper bound on ADD under
all three types of mixing conditions. Similar to the ARL lower
bound, it was previously considered only under uniformly
ergodic Markov chains and HMM. Our result shows that the
Markovian or HMM structure is also not necessary for O(b)
upper bound on ADD.

Intuitively, the realization of the MMD-CUSUM statistics
should track its mean, which is just nMMD(u,v) for time
n. Therefore, the threshold b should affect the average
detection delay in a linear fashion. We note that the sufficient
separation between p and v is required due to the estimation
error of the empirical MMD as indicated by Lemma 1. This
can be satisfied by choosing r, h sufficiently large and ¢
sufficiently small to ensure MMDy,(p, v) —2C (1, h) —26 > 0.

We now establish the concentration inequalities for the
sum of bounded functions under mixing conditions. Propo-
sition 4 is a Hoeffding-type inequality for ¢-mixing pro-
cesses with summable mixing coefficients. We provide a
proof based on the martingale decomposition. Concentration
inequality for exponential ¢-mixing processes is obtained
in [50] using an information inequality-based argument.
The martingale-based method was used in [51] to study
the concentration inequality of dependent random variables
on countable spaces. Proposition 5 compliments the results
therein by considering stationary ¢-mixing processes on
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completely separable metric spaces. The sum of bounded
functions of ¢-mixing processes has a tight concentration
bound that resembles that of i.i.d. random variables, which
can be recovered by setting ® = 0.

Proposition 4. Let X be a stationary ¢-mixing process with
coefficient satisfying Definition 5. Assume that f : X — R
has bounded span and let S, =%._, f(X;). Then for ¢ >
0, it holds

ﬂ&—gmmmum}

< 2ne€>

<p | —

= &P (2® + 1)2span(f)? )’
where @ is defined in Definition 5.

Proof:
Appendix B ]
Compared to the O(exp(—ne?)) tail bound in Proposi-
tion 4, the following concentration inequality for S-mixing
processes has an O(exp(—ne?)) tail bound where 7 grows
sublinearly with the sample size n. The proof follows [47,
Theorem 2] with the modification of replacing Bernstein’s
inequality with Hoeffding’s Lemma (Lemma 10) to yield the
desired result for our purpose.

Proposition 5. Let X be a stationary (-mixing sequence
with the coefficient satisfying Definition 4. Assume that f :
Y — R has bounded span, ie., span(f) < oo, and let
Sy = 2?;01 f(X5). Then for all € € (0, span(f)), it holds

ﬂ&—gmmmum}

< (1+B/62)exp{ - sp2a7:(jf)2}

where i = |n[(10n/c)"/ D=1 and c,~ are defined in
Definition 4.

Proof:
Appendix C ]
To our knowledge, the tail bound in the above form has
not been considered previously. As opposed to the classic
two-term version in [45, Theorem 3.5] and the relative
error version in [47, Theorem 2], which can be difficult
to be applied in our analysis, Proposition 5 streamlines the
calculation of ARL and ADD in Theorem 2 and 3.
Compared to regular Hoeffding’s inequality for bounded
i.i.d. random variables [52], the exponent of the tail bound
has a sublinear dependence on sample size due to the
presence of n. n is close to n when ~ is large corre-
sponding to a faster decaying [-mixing coefficient (Defi-
nition 4). This sublinear relation with respect to n is also
reported by [49] and [48] as well under exponential «
and ([-mixing conditions with v = 1. They provided an
O(exp(—ne/(lognloglogn))) tail bound, which is a faster

rate in n compared to Proposition 5 with v = 1. It is tempting
to think that this tail could improve the lower bound of
ARL in Theorem 2. However, the subexponential, instead
of subGaussian’, dependency on ¢ makes it not applicable
to our proof. A similar concentration type inequality for a-
mixing processes is obtained in Proposition 14 following an
analogous proof.

V. NUMERICAL SIMULATIONS

In this section, we apply the MMD-CUSUM test to a simu-
lated stochastic process and verify the theoretical results. The
stochastic process is generated by simulating a stable linear
system A € R*** with an observations matrix C' € R2*4,
Let Z = {Z;};en denote the state process and Y = {Y; }ien
denote the observation process. The system update equations
can written as follows

Ziy1=AZ; + W,
Yip1.=0Z;11 + V5,

where A =[[0.96, 0.99, -0.88, 0.561,[0, 0.98, 0.75, -0.65],[0,
0, 0.97, 0.95], [0, 0, 0, 0.94]] and C =[[1, 0, 0, 0,], [0, O, O,
0L, [0, O, 1, 0], [0, O, 0, 0]]. Randomness is introduced into
the system through the actuation noise W; and observation
noise V; where W; “E A and \% B NG for all 4. In
our experiments, N7 and N3 are two multivariate normal
distributions. This is an example of a hidden Markov model
(HMM). The state observation joint process (Z,Y") and the
state process Z along are Markov chains; however, the obser-
vation process Y in general is not. The observation process
of this system is exponential S-mixing. This can be deduced
from the fact that the matrix A is stable and the noise has
bounded variance [45, Section 3.5, page 100]. To obtain an
exponential ¢-mixing process from the observations, one can
simulate the above system with truncated versions of A and
No.

The kernel chosen for the MMD-CUSUM test is the ratio-
nal quadratic kernel k7%(z, y) = (14 (20) 7 ||x—y||*) 7 for
o > 0 instead the popular Gaussian RBF kernel k77 (z,y) =
exp(—|lz —y||?/(20?)) for o > 0. As demonstrated by [53],
the rational quadratic kernel is favored over the Gaussian
RBF kernel in GAN applications, which indicates its superior
performance in separating probability distribution. We fix the
parameter o = 1 for all experiments. The reference dataset is
obtained by recording Y for 10* steps under the pre-change
configurations with an appropriate burn-in period applied to
the samples to maintain stationarity. We estimate the ARL
and ADD by taking the average of 50 independent exper-
iments for each threshold. The experiments are performed
under 3 different offsets to demonstrate the sensitivity of
this parameter.

We apply abrupt changes to the noise distribution N; of
the state process. The MMD-CUSUM test is applied to the

A subGaussian bound on € refers to a tail bound that looks like
O(exp(—e?)). A subGaussian bound on e refers to a tail bound that looks
like O(exp(—¢)).
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(c) ADD under mean shift.

observation process Y only. The noise observation poses an
additional layer of challenge for the detector. To simulate an
a/B-mixing process, it suffices to use the regular Gaussian
noise. To simulate a ¢-mixing, we sample from the same
Gaussian distribution and reject the samples falling outside a
[~1,1]* box. The random seeds are kept the same across the
regular and the truncated cases to ensure comparability. The
log(ARL) under both cases are shown in Figure Figure la
and Figure 1b. To our surprise, the ARL under the regular
Gaussian case maintains an exponential relationship with the
threshold, which suggests the ARL bound for a/f8-mixing
process can be improved. We discuss the difficulty associated
with this improvement in Section VI.

The ADD are estimated under regular
We present the ADD under two cases: (i) mean shift
N1(0,0.17) — AN/{(0.011,0.11) (Figure Figure Ic) and
(2) variance change N7(0,0.11) — N7(0,0.5I) (Figure
Figure 1d). The ADD scales linearly with the threshold b,
which corroborates our findings.

Gaussian noise.

VI. DISCUSSION

A. Unbiased MMD estimator

The following unbiased estimator of the squared MMD,
introduced in [7], can also be used to replace Equation 3. We
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(d) ADD under variance change.

write the unbiased estimator of the squared MMD between
W, v using m samples from p and n samples from v as

mi(ﬂmﬁn):m S k(X X;)

1<ij<N

1 2
1<ij<M (2]

where X; ~ p and X]’- ~ v for i = 1,---,n and
j = 1,---,m. We abuse the notation here and write
the empirical square MMD as the square MMD between
empirical measures, although they are not equivalent to
the unbiased estimator. Due to the unbiasedness, it is not
always non-negative and thus should be directly plugged
into the partial sum with the square root. To adapt mﬁ
to the current framework, it suffices to obtain a consistency
result such as Lemma 1, and the rest should follow. Con-
sider two independent stochastic processes X = {X;} and
X' = {X/} with stationary distributions y, v and summable
kernel mixing coefficients as in Definition 6. Suppose we use
m consecutive samples from X and n consecutive samples
from Y. Then, we can bound the estimation bias caused by
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the dependency between samples as follows,

E[MVD (fin, D)) — MMDR (1, v)

<[, 52)] ~ EFFB . 0,)]

+ [ 5] — w0200
i, T

m n
where the second inequality comes from [43, Lemma 7.1],
>, 2, are defined in Definition 6, and the expectations are
taken with respect to the randomness in the samples. After
denoting C, ,(m,n) == % + Z= and replacing C,, ,(m, n)
with C,,(m,n) throughout the paper, the same set of
results also holds for the CUSUM statistics defined with the

unbiased estimator MMDi.

B. Computation complexity

The time complexity at each time step is O(rh) where r is
the block size on the incoming data, and h is the size of the
reference dataset. Compared to the overlapping block design
in [5] with time complexity O(r2h), the non-overlapping
block design here increases the speed at the expense of
incurring a constant detection delay. The memory usage here
is constant since only the current block and the reference
data need to be stored. We present the implementation of
the detection procedure in Algorithm 1.

C. Connection to HMM
Hidden Markov models (HMM) cover a wide array of
real-world scenarios where the MMD-CUSUM test can be
applied. For a comprehensive review of HMM, please refer
to [54] and the references therein. Change point detection
for HMM arises from the monitoring complex dynamic
systems [55], such as communication networks [56], power
plants [57], healthcare monitoring [58], manufacture process
monitoring [59], distributed machine learning systems, etc.
For change detection, HMM can be treated as a mixing
process. Consider a Markov chain X := {X;} C X and its
observation process Y = {Y;} C Y, where Y is a complete
separable metric space with Borel o-algebra ). Define the
observation kernel @; : X x J — [0,1] and Q;(X;,A) =
P(Y; € A{Y: Yzt {X }i_ ). Then, Y is o/f/¢-mixing

as soon as X is a/f/¢-mixing [45, Theorem 3.12].

D. Asymptotic stationary processes

In practice, many mixing processes may not be strictly
stationary but convergent towards a stationary distribution at
a certain speed. For example, a Doeblin chain starts from
an initial distribution that is different from its stationary
distribution. Weak asymptotic stationarity was introduced in
[60] to study the generalization bound of online algorithms.
It combines the convergence to a stationary distribution and
[B-mixing into a single condition, which we choose not to
include for the sake of simplicity. Instead, we provide a
discussion on how to adapt Proposition 4 to asymptotic

stationary processes in the supplementary materials. The
adaption of Proposition 5 follows a similar argument. The
intuition is that as long as the process converges sufficiently
fast, the concentration of the partial sum will still hold.
Thus, the same results on ARL and ADD can be extended
to asymptotic stationary processes at no cost.

E. Obtain Q(exp(b)) bound on ARL under o/3-mixing

As shown in Figure 1a and 15, the difference in ARL between
a/B-mixing and ¢-mixing is minimal which might indicate
a tighter O(exp(b)) bound on ARL under o/f3-mixing. This
would be an improvement over the (exp(b'/7)) in Theorem
2 where ~ controls the mixing speed. However, the difficul-
ties lie in the unavailability (to the best of our knowledge)
of a subGaussian tail bound with linear dependency on the
sample size n for stationary a/f-mixing processes. This
bottleneck is also reported by a recent study [61] on the
concentration of kernel density estimator with dependent
data. Their findings are limited to ¢-mixing processes due to
the same issue. Circumventing this bottleneck might require
significantly new techniques, which are left as future work.

VIl. CONCLUSION

In this paper, we derive the ARL and ADD for the MMD-
CUSUM test under three stationary mixing conditions. Un-
der the ¢-mixing condition, the performance of the MMD-
CUSUM test is shown to match the ii.d. case and the
Markov chain case with uniform ergodicity. As a byproduct,
we provide concentration inequalities of the partial sum of
bounded functionals under «, 3, and ¢-mixing processes. To
our knowledge, the concentration inequality in Proposition
5 and the proof of Proposition 4 are novel.

We note the limitations of this study and future directions
as follows. MMD is known to have a poor separation
between probability measures, with differences only in the
high-frequency region [39]. The MMD-CUSUM test may
experience performance degradation in such scenarios. A
recent study [62] tackles this problem in the kernel two-
sample test setting via kernel spectral regularization. The
spectral regularized kernel achieves the optimal minimax
separation boundary, which results in an improved sample
efficiency compared to the usual kernel two-sample test.
Additionally, there have been several other exciting devel-
opments on kernel two-sample test [63, 64, 65]. It would be
an interesting future direction to adapt those methods to the
sequential test setting and analyze their performance.

Another limitation is that our technique does not exploit
the finer structures produced by the max operator over the
partial sum. The theory of extremes of random fields [66]
provides handy tools to estimate the probability of events
such as {supycg So > €}, where Sy is the sum of n random
variables in the random field and © is an index set, such as
integers or real numbers. [12] has demonstrated the utility of
this technique in the i.i.d. case and shown a sharp ARL bound
of O(exp(b?)). However, the extension of this technique
has yet to be explored in the non-i.i.d. cases. Additionally,
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leveraging the martingale property of the MMD-CUSUM
statistics with an unbiased estimator and the non-asymptotic
version of the law of logarithm for martingales [67] yields
another possible route to establish the performance bounds.
We plan to investigate these directions in the future.

APPENDIX

A. Auxiliary Facts

Definition 7 (Total variation metric). Let B := {f : || f|loo <
1,f: X =R, fis X-measurable}, the total variation metric
between probability measures p, v € P(X) is written as

TV(p,v) = Sup‘/fdu /fdv

= sup [n(A) —v(4)

Lemma 6 (Corollary D.2.5 in [68]). Let f : X — R be an
essentially bounded measurable function. For u,v € P(X),
we have

ln(f) —v(f)| < TV(i,v)span(f), )

where p(f), v(f) denotes the expectation of [ under p, v

Lemma 7. Suppose {X;} is a stationary ¢-mixing process.
Let g : X*° — R be an essentially bounded function and is
measurable with respect to the o-algebra X;%7,,. Then

where x _ yt . are two realizations of the trajectory up
to time t, and span(g) < ||g||cc When g is non-negative.

< 2¢(n)span(g),

Proof:

Elg(X:2) e o] — Elg(X35)lu" w1|

<|Elgxze et ] - E[g(Xfin)]‘

1| Blo(xg,) — Elo(xz)lt m]]

<2¢(n)span(yg),

where the first inequality is due to triangular inequality and
the second is due to the Definition 3 of ¢-mixing and Lemma
6. ]

Lemma 8 (Corollary 2.2 in [45]). Suppose {X;} is a sta-
tionary a-mixing process. Suppose qo, ..., q; are essentially
bounded functions, where g; depends only on X;i. Then

‘E{ﬁgl} - ﬁE(gi) k) lfll span(g;),

i=1 i=1
where span(g;) < ||gi|]|lco When g; is non-negative.

< dla(

Lemma 9 (Theorem 2.1 in [45]). Suppose {X;} is a sta-
tionary (-mixing process. Suppose qo,...,q; are essentially
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bounded functions, where g; depends only on X;. Then

l
i=1
where span(g;) < ||9i||oC when g; is non-negative.

Lemma 10 (Lemma 8.1 in [69]). Let X be a random
variable such that a < X < b almost surely. Then, for
r >0,

<Ii8(k H span(g;),

Elexp(r(X — EX))] < exp[r?(b — a)?/8].

B. Proof of Proposition 4

We show a generalized version of Proposition 4 with time-
dependent functions in Proposition 11, that is, the partial
sum S, of interest is replaced by S,, = Z?:_()l fi(X;) where
fi are potentially different. The key technique employed
here is the martingale decomposition of the partial sum
process generated by any stochastic process. In Lemma 12,
we demonstrate the martingale decomposition. In Lemma 13,
we establish that the martingale difference is bounded under
the ¢-mixing condition in Definition 5. Finally, we give the
proof of Proposition 11 using the two supporting lemmas.

Proposition 11. Let X be a stationary ¢-mixing process
with coefficient satisfying Definition 5. Assume that f; : X —
R has bounded span for i = 0,--- ,n — 1 and let S, =

S fi(Xi). Then for e > 0, it holds

2n2e?
S_ZIEfl >n€:|§exp<—7”>
|: El**l A2
(10)
where ® is defined in Definition 5 and {Ag,--- ,Ap_1} is

defined in Equation 13.

First, we give the martingale decomposition of the partial
sum process generated by any stochastic process.

Lemma 12. Ler X = {X;} be a stationary stochastic
process on the probability space (X>°,X>°,P). For i €
{0,---,n =1} and n € Zg, let fi : X = R be a
essentially bounded function. Let S, 2?711 fi(X;) be
the partial sum. Let {X* Y~ be the filtration generated
by X, ie, X' = O'(Xoo," , X0, "+, X;). Then, there

exists a martingale difference sequences {D; 1-:11 adapted
to {X }i=y such that
~ n—1
Sn E[fi(X3)]
=0
fzp +ZEL ZIEL DL an

where the expectatlons are taken w.r.. the stationary distri-
bution.

Proof:

We employ the martingale decomposition technique intro-
duced in Chapter 23 of [68]. For the following develop-

11
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ment, we use these short notations for tuples: X =
(X, -, Xpn) and 27, == (T, -+ ,Tp), for 0 < m <
Without loss of generality, we assume E[f;(X;)]

n
0
S

for + = 0,---,n — 1 to simplify the notation. For ¢
{-1,0,--- ,n — 1}, we define
[ n—1
) :Zfl(IzH- Y EAX)l L] (12)
= l=i+1

where g1 (2= 1) Yo flz) and g4 (22l) =
E[f,(X;)|z~L,]. With this definition, we observe that

=% et

i=1

n 1

9n— 1 — Gi— 1( ):| +90($0)

and for i € {0,---

gior(e ) = [ el m Bl )

,n—1} and 271 € XU,

Recall that X% = (X,oo,-~ , Xo,--+, X;), the above
equation shows that gi1( X)) = Elgi(X 309)|Xi;] P-
as. for ¢ > 0. Thus, {g;(X —oo)}Z;ol is a P-martingale

n—1

adapted to filtration {X* _}I 1.
decomposition of S,, centered at ) .,

It follows the martingale

s E[fi(Xi)]

n—1

Sh [fz( z)]:gn 1 Xn 1 ZE’fz
=0
n—1 n—1
=Y Di+g1(XZX) - Y E[fi(X)],
1=0 =0
where {D;}7— {9:(X ) — gia (XN s a

martingale difference sequence. We arrive at the Equation
11. ]

Next we show D; is bounded by showing =z +—
gi(z" =L, ) has bounded span for any z*. € X! and
1=0,- -1

Lemma 13. Suppose X is a stationary ¢-mixing process.

For each i € {—1,--- ,n— 1}, if we define

A; = 2P max{span(f;) :i+1 <1 <n-—1}+ span(f;),
(13)

where A_;1 = 2® max{span(f;) : 0 <1 <n—1}. Then it

holds thatfor 2t eXt andi=—1,---,n—1
inf gi(27,7) < gi(aloe) < inf gi(ag @) + Ai, (14)
x
Proof:

It suffices to show Equation 14 holds. The first inequality
is obvious. To show the second inequality, we pick arbitrary

z* € X and we have

7 n—1
(@lo) =D fila) + Y E[fi(X0)|rl ]
1=0 I=i+1
i—1 n—1
<) filw) + fila") + Z E[fi(X1)|aL o)
1=0 I=i+1
— n—1
S B )+ S BRI 07
I=i+1 I=i+1
+ span(f;).

Due to Lemma 6 (first inequality) and triangular inequality
(second inequality), we can see that

ZElel 2]

l=i+1

sy Bi(c|28 2))

n—1

Z E[fi(X1)|z

l=i+1

< 3 span(f)Tv(BiClat
l=it+1
n—1

< X span(h) | V(B(le! ). + TVECa ),
l=it+1

< 2®max{span(f;):i+1<1l<n-—1},

where the last inequality follows from Lemma 7 and Defi-
nition 5. Thus, we have
i—1 n—1
gilah) < 3 filen) + fita) + 3 BRI, 7]
1=0 I=i+1
+2® max{span(f;) :i+1<1<n-—1}+ span(f;)
<gi(xi ™, x*) + 20 max{span(fy) ;i +1<1<n—1}
+span(f;)
=gi(xh 7t %) + A
Since x* is arbitrary, we obtain  g;(zf) <
inf,«cx g; (scgfl, x*) + A;, which completes the proof
of Equation 14. ]
Finally, we estimate the tail bound using the classic
Chernoff’s bounding method [70]. In Remark 1, we note
that a similar tail bound can be obtained for asymptotically
stationary processes with a certain convergence (to stationary
distribution) rate.

Proof:
(Proposition 11) By Lemma 12, we have the martingale
decomposition of X as in Equation 11,

|
-

n

Sn E[fi(X4)]

i

-5 oo Sarxo-ll - e

=0 1=0
where we abuse the notation and denote D_, =
Yiso BLA(X0)IXZL) — 275 Elfi(Xi)). One can use

Chernoff’s bounding method to obtain an exponential bound

I
o
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on the desired quantity. Taking the moment generating obtain
function on both sides of Equation 11 and applying the chain | =~ n-1
rule for conditional expectation recursively yield for 6 > 0 IP’[ S — Z w(fi)| > ne}

n—1 =0

E|ex 0 Sn — E|f:(X; (@) -] ~ n-l n-! ~
[ e (0( 2 Bl ) < B[, - LBl + X span(fzrv(i > n
i=0 i=0
exp Z D; ®) 2[ne — 1) span(f;)2TV(B;, p))?
< 2exp ( - =0 T : ) )
i=-1 S, A2

n—1
=Elexp(0D_1)] [ [ Elexp(6D;)|F;-1].
i=0
From lemma 13, we know that D, lies in an interval
of length A; for all ¢ € {—1,--- ,n — 1}. By Hoeffding’s
Lemma [68, Lemma 23.1.4] for bounded martingale differ-
ence sequences, we have for 6 > 0,

Elexp(§D-1)] < exp(6A2,/8)
Elexp(0D;)|Fi_1] < exp(6?A2/8),
and plugging above into Equation 15 yields

[exp( (S,L—ZJEJ% i )) <eXP<

Applying Markov’s inequality to the left-hand side, we have
n—1 1
(5. - B > ne
i=0 -

B n—1
< exp(—ne@)E[exp <9 (Sn - Z E[fi(

i=—1

92 n—1
<exp<—n60+8 Z Af)

1=—1

5)

277, 1
> )

i=—1

)

Picking = 4ne/ >, A?
and yields

PKS” - gmﬁ(xi)]) > ne] < exp ( - Ziﬁ;g)

The tail probability of the other side can be bounded analo-
gously. Therefore, we have
2n2e? )
S A2

{5 —ZEfi
(16)

This completes the proof after noticing that X is stationary
and hence E[f;(X;)] = p(f;) fori=0,--- ,n— 1. [ ]

Remark 1. For asymptotically stationary processes, the
marginal distribution of X; differs from the stationary distri-
bution p but converges to (i as i — oo. To consider the tail
probability of S,, centered around Y "'~ 01 w(f:), we apply

triangular inequality to (a) and Equation 16 to (b) and

minimizes the right-hand side

>ne} §Qexp(—

VOLUME 00 2024

fore>n"tY ") ' span(fi)2TV(P;, p). Thus a similar tail
bound can be obtained after assuming there exists a constant
upperbound for Z?;(} span(f;)2TV(P;, ) for all n.

C. Proof of Proposition 5

We modify the proof of [47, Theorem 2] by replacing

Bernstein’s inequality with Hoeffding’s Lemma (Lemma 10)
in bounding the ®; term to yield the desired result for our

purpose.

Proof:

Given integer n, choose any integer £ < n and define | =
In/k|. Let p = n — kl and define the index sets I; for
1=1,2,...,k as follows

I {i,i+k,...,
B RSy
Note that U;I; = {1,..,n} and within each set I; the

elements are pairwise separated by at least k. Let G; =
f(Xa) = E[f(X1)], T(i) = 3¢5, Gj» and p; = [Li|/n then

n k
Sp—ES, = Gi=»_ > T(i)
i=1 i=1j€l;
k
Zpi =
=1

L

— I;| =1

- ;\ |
Now, we write the moment generating function of
>t G;i/n for 7 > 0, which can be bounded as follows
using the convexity of the exponential function,

E{exp (E—nG)] < gpiE[exp (T;m a7

We now bound the right-hand side in the following fashion.
For i =1,2,...,k, we have
i)

|ew (71 )] = {HeXp<

[1;]

<Ie|eo (7))

Jj=1

i+ 1k} 1<i<p
it (I=1k} p+1<i<k

13
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For convenience, we denote the first term on the right-hand
side of the above as ®; and the second term as $,. We
bound them separately. ®; can be estimated with Hoeffding’s
Lemma (Lemma 10) for bounded random variables. For r >
0,

|1;]

o 1o (160)] 2 (o (:€2)))"

(v) r?span(f)?
< - - N7
!

where (a) is due to stationarity and (b) comes from Lemma
10. Note that |I;| > [ for i = 1,2, ..., k, thus we have

Tzspan(f)T
8l '

®5 can be bounded by the S-mixing inequality in Lemma 9
and the exponential 3-mixing condition (Definition 4).
1| |1

-l )] Hiefo(c2)]

(a) [1;] .
< 8L - D] ||exw [G] H

e
< B(R)(1 L] = 1)er=w=ns)

19)

¢y <exp {

Jj=1

b
(S) e\I,i|—25(k)e—ck7 erspan(f)

< gexpﬂm + rspan(f) — ¢k}, (20)

where (a) is due to Lemma 9 and (b) is due to Definition 4
and the fact ||I;|| — 1 < exp(|;| — 2).
Now, we plug Equation (19) and (20) into Equation (18),

<o ()]

r?span(f)?
< exp [ 8l
Since |I;| and k are free variables, we add some structure to
simplify the right-hand side of the above. First, we require
4|I;| > rspan(f) which leads to exp{|I;| + rspan(f) —
ck?} < exp{5|I;| — ck?}. Next, we require exp{5|I;| —
ck™} < 1, which holds if 5| ;| < ¢k Since |I;| < (n/k+1)
and n + k < 2n, it suffices to let k& = [(10n/c)Y/ (1],
Then, we have

(1) o P07

. 41 4|1 S
which holds for 0 < r < span() < Span(h) forie=1,...,k.

Plugging the above back to Equation 17 and using the fact

r?span(f)?
81

] + e%exp{\[” + rspan(f) — ck"}.

that exp } > 1, we have

E[exp (@%LIG)} < (1+ B/e?) exp [W}

Applying Markov’s inequality, we have for € > 0
]P’[Sn —ES, > ne| = P[exp K(Sn —-ES,) > e”]
n

< Elexp (S, — ES,)]

- 67’6
r 2 2
< (1+ B/e*)exp —re—&—TsPZln(f)]. (21)
The right-hand side achieves minima w.r.t. » when
B 4el
~ span(f)?’

which clearly satisfies r < when ¢ < span(f).

span(f)
Plugging the minimizer into Eéuation (21) yields
[ | - [ 20 ]
P|S, —ES, > <1 2 -
_ne_ <(1+p5/e )exp_ span(f ]

Replacing | by 7 = |n/k| = |n[(10n/c)"/O0FD]=1] gives
the desired result
2ne? ]
i span(f)?]’
for 0 < € < span(f). |

A similar proof gives an analogous Hoeffding-type in-
equality for exponential a-mixing processes which is of
independent interest. We document it here for completeness.

P|S,, —ES, > ne §(1+5/62)exp -

Proposition 14. Let X be a stationary a-mixing sequence
with the coefficient satisfying Definition 4. Assume that f :
Y — R has bounded span, i.e., span(f) < oo. Let S, =
S F(X3). Then, for all ¢ € (0, span(f)), it holds

N 2
(22)

where 1 = |n[(10n/c)/O+V] 1| and ¢, are defined in
Definition 4.

Proof:
The proof is the same as that of Proposition 5 except for the
part where @, is estimated. In the a-mixing case, ®, can be
bounded by Lemma 8 and exponential c-mixing condition
(Definition 4).

| 1i]

o= e T (- €0)] - TT2[oo (-2

J=1

|1;]

Csam(n -1 ]

j=1

< do(k)(|I;] — 1)erspan(d)

(2 ellil=24a/(k)e=cF" erspan(f)
< de2aexp{|I;| + rspan(f) — ck}, (23)

where (a) is due to Lemma 8 and (b) is due to Definition 4
and the fact || ;]| — 1 < exp(|I;] — 2). The rest of the proof
follows that of Proposition 5. ]
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D. Proof of Theorem 2

1) Case 1: S-mixing

When X is exponential 5-mixing satisfying Definition 4, we
show the lower bound of ARL as follows. For exponential
a-mixing processes satisfying Definition 4, the proof fol-
lows the same procedure after replacing Proposition 5 with
Proposition 14.

Proof:

To determine the upper bound for ARL, we condition on the
fact that the change point 7 is co. We use E,, and P, to
denote the expectation and the probability under 7 = co. For
threshold b > 0, minimum burn-in period M, and stopping
rule T'(b, M) in Equation (5), the ARL reads

[T(b, M)] = > Poo[T(b, M) > 1]
=M+ i P [T (b, M) > t]
t=M+1
9] l
=M+ Y (1—1P’oo { U {70, M) —t}}>
I=M+1 t=M+1
0o l
(§)M+ (1—1[”00{ {st>b}}>
I=M+1 t=M+1
L l t—M
>M+ Y (1—]?00{ U U sk >b}}>
I=M+1 t=M+1 k=1
() L l t—M
>M+ Y (1— > me{sk»b})
I=M+1 t=M+1 k=1
L—M l t
=M+ Z (12 oo{skt+M>b}> ) (24)
=1 t=1 k=1

where (a) is due to the majorization of the event {T'(b, M) =
t} to {8 > b}, (b) is due to the application of the union
bound, and M < L < oo is an integer constant.

To further lower-bound the right-hand side of the above,
we consider the tail probability in (24). Due to stationarity,
we can study Po,{s1.;+ > b} for some ¢ > 1 without loss
of generality. Suppose we pick the offset parameter A =
C(r,h) + ¢ for some § > 0. By Lemma 1, we known that
Eco[s1:t) = tEso[s(Br(1)] € [-tC,,, (1, k) — td, —td] almost
surely for sufficiently large h. Additionally, one can verify
that {B,.(t)}32, is S-mixing with coefficient 5(t) = B(tr).
By assumption, 3(¢r) satisfies Definition 4 and

B(t) = B(tr) < Bexp(—cr?t?),

VOLUME 00 2024

for 3,7, c > 0. Thus, we can apply Proposition 5 to obtain
a tail probability bound on s;.;. For ¢t > 1,

]P)oo[slzt > b]
=P {514 — Exo[51:¢] > b — Eco[s1:4]}
@ 24 3 2t(b — tEoo [s(B,(1)])?
T eXp{ ~ #2span(MMD[B,(1), Dy))? }
© 62+Bexp[_(b+t5)]

€2 2k

© 24 3 ve\ 7 | (% +Vt6)?

< ¢ +Bexp 1-—- re 7(\/2 T ) , (25)
e2 10 1T k

where in (a) we apply Proposition 5 for the con-
ditional probability under event A, in (b) we apply
span(MMD[B,(1), Dp]) < V/2k which can deduced from (3),
and in (c) t is replace with its lower-bound,

= WJ - thtr‘"/tC)Hl” +1J

t
Sh
L(10tr="/c) T+ + 1T+
ol il
tTH tTH
Z 1 J 1 -1
L(10r=7/c) T+ (10r=7/c)T+7
> [(17¢/10) 77 — 1)t (26)
assuming c¢,r,y are sufficiently large such that

(r”c/lO)ﬁ > 1.
The r1ght -hand side of (25) achieves its maximum when
t=t (7+2)b , which yields

IP)oo[slzt" > b] S D7 (27)

where

D= (1+fe ?)exp [5(%}:’ ") 5%1}
D,

2 742

e\ T 9 2(2 >_7+1

er) = [1-( — Z42) (241 .
) [ (10> (7 ) gl

Note that £(7y, ¢, 7) < 0 for sufficiently large ¢, r,~.
Using (27) and stationarity, each of Poo[Sg:t4as > b] in
(24) can be upper-bounded by Pu,[s1.4« > b], which yields

Eoo[T(b, M)] >M+L§{1—ZZ]P’ s”*>b}

t=1 k=1

L—M
=L-D > I(l+1).
=1
The right-hand side achieves maxima when L = L*, where
L* is obtained as the largest solution of

(L* — M)(L* — M +1) = 2/D.

(28)

15
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Some simple calculation shows that

11
L*=M -5+ 5V1+8/D.

Returning to (28), we have

Eoo[T'(b, M)
L*—M
-D > PP+
=1
> L* — D(L* M)(L* — M +1)(L* — M +2)/6
4 1
> M+ — ( )—§2M—2+6\/1+8/D

\[

+ 1/
where the second to last inequality uses the fact that

a+b>+/a/2+ +/b/2 for a,b > 0. Plugging the value
of D yields the lower bound in (6). [ |

> M+

2) Case 2: ¢-mixing

When X is ¢-mixing satisfying Definition 5, we show the
lower bound of ARL as follows. For exponential a-mixing
processes satisfying Definition 4, the proof follows the same
procedure after replacing Proposition 5 with Proposition 14.

Proof:

Follow the same argument in Case 1 until the application of
Proposition 5. Note that {B,(t)}:2, is ¢-mixing with coef-
ficient ¢(t) = G(tr). Thus, {B,(t)}s2, satisfies Definition
5 with constant ® as soon as X does. Then, we can apply
Proposition 4 to obtain a tail bound on s;.;. For t > 1,

]Poo[sl:t > b] =P {Sl:t — [81 t] >b— Ew[sl;t}}
< exp{ _ 2(b_ﬂE00[ ( T(l))]>2 }
- t(2® + 1)2span(MMD[B,(1), Dp])?

The right-hand side of the above achieves its maximum when
t =t* :=b/4, which yields

Poo[s1.e+ > b] < exp {— 426}, 29)

The rest of the proof follows the same procedure in Case 1.
Then, we have

Eoo[T'(b, M)
vi-9 2 [ 2b3 }

> M + 6 + 3 ex 2
We arrive at the ARL lower-bound in (7). [ |
E. Proof of Theorem 3

Case 1: g-mixing

When X is exponential S-mixing satisfying Definition 4, we
show the upper bound of ADD as follows. Note the offset
parameter A = C,, ,(r,h) + J as defined in the proof of
Theorem 2 in Appendix D.

Proof:

Assuming the change point 7 = 0, we denote the probability
and expectation under the alternative as Py and Eg, respec-
tively. For t > 1, Eq{MMD[B,(t), Dy]} > MMD(p,v) —
C(r,h) — ¢ almost surely for sufficiently large h according
to Lemma 1. Let D(u,v) := MMDy(u,v) — C(r, h). Now,
we can write the average detection delay as follows

ZIP’Ost<b SZ [s1.4 < b]

< ZPO[SL:& < b+ Z Po[s1:c < B]

t=1 t=to+1
b } -
<max{M, ——+———+ + Po[s1.¢ < b],
{ D(u,v)—A—=34§ t:;—l

(30)

where t; = max {M , W}. In the rest of the proof,
we aim to show that the second term on the right-hand side
is ultimately bounded by a constant multiple of the first term,
and the desired result is reached.

To bound the second term, we apply Proposition 5 to get
the tail probability bound of s;.;, similarly to the proof in
Appendix D. For t > ¢ty + 1, we have

Polsi:t < 0] < Pg{si.t —Eo[s1.4] < b—Eo[s1.4]}

a) _ 2t(Eo[s1:¢] — b)?
<(1+p/e*)exp {tQSpan(M/@[Br(t%DhDQ }

. D A ) — b2
2 +B/62)exp{—t[t(D(u7 )t2/_cA 5) — b] }
20+ Blet) e {—w(c, el ”>tﬁ§k 5) — b’ } |

where span(MMD[B,(t),Dy]) < V2k can be deduced
from Equation (3), (a) follows from Proposition 5 and
t = [t[(10t/c)/O+D]=1|, (b) uses stationarity of the
post-change process and the conditioning on A’, and (c)
follows from the relation in Equation (26) and %(c,~y) =
(10/c+1)~ T —1. After magnifying the exponential term by
setting b to to(D(u, v) — A —¢) and splitting the summation

at ¢ == [tg] for some o € (%, 1), the second term on
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the right-hand side of Equation (30) becomes is written as
1 = >
_— ]PO Z HDO[Slzt S b]
L+8/e tz%rl t=to+1
[ee) . B 9 _ 9 00
< > e { oyl PN IR = 5 Blare = Bolaid <4 Bolnell4)
t=to+1 tk t=to+1
S 3 2(Eolso] — b)?
(D(pu,v) — A= 8)* <Y exp{- 0
= €xXp *'l/)(ca 7) 21~ — - p 2 VIMD 2
t:Z1 { (t+ to)liﬁk t=to+1 t(2® + 1)?span(MMD[B,.(t), D))
= D(u.v) — A — 62 = [H(D(v) — A~ 8) — b
+) exp{ —1(c,7) D) — ) < > exp { — .
t=F (t+to) Tk t=to+1

< (F-1)exp {—wm 1) Plr) = & =07 }

o _ a2 ﬁ
+3 exp {wc,v)(D(“’”) L0 }
= (+t7 TR
where the first term is magnified by fixing ¢ = 1 for all
summands, and the second term is magnified by majorizing
the denominatg{ iPside the exporzlintjal for each surgmaind
via (1+to/t) Tk < (1417 /)T k < (1+t7 1) k.
At this point, we can compare the growth rate of the two
terms above and tp, which yields

(-1

_ _ 82
tim Y e d (o) P2 TR
toroe o (1+t) ™k

) > D(p,v)— A =96 2T
B S B e Ll B
TS (I+tz")rk
where both equations above follow from o € (%, 1).
Thus, we have
1 oo
lim — Po[s1.+ < b] = 0. 31
tomoo to t:%;H olsre <8 G
We have reached the desired result in Equation (8) after
combining Equation (30) and (31). [ |

Case 2: ¢-mixing

When X is ¢-mixing satisfying Definition 5, the upper
bound of ADD is shown to follow Equation 8 using the same
recipe as in Appendix E. Using Proposition 4, the second
term on the right-hand side of Equation 30 can also be proven
ultimately negligible compared to the first term.

Proof:

We shall directly start bounding the second term on the
right-hand side of Equation 30 using Proposition 4, which

VOLUME 00 2024

If we magnify the exponential term by setting b to
to(D(p,v) — A —4) and split the summation at ¢ := [tg/s],
then it becomes

i {]P’o[su < b]}

t=tot1
= t:%exp {—(D(“’ V) = At]_; 8)(t — to) }
= ge}(p {_ (D(n, l(/t)—;toA)]}_ 5)2t2 }
S P

< (- 1)exp {_ (D(Ma/)—f—_tﬁk_ )2 }

+ iexl) { (D(u(ﬂ ;/A2)g 5)%} |

At this point, we can easily verify that both terms on the
right-hand side are ultimately negligible compared to ¢, and
the proof is complete. [ |

F. MMD-CUSUM Test Pseudocode
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