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An extended asymmetric sigmoid with
Perceptron(SIGTRON) for imbalanced linear

classification
Hyenkyun Woo

Abstract

This article presents a new polynomial parameterized sigmoid called SIGTRON, which is an extended asymmetric
sigmoid with Perceptron, and its companion convex model called SIGTRON-imbalanced classification (SIC) model
that employs a virtual SIGTRON-induced convex loss function. In contrast to the conventional π-weighted cost-
sensitive learning model, the SIC model does not have an external π-weight on the loss function but has internal
parameters in the virtual SIGTRON-induced loss function. As a consequence, when the given training dataset is
close to the well-balanced condition considering the (scale-)class-imbalance ratio, we show that the proposed SIC
model is more adaptive to variations of the dataset, such as the inconsistency of the (scale-)class-imbalance ratio
between the training and test datasets. This adaptation is justified by a skewed hyperplane equation, created via
linearization of the gradient satisfying ϵ-optimal condition.

Additionally, we present a quasi-Newton optimization(L-BFGS) framework for the virtual convex loss by devel-
oping an interval-based bisection line search. Empirically, we have observed that the proposed approach outperforms
(or is comparable to) π-weighted convex focal loss and balanced classifier LIBLINEAR(logistic regression, SVM, and
L2SVM) in terms of test classification accuracy with 51 two-class and 67 multi-class datasets. In binary classification
problems, where the scale-class-imbalance ratio of the training dataset is not significant but the inconsistency exists,
a group of SIC models with the best test accuracy for each dataset (TOP1) outperforms LIBSVM(C-SVC with RBF
kernel), a well-known kernel-based classifier.

Index Terms

Extended exponential function, extended asymmetric sigmoid function, SIGTRON, Perceptron, logistic regres-
sion, large margin classification, imbalanced classification, class-imbalance ratio, scale-class-imbalance ratio, line
search, Armijo condition, Wolfe condition, quasi-Newton, L-BFGS

I. INTRODUCTION

Learning a hyperplane from the given training dataset D = {(xl, yl) ∈ Rs × {−1,+1} | l = 1, 2, · · · , d} is
the most fundamental process while we characterize the inherent clustered structure of the test dataset. The main
hindrance of the process is that the dataset is imbalanced [14], [27], [42], and there is an inconsistency between
the training and test datasets [2]. To address the class-imbalance problem, one can apply under-sampling or over-
sampling strategies while preserving the cluster structure of dataset D [21]. In addition to the class imbalance
problem, there is another imbalance problem, known as scale imbalance, between the positive class {xi | i ∈ N+}
and the negative class {xj | j ∈ N−} of D [42]. Here, N+ = {ℓ | yℓ = +1 and (xℓ, yℓ) ∈ D} and N− = {ℓ | yℓ =
−1 and (xℓ, yℓ) ∈ D}. Considering scale and class imbalance simultaneously, we generalize the class-imbalance
ratio rc =

| N+ |
| N− | to the scale-class-imbalance ratio

rsc = rc

√√√√∥∥xcp ∥∥2 + 1

∥xcn ∥
2 + 1

, (1)

where xcp =
1

| N+ |
∑

i∈N+
xi is the centroid of the positive class of D and xcn = 1

| N− |
∑

j∈N−
xj is the centroid of

the negative class of D. When rsc = 1 and
∥∥xcp − xcn

∥∥ > a where a is a positive constant, we say that D is well-
balanced with respect to rsc. See [21], [42] for more details on imbalanced problems appearing in classification.
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It is worth mentioning that we can improve the scale imbalance through various normalization methods [16], [23].
In our experiments, we use the well-organized datasets in [8]. They are normalized in each feature dimension with
mean zero and variance one. This dimension-wise standardization is the first step of batch normalization [23] in
deep learning. By way of the mean zero normalization, the scale-class-imbalanced ratio is always better than the
class-imbalance ratio. The details are following.

Theorem I.1. For {xi | i ∈ N+} and {xj | j ∈ N−}, let us consider mean zero normalization,
∑

i∈N+
xi +∑

j∈N−
xj = 0. Here xcp ̸= 0 and xcn ̸= 0. Then, if rsc = 1, we have rc = 1. On the other hand, if rsc ̸= 1, we

have | rsc − 1 | < | rc − 1 |.

Proof. From
∑

i∈N+
xi = −

∑
j∈N−

xj , we have rcx
c
p = −xcn and thus rc =

∥xc
n ∥

∥xc
p ∥ . By using (1) and rc =

∥xc
n ∥

∥xc
p ∥ ,

we have ∥xcn ∥
2(r2sc − 1) = r2c − r2sc and thus the results are obtained.

In addition to the mean zero condition, the variance one condition implies that rc

(∑
i∈N+

x2
i

| N+ | − 1

)
+

(∑
j∈N−

x2
j

| N− | − 1

)
=

0. By assuming that | N+ | and | N− | are sizable, we have rc(V ar(N+) + (xcp)
2 − 1) = (1 − V ar(N−)− (xcn)

2)

where V ar(N+) = 1
| N+ |

∑
i∈N+

(xi − xcp)
2 and V ar(N−) = 1

| N− |
∑

j∈N−
(xj − xcn)

2. If the number of positive
instances is sufficiently larger than the number of negative instances, then, from the dimension-wise standardization,
we have xcp ≳ 0 and V ar(N+) ≈ 1. On the contrary, xcn is located away from 0, and thus V ar(N−) is relatively
small. We have the opposing situation in the case rc ≪ 1. We notice that when rc is sufficiently far from 1, the
minority class is tiny and far from coordinate zero. It is hard to quantify the variance of the minority class. Thus,
the corresponding decision boundary is somehow ambiguous. Even though a deep neural network is trained to the
limit with batch normalization, it is hard to obtain reasonable classification results. This phenomenon is known
as minority collapse [13]. This article is mainly interested in the case where rsc is not severe, but there exists an
inconsistency of rsc between the training and test datasets [2].

In cost-sensitive learning [2], [7], [14], [21], [31], we usually use the π-weighted loss function to learn a
hyperplane decision boundary considering rc of the training dataset. Empirically, π-weight is set to be in proportion
to the inverse of the size of each class. Additionally, it could be determined by the cross-validation [31]. However,
it is still unclear how π-weight is related to rc of the training dataset. [7] uses the inverse of the effective number
of instances, known as the expected volume of instances, for the π-weight. For the dimension-wise standardized
dataset [8], the inverse of the proposed rsc (1) is a possible option for π-weight. For imbalanced object detection, [31]
has proposed the famous non-convex focal loss function, which uses the power function of the probability related to
the opposite class (and π-weight) on the logistic loss. They also suggested a π-weighted convex focal loss function
based on standard logistic loss. Regarding test classification accuracy, the convex approach is comparable to the
non-convex focal loss. Additionally, see [36], [45] for designing large-margin loss functions and the corresponding
π-weighted cost-sensitive loss functions based on Bregman-divergence.

This article shows the connection between the class-imbalance ratio (including the scale-class-imbalance ratio,
the ratio of the effective number of instances, etc) and the loss function via a skewed hyperplane equation. Instead
of the margin of each instance, the statistic of the margin distribution [11], [26], i.e., mean-margin, is considered
while we describe the skewed hyperplane equation. One of the primary goals of this article is to suggest not a
π-weighted loss function but a new class of adjustable convex loss functions by way of virtualization for novel
cost-sensitive learning. For this purpose, we design SIGTRON(extended asymmetric sigmoid with Perceptron) and a
novel cost-sensitive learning model, the SIGTRON-imbalanced classification (SIC) model. The proposed SIC model
has internal polynomial parameters in the virtual SIGTRON-induced loss function instead of the external π-weight
on the loss function. By the inherent internal structure of the parameters, when rsc (or rc) of the training dataset is
not severe, the SIC model is more adaptable to inconsistencies of (scale-)class-imbalance ratio between training and
test datasets. We demonstrate the effectiveness of our model by conducting experiments on 51 two-class datasets.
For more information, refer to Figure 6 (a) in Section V-A and Table V in Appendix B for rsc and rc of the binary
class datasets.

Before we go further, we present the definition of virtualization. The virtual convex loss function ℓ is defined as
a function satisfying ∇ℓ = −p for the given probability function p. For instance, the gradient of the logistic loss
function is the negative canonical sigmoid (probability function) ∇ℓ(x) = −σ(−x). Various variants of soft-max
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function and canonical sigmoid function, such as sparsemax [35], sphericalmax [43], Taylormax [3], high-order
sigmoid function [58], and other diverse activation functions [10] are in the category of gradients of virtual loss
functions. SIGTRON, which we will introduce in the coming Section II, is also in this category. Although, in this
article, we only consider S-shaped probability functions [39], [48] for virtualization, they could be expandable to
general functions. A typical example is the quasi-score function, of which the virtual loss function is the negative
quasi-likelihood function defined by the mean and variance relation [37], [56], [60]. In addition, virtual loss functions
with monotonic gradient function include various ready-made adjustable convex loss functions, such as tunable loss
function [30], [50], high-order hinge loss [10], [12], [24], [32], and Logitron [58].

The other main goal of this article is to introduce a quasi-Newton optimization framework for cost-sensitive
learning, including the proposed SIC model and π-weighted convex focal loss [31]. We name the presented
optimization framework quasi-Newton(L-BFGS) optimization for virtual convex loss. In quasi-Newton(L-BFGS)
optimization, the Hessian matrix is approximated by a rank-two symmetric and positive definite matrix, and its
inverse matrix is algorithmically computed by simple two-loop iterations with m recent elements. It generally uses
sophisticated cubic-interpolation-based line search to keep positive definiteness. This line search heavily depends
on the evaluation of loss function [41], [47]. Instead of the well-known cubic-interpolation-based line search, we
propose a relatively simple but accurate line search method, the interval-based bisection line search. With the
relatively accurate strong Wolfe stopping criterion, the proposed method performs better than L-BFGS with the
cubic-interpolation-based line search regarding test classification accuracy. Please refer to the details in Figure 4.
Although we only consider virtual convex loss functions, which are smooth and bounded below, the proposed
optimization framework could be extended to deep neural networks where non-convexity of loss functions is not
severe [40]. It is worth mentioning that with the exact line search condition, the nonlinear conjugate gradient utilizes
a larger subspace for Hessian matrix approximation [19], [20], [41].

We justify the performance advantage of the proposed approach, the cost-sensitive SIC model and quasi-
Newton(L-BFGS) for virtual convex loss, with 118 various classification datasets [8], [58]. For binary classification
problems(51 datasets) where rsc of training datasets is not severe, the test classification accuracy of TOP1(a group
of SIC models having the best test accuracy for each dataset) is 83.96%, which is 0.74% better than that of kernel-
based LIBSVM(C-SVS with RBF kernel) and 0.16% better than that of TOP1-FL of π-weighted convex focal loss.
Within linear classifiers, the MaxA(α+ = 7

8 , α− = 8
7) SIC model shows better performance than the π-weighted

convex focal loss [31] and the balanced classifier LIBLINEAR(logistic regression, SVM, and L2SVM) [12], [15] in
terms of test classification accuracy with all 118 datasets. Last but not least, the proposed SIC model with (α+, α−)-
matrix parameters is a useful tool for understanding the structure of each dataset. For example, see Figure 3 spectf
dataset for rsc-inconsistency between training and test datasets. The training dataset of spectf is well-balanced, but
the test dataset of it is imbalanced [29]. For the multi-label structure, refer to Figure 8 (e) energy-y1 dataset and
(f) energy-y2 dataset. They have the same input but opposite outputs, such as heating load vs. cooling load [51].

A. Notation

We briefly review the extended exponential function [59] and the extended logarithmic function [57]. For
information on the Tweedie statistical distribution and beta-divergence based on extended elementary functions,
refer to the following citations: [1], [28], [57], [59], [60].

For notational convenience, let R≥a = {x ∈ R | x ≥ a} and R>a = {x ∈ R | x > a}, where a ∈ R. In the
same way, R≤a and R<a are set. Then the extended logarithmic function lnα,c [57] and the extended exponential
function expα,c [59] are defined as follows:

lnα,c(x) =

{
ln
(
x
c

)
, if α = 1

cα − xα, otherwise
(2)

expα,c(x) =

{
c exp(x), if α = 1

c(1− x
cα
)1/(1−α), otherwise (3)

where c > 0, α ≥ 0, xα = 1
α−1x

1−α and cα = 1
α−1c

1−α. Note that we also explain cα as (c)α for notational
convenience. In the case where c = 1, the extended functions expα,c and lnα,c become the generalized exponential
and logarithmic functions [1], [9], [50], respectively. For the effective domains of lnα,c and expα,c, see [46], [57],
[59]. In this article, we only consider restricted domains of lnα,c and expα,c in Table I. Within the restricted domains
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in Table I, irrespective of αi and ci, we have lnα2,c2(expα1,c1(x)) ∈ R for all x ∈ int(dom(expα1,c1)). This property
defines the extended logistic loss, including high-order sigmoid function [58]. Here, int(E) means the largest open
interval contained in an interval E ⊆ R. Note that ⟨x, y⟩ =

∑s
l=1 xlyl for x, y ∈ Rs, ∥x ∥ =

√
⟨x, x⟩, and

∥x ∥∞ = maxl |xl |. Additionally, | · | means the absolute value or the size of a discrete set, depending on the
context in which it is used.

α = 1 0 ≤ α < 1 α > 1
dom(lnα,c) R>0 R≥0 R>0

dom(expα,c) R R≥cα R<cα

dom(σα,c) R R≤−cα R≥−cα

TABLE I: Restricted domains of the extended logarithmic function lnα,c(x) (2), the extended exponential function
expα,c(x) (3), and the extended asymmetric sigmoid function σα,c(x) (6). Here c > 0. Note that, when α > 1,
dom(σα,c) is a closed set R≥−cα in the sense σα,c(−cα) = limx↘−cα

c
c+expα,c(−x) = 0 ∈ R.

B. Cost-sensitive Learning framework and Overview

Let us start with the cost-sensitive learning model

h∗ = argmin
h∈H

∑
i∈N+

L+(h(xi)) +
∑
j∈N−

L−(−h(xj)) +
λ

2
Reg(w), (4)

where H = {⟨w, ·⟩+b | (w, b) ∈ Rs×R} and Reg is an appropriate regularizer for w, such as ∥w ∥2. Note that L+

and L− are virtualized large-margin convex loss functions that are differentiable and lower-bounded. This article
only considers the case that −∇L± = p± ∈ [0, 1] are probability functions. For more information on cost-sensitive
learning, please refer to [2], [14], [16], [21], [27], [31], [42].

In Section II, we study the various properties of SIGTRON, such as smoothness, inflection point, probability-half
point, and parameterized mirror symmetry of inflection point with respect to the probability-half point. SIGTRON
is used to exemplify the probability functions p± in (4). The details of the SIC model are discussed in Section III,
where the virtual SIGTRON-induced loss function is introduced. In Section III-A, we derive the skewed hyperplane
equation of the cost-sensitive learning model (4), based on the SIGTRON probability function. In Section IV,
we demonstrate the usefulness of quasi-Newton optimization(L-BFGS) for virtual convex loss, which includes the
interval-based bisection line search. With this optimization method, we solve two different types of cost-sensitive
learning models: the SIC model and the π-weighted convex focal loss. The performance evaluation of the proposed
framework, i.e., the SIC model and quasi-Newton optimization(L-BFGS) for virtual convex loss, is done in Section
V. We compare the proposed framework with the imbalanced classifier π-weighted convex focal loss [31], the
balanced classifier LIBLINEAR(logistic regression, SVM, and L2SVM) [12], [15], and the nonlinear classifier
LIBSVM(C-SVC with RBF kernel) [6]. The conclusion is given in Section VI.

II. SIGTRON: EXTENDED ASYMMETRIC SIGMOID WITH PERCEPTRON

In this Section, we define SIGTRON using the extended exponential function expα,c (3). We then study various
properties of SIGTRON, such as its smoothness, inflection point, probability-half point, and parameterized mirror
symmetry of the inflection point with respect to the probability-half point.

Definition II.1 (SIGTRON). Let α ≥ 0, c > 0, and x ∈ R. Then SIGTRON(extended asymmetric sigmoid with
Perceptron) is defined as

sα,c(x) =

{
σα,c(x) if x ∈ dom(σα,c)
σP (x) otherwise,

(5)

where σα,c is the extended asymmetric sigmoid function

σα,c(x) =
c

c+ expα,c(−x)
. (6)

Here, expα,c is the extended exponential function (3) and σP is the Perceptron function(or Heaviside function):
σP (x) = 1, if x ≥ 0 and 0, otherwise. The restricted domains of expα,c and σα,c are defined in Table I. Note
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Fig. 1: (a) SIGTRON sα,c(x) with α = k−1
k < 1 (k = 1, 2, 3, 4, 6, 10) and cα = −1. Note that sα,c(x) = 1, if

x ≥ −cα. (b) SIGTRON sα,c(x) with α = k+1
k > 1 (k = 1, 2, 3, 4, 6, 10) and cα = 1. Note that sα,c(x) = 0, if

x ≤ −cα. (c) ∇sα,c(x) with α = k−1
k < 1 (k = 2, 3, 4, 6, 10) and cα = −1. Note that ∇sα,c(x) = 0, if x ≥ −cα.

The inflection point xip is getting close to −cα = 1 as α → 0. (d) ∇sα,c(x) with α = k+1
k > 1 (k = 2, 3, 4, 6, 10)

and cα = 1. Note that ∇sα,c(x) = 0, if x ≤ −cα. The inflection point xip is getting close to −cα = −1 as α → 2.

that sα,c(x) ∈ [0, 1] is a non-decreasing continuous function defined on R with limx→−∞ sα,c(x) = 0 and
limx→+∞ sα,c(x) = 1. Additionally, sα,c(0) = 1/2, irrespective of α and cα. Here xph = 0 is denoted as the
probability-half point. When α = 1, sα,c(x) = 1

1+exp(−x) is the canonical sigmoid function, irrespective of c.

Note that SIGTRON with c = 1 becomes the canonical sigmoid function as |α− 1 | → 0, since the extended
exponential function with c = 1 is the generalized exponential function. However, SIGTRON with | cα | = 1
becomes a smoothed Perceptron as |α− 1 | → 0 and α ̸= 1. Refer to Figure 1 for additional information.

In the following Theorem II.2, we characterize the smoothness of SIGTRON (5) depending on α. The proof of
Theorem II.2 is given in Appendix A.

Theorem II.2. For n = 1, 2, 3, · · · , when α ∈
(
1− 1

n , 1 +
1
n

)
, the n-th derivative of sα,c is continuous on R and

expressed as

∇nsα,c(x) =

{ ∑n
k=1 Fn,k(x) if x ∈ dom(σα,c)

0 otherwise,
(7)

where

Fn,k(x) = An,k

(
1

1− α

)
c exp

k−n(1−α)
α,c (−x)

(c+ expα,c(−x))k+1
, (8)

and

An,k

(
1

1− α

)
= (−1)n+kk!

n∑
l=0

[n
l

]{ l

k

}
(α− 1)n−l. (9)

Here,
[
n
l

]
is the Stirling number of the first kind [17] with the recurrence equation

[
n
l

]
= (n− 1)

[
n−1
l

]
+
[
n−1
l−1

]
,

where n, l ≥ 1.
{

l
k

}
is the Stirling number of the second kind with the recurrence equation

{
l
k

}
= k

{
l−1
k

}
+{

l−1
k−1

}
, where l, k ≥ 1.

For the computation of the Stirling number of the first kind and the second kind, we need additional notational
conventions:

{
0
0

}
=
[
0
0

]
= 1 and

{
a
0

}
=
[
a
0

]
= 0 for a ≥ 1. We have

{
a
1

}
= 1 and

[
a
1

]
= (a − 1)! with 0! = 1,

for a ≥ 1. Additionally, we note that
{
a
b

}
=
[
a
b

]
= 0 if b > a ≥ 0. For more details, refer to [17].

Theorem II.2 states that for any α ∈ (0, 2), the gradient of sα,c(x) is given by cα−1(1− sα,c(x))
α(sα,c(x))

2−α,
where x ∈ R. Check Figure 1 (c) and (d) for a visual representation of ∇sα,c(x). The information regarding the
inflection point of sα,c is provided in Corollary II.3. Additionally, we have observed that the function ∇sα,c(x)
takes the form of the beta distribution βD(x;α) = 6

Γ(3−α)Γ(1+α)x
2−α(1 − x)α, where x ∈ [0, 1]. The cumulant

distribution of the beta distribution, which has an adjustable parameter α, can also be classified as an S-shaped
sigmoid function.
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Corollary II.3. For α ∈ (0, 2), the inflection point xip of SIGTRON sα,c exists in the interval int(dom(σα,c)) and
is expressed as

xip = − lnα,c

(
cα

2− α

)
.

When α = 1, the inflection point is the probability-half point, that is, xip = xhp = 0.

Proof. From (7) and Appendix A, we know that sα,c ∈ C∞(int(dom(σα,c))) and ∇2sα,c(x) =
−αc exp2α−1

α,c (−x)

(c+expα,c(−x))2 +
2c exp2α

α,c(−x)

(c+expα,c(−x))3 . Let α ̸= 1, then, since expα,c(−x) ̸= 0 for x ∈ int(dom(σα,c)), the inflection point xip is a point

satisfying xip = − lnα,c

(
cα
2−α

)
. If α = 1, then sα,c is the canonical sigmoid function. Thus, xip = xhp = 0.

Figure 1 shows sα,c and its derivative for various choices of α satisfying |α− 1 | = 1
k (k = 1, 2, 3, 4, 6, 10) and

| cα | = 1. Note that ∇sα,c is not defined at α = 0 and α = 2. When α > 1, the inflection point xip is getting close
to −1 as α → 2. On the other hand, when α < 1, the inflection point xip is getting close to 1 as α → 0.

Remark II.4. SIGTRON is a general framework for replacing the S-shaped sigmoid function in diverse machine
learning problems requiring adjustability of probability(or inflection point) and fixed probability-half point. For
instance, refer to the skewed hyperplane equation for classification (22) and Example II.5. As canonical sigmoid
function σ(x) = 1

1+exp(−x) has a symmetric property σ(x) = 1 − σ(−x), SIGTRON sα,c also has an extended
symmetric property:

sα,c(x) = 1− s2−α,c−1(−x) (10)

where α ∈ [0, 2]. Also, for α ∈ (0, 2), we have ∇sα,c(x) = ∇s2−α,c−1(−x), the parameterized mirror symmetry
with respect to probability-half point xhp = 0. See Figure 1 (c) and (d) for examples of parameterized mirror
symmetry of ∇sα,c. It is worth commenting that the gradient of Logitron Lα,c [58] is also a negative probability
function, of which the probability-half point depends on α. For α ∈ (0, 2], we have

∇Lα,c(x) = −(s2−α,c−1(−x))α (11)

where the exponent α is an acceleration parameter of SIGTRON s2−α,c−1(−x) and (10) is used.

Example II.5. It is well-known that it is hard to give a probability for the results of max-margin SVM classifier [33],
[44]. In fact, [44] uses the canonical sigmoid function σ(γx+ ξ) to fit a probability to the classified results of the
SVM. Here γ and ξ should be estimated [6]. Instead of fitting with the canonical sigmoid function σ(γx+ ξ), we
could use SIGTRON sα,c as a probability estimator for the results of the SVM classifier or any other classifiers
having decision boundary, such as hyperplane. For this purpose, there are three steps to follow. First, we must
place the probability-half point xhp of sα,c at the decision boundary. Second, we should adjust cα to place the
exact probability-one point of sα,c at a specific point, such as the maximum margin point. Finally, we only need to
estimate α for the decreasing slope of sα,c based on the distribution of classified results. See [18] for the probability
estimation issues in deep neural networks.

III. VIRTUAL SIGTRON-INDUCED LOSS FUNCTION, SIC(SIGTRON-IMBALANCED CLASSIFICATION) MODEL,
AND SKEWED HYPERPLANE EQUATION

This Section studies the SIC model with the virtual SIGTRON-induced loss functions and the skewed hyperplane
equation of the SIC model.

Definition III.1. Let α ∈ [0, 2], c > 0, and x ∈ R, then the virtual SIGTRON-induced loss function LS
α,c is defined

by the following gradient equation
∇LS

α,c(x) = sα,c(x)− 1, (12)

where sα,c(x)− 1 is a negative probability function. By the extended symmetric property of SIGTRON in (10), we
have sα,c(x)− 1 = −s2−α,c−1(−x).

We notice that an expansion of the class of Logitron loss (11) via virtualization is easily achieved by ∇Lβ,α,c(x) =
−(s2−α,c−1(−x))β where β > 0 is a tuning parameter which controls the location of probability-half point xhp.
Thus, the virtualized Logitron loss contains both the virtual SIGTRON-induced loss (12) and the Logitron loss (11).
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Fig. 2: Graphs of the virtual SIGTRON-induced loss function LS
α,c for (a) α = k−1

k with cα = −1 and (b) α = k+1
k

with cα = 1. Here k = 1, 2, 4, 6, and 10. In the case of k = 1, 2, 4, 6, LS
α,c has a closed-form expression. See

Example III.3.

Lemma III.2. Let α ∈ [0, 1) ∪ (1, 2] and c > 0. Then the virtual SIGTRON-induced loss function LS
α,c satisfying

(12) has the following integral formulations:
(1) Case α ∈ (1, 2]:

LS
α,c(x) =

{
−cαF

(
1 + x

cα
;α− 1

)
+ cα if x ≥ −cα

−x otherwise.
(13)

(2) Case α ∈ [0, 1):

LS
α,c(x) =

{
cαF

(
1 + x

cα
; 1− α

)
− cα − x if x ≤ −cα

0 otherwise.
(14)

Here, F (z; b) =
∫ z
0

1
1+t1/bdt with z ∈ R≥0 and b > 0.

Proof. (1) Case α ∈ (1, 2]: From (12), we have

∇LS
α,c(x) =

{
− 1

1+(1+ x

cα
)

1
α−1

if x ≥ −cα

−1 otherwise,

where −cα < 0 and 1 + x
cα

≥ 0. The integration of ∇LS
α,c becomes

LS
α,c(a1)− LS

α,c(a0) =

∫ a1

a0

∇LS
α,c(t)dt =

{
−cαF (1 + a1/cα;α− 1) + cα + a0, if a1 ≥ −cα
−a1 + a0, otherwise,

where we may choose a0 ≪ −cα. Then, we get the virtual SIGTRON-induced loss function (13), after setting
a1 = x and removing constants.

(2) Case α ∈ [0, 1): We have

∇LS
α,c(x) =

{
1

1+(1+ x

cα
)

1
1−α

− 1 if x ≤ −cα

0 otherwise,

where −cα > 0 and 1 + x
cα

≥ 0. Thus, we get

LS
α,c(a0)− LS

α,c(a1) =

∫ a0

a1

∇LS
α,c(t)dt =

{
−cαF (1 + a1

cα
; 1− α) + cα + a1 if a1 ≤ −cα

0 otherwise,

where a0 > −cα. Let a1 = x, then we get the virtual SIGTRON-induced loss function (14).

In Figure 2, we present the virtual SIGTRON-induced loss LS
α,c(x) with | cα | = 1 and |α− 1 | = 1

k . Here
k = 1, 2, 4, 6 and 10 are the polynomial orders of expα,c. For k = 10, LS

α,c(x) is computed directly by (13) and
(14). For k = 1, 2, 4, 6, LS

α,c(x) is expressed in a closed form by virtue of Example III.3. As we increase the
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polynomial order k = 1
|α−1 | , i.e. α → 1 and | cα | = 1, LS

α,c(x) is getting close to the smoothed Perceptron loss
function [54], not to the logistic loss.

Example III.3. We make a list of F (a; 1/k) for k = 1, · · · , 6.
• k = 1 : F (a; 1/1) = ln(1 + a)
• k = 2 : F (a; 1/2) = arctan(a)

• k = 3 : F (a; 1/3) = 1
6 log

(
1 + 3a

a2−a+1

)
+ 1√

3
arctan

(
2a−1√

3

)
− 1√

3
arctan

(
− 1√

3

)
• k = 4 : F (a; 1/4) = 1

4
√
2
log
(
1 + 2

√
2a

a2−
√
2a+1

)
+ 1

2
√
2
arctan

(
1 +

√
2a
)
− 2 arctan(1−

√
2a)

• k = 5 : F (a; 1/5) = (
√
5−1)
20 log(2a2 + (

√
5− 1)a+ 2)− (

√
5+1)
20 log(2a2 − (

√
5 + 1)a+ 2) + log(1+a)

5

−
√

10−2
√
5

10 arctan

(
−4a+

√
5+1√

10−2
√
5

)
+

√
10+2

√
5

10 arctan

(
4a+

√
5−1√

10+2
√
5

)
− (

√
5−1) log 2+(

√
5+1) log 2

20

+

√
10−2

√
5

10 arctan

( √
5+1√

10−2
√
5

)
−

√
10+2

√
5

10 arctan

( √
5−1√

10+2
√
5

)
• k = 6 : F (a; 1/6) =

√
3 log

(
a2+

√
3a+1

a2−
√
3a+1

)
+ arctan(

√
3 + 2a)/6− arctan(

√
3− 2a)/6 + arctan(a)/3

A. Learning a hyperplane with SIC model

Let us first consider the cost-sensitive convex minimization model (4) to find a hyperplane h∗(x) = 0 from
the given training dataset D. The following is the realization of (4) through the virtual SIGTRON-induced loss
function (12) and ℓ2-regularizer.

h∗ = argmin
h∈H

F(h) (15)

where H = {⟨w, ·⟩+ b | (w, b) ∈ Rs × R} and

F(h) =
∑
i∈N+

LS
α+,c+(h(xi)) +

∑
j∈N−

LS
α−,c−(−h(xj)) +

λ

2
∥w ∥22. (16)

This minimization problem (15) with (16) is named as the SIGTRON-imbalanced classification(SIC) model. In the
following example, we introduce a feature of the SIC model which is similar to the SVM.

Example III.4. Let us assume that the training dataset D is separable, α+, α− ∈ [0, 1), λ = 0, and ∥w∗ ∥ = 1.
When F(h∗) = 0, from Lemma III.2, we have h∗(xi) ≥ −(c+)α+

for all xi ∈ N+ and h∗(xj) ≤ (c−)α− for
all xj ∈ N−. Let xmp be a point satisfying h∗(xmp ) = mini∈N+

h∗(xi) and xmn be a point satisfying h∗(xmn ) =
maxj∈N− h∗(xj). Then, if we set −(c+)α+

= h∗(xmp ) and (c−)α− = h∗(xmn ), we have the following skewed
hyperplane equation {

x ∈ Rs |
〈
w∗, x−

xmp + xmn
2

〉
=

(c+)α+
− (c−)α−

2

}
. (17)

Here, when (c+)α+
= (c−)α− , we have the max-margin hyperplane {x ∈ Rs |

〈
w∗, x− xm

p +xm
n

2

〉
= 0}.

In the max-margin region where F(h∗) = 0 with λ = 0, rc does not affect the location of the hyperplane.
We also notice that π-weight on the loss function is meaningless in this region. As observed in Example III.4,
margin parameters (c+)α+

and (c−)α− of the SIC model (15) are mainly relevant to the location of the (skewed)
hyperplane. See [4], [25], [49] for related issues in deep learning where the max-margin region exists at infinity.

From now on, we are interested in h∗, satisfying the following ϵ-optimal condition

∥∇F(h∗) ∥∞ ≤ ϵ, (18)

where F is defined in (16). This ϵ-optimal condition (18) is used as a gradient-based stopping criterion while we
do numerical experiments in Section V. The gradient of F(h∗) becomes

∇F(h∗) =
∑
i∈N+

−p+(h
∗(xi))

[
xi
1

]
+
∑
j∈N−

p−(−h∗(xj))

[
xj
1

]
+ λw∗ ∈ [−ϵ1,+ϵ1] (19)
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where p+ = −∇LS
α+,c+ , p− = −∇LS

α−,c− ∈ (0, 1), and 1 is all one vector in Rs+1. Let us assume that p± is twice
differentiable and ∇p±(0) ̸= 0. Then by linearization of p± at 0 [11], we have p±(a) = p±(0)+a∇p±(0)+Dp±(a|0)
where Dp±(a|0) =

∫ a
0 ∇2p±(y)(a− y)dy and thus, in terms of b∗, (19) becomes∑

i∈N+

(
p+(0) + h∗(xi)∇p+(0) +Dp+

(h∗(xi)|0)
)
−
∑
j∈N−

(
p−(0)− h∗(xj)∇p−(0) +Dp−(−h∗(xj)|0)

)
∈ [−ϵ,+ϵ].

This equation simplifies to

rc
(
p+(0) + h∗(xcp)∇p+(0) + E+

)
− (p−(0)− h∗(xcn)∇p−(0) + E−) ∈ Iϵ (20)

where E+ =

∑
i∈N+

Dp+
(h∗(xi)|0)

| N+ | , E− =

∑
j∈N−

Dp− (−h∗(xj)|0)
| N− | , and Iϵ = [ −ϵ

| N− | ,
+ϵ

| N− | ]. Since h∗(x) = ⟨w∗, x⟩+ b∗,
we have an expression below explaining b∗ from the ϵ-optimal condition (18)

⟨w∗, A⟩+ b∗ ∈ −E, (21)

where A =
rc∇p+(0)xc

p+∇p−(0)xc
n

rc∇p+(0)+∇p−(0) and E = (rcp+(0)−p−(0))+(rcE+−E−)+Iϵ
rc∇p+(0)+∇p−(0) . Now, the skewed hyperplane equation for

h∗(x) = 0 is expressed as
{ x ∈ Rs | ⟨w∗, x−A⟩ ∈ E }. (22)

Through this skewed hyperplane equation, we could somehow understand a mysterious connection between the
hyperplane decision boundary and the loss function. Depending on the skewness level E, the hyperplane decision
boundary h∗(x) = 0 may not be located between xcp and xcn. The effect of E, however, can be discarded in a
particular dataset structure. The details are following.

Example III.5. Let us assume that the given dataset D has a symmetric structure with rc = 1. That is, there
is a one-to-one correspondence between the positive dataset N+ and the negative dataset N− with respect to
the hyperplane h∗(x) = 0. For any xi ∈ Rs where i ∈ N+, there is an unique xj ∈ Rs where j ∈ N−, such
that h∗(xi) ≈ −h∗(xj). The opposite is also true. If we additionally assume that p−(x) = p+(x) then we obtain
E+ ≈ E−. Thus, the skewed hyperplane equation (22) becomes

{x ∈ Rs | ⟨w∗, x−A⟩ ≈ 0} (23)

where A =
xc
p+xc

n

2 .

By using a physically symmetric and separable dataset, [34] analyzes the structure of the Leaky ReLU two-layer
neural network in the max-margin region at infinity. Please refer to [53] for a review of the implicit bias, including
max-margin region at infinity, in machine learning including deep neural networks. In the following Theorem, we
summarize the skewed hyperplane equation obtained by the SIC model (15) under the condition | rcE+ − E− | ≪ 1.

Theorem III.6. Let
∥∥xcp − xcn

∥∥ > a where a > 0, 0 < h∗(xcp) < 1, and 0 < −h∗(xcn) < 1, α± ∈ [0, 1) ∪ (1, 2].
Additionally, assume that | rcE+ − E− | ≪ 1. Then the skewed hyperplane equation (22) becomes{

x ∈ Rs |

〈
w∗, x−

(
rcc

α+−1
+ xcp + c

α−−1
− xcn

rcc
α+−1
+ + c

α−−1
−

)〉
≈ 2(rc − 1)

rcc
α+−1
+ + c

α−−1
−

}
. (24)

If rc = 1 then (21) is expressed as
〈
w∗, (1− η)xcp + ηxcn

〉
+b∗ ≈ 0 and the signed distance of xcp to the hyperplane

h∗(x) = 0 is approximately given as

h∗(xcp)

∥w∗ ∥
≈ η
∥∥xcp − xcn

∥∥cos(θ+) (25)

where η =
c
α−−1

−

c
α+−1

+ +c
α−−1

−
∈ (0, 1) and cos(θ+) =

〈
w∗

∥w∗ ∥ ,
xc
p−xc

n

∥xc
p−xc

n ∥

〉
> 0. In the same way, for xcn, we have

h∗(xc
n)

∥w∗ ∥ ≈ (η − 1)
∥∥xcp − xcn

∥∥cos(θ+).
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Fig. 3: Classification results with the spectf dataset in Table V. The test dataset has rsc = 0.26(rc = 0.09). However,
the training dataset is well-balanced, i.e., rsc = 1. We have 20×20 hyperplanes h∗(α+,α−)(x) = 0 by solving 20×20
SIC models (15) with the well-balanced training dataset. (a) The pattern of the test classification accuracy. (b) The
pattern of the signed distance of the centroid of the positive test dataset to the hyperplane. (c) The pattern of the
signed distance of the centroid of the negative test dataset to the hyperplane. (d) The pattern of η in (26). The
best test accuracy is achieved at (α+, α−) = (1110 , 2). This point is the smallest distance of the centroid of the
positive test dataset to the hyperplane. And, it is contained in the group

{
(1110 , 2), (

9
10 , 2), (

11
10 , 0), (

9
10 , 0)

}
having

the smallest η = 1
11 . See Example III.8 for more details.

In practice, due to computational constraints, we normally choose polynomial functions for expα,c, i.e., positive
integers for 1

|α±−1 | . Assume that
∣∣ (c+)α+

∣∣ = ∣∣ (c−)α−

∣∣ is a constant, 1
|α+−1 | = k+, and 1

|α−−1 | = k−. Here,
k± = 1, 2, 3, · · · . Then we have

η =
1/c

1−α−
−

1/c
1−α+

+ + 1/c
1−α−
−

=
k−

k+ + k−
. (26)

The skewed hyperplane equation (24) is interpreted as that the hyperplane h∗(x) = 0 is tuned by the ratio of
polynomial order of SIGTRON if cos(θ+) does not change much. We notice that [5] has added a margin-related
parameter, of which the role is similar to cα of our SIC model, inside of the loss function to adjust decision
boundary in imbalanced deep neural network. Before we go further, we introduce a simplified model to show the
role of rsc in the skewed hyperplane equation (24).

Remark III.7. Let us assume that xi ≈ xcp > 0 for i ∈ N+, xj ≈ xcn > 0 for j ∈ N−, λ = 0, and p± ∈ (0, 1). Then

(19) becomes rcp+(h
∗(xcp))

[
xcp
1

]
≈ p−(−h∗(xcn))

[
xcn
1

]
. We apply

〈
·,
[
xcp
1

]〉
and

〈
·,
[
xcn
1

]〉
. Then we

simplify the corresponding equations. As a result, we have rscp+(h
∗(xcp)) ≈ p−(−h∗(xcn)). After linearization at

0 [11], we obtain (24) with rsc, instead of data-sensitive rc. Actually, as observed in Theorem I.1, by the dimension-
wise standardization of the dataset, we always have | rsc − 1 | < | rc − 1 | where rsc ̸= 1, irrespective of the domain
of the dataset D. Hence, empirically we could use rsc, instead of rc (see Example III.8). In addition, refer to [7]
where they invent effective number to replace the role of rc in imbalanced classification.
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The following Example III.8 describes the tunable hyperplane via skewed hyperplane equation for rsc-inconsistent
dataset having the well-balanced training and imbalanced test datasets.

Example III.8. Let us start with the two-class ‘ spectf ’ dataset in Table V. The training dataset is well-balanced,
i.e., rsc = 1. However, the test dataset has rsc = 0.26(rc = 0.09). It indicates that the positive class of the test
dataset is the minority class. The hyperplane to be learned should be located near the minority class to achieve
better test classification accuracy. As observed in (25) and Figure 3 (d), to move the hyperplane to the minority
class as close as we can, we need to select the smallest η = 1/11. This η corresponds to four (α+, α−) candidates:
(11/10, 2),(9/10, 2),(11/10, 0), and (9/10, 0). In fact, at (α+, α−) = (11/10, 2), we obtain the minimum distance
of xctest,p (the centroid of the positive class of test dataset) to the hyperplane h∗(α+=11/10,α−=2)(x) = 0 (Figure
3 (b)) and the best test classification accuracy 64.6% (Figure 3 (a)). Note that the pattern of η in Figure 3 (d)
is similar to the pattern of the distance of xctest,p to the hyperplane in Figure 3 (b). As Figure 3 (a) shows,
the region α− ≈ 2 obtains better test classification accuracy than the region α− ≈ 0. Additionally, note that

cos(θtest,+) =

〈
w∗

(α+,α−)∥∥∥w∗
(α+,α−)

∥∥∥ , xc
test,p−xc

test,n

∥xc
test,p−xc

test,n ∥

〉
∈ [0.52, 0.90] and E(cos(θtest,+)) = 0.71. As a reference, we

obtained 20× 20 hyperplanes h∗(α+,α−)(x) = 0 by solving 20× 20 SIC models (15) with the well-balanced training
dataset. The cross-validation was used for the best regularization parameter λ. We set

∣∣ (c+)α+

∣∣ = ∣∣ (c−)α−

∣∣ = 2,
1

| 1−α+ | = k+ = 1, 2, · · · , 10, and 1
| 1−α− | = k− = 1, 2, · · · , 10.

In Example III.8, we saw that the hyperplane should be located near minority class for better performance.
Depending on the pattern of the distribution of the data in the minority class, e.g. the variance of the minority
class, it may not be true. For instance, [5] recommend that the decision boundary be required to be placed near
majority class. For better understanding of the pattern of the data distribution, we recommend to use (α+, α−)-
matrix.

Remark III.9. Lately, [31] has proposed two focal loss functions for imbalanced object detection. The first one
is the non-convex focal loss function. It has L+(h(x)) = −π(1− p(h(x)))γg log(p(h(x))) and L−(h(x)) = −(1−
π)p(h(x))γg log(1−p(h(x))) where p(h(x)) ∈ (0, 1) is a probability function, like canonical sigmoid σ or reduced
Sigtron. The second one is the convex focal loss function. It has L+(h(x)) = −π log(σ(γh(x)+ξ)) and L−(h(x)) =
−(1− π) log(1− σ(γh(x) + ξ)). Here π ∈ (0, 1) is known as a cost-sensitive parameter to be selected depending
on rc (or rsc) of the training dataset. Note that γ ≥ 1 and ξ ≥ 0 control the stiffness and shift of the convex
focal loss, respectively. As [31] mentioned, the performance gap between the two types of focal losses is negligible.
Therefore, we exclusively compare the convex focal loss to the convex SIC model. To find additional information,
please refer to Section V-A.

IV. QUASI-NEWTON OPTIMIZATION(L-BFGS) FOR VIRTUAL CONVEX LOSS

This Section presents quasi-Newton optimization(L-BFGS) for virtual convex loss framework. It includes the
proposed interval-based bisection line search, which uses gradients of a virtual convex loss function.

Let us discuss the SIC model (15), where F(h) is convex, differentiable, and bounded below. It is worth noting
that the optimization framework we will be proposing for this model can also be used for cost-sensitive learning
model (4), including the π-weighted convex focal loss. Before we proceed, let us take a moment to review the
quasi-Newton optimization framework described in [41]. The iterates h0, h1, h2, · · · satisfy ht+1 = ht+ρtzt where
ρt > 0 is a step length and zt = −B−1

t ∇F(ht) is a descent direction. Here, Bt is a symmetric and positive definite
rank-two approximation of the Hessian matrix ∇2F(ht). Interestingly, L-BFGS directly approximates B−1

t ∇F(ht)
by two-loop iterations with m recent elements. Here, m is the tuning parameter of L-BFGS. The performance
comparison of the proposed optimization framework considering m of L-BFGS is shown in Figure 4. For the initial
point, we set h0 = 0, corresponding to the probability-half point of SIGTRON in the gradient of the SIC model.
It is well known that, to guarantee sufficient descent of F(h) and positive definiteness of low-rank matrix Bt, the
step length ρt of L-BFGS should satisfy the Armijo condition (27) and the Wolfe condition (28):

F(ht + ρtzt)−F(ht) ≤ cIρt ⟨∇F(ht), zt⟩ (27)

and
⟨∇F(ht + ρtzt), zt⟩ ≥ cII ⟨∇F(ht), zt⟩ , (28)
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Fig. 4: A comparison of performanve between quasi-Newton(L-BFGS) for virtual convex loss, which uses the strong
Wolfe condition (32) with cII ∈ [0.1, 0.9], and the classic L-BFGS(*), which uses the strong Wolfe condition (32)
with cII = 0.9 and the Armijo condition (27) with cI = 10−4. Note that L-BFGS(*) uses the cubic-interpolation-
based line search [41], [47]. For our experiments, we use 12× 12 SIC models with | cα | = 1 and |α± − 1 | = 1

k ,
where k = 1, 2, 3, 4, 5, 6. (a) Mean test accuracy of 12 × 12 SIC models. (b) Maximum test accuracy and (c)
minimum test accuracy obtained by an SIC model with fixed α± for each cII . (d) Test accuracy of TOP1 for each
cII . (e) Total computation time of 12× 12 SIC models. Here, we report the average values of five times repeated
experiments with all datasets in Table V and VI. For 0.1 ≤ cII ≤ 0.5, in terms of mean test classification accuracy
in (a), quasi-Newton(L-BFGS) for virtual convex loss outperforms L-BFGS(*), for each m of two loop iterations.

where 0 < cI < cII < 1. The Armijo condition (27) can be reformulated through the expectation of gradients:

ϕ(ρt)− ϕ(0) =

∫ ρt

0
ϕ′(ρ)dρ = ρtE[0,ρt](ϕ

′), (29)

where ϕ(ρt) = F(ht + ρtzt) and ϕ′(ρ) = ⟨∇F(ht + ρzt), zt⟩. Note that ϕ′(0) = ⟨∇F(ht), zt⟩ < 0 where
zt = −B−1

t ∇F(ht). Now, we get the reformulated Armijo condition

E[0,ρt](ϕ
′) ≤ cIϕ

′(0) (30)

and the Wolfe condition
cIIϕ

′(0) ≤ ϕ′(ρt), (31)

where (31) is also known as the curvature condition [38], which is clearly understood by the reformulation of (31)
as E[0,ρt](ϕ

′′) > (cII − 1)ρtϕ
′(0) > 0. The positive definiteness of Bt in L-BFGS is adjusted by cII ∈ (0, 1),

normally set as 0.9. For more details, see [41].
The reformulated Armijo condition (30) has several advantages, compared to the Armijo condition (27). First,

it is more intuitive about the descent condition of the loss function. The average slopes of ϕ in the interval [0, ρt]
must be less than the initial slope ϕ′(0). Second, for the SIC model (15), using an approximation of (30) is more
practical. That is, E[0,ρt](ϕ

′) ≈
∑n

i=1 aiϕ
′(ρ̃i), where ai ≥ 0,

∑n
i=1 ai = 1, and 0 ≤ ρ̃0 < ρ̃1 < · · · < ρ̃n ≤ ρt.
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This approach is workable for the general loss function, including virtual non-convex loss function. For a virtual
convex loss function, however, we do not need to evaluate a relatively large number of directional derivatives in the
interval [0, ρt]. Instead of (30) and (31), we can use the strong Wolf condition, i.e., (relative) strong Wolfe stopping
criterion. ∣∣ϕ′(ρt)

∣∣ ≤ −cIIϕ
′(0) (32)

where cII ∈ (0, 1) is a tuning parameter of the proposed quasi-Newton(L-BFGS) optimization for virtual convex
loss. See also [19], [20] for related line search algorithms utilizing (32). In this article, for the strong-Wolfe stopping
criterion (32), we create a new interval-based bisection line search(Algorithm 2). See [22], [41] for the various
characteristics of the interval reduction method in general line search. The overall framework of quasi-Newton(L-
BFGS) optimization for virtual convex loss is stated in Algorithm 1, which contains the interval-based bisection
line search in Algorithm 2. See also Theorem IV.1 for the convergence of Algorithm 2.

Algorithm 1: Quasi-Newton optimization(L-BFGS) for virtual convex loss
1 Input: h0 = (w0, b0) = 0, ϵtol1 = 10−2, ϵtol2 = 10−4, cII = 0.4, MaxIter = 100.
2 Output: h∗ = (w∗, b∗).
3 for 0 ≤ r ≤ MaxIter do
4 if ∥∇F(ht) ∥∞ ≤ ϵtol1 or ∥ht+1 − ht ∥∞ ≤ ϵtol2 then
5 h∗ = ht and STOP

6 Compute descent direction zt by Quasi-Newton optimization(L-BFGS)
7

zt = L-BFGS(∇F(ht))

Compute step-Length ρt by Algorithm 2 with strong-Wolfe stopping criterion (32)
8

ρr = argmin
ρ∈R≥0

F(ht + ρzt)

Update ht+1 = ht + ρtzt

9 h∗ = hMaxIter+1

Theorem IV.1. Let ϕ be convex, differentiable, and bounded below. Then Algorithm 2 with an initial condition
ϕ′(0) < 0 converges to ρ∗ satisfying (32), where cII ∈ (0, 1), in finite steps.

Proof. Let us first consider the case that ϕ is a coercive function. Since ϕ′(0) < 0 and ϕ′ is a non-decreasing
function, there is ρopt > 0 such that ϕ′(ρ) ≥ 0 for all ρ ≥ ρopt. As noticed in line 6 − 7 and line 10 − 11 of
Algorithm 2, there is ith iteration such that ϕ′(ρi) < ϕ′(ρopt) = 0 < ϕ′(2ρi). Therefore, the interval, which includes
ρopt, is established as [ρL, ρU ] = [ρi, 2ρi]. Then by the bisection algorithm in line 6 − 9 and line 13, [ρL, ρU ] is
shrinking to ρopt and the strong-Wolfe stopping criterion in line 4 of Algorithm 2 is satisfied within finite steps.
Now, we consider the case that ϕ is not a coercive function. Since ϕ is convex, bounded below, and ϕ′(0) < 0,
limρ→+∞ ϕ′(ρ) → 0(line 11). Therefore, it stops by strong-Wolfe stopping criterion in line 4.

Remark IV.2. Besides Armijo (27) and Wolfe (28) criteria for line search, there is an additional criterion known
as Goldstein condition [41]. By way of (29), it is reformulated as

(1− cIII)ϕ
′(0) ≤ E[0,ρt](ϕ

′) ≤ cIIIϕ
′(0) (33)

where cIII ∈ (0, 1/2) and ϕ′(0) < 0. Unfortunately, this condition does not always include the solution of
minρ ϕ(ρ). To plug it into the quasi-Newton(L-BFGS) optimization for virtual loss, We need an additional curvature
condition (31).
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Algorithm 2: Interval-based bisection line search with (32)
1 Input: cII = 0.4, itermax = 100, ρ0, ϕ′(ρ) = ⟨∇F(ht + ρzt), zt⟩, ϕ′(0) < 0, [ρL, ρU ] = [0,∞]
2 Output: ρ∗
3 for 0 ≤ i ≤ itermax do
4 if |ϕ′(ρi) | ≤ −cIIϕ

′(0) then
5 ρ∗ = ρi and STOP

6 if 0 < ϕ′(ρi) then
7 ρU = ρi

8 else if ϕ′(ρi) < 0 then
9 ρL = ρi

10 if ρU = ∞ then
11 ρi+1 = 2ρL

12 else
13 ρi+1 =

1
2(ρL + ρU )

14 ρ∗ = 0

0.
1 1 2 4 8 10 16 32 64 10

0
12

8

10
00

|c |

(a)

77.7

77.8

77.9

78

78.1

78.2

78.3

a
c
c
(%

)

0
1/

2
2/

3
3/

4
4/

5
5/

6
6/

7
7/

8
8/

9
9/

10

11
/1

0
10

/9 9/
8

8/
7

7/
6

6/
5

5/
4

4/
3

3/
2 2

(b)

77.8

78

78.1

78.2

78.3

78.4

a
c
c
(%

)

|c |=1

|c |=2

|c |=4

|c |=10

0.
1 1 2 4 8 10 16 32 64 10

0
12

8

10
00

|c |

(a)

77.7

77.8

77.9

78

78.1

78.2

78.3

a
c
c
(%

)

0
1/

2
2/

3
3/

4
4/

5
5/

6
6/

7
7/

8
8/

9
9/

10

11
/1

0
10

/9 9/
8

8/
7

7/
6

6/
5

5/
4

4/
3

3/
2 2

(b)

77.8

78

78.1

78.2

78.3

78.4

a
c
c
(%

)

|c |=1

|c |=2

|c |=4

|c |=10

Fig. 5: Graphs of classification performance of the SIC model (15) with α = α− = α+ ∈ [0, 2]. (a) Test accuracy(%)
vs. | cα |. The test accuracy is the average of all results obtained with α in (35). When | cα | = 2, the best performance
is achieved. (b) Test accuracy(%) vs. α. When 1

5 ≤ |α− 1 | ≤ 1, the best performance is achieved with | cα | = 1.
However, when |α− 1 | < 1

5 , the SIC model with | cα | ≥ 2 shows better performance.

V. NUMERICAL EXPERIMENTS WITH THE 20× 20 SIC MODELS

This Section reports the classification results acquired by the SIC model (15) and quasi-Newton(L-BFGS) for
virtual convex loss(Algorithm 1 and 2). We compare the proposed methodology with well-known classifiers: π-
weighted convex focal loss [31], LIBLINEAR(logistic regression, SVM, and L2SVM) [12], [15], and LIBSVM(C-
SVC with RBF kernel) [6]. Note that Quasi-Newton(L-BFGS) for virtual convex loss is mainly implemented in
MATLAB(version R2023b) based on [47]. This optimization algorithm is used for the SIC model (15) and the
π-weighted convex focal loss [31]. LIBLINEAR(version 2.4.5) [15] and LIBSVM(version 3.3.2) [6] are mainly
implemented in C/C++ language with MATLAB interface. All runs are performed on APPLE M2 Ultra with a 24-
core CPU and 192GB memory. The operating system is MacOS Sonoma(version 14.1). We use parfor in MATLAB

for parallel processing of all models, including LIBLINEAR and LIBSVM, in a 24-core CPU. In terms of multi-class
datasets, the OVA(one-vs-all) strategy is used for all linear classification models. The OVO(one-vs-one) strategy is
used for the kernel-based classification model LIBSVM [6].

Concerning quasi-Newton(L-BFGS) for virtual convex loss, as observed in Figure 4, it is recommended to
select m ∈ [20, 50] for two-loop iterations of L-BFGS and cII ∈ [0.1, 0.5] for the interval-based bisection
line search(Algorithm 2). We choose m = 40 and cII = 0.4 considering performance-computation complexity.
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For stopping criterions of quasi-Newton(L-BFGS) for virtual convex loss, we use ∥∇F(ht) ∥∞ ≤ ϵtol1 and
∥ht+1 − ht ∥∞ ≤ ϵtol2 where ϵtol1 = 10−2 and ϵtol2 = 10−4(Algorithm 1). We could select a smaller cII for
exact line search, used in other quasi-Newton optimization, such as nonlinear conjugate gradient [19].

In order to use the π-weighted convex focal loss [31] discussed in Remark III.9, we need to set three parameters:
γ, ξ, and π. Following the recommendations in [31], we choose γ = 1, 2, 3, 4 and ξ = 0, 1. As for π, we select 19
regular points ranging from 0.05 to 0.95. This gives us 152 convex focal losses, expressed as a (π, γ : ξ)-matrix.

We have selected LIBLINEAR [12] and LIBSVM [6] as our standard for balanced linear classification models
and non-linear classification models, respectively. For logistic regression, we use logistic loss, hinge-loss for SVM,
and squared hinge-loss for L2SVM. To learn an inhomogeneous hyperplane, we set B = 1. We use the primal
formulation (s = 0) for logistic regression and the dual formulation (s = 3) for SVM. As for L2SVM, we use the
primal formulation (s = 2). In LIBSVM [6], we use C-SVC(support vector classification) (s = 0) with the RBF
kernel K(xi, xj) = exp(−ν∥xi − xj ∥2) (t = 2).

All models have an ℓ2-regularizer λ
2∥w ∥2. In terms of regularization parameter λ for the cost-sensitive learning

framework (4), including 20 × 20 SIC models (15) and 19 × 8 π-weighted convex focal loss models in Remark
III.9, we use CV(cross-validation) with candidates in (34) as recommended in LIBSVM [6].

λ = 2r, r = −14,−13,−12, · · · , 5 (34)

In LIBLINEAR and LIBSVM, the regularization parameter λ is located on the loss function. Therefore, we use
C = λ−1 with (34) for CV. For LIBSVM, in addition to the regularization parameter C on the loss function, the
RBF kernel parameter ν is cross-validated with candidates ν = 2r and r = −14, .., 5.

Regarding benchmark datasets [8], they are pre-processed and normalized in each feature dimension with mean
zero and variance one [23], except for when the variance of the raw data is zero. This process reduces the effect of
scale imbalance of datasets. The scale-class-imbalance ratio rsc (1) of two-class and multi-class datasets is presented
in Table V and Table VI, respectively. In the case of two-class datasets in Table V, the mean value of rsc of training
dataset is E(rscT) ≈ 1.61. Also, we have min rscT = 0.49 and max rscT = 7. Thus, the two-class datasets used
in our experiments are roughly well-balanced. However, most of the two-class datasets have variations between
rscT and rsc of test dataset (rscTe). The raw format of each benchmark dataset is available in the UCI machine
learning repository [52]. As commented in [55], we reorganize datasets in [8]. Each dataset is separated into the
non-overlapped training and test datasets. The training dataset of each dataset is randomly shuffled for 4-fold CV [6].
Table V(51 two-class datasets) and Table VI(67 multi-class datasets) include all information of datasets such as
number of instances, size of training dataset, size of test dataset, feature dimension, number of classes, class-
imbalance ratio rc for combined/training/test dataset, and scale-class-imbalance ratio rsc for combined/training/test
dataset. The experiments are conducted five times using randomly selected CV datasets, with a fixed initial condition
of (w0, b0) = (0, 0). For α and cα of SIC model (15), we conducted a preliminary experiment with the reduced class
of SIC model (α = α+ = α−). We found that the best test classification accuracy is obtainable when | cα | = 2.
For general purposes, | cα | ∈ [1, 10] is a possible choice. When α is not close to 1, the SIC model with | cα | = 1
shows the best performance. The detailed information is provided in Figure 5. For the experiments in this Section,
we set cα = 2 for α > 1 and cα = −2 for α < 1. Thus, α± are the only tuning parameters for which we use the
following 20 different values in [0, 2]:

α± ∈
{

0

1
,
1

2
,
2

3
, · · · , 9

10
,
11

10
,
10

9
,
9

8
, · · · , 3

2
,
2

1

}
(35)

This gives us 20 × 20 SIC models. The characteristic of each dataset could be captured by the large class of
hyperplanes h∗(α+,α−) = (w∗

(α+,α−), b
∗
(α+,α−)) learned via the 20× 20 SIC models (15), as noticed in Theorem III.6

and Example III.8. The details are as follows.

A. Performance evaluation of 20× 20 SIC models

Table II summarizes the classification accuracy (%) and computation time of all experiments conducted on
118 datasets. The acronym TOP1 refers to a group of SIC models that have the highest test accuracy for each
dataset, while MaxA/Max2/MaxM refers to an SIC model with the best test accuracy for all-, two-, and multi-
class datasets. The same notations are used for π-weighted convex focal loss: TOP1-FL, MaxA-FL, Max2-FL, and
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MODEL SIC model(15) Convex Focal Loss[31] LIBLINEAR[12] LIBSVM[6]
SubModel TOP1 MaxA Max2 MaxM TOP1-FL MaxA-FL Max2-FL MaxM-FL Logistic SVM L2SVM C-SVC
(α+, α−) or (π, γ, ξ) - ( 7

8
, 8
7
) ( 3

4
, 0) ( 8

9
, 11
10

) - (0.5, 2, 1) (0.5, 3, 0) (0.6, 2, 1) (primal) (dual) (primal) RBF Kernel

Mean acc(%) of Two Class 83.96 82.49 82.51 82.36 83.80 82.14 82.37 81.39 82.11 81.59 82.06 83.22
Mean acc(%) of Multi Class 77.30 75.57 75.19 75.57 76.68 75.53 75.36 75.55 74.75 72.94 74.18 79.96
Mean acc(%) of All Class 80.18 78.56 78.35 78.50 79.76 78.39 78.39 78.07 77.93 76.68 77.58 81.37
Time of all class 423m 106s 122s 98s 81m 88s 88s 88s 60s 109s 57s 2077m

TABLE II: A comparison of the SIC model (15) with benchmark models: π-weighted convex focal loss [31],
LIBLINEAR [12], and LIBSVM [6]. In this comparison, TOP1 refers to a group of SIC models with the best test
accuracy for each dataset, while MaxA/Max2/MaxM is an SIC model with the best test accuracy for all-, two-,
and multi-class. The same notations are used for π-weighted convex focal loss: TOP1-FL, MaxA-FL, Max2-FL,
and MaxM-FL. In the two-class problems, TOP1 performs better than kernel-based LIBSVM and TOP1-FL. Max2
of the SIC model offers the best test classification accuracy among various linear classifiers. In the multi-class
problems, although the SIC model’s TOP1 accuracy is less than kernel-based LIBSVM, it still achieves 77.30%
accuracy, which is 0.62% better than TOP1-FL. When the models’ parameters are fixed, the SIC model performs
similarly to the convex focal loss having the external π-weight parameter.

MaxM-FL. The test classification accuracy of each dataset is reported in Table III for two class datasets and in
Table IV for multi-class datasets. Note that MaxA(α+ = 7

8 , α− = 8
7) achieves 78.56%. On the other hand, MaxA-

FL(π = 0.5, γ = 2, ξ = 1) obtains 78.39%. Over half of all SIC models obtain at least 78.20% accuracy. Out of all
the π-weighted convex focal losses, only 10% can achieve the same level of accuracy as the proposed SIC model.
This implies that the SIC model is less sensitive to the parameter than the π-weighted convex focal loss. Therefore,
the SIC model could serve as an alternative cost-sensitive learning framework without external π-weight. Refer to
Figure 9 for additional information. The details are as follows.

In the case of two-class, of which the training dataset is close to the well-balanced condition, TOP1 achieves
the best results, i.e., 0.74% better than the kernel-based classifier LIBSVM(C-SVC with RBF kernel) and 0.16%
better than TOP1-FL. When the parameters of the SIC model are fixed, its performance is still better than other
linear classifiers, such as π-weighted convex focal loss and LIBLINEAR. For instance, Max2

(
α+ = 3

4 , α− = 0
)

has 82.51% accuracy, which is 0.14% better than Max2-FL and 0.4% better than logistic regression, the best model
of LIBLINEAR. As shown in Figure 6 (a), the test accuracy of all SIC models is in the range of [80.64%, 82.51%].
More than 35% of all SIC models achieve at least 82.20% test accuracy. On the other hand, the test accuracy of
all convex focal losses is in the range of [65.93%, 82.37%]. Out of all the convex focal loss, only 2% can achieve
82.20% test accuracy. It appears that the SIC models are quite resilient to internal parameter changes. Specifically,
Figure 7 (a) shows an X-shaped pattern. This pattern covers a much larger area compared to the best test accuracy
area of convex focal losses in Figure 7 (c). The X-shaped pattern relates to the pattern of η in Figure 3 (d).
It represents a small deviation from the balanced SIC model, which has |α+ − 1 | = |α− − 1 |. Essentially, the
virtual SIGTRON-induced loss functions LS

α+,c+ and LS
α−,c− of the SIC model have similar polynomial orders, i.e.,

k+ ≈ k−. Figure 8 (b) horse-colic demonstrates the X-shaped pattern.
It is important to note that spectf dataset in Table V is a typical rsc-inconsistent dataset. By using this dataset, the

connection between η = k−
k−+k+

and the movement of the hyperplane h∗α+,α−
(x) = 0 is empirically demonstrated

in Figure 3. Notably, the best test accuracy of the dataset is observed in the region (α+, α−) = (−, 2), which is
outside the X-shaped pattern.

Regarding multi-class datasets, the kernel-based classifier LIBSVM(C-SVC with RBF kernel) achieves the highest
test classification accuracy. As presented in Table II, although the test accuracy of TOP1 is less than kernel-based
LIBSVM, it still achieves a respectable 77.30%, which is 0.62% better than TOP1-FL. In Figure 6 (b), we observe
that the SIC model, which has only internal polynomial order parameters k± = 1

|α±−1 | , performs similarly to
the convex focal loss, which has the external π-weight parameter and the internal ξ and γ parameters. Note that
Figure 7 (b) shows a pattern of the best-performing SIC model in the (α+, α−)-matrix. Compared to two-class,
the X-shaped pattern is rounded and biased toward α− > 1. In the case of convex focal loss in Figure 7 (d), the
best-performing region is much larger than the two-class convex focal loss. The region is shifted towards π < 0.5.

Lastly, regarding computation time, L2SVM(primal) and logistic regression(primal) of LIBLINEAR are the fastest
models. These models use the truncated Newton method [15] that is based on the unique Hessian structure of the
large-margin linear classifier. On the other hand, for both the SIC model and convex focal loss, the proposed
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Fig. 6: The statistical distributions of 20 × 20 SIC models and 19 × 8 convex focal losses with respect to test
classification accuracy. (a) The two-class histogram. The SIC models are in the [80.64%, 82.51%] range, and
convex focal losses are in the [65.93%, 82.37%] range. The SIC model is less sensitive to internal parameters α±
and outperforms the π-weighted convex focal losses. (b) The multi-class histogram. The SIC models are in the
[73.64%, 75.57%] range, and convex focal losses are in the [74.08%, 75.55%] range. Although the SIC models have
no external π-weight parameters, they show comparable performance to π-weighted convex focal loss. For more
information on the matrix pattern of the models, refer to Figure 7.
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Fig. 7: Test accuracy(%) patterns of 20 × 20 SIC models for (a) two-class and (b) multi-class. Test accuracy(%)
patterns of 19 × 8 convex focal losses for (c) two-class and (d) multi-class. As shown in (a), SIC models exhibit
an X-shaped pattern, i.e., |α− − 1 | ≈ |α+ − 1 |. This indicates that the best-performing SIC models have similar
polynomial order between LS

α+,c+ and LS
α−,c− . This X-shaped pattern covers a much larger region than the π-

weighted convex focal losses in (c). For more information and statistical distribution of the models, refer to Figure
6.

Quasi-Newton(L-BFGS) optimization for virtual convex loss is used. As shown in Figure 9 (b) in Appendix B, the
π-weighted convex focal loss with π = 0.5, γ = 1, ξ = 0, which corresponds to the logistic loss of LIBLINEAR,
achieves reasonable performance-computation complexity, resulting in 78.30% test accuracy at 83 seconds. It is
worth noting that the logistic regression of LIBLINEAR only obtains 77.93% test accuracy at 60 seconds.

Figure 8 demonstrates patterns of test classification accuracy for two-class datasets, statlog-australian-credit and
horse-colic and for multi-class datasets, ecoli, arrhythmia, energy-y1, and energy-y2. Overall, the best test accuracy
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Fig. 8: Matrix patterns of the 20 × 20 SIC models of the test classification accuracy of (a) statlog-australian-
credit, (b) horse-colic, (c) ecoli, (d) arrhythmia, (e) energy-y1, and (f) energy-y2. Here statlog-australian-credit and
horse-colic are two-class datasets. And ecoli, arrhythmia, energy-y1, and energy-y2 are multi-class datasets. Both
energy-y1 and energy-y2 have the same input dataset but look for hyperplanes for opposite outputs, i.e., y1 for
the heating load, while y2 for the cooling load [51]. The best performing (α+, α−) for energy-y1 and energy-y2
exhibit opposite patterns: (α+, α−) ≈ (2,−) for energy-y1, and (α+, α−) ≈ (−, 2) for energy-y2. Overall, the
best-performing region of multi-class datasets is more localized than that of two-class datasets.

regions of multi-class datasets are more localized than those of two-class datasets. The X-shaped pattern in Figure
7 (a) is also observed in the horse-colic dataset in Figure 8 (b). Both energy-y1 and energy-y2 have the same
input dataset but look for hyperplanes for opposite outputs. Specifically, energy-y1 is used to determine the heating
load, while energy-y2 is used to determine the cooling load [51]. The best performing (α+, α−) for energy-y1 and
energy-y2 exhibit opposite patterns: (α+, α−) ≈ (2,−) for energy-y1, and (α+, α−) ≈ (−, 2) for energy-y2. Refer
to Figure 8 (e) and (f) for further details. Understanding the correlation between the pattern of (α+, α−)-matrix
and the structure of each dataset can be a valuable tool for multi-label classification and imbalanced classification.
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MODEL SIC model(15) Convex Focal Loss[31] LIBLINEAR[12] LIBSVM[6]
SubModel TOP1 MaxA Max2 MaxM TOP1-FL MaxA-FL Max2-FL MaxM-FL Logistic SVM L2SVM C-SVC
(α+, α−) or (π, γ, ξ) - ( 7

8
, 8
7
) ( 3

4
, 0) ( 8

9
, 11
10

) - (0.5, 2, 1) (0.5, 3, 0) (0.6, 2, 1) (primal) (dual) (primal) RBF Kernel

acute-inflammation 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
acute-nephritis 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
adult 84.31 84.24 84.00 84.26 84.38 84.38 84.29 83.73 84.28 84.33 84.05 85.03
balloons 87.50 87.50 87.50 87.50 87.50 87.50 87.50 72.50 87.50 87.50 87.50 87.50
bank 89.00 88.79 88.82 88.81 89.51 88.75 88.81 88.68 88.83 88.19 88.81 88.75
blood 77.17 76.58 76.68 76.15 76.74 75.99 76.20 76.74 76.20 76.20 75.67 76.84
breast-cancer 72.73 72.03 71.61 71.89 73.29 71.61 71.47 72.45 71.05 69.51 70.77 75.66
breast-cancer-wisc 96.85 96.62 96.56 96.62 96.85 96.50 96.33 95.82 96.50 96.62 96.68 95.99
breast-cancer-wisc-diag 98.38 98.17 97.75 98.10 98.31 98.24 98.17 98.24 98.24 97.46 97.96 98.38
breast-cancer-wisc-prog 81.41 79.60 78.59 79.80 82.02 78.79 79.19 79.60 78.38 75.15 79.39 78.38
chess-krvkp 96.93 96.12 96.77 96.46 97.01 96.71 96.53 96.78 96.48 96.33 96.68 98.82
congressional-voting 60.92 58.06 59.17 58.80 61.94 59.26 58.53 60.46 57.70 59.91 57.70 57.33
conn-bench-sonar-mines-rocks 79.23 76.35 75.96 77.88 78.46 75.77 77.12 75.19 75.58 77.50 75.77 84.42
connect-4 75.49 75.45 75.39 75.45 75.50 75.42 75.47 75.38 75.47 75.38 75.41 86.26
credit-approval 89.39 88.58 87.48 89.16 89.62 88.29 88.75 87.36 88.58 87.54 87.88 86.84
cylinder-bands 74.84 73.91 73.28 73.67 74.92 72.42 73.12 71.41 73.83 74.14 73.52 77.34
echocardiogram 86.77 84.92 84.92 84.62 87.38 84.62 84.62 86.15 85.85 87.69 86.15 87.38
fertility 89.60 88.40 88.00 89.60 90.00 84.80 89.60 86.80 85.60 87.20 86.00 86.80
haberman-survival 74.12 73.59 73.59 73.59 74.38 73.59 73.59 72.55 73.86 74.77 73.86 71.63
heart-hungarian 87.89 86.67 86.67 86.67 88.03 85.99 86.53 84.90 86.67 85.03 86.67 86.12
hepatitis 81.04 79.22 77.92 77.66 81.82 75.84 77.40 76.88 77.66 75.06 76.62 81.04
hill-valley 92.08 83.43 92.08 81.39 86.34 81.06 84.75 76.63 80.86 56.70 80.00 65.41
horse-colic 89.71 88.82 87.65 87.35 89.71 88.24 89.41 87.65 87.65 87.06 87.06 85.00
ilpd-indian-liver 73.40 73.40 72.10 72.16 72.58 72.23 71.96 71.55 71.96 71.48 73.06 71.41
ionosphere 88.80 86.29 86.40 86.51 87.09 86.63 86.63 86.97 88.34 87.77 86.74 94.63
magic 79.64 79.12 79.64 79.01 79.45 79.08 79.15 78.20 79.04 78.85 78.97 87.20
miniboone 90.35 90.16 89.77 90.26 90.30 90.30 90.26 90.14 89.79 89.98 89.04 93.50
molec-biol-promoter 84.53 77.36 76.60 76.60 79.25 76.98 77.36 76.60 78.11 76.23 76.23 76.98
mammographic 83.75 83.25 82.96 82.75 83.58 82.87 83.46 83.46 83.50 83.17 83.08 83.21
mushroom 95.24 94.52 95.02 94.60 97.46 95.62 94.58 94.85 94.40 97.64 93.89 100.00
musk-1 84.45 81.93 83.28 82.86 85.46 82.69 82.18 84.87 81.51 83.28 83.19 91.18
musk-2 94.99 94.63 94.56 94.76 95.25 94.80 94.63 95.06 94.67 95.02 94.72 99.19
oocytes-merluccius-nucleus-4d 83.01 82.04 82.04 81.41 82.54 82.07 82.11 81.57 81.80 80.74 82.74 82.07
oocytes-trisopterus-nucleus-2f 81.32 79.91 80.39 79.08 80.88 80.39 78.55 78.42 78.51 78.68 78.73 82.19
ozone 97.22 97.13 97.13 97.08 97.32 97.07 97.11 97.08 97.15 97.10 97.13 96.99
parkinsons 84.12 82.68 82.47 83.09 85.77 83.92 83.09 82.06 82.47 83.51 83.71 91.34
pima 76.98 75.52 75.36 76.61 77.14 76.72 76.61 76.09 76.35 75.31 76.35 73.80
pittsburg-bridges-T-OR-D 89.02 87.84 88.24 88.63 90.20 88.63 88.24 87.84 89.80 86.67 90.20 87.06
planning 70.55 67.47 65.27 67.03 71.43 65.93 67.47 67.91 64.40 70.11 65.27 69.45
ringnorm 77.95 77.37 77.86 77.11 77.87 77.25 76.89 74.16 76.86 77.51 77.11 98.74
spambase 92.88 92.82 92.72 92.44 93.03 92.77 92.45 91.42 92.37 92.78 92.22 93.23
spect 66.67 62.90 62.90 62.26 67.85 61.83 62.04 59.78 64.30 65.16 62.37 60.00
spectf 64.60 56.36 57.86 52.94 61.50 50.48 52.09 46.31 48.98 47.27 49.30 46.84
statlog-australian-credit 68.12 67.13 67.71 66.90 67.94 67.54 67.13 62.55 67.13 67.83 66.96 66.26
statlog-german-credit 77.16 76.96 76.44 76.60 77.40 75.92 76.20 74.96 76.80 76.24 77.16 76.08
statlog-heart 88.59 87.11 86.52 88.00 87.56 87.41 87.26 84.15 86.67 84.59 87.70 84.74
tic-tac-toe 97.91 97.91 97.91 97.91 97.91 97.91 97.91 97.91 97.91 97.91 97.91 98.62
titanic 78.09 77.55 77.55 77.55 78.09 77.55 77.55 77.55 77.55 77.55 77.55 78.42
trains 64.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 40.00
twonorm 97.66 97.57 97.54 97.56 97.68 97.62 97.44 97.40 97.57 97.49 97.49 97.69
vertebral-column-2clases 85.68 83.23 81.29 82.97 87.61 83.35 83.10 86.06 82.97 81.94 82.32 82.32

Mean 83.96 82.49 82.51 82.36 83.80 82.14 82.37 81.39 82.11 81.59 82.06 83.22

TABLE III: A comparison of two-class test classification accuracy of the SIC model (15) to π-weighted convex
focal loss [31], LIBLINEAR [12], and LIBSVM [6]. Our results indicate that TOP1 performs better than kernel-
based LIBSVM and the corresponding TOP1-FL. Max2 offers the best test classification accuracy among various
linear classifiers.

VI. CONCLUSION

This article introduces SIGTRON, an extended asymmetric sigmoid function with Perceptron, and its virtualized
loss function called virtual SIGTRON-induced loss function. Based on this loss function, we propose the SIGTRON-
imbalanced classification (SIC) model for cost-sensitive learning. Unlike other models, the SIC model does not use
an external π-weight on the loss function but instead has an internal two-dimensional parameter (α+, α−)-matrix.
We show that when a training dataset is close to a well-balanced condition, the SIC model is moderately resilient
to variations in the dataset through the skewed hyperplane equation. When rsc is not severe, the proposed SIC
model could be used as an alternative cost-sensitive learning model that does not require an external π-weight
parameter. Additionally, we introduce quasi-Newton(L-BFGS) optimization for virtual convex loss with an interval-
based bisection line search. This optimization is a competitive framework for a convex minimization problem,
compared to conventional L-BFGS with cubic-interpolation-based line search. We utilize the proposed optimization
framework for the SIC model and the π-weighted convex focal loss. Our SIC model has shown better performance
in terms of test classification accuracy with 118 diverse datasets compared to the π-weighted convex focal loss
and LIBLINEAR. In binary classification problems, where the severity of rsc is not high, selecting the best SIC
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MODEL SIC model(15) Convex Focal Loss[31] LIBLINEAR[12] LIBSVM[6]
SubModel TOP1 MaxA Max2 MaxM TOP1-FL MaxA-FL Max2-FL MaxM-FL Logistic SVM L2SVM C-SVC
(α+, α−) or (π, γ, ξ) - ( 7

8
, 8
7
) ( 3

4
, 0) ( 8

9
, 11
10

) - (0.5, 2, 1) (0.5, 3, 0) (0.6, 2, 1) (primal) (dual) (primal) RBF Kernel

abalone 65.78 65.23 65.43 65.08 65.57 65.31 65.12 65.36 65.18 60.31 65.14 66.22
annealing 87.77 86.27 87.02 86.12 87.12 86.22 85.91 86.97 86.87 87.77 86.97 92.08
arrhythmia 69.73 65.40 68.85 67.88 69.47 68.32 68.76 67.88 68.50 65.93 64.16 67.52
audiology-std 80.00 76.00 78.40 76.00 80.00 72.80 71.20 73.60 70.40 68.80 68.80 65.60
balance-scale 88.46 88.14 88.01 88.27 88.46 88.40 88.14 88.40 88.21 88.21 88.08 98.85
breast-tissue 69.06 66.04 65.28 66.04 66.42 66.42 66.42 66.42 65.28 64.15 66.04 65.66
car 82.64 82.52 81.48 82.41 82.94 82.36 82.36 82.04 82.41 79.93 81.34 98.47
cardiotocography-10clases 79.49 78.46 77.57 78.19 78.74 77.46 77.99 77.84 78.04 73.89 77.38 80.94
cardiotocography-3clases 90.05 89.73 89.56 89.76 90.48 89.78 89.71 89.50 89.84 90.08 89.76 91.95
chess-krvk 28.07 27.83 27.38 27.77 28.10 28.03 27.82 27.96 27.84 17.36 27.59 76.09
conn-bench-vowel-deterding 57.65 52.73 54.24 52.80 55.68 53.26 52.65 54.09 51.89 50.53 54.47 96.06
contrac 51.66 50.98 50.65 50.82 51.22 50.38 50.87 50.49 50.87 46.44 50.03 52.47
dermatology 99.34 97.81 97.38 98.03 98.14 97.60 98.03 98.03 97.81 96.72 97.27 98.14
ecoli 88.93 87.50 88.21 87.74 88.57 88.10 88.21 88.21 87.98 86.07 87.98 85.60
energy-y1 88.85 85.26 85.47 85.57 89.06 85.00 85.57 85.89 86.20 85.16 86.09 94.06
energy-y2 91.15 89.48 88.59 88.85 90.10 88.75 88.23 88.54 89.43 88.85 89.69 92.71
flags 54.85 53.40 53.81 53.40 54.23 52.99 53.20 53.20 52.99 55.05 53.40 53.61
glass 68.22 62.06 63.93 62.80 65.42 64.86 62.80 64.11 63.93 60.00 65.23 70.09
hayes-roth 62.14 53.57 53.57 53.57 57.86 53.57 53.57 53.57 50.71 42.14 45.00 77.14
heart-cleveland 64.11 61.99 62.25 62.52 63.84 62.65 62.65 61.85 61.32 61.19 62.78 59.60
heart-switzerland 41.97 39.34 39.02 39.34 39.67 37.05 38.03 38.03 35.74 37.38 35.74 40.33
heart-va 32.20 29.40 29.40 29.60 32.20 29.60 29.40 29.80 28.20 31.60 27.00 28.00
image-segmentation 91.14 90.13 90.70 90.67 91.30 91.28 90.55 90.89 90.39 90.82 90.18 90.94
iris 97.33 93.33 94.67 94.40 96.00 94.93 94.67 94.67 94.67 91.47 94.40 96.00
led-display 72.12 71.12 70.80 71.56 71.80 70.36 71.32 70.48 70.44 69.16 70.32 69.60
lenses 83.33 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00
letter 72.61 72.49 70.06 72.38 72.27 71.95 72.25 72.24 72.22 60.57 70.26 96.53
libras 64.56 61.56 61.78 62.11 65.00 62.56 62.33 62.22 62.67 61.56 61.11 78.22
low-res-spect 89.96 88.15 88.60 88.15 88.83 88.23 87.77 87.55 88.30 88.30 88.23 90.42
lung-cancer 62.50 61.25 57.50 62.50 62.50 62.50 62.50 62.50 57.50 60.00 58.75 56.25
lymphography 84.59 83.24 81.62 83.78 85.14 82.16 82.97 81.89 82.43 82.16 82.43 80.27
molec-biol-splice 84.13 82.98 82.70 82.75 82.81 82.71 82.46 82.62 82.41 81.93 81.98 85.03
nursery 90.64 89.87 89.88 89.84 90.04 89.86 89.86 89.98 89.84 89.51 89.81 99.31
oocytes-merluccius-states-2f 92.41 91.86 92.02 91.94 92.09 91.70 91.74 91.70 91.51 92.02 91.66 91.66
oocytes-trisopterus-states-5b 93.29 92.68 92.85 92.72 92.89 92.76 92.81 92.76 92.50 93.07 92.59 93.60
optical 94.98 94.78 94.64 94.82 95.05 94.92 94.79 94.75 94.74 94.31 94.76 97.28
page-blocks 96.83 96.43 96.21 96.39 96.62 96.24 96.24 96.12 96.29 95.96 96.05 96.64
pendigits 89.86 89.68 89.53 89.38 89.85 89.52 89.54 89.66 89.85 89.47 89.67 97.66
pittsburg-bridges-MATERIAL 88.30 87.92 87.17 86.79 87.55 86.42 86.42 86.79 87.55 88.68 88.68 85.66
pittsburg-bridges-REL-L 69.80 67.45 67.06 67.45 68.63 68.24 63.92 67.84 65.49 66.27 64.31 69.80
pittsburg-bridges-SPAN 79.57 76.09 69.57 74.35 80.00 77.39 74.35 77.39 75.65 74.78 75.22 70.00
pittsburg-bridges-TYPE 65.77 63.85 65.77 62.31 65.38 62.31 62.69 63.46 64.62 58.85 63.46 61.15
plant-margin 78.67 77.70 76.12 77.90 78.53 78.03 78.07 78.00 69.50 58.50 64.80 80.12
plant-shape 55.25 54.22 49.47 54.65 54.62 53.65 53.85 53.40 50.37 40.92 47.10 67.00
plant-texture 80.50 78.15 79.32 78.90 79.77 79.05 78.92 78.97 76.35 70.46 75.02 80.88
post-operative 67.11 66.67 63.56 63.11 66.67 64.89 62.67 64.44 54.67 57.33 55.56 63.11
primary-tumor 49.09 46.55 43.64 45.70 47.76 47.52 45.33 46.55 45.21 41.21 42.42 45.21
seeds 94.29 93.71 93.52 94.29 94.29 93.52 93.71 93.52 92.76 90.48 92.19 91.43
semeion 92.69 92.19 91.56 91.91 92.46 91.48 91.96 91.58 89.12 86.18 85.43 94.65
soybean 86.93 84.84 85.88 85.10 86.80 85.88 84.97 85.62 85.36 88.24 86.67 87.71
statlog-image 93.11 92.28 92.16 92.28 93.65 92.92 92.24 92.31 91.76 91.90 91.26 95.64
statlog-landsat 83.99 82.20 81.30 81.99 81.73 81.58 81.68 81.54 81.91 80.37 81.15 91.89
statlog-shuttle 96.54 93.49 93.41 93.50 94.55 93.88 93.61 93.63 93.12 89.87 92.49 99.90
statlog-vehicle 78.68 77.68 78.53 77.78 79.10 77.73 77.73 77.92 77.78 77.07 77.68 81.89
steel-plates 71.61 71.03 69.75 70.95 71.53 70.76 70.62 70.52 70.47 70.02 70.62 75.03
synthetic-control 97.93 97.27 93.00 97.33 97.73 94.27 96.60 96.07 91.33 87.87 89.20 99.00
teaching 49.60 48.27 46.67 48.53 50.13 48.80 48.80 48.53 48.00 40.80 46.67 52.53
thyroid 96.04 94.75 94.84 94.89 96.06 95.06 95.04 94.99 95.06 95.23 94.46 96.66
vertebral-column-3clases 86.97 85.55 85.16 85.81 86.19 84.52 85.16 83.87 84.00 83.61 84.77 83.35
wall-following 72.85 69.86 69.27 69.77 72.17 69.93 69.52 69.92 69.57 72.89 66.54 90.66
waveform 87.40 86.86 87.09 86.84 87.43 87.08 86.88 87.25 86.66 86.74 86.70 86.92
waveform-noise 86.15 85.86 85.78 85.97 86.06 85.88 86.02 85.86 85.98 85.77 85.90 85.44
wine 98.88 98.43 98.88 98.88 98.88 97.75 98.43 98.20 98.88 98.88 98.65 97.75
wine-quality-red 58.22 57.25 56.52 56.47 58.12 56.42 56.47 56.40 56.85 56.35 56.40 61.20
wine-quality-white 53.87 53.13 53.07 53.32 54.02 53.74 53.51 54.02 53.56 47.10 53.27 60.21
yeast 60.75 59.95 59.65 59.62 61.11 60.49 60.19 60.38 60.16 52.26 59.97 60.75
zoo 96.00 96.00 96.00 96.00 96.00 96.00 96.00 96.00 96.00 95.60 96.00 96.00

Mean 77.30 75.57 75.19 75.57 76.68 75.53 75.36 75.55 74.75 72.94 74.18 79.96

TABLE IV: A comparison of multi-class test classification accuracy of the SIC model (15) to π-weighted convex
focal loss [31], LIBLINEAR [12], and LIBSVM [6]. Although the accuracy of TOP1 is less than kernel-based
LIBSVM, it still achieves 77.30% accuracy, which is 0.62% better than TOP1-FL. Within linear classifiers, the SIC
model performs similarly to the convex focal loss having the external π-weight parameter, i.e., MaxM achieves
75.57% vs. MaxM-FL achieves 75.55%.
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model for each dataset(TOP1) can lead to better performance than the kernel-based LIBSVM. Specifically, TOP1
achieves a test classification accuracy of 83.96%, which is 0.74% better than the accuracy of LIBSVM and 0.16%
better than the accuracy of TOP1-FL of the convex focal loss. In multi-class classification problems, although the
test accuracy of TOP1 is lower than that of kernel-based LIBSVM, it achieves an accuracy of 77.30%, which is
0.62% better than the accuracy of TOP1-FL of the convex focal loss. Last but not least, the proposed SIC model,
which includes an (α+, α−)-matrix parameter, could be a valuable tool for analyzing various structures of datasets,
such as rsc-inconsistency and multi-label structures.

APPENDIX

A. Proof of Theorem II.2

Let α = 1, then we have sα,c(x) = 1
1+exp(−x) ∈ C∞(R). Therefore, we only consider the case α ̸= 1.

Note that ∇nsα,c(x) = 0, for all x ∈ R \ dom(σα,c) and n = 1, 2, 3, · · · . Also, for x ∈ int(dom(σα,c)), let
y = 1 + x

cα
> 0 and a = 1

1−α , then we get sα,c(cα(y − 1)) = 1
1+ya . Thus, it is not difficult to see sα,c(x) =

σα,c(x) ∈ C∞(int(dom(σα,c))).
For the continuity of ∇nsα,c(x) on x ∈ R, we only need to check sα,c(−cα) = 0. Let us assume that (7)

is true. (A) When 0 ≤ α < 1, expα,c(−x) = 0 at x = −cα. Thus, we only need to consider numerator of
Fn,k(x), i.e., (expα,c(−x))k−n(1−α). Fn,k(cα) = 0, if k − n(1 − α) > 0 for all k = 1, 2, · · · , n. Now, we
get 1 > α > 1 − 1/n. (B) When α > 1, expα,c(−x) = +∞ at x = −cα. Thus, we have Fn,k(−cα) =

limx→−cα cAn,k

(
1

1−α

)
(expα,c(−x))−n(1−α)−1 = 0 if −n(1 − α) − 1 < 0. It means 1 < α < 1 + 1/n. From

(A) and (B), we get ∇nsα,c(x) ∈ Cn(R) for α ∈
(
1− 1

n , 1 +
1
n

)
.

Now, we want to show (7) by induction for x ∈ int(dom(σα,c)). Let y = 1+ x
cα

and a = 1
1−α , then (7) becomes

dn

dyn
1

1 + ya
=

n∑
k=1

Bn,k(a)
yka−n

(1 + ya)k+1
(36)

where Bn,k(a) = (−1)n+kk!
∑n

l=0

[
n
l

]{
l
k

}
(−a)l.

(I) Let n = 1. Then the left-hand side of (36) is d
dy

1
1+ya = −aya−1

(1+ya)2 . The right-hand side is B1,1(a)
xa−1

(1+xa)2 where
B1,1(a) =

[
1
0

] {
0
1

}
+
[
1
1

] {
1
1

}
(−a) = −a. For the computation of the Stirling number of the first and second kind,

we use the following convention and rule in [17]:
{
0
0

}
=
[
0
0

]
= 1 and

{
a
0

}
=
[
a
0

]
= 0 for a ≥ 1. Also, we have{

a
1

}
= 1 and

[
a
1

]
= (a− 1)! with 0! = 1, for a ≥ 1. Additionally,

{
a
b

}
=
[
a
b

]
= 0 if b > a ≥ 0.

(II) For n > 1, let (36) be true. Then, for n+ 1, we need to show that

d

dy

(
n∑

k=1

Bn,k(a)
yak−n

(1 + ya)k+1

)
=

n+1∑
k=1

Bn+1,k(a)
yak−(n+1)

(1 + ya)k+1
, (37)

where

d

dy

(
n∑

k=1

Bn,k(a)
yak−n

(1 + ya)k+1

)
=

n∑
k=1

Bn,k(a)

(
(ak − n)yak−(n+1)

(1 + ya)k+1
− (k + 1)

aya(k+1)−(n+1)

(1 + ya)k+2

)
. (38)

From (37) and (38), we get

Bn+1,k(a) = (−ka)Bn,k−1(a) + (ka− n)Bn,k(a) (39)

where Bn,0(a) = Bn,n+1(a) = 0. It comes from the rule of the Stirling number in (I). Now, we only need to prove
(39). The left-hand side of (39) is

Bn+1,k(a) = (−1)kk!

n+1∑
l=0

[
n+ 1

l

]{
l

k

}
(−1)n+1−lal

= (−1)kk!

({
n+ 1

k

}
an+1 +

n∑
l=1

(
n
[n
l

]
+

[
n

l − 1

]){
l

k

}
(−1)n+1−lal

)
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where
[
n+1
0

]
= 0,

[
n+1
n+1

]
= 1, and

[
n+1
l

]
= n

[
n
l

]
+
[

n
l−1

]
(see the rule of the Stirling number in (I) and [17]).

By using the equivalence
{

l+1
k

}
=
{

l
k−1

}
+ k

{
l
k

}
and

[
n
0

]
= 0, the right-hand side of (39) is simplified to the

following equation.

(−ka)Bn,k−1(a) + (ka− n)Bn,k(a) = (−1)kk!

n∑
l=0

(
a

{
l + 1

k

}
− n

{
l

k

})[n
l

]
(−1)n−lal.

By dividing (−1)kk! and adding
∑n

l=1 n
[
n
l

] {
l
k

}
(−1)n−lal on both sides, we obtain the equivalence (39).

B. The structure of the dataset and classification results of all-class

We summarize the structure of 118 datasets used in our experiments and present classification accuracy of
the SIC model and π-weighted convex focal loss of all-class. Table V summarizes two-class datasets. For each
dataset, we describe the number of instances, the size of training dataset, the size of test dataset, the size of class,
and the feature dimension. Additionally, we show imbalancedness, i.e., rc/rcT/rcTe for class-imbalance ratio of
combined/training/test dataset and rsc/rscT/rscTe for scale-class-imbalance ratio of combined/training/test dataset.
Table VI summarizes multi-class datasets. For each dataset, we describe the number of instances, the size of training
dataset, the size of test dataset, the feature dimension, and the size of class. Additionally, we show imbalancedness,
i.e., minimum and maximum of rc for combined/training dataset: rcm/rcM/rcTm/rcTM. Also, minimum and
maximum of rsc for combined/training dataset: rscm/rscM/rscTm/rscTM.

Figure 9 presents classification accuracy matrix and the corresponding histogram of all-class for 20 × 20 SIC
models and 19× 8 convex focal losses. The test classification accuracy of all SIC models ranges between 76.88%
and 78.56%. On the other hand, the test classification accuracy of all convex focal losses ranges between 71.04%
and 78.39%.
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instance train test dim class rc rsc rcT rscT rcTe rscTe

acute-inflammation 120 60 60 6 2 1.03 1.01 1 0.95 1.07 1.06
acute-nephritis 120 60 60 6 2 1.40 1.14 1.40 1.14 1.40 1.14
adult 48842 32561 16281 14 2 3.18 2.10 3.15 2.09 3.23 2.14
balloons 16 8 8 4 2 1.29 1.18 1 0.72 1.67 2.15
bank 4521 2261 2260 16 2 7.68 4.43 7.66 4.38 7.69 4.45
blood 748 374 374 4 2 3.20 2.63 3.20 2.41 3.20 2.80
breast-cancer 286 143 143 9 2 2.36 1.92 2.33 1.91 2.40 1.89
breast-cancer-wisc 699 350 349 9 2 1.90 1.12 1.89 1.13 1.91 1.11
breast-cancer-wisc-diag 569 285 284 30 2 1.68 1.06 1.69 0.99 1.68 1.14
breast-cancer-wisc-prog 198 99 99 33 2 3.21 2.06 3.12 2.42 3.30 1.98
chess-krvkp 3196 1598 1598 36 2 0.91 0.95 0.92 0.97 0.91 0.95
congressional-voting 435 218 217 16 2 1.59 1.53 1.60 1.54 1.58 1.51
conn-bench-sonar-mines-rocks 208 104 104 60 2 1.14 1.04 1.12 1.02 1.17 1.06
connect-4 67557 33779 33778 42 2 3.06 2.94 3.06 2.95 3.06 2.92
credit-approval 690 345 345 15 2 0.80 0.90 0.81 0.99 0.80 0.83
cylinder-bands 512 256 256 35 2 0.64 0.75 0.64 0.79 0.64 0.74
echocardiogram 131 66 65 10 2 2.05 1.47 2 1.52 2.10 1.44
fertility 100 50 50 9 2 7.33 5.47 7.33 4.96 7.33 6.07
haberman-survival 306 153 153 3 2 2.78 2.53 2.73 2.22 2.83 2.79
heart-hungarian 294 147 147 12 2 1.77 1.26 1.77 1.37 1.77 1.17
hepatitis 155 78 77 19 2 0.26 0.52 0.26 0.65 0.26 0.44
hill-valley 606 303 303 100 2 1.03 1.03 1.02 0.84 1.03 0.83
horse-colic 368 300 68 25 2 1.71 1.30 1.75 1.31 1.52 1.22
ilpd-indian-liver 583 292 291 9 2 2.49 2.04 2.48 2.07 2.51 2.06
ionosphere 351 176 175 33 2 0.56 0.81 0.56 0.86 0.56 0.83
magic 19020 9510 9510 10 2 1.84 1.51 1.84 1.51 1.84 1.52
miniboone 130064 65032 65032 50 2 0.39 0.55 0.39 0.55 0.39 0.55
molec-biol-promoter 106 53 53 57 2 1 1 0.96 1.01 1.04 0.99
mammographic 961 481 480 5 2 1.16 1.09 1.16 1.11 1.16 1.06
mushroom 8124 4062 4062 21 2 1.07 1.03 1.07 1.05 1.07 1
musk-1 476 238 238 166 2 1.30 1.07 1.29 1.53 1.31 0.93
musk-2 6598 3299 3299 166 2 5.49 1.74 5.48 1.78 5.49 1.73
oocytes-merluccius-nucleus-4d 1022 511 511 41 2 0.49 0.59 0.49 0.55 0.49 0.62
oocytes-trisopterus-nucleus-2f 912 456 456 25 2 0.73 0.79 0.73 0.85 0.73 0.71
ozone 2536 1268 1268 72 2 33.74 6.98 33.27 7 34.22 7.31
parkinsons 195 98 97 22 2 0.33 0.73 0.32 0.92 0.33 0.56
pima 768 384 384 8 2 1.87 1.53 1.87 1.51 1.87 1.53
pittsburg-bridges-T-OR-D 102 51 51 7 2 6.29 4.10 6.29 4.71 6.29 3.41
planning 182 91 91 12 2 2.50 2.46 2.50 2.39 2.50 2.45
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twonorm 7400 3700 3700 20 2 1 1 1 1 1 1
vertebral-column-2clases 310 155 155 6 2 2.10 1.56 2.10 1.51 2.10 1.63
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inst. train test dim cls rcm rcM rscm rscM rcTm rcTM rscTm rscTM

abalone 4177 2089 2088 8 3 0.46 0.53 0.53 0.82 0.46 0.53 0.54 0.82
annealing 798 399 399 31 5 0.01 3.20 0.06 2.06 0.01 3.20 0.11 2.12
arrhythmia 452 226 226 262 13 0 1.18 0.05 1.04 0 1.11 0.06 1.02
audiology-std 196 171 25 59 18 0.01 0.32 0.05 0.59 0.01 0.36 0.05 0.59
balance-scale 625 313 312 4 3 0.09 0.85 0.09 0.91 0.09 0.85 0.09 0.94
breast-tissue 106 53 53 9 6 0.15 0.26 0.31 0.71 0.15 0.26 0.27 0.58
car 1728 864 864 6 4 0.04 2.34 0.08 1.77 0.04 2.32 0.08 1.79
cardiotocography-10clases 2126 1063 1063 21 10 0.03 0.37 0.07 0.55 0.03 0.37 0.07 0.54
cardiotocography-3clases 2126 1063 1063 21 3 0.09 3.51 0.34 1.85 0.09 3.50 0.31 1.89
chess-krvk 28056 14028 14028 6 18 0 0.19 0 0.24 0 0.19 0 0.24
conn-bench-vowel-deterding 528 264 264 11 11 0.10 0.10 0.11 0.25 0.10 0.10 0.12 0.26
contrac 1473 737 736 9 3 0.29 0.75 0.37 0.78 0.29 0.74 0.39 0.77
dermatology 366 183 183 34 6 0.06 0.44 0.39 0.90 0.06 0.43 0.40 0.87
ecoli 336 168 168 7 8 0.01 0.74 0.01 0.89 0.01 0.71 0.01 0.84
energy-y1 768 384 384 8 3 0.22 0.88 0.31 0.97 0.22 0.87 0.29 0.99
energy-y2 768 384 384 8 3 0.33 0.99 0.58 1 0.33 0.99 0.60 0.95
flags 194 97 97 28 8 0.02 0.45 0.06 0.68 0.02 0.43 0.05 0.66
glass 214 107 107 9 6 0.04 0.55 0.11 0.60 0.05 0.51 0.10 0.57
hayes-roth 160 132 28 3 3 0.24 0.68 0.40 0.74 0.29 0.63 0.46 0.69
heart-cleveland 303 152 151 13 5 0.04 1.18 0.11 1.07 0.05 1.14 0.14 1.14
heart-switzerland 123 62 61 12 5 0.04 0.64 0.06 0.67 0.05 0.63 0.08 0.66
heart-va 200 100 100 12 5 0.05 0.39 0.10 0.46 0.05 0.37 0.09 0.48
image-segmentation 2310 210 2100 18 7 0.17 0.17 0.27 0.69 0.17 0.17 0.27 0.69
iris 150 75 75 4 3 0.50 0.50 0.58 0.82 0.50 0.50 0.56 0.84
led-display 1000 500 500 7 10 0.09 0.12 0.18 0.30 0.09 0.13 0.19 0.29
lenses 24 12 12 4 3 0.20 1.67 0.35 1.37 0.20 1.40 0.35 1.39
letter 20000 10000 10000 16 26 0.04 0.04 0.06 0.14 0.04 0.04 0.06 0.14
libras 360 180 180 90 15 0.07 0.07 0.12 0.54 0.07 0.07 0.13 0.51
low-res-spect 531 266 265 100 9 0 1.08 0.05 1.01 0 1.06 0.04 0.98
lung-cancer 32 16 16 56 3 0.39 0.68 0.78 0.87 0.45 0.60 0.72 0.87
lymphography 148 74 74 18 4 0.01 1.21 0.08 1.10 0.01 1.18 0.08 1.04
molec-biol-splice 3190 1595 1595 60 3 0.32 1.08 0.51 1.05 0.32 1.08 0.51 1.07
nursery 12960 6480 6480 8 5 0 0.50 0 0.67 0 0.50 0 0.67
oocytes-merluccius-states-2f 1022 511 511 25 3 0.06 2.19 0.37 1.14 0.06 2.17 0.37 1.07
oocytes-trisopterus-states-5b 912 456 456 32 3 0.02 1.36 0.08 1.04 0.02 1.35 0.09 1.08
optical 5620 3823 1797 62 10 0.11 0.11 0.30 0.51 0.11 0.11 0.31 0.53
page-blocks 5473 2737 2736 10 5 0.01 8.77 0.06 4.07 0.01 8.74 0.06 4.01
pendigits 10992 7494 3498 16 10 0.11 0.12 0.23 0.44 0.11 0.12 0.25 0.44
pittsburg-bridges-MATERIAL 106 53 53 7 3 0.12 2.93 0.20 1.67 0.13 2.79 0.29 1.37
pittsburg-bridges-REL-L 103 52 51 7 3 0.17 1.06 0.24 1.04 0.18 1 0.25 1.20
pittsburg-bridges-SPAN 92 46 46 7 3 0.31 1.09 0.45 1.07 0.31 1.09 0.39 1.08
pittsburg-bridges-TYPE 105 53 52 7 6 0.11 0.72 0.14 0.78 0.10 0.66 0.17 0.79
plant-margin 1600 800 800 64 100 0.01 0.01 0.03 0.14 0.01 0.01 0.03 0.14
plant-shape 1600 800 800 64 100 0.01 0.01 0.01 0.25 0.01 0.01 0.01 0.25
plant-texture 1599 800 799 64 100 0.01 0.01 0.03 0.11 0.01 0.01 0.03 0.12
post-operative 90 45 45 8 3 0.02 2.46 0.06 2.31 0.02 2.46 0.06 1.95
primary-tumor 330 165 165 17 15 0.02 0.34 0.04 0.55 0.02 0.32 0.04 0.50
seeds 210 105 105 7 3 0.50 0.50 0.65 0.86 0.50 0.50 0.69 0.87
semeion 1593 797 796 256 10 0.11 0.11 0.52 0.74 0.11 0.11 0.52 0.69
soybean 307 154 153 35 18 0.01 0.15 0.10 0.49 0.01 0.15 0.10 0.49
statlog-image 2310 1155 1155 18 7 0.17 0.17 0.27 0.69 0.17 0.17 0.27 0.68
statlog-landsat 6435 4435 2000 36 6 0.11 0.31 0.26 0.83 0.10 0.32 0.25 0.84
statlog-shuttle 58000 43500 14500 9 7 0 3.67 0 1.67 0 3.63 0 1.67
statlog-vehicle 846 423 423 18 4 0.31 0.35 0.48 0.62 0.31 0.35 0.35 0.72
steel-plates 1941 971 970 27 7 0.03 0.53 0.09 0.76 0.03 0.53 0.10 0.71
synthetic-control 600 300 300 60 6 0.20 0.20 0.28 0.85 0.20 0.20 0.29 0.87
teaching 151 76 75 5 3 0.48 0.53 0.53 0.58 0.49 0.52 0.54 0.54
thyroid 7200 3772 3428 21 3 0.02 12.48 0.08 5.19 0.03 12.28 0.08 4.96
vertebral-column-3clases 310 155 155 6 3 0.24 0.94 0.43 0.98 0.24 0.94 0.43 0.92
wall-following 5456 2728 2728 24 4 0.06 0.68 0.24 0.78 0.06 0.68 0.23 0.80
waveform 5000 2500 2500 21 3 0.49 0.51 0.75 0.85 0.49 0.51 0.74 0.85
waveform-noise 5000 2500 2500 40 3 0.49 0.51 0.76 0.84 0.49 0.51 0.77 0.86
wine 178 89 89 13 3 0.37 0.66 0.78 0.87 0.37 0.65 0.76 0.89
wine-quality-red 1599 800 799 11 6 0.01 0.74 0.02 0.81 0.01 0.74 0.02 0.81
wine-quality-white 4898 2449 2449 11 7 0 0.81 0 0.82 0 0.81 0 0.82
yeast 1484 742 742 8 10 0 0.45 0.03 0.51 0 0.45 0.03 0.51
zoo 101 51 50 16 7 0.04 0.68 0.13 0.93 0.04 0.65 0.13 0.91

TABLE VI: Multi-class datasets in [8], [55]. Here, 0 means < 0.01. Note that rcm/M is the minimum/maximum
class-imbalance ratio of datasets and rscm/M is the minimum/maximum scale-class-imbalance ratio defined in (1).
Additionally, rcTm/M and rscTm/M are the corresponding imbalance ratios for training datasets. OVA strategy is
used for rc and rsc.
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Fig. 9: Classification accuracy(%) patterns of all-class are exhibited for (a) 20 × 20 SIC models and (b) 19 × 8
convex focal losses. The corresponding histograms are shown in (c). In the case of the SIC model, the best test
classification accuracy 78.56% is achieved when (α+, α−) = (7/8, 8/7). On the other hand, the convex focal loss
model achieves the best test accuracy 78.39% at (π, γ, ξ) = (0.5, 3, 0), (0.5, 2, 1). Moreover, a histogram comparison
between the two models shows that more than half of all SIC models obtain at least 78.20% accuracy, while only
10% of π-weighted convex focal losses obtain that accuracy.
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