
SOLVING FOKKER-PLANCK EQUATIONS USING THE ZEROS OF FOKKER-PLANCK
OPERATORS AND THE FEYNMAN-KAC FORMULA

Pinak Mandal∗1,3, Amit Apte2,3
1 The University of Sydney, NSW 2006 Australia

2Indian Institute of Science Education and Research, Pune 411008 India
3 International Centre for Theoretical Sciences - TIFR, Bangalore 560089 India

Abstract. First we show that physics-informed neural networks are not suitable for a large class of parabolic partial
differential equations including the Fokker-Planck equation. Then we devise an algorithm to compute solutions of the Fokker-
Planck equation using the zeros of Fokker-Planck operator and the Feynman-Kac formula. The resulting algorithm is mesh-free,
highly parallelizable and able to compute solutions pointwise, thus mitigating the curse of dimensionality in a practical sense.
We analyze various nuances of this algorithm that are determined by the drift term in the Fokker-Planck equation. We work
with problems ranging in dimensions from 2 to 10. We demonstrate that this algorithm requires orders of magnitude fewer
trajectories for each point in space when compared to Monte-Carlo. We also prove that under suitable conditions the error
that is caused by letting some trajectories (associated with the Feynman-Kac expectation) escape our domain of knowledge is
proportional to the fraction of trajectories that escape.

1. Introduction. From the motion of a particle suspended in a fluid [24], enzyme kinetics [1] to
dynamics of a stock price [25], [13] evolving systems in the real worlds are often modelled as systems of
ordinary differential equations propagating under the influence of additive noise. These models known as
stochastic differential equations (SDE) [33], [16], [40] are directly linked to Fokker-Planck equations (FPE)
[36] or Kolmogorov forward equations that describe the evolution of probability density of the state vector.
In a prequel [31] we developed a deep learning algorithm to compute non-trivial zeros of high-dimensional
Fokker-Planck operators in a mesh-free manner. In this paper we will devise an algorithm to compute
solutions of high-dimensional time-dependent FPEs in a mesh-free manner. We will begin by noting an
algorithm similar to the one used in [31] to solve stationary FPEs (SFPE) fails for time-dependent FPEs.
A widely adopted strategy for solving high-dimensional PDEs is to appeal to Feynman-Kac type formulae
[12], [21], since they allow pointwise calculation of solutions without requiring a mesh thus mitigating at
least one aspect of the curse of dimensionality. For example, Kakutani’s solution of Dirichlet problem for the
Laplace operator [22], [23], Muller’s walk-on-spheres method for Dirichlet problems [32] and an analogous
method called walk-on-stars for Neumann problems [38], multi-level Picard iteration method for solving
semilinear heat equations [19] are all based on Feynman-Kac type formulae. In recent times deep learning
methods have been combined with the Feynman-Kac formula to solve high-dimensional PDEs [18], [3]. Even
though FPEs are semilinear, parabolic PDEs whose solutions are probability densities and Deep-BSDE
method proposed in [18] deals with semilinear, parabolic PDEs, generic FPEs pose many challenges that
make them unapproachable for deep-BSDE. Non-Lipschitzness of drift functions leading to blow-up of SDE
trajectories [10], [28] and unboundedness of the divergence of drift functions causing FPEs to dissatisfy one
of the requirements for the Feynman-Kac formula are foremost amongst these challenges. In this paper we
apply the Feynman-Kac formula on an auxiliary equation and combine the solution with the zero of the
Fokker-Planck operator obtained through the method described in [31] to produce the normalized solution
to the time-dependent Fokker-Planck equation. We will apply our method for problem dimensions ranging
from 2 to 10 to verify its effectiveness in high dimensions.

As we have noted, real world systems are often modelled as SDEs and we often observe such systems
partially due to limited resources and are tasked with determining the distribution of the state vector at
a certain time given all the observations up to that time. This is known as the filtering problem in the
field of data assimilation and is useful for a variety of topics - global positioning system, target tracking,
monitoring infectious diseases, to name a few [37]. FPEs are naturally connected to data assimilation when
the underlying dynamics is stochastic. We will show how this method can be used to to calculate the one-step
filtering density in the nonlinear filtering problem. To that end we will focus on systems with attractors
since such systems are often used as important test cases in the field of data assimilation [8].

2. Problem Statement.

∗Corresponding author: pinak.mandal@icts.res.in

1

ar
X

iv
:2

40
1.

01
29

2v
3

 [
m

at
h.

A
P]

 1
 M

ay
 2

02
4

2.1. Time-dependent FPEs. Consider the Itô SDE with coefficients µ ∈ C1(Rd;Rd) and σ ∈
C(Rd;Rd×l) that are independent of time,

dXt = µ(Xt) dt+ σ(Xt) dWt

X0 ∼ p0
(2.1)

such that D = 1
2σσ

⊤ is a positive definite matrix for all inputs. Such an SDE is directly related to the
Fokker-Planck equation describing the evolution of the probability density of Xt [36], [5], [7],

∂p

∂t
= Lp def

= −∇ · (µp) + tr(D ⊙∇2p) = 0, x ∈ Rd, t ∈ (0, T]

p(0,x) = p0(x), x ∈ Rd∫
Rd

p(t,x) dx = 1, t ∈ [0, T]

(2.2)

where ⊙ is the Hadamard product and ∇2 denotes Hessian. The operator L is known as the Fokker-Planck
operator (FPO). Our goal is to solve (2.2) in a mesh-free way in high-dimensions. In our examples we stick to
σ ≡ cId for some c > 0 which lets us abuse notation and use σ and D as scalar quantities, note that however
our final method can be easily applied to problems where σ is indeed a function of space or non-diagonal
with minor modifications. With this simplification (2.2) becomes,

∂p

∂t
= −∇ · (µp) +D∆p = 0 (2.3)

where ∆ is the Laplacian operator. An extensive amount of work has been done to find numerical solutions
to FPEs over the years, for a brief overview the reader can see section 4 of [31].

2.2. One step filtering problem. Suppose we partially observe Xt at discrete times t = g, 2g, 3g, · · ·
with observation gap g. These observations are given by,

yk = Hxk + ηk, k = 1, 2, · · · (2.4)

where xk = Xkg, H : Rd → Rq is a projection matrix and ηk ∼ N (0q, σ
2
oIq) are iid Gaussian errors in

observation. Given all the observations up to time t = gk, the filtering problem asks us to compute the
distribution of the state vector at that time i.e. p(xk|y1:k). Here, as a simple application, we will calculate
the one-step filtering density p(x1|y1).

3. Examples. All the examples here parallel the examples that appear in the prequel [31] where we call
a system a gradient system if the corresponding µ can be written as the gradient of some potential function,

µ = −∇V (3.1)

and otherwise we call it non-gradient system. Gradient systems provided important test cases in the prequel
[31] while solving stationary FPEs since their steady states are known in analytical form. But for time-
dependent FPEs analytical solutions are not known in general even if µ satisfies (3.1).

3.1. Gradient systems. We use the following gradient systems to verify the effectiveness of our algo-
rithm in high-dimensions. A corresponding non-trivial zero of the Fokker-Planck operator was calculated in
[31] for each case.

3.1.1. 2D ring system. For V = (x2 + y2 − 1)2 and µ = −∇V we get the following FPE,

∂p

∂t
= 4(x2 + y2 − 1)

(
x
∂p

∂x
+ y

∂p

∂y

)
+ 8(2x2 + 2y2 − 1)p+D∆p (3.2)

The corresponding ODE system has the unit circle as a global attractor. We solve this system for D = 1.
As the initial condition we use an equal Gaussian mixture with the components having centers at

(
− 1

2 ,−
1
2

)
2

and
(
1
2 ,

1
2

)
with covariance matrix 1

4I2.

p0(x, y) =
1

π
exp

(
−2
(
x+

1

2

)2

− 2

(
y +

1

2

)2
)

+
1

π
exp

(
−2
(
x− 1

2

)2

− 2

(
y − 1

2

)2
)

(3.3)

This system has a unique solution, for a proof see appendix 7.1.

3.1.2. 2nD ring system. We can daisy-chain the previous system to build decoupled systems in higher
dimensions. In this case the potential is given by

V (x) =

d
2−1∑
i=0

(x2
2i + x2

2i+1 − 1)2, d = 2n (3.4)

We use the following initial condition which can be obtained by daisy-chaining the initial condition in (3.3).

p0(x) =

d
2−1∏
i=0

[
1

π
exp

(
−2
(
x2i +

1

2

)2

− 2

(
x2i+1 +

1

2

)2
)

+
1

π
exp

(
−2
(
x2i −

1

2

)2

− 2

(
x2i+1 −

1

2

)2
)]
(3.5)

Since our algorithm does not differentiate between coupled and decoupled systems, this example serves as
a great high-dimensional test case. Although the analytical solution for this problem is not known, the
decoupled nature of this problem implies that we can compare our solution to the 2nD ring system with the
solution to the 2D ring system which can be easily computed with other methods (e.g. Monte Carlo) that
are not efficient in higher dimensions. Here we solve this system for n = 1, 2, 3, 4, 5 and D = 1. This system
has a unique solution which follows directly from the fact that the 2D ring system has a unique solution.

3.2. Non-gradient Systems. Even though the analytic solution for the gradient case is not known for
time-dependent FPEs, the gradient structure of the drift makes solving time-dependent FPEs much easier as
we will see in section 4.4.3. Non-gradient systems on the other hand pose a much harder challenge due to the
blow-up of auxiliary SDEs, see section 4.4.3 for more details. Here we deal with the following non-gradient
systems. A corresponding non-trivial zero of the Fokker-Planck operator was calculated in [31] for each case.

3.2.1. Noisy Lorenz-63 system. The Lorenz-63 system was first proposed by Edward Lorenz as an
oversimplified model for atmospheric convection [30]. The corresponding ODE possesses the famous butterfly
attractor. This system and its variants like Lorenz-96 are staple test problems in the field of data assimilation
[8], [44] which is why we also use this system for the calculation of one-step filtering density. We use the
standard parameters to define the drift.

µ = [α(y − x), x(ρ− z)− y, xy − βz]⊤

α = 10 , β =
8

3
, ρ = 28

(3.6)

We solve this system for D = 50 with the following Gaussian mixture as the initial condition,

p0(x) =
1

2
√
(2π)3

exp

(
−∥x+ 2× 13∥22

2

)
+

1

2
√

(2π)3
exp

(
−∥x− 2× 13∥22

2

)
(3.7)

where 13 denotes the vector with all entries 1 with respect to the standard basis in R3. This system has a
unique solution, for a proof see appendix 7.1.

3.2.2. Noisy Thomas system. The deterministic or ODE version of this system was proposed by
René Thomas [41]. This is a 3-dimensional system with cyclical symmetry in x, y, z and the corresponding
ODE system has a cyclically symmetric strange attractor.

µ = [sin y − bx, sin z − by, sinx− by]⊤

b = 0.2
(3.8)

3

We solve this system for D = 1 with the following Gaussian mixture as the initial condition,

p0(x) =
1

2
√
(2π)3

exp

(
−∥x+ 2× 13∥22

2

)
+

1

2
√

(2π)3
exp

(
−∥x− 2× 13∥22

2

)
(3.9)

This system has a unique solution, for a proof see appendix 7.1.
To verify our method we will compare the solutions obtained by our method with Monte Carlo simulations

of 2.1, for details of the Monte Carlo algorithm see appendix 7.2.

4. The p∞+FK algorithm. First, we will go through the main challenges for solving (2.2) in high
dimensions. These challenges and their solutions will naturally lead us to an algorithm for solving high-
dimensional FPEs. Lastly, we will discuss various nuances associated with this algorithm.

4.1. Failure of the physics-informed way. Since we used deep learning to find zeros of the Fokker-
Planck operator in the prequel [31], the most natural question becomes does an analogous algorithm work
for time-dependent FPEs? For an overview of learning solutions to PDEs in a physics-informed fashion see
section 5 of [31] or [35], [3], [39]. As noted in section 5 of [31] the first step to learning the solution to a
PDE is to convert it into an optimization problem. For notational convenience let us first define the function
space F as follows,

F def
= {f : [0, T]× Rd → [0,+∞) :

∫
Rd

f(t,x) dx = 1 ∀ t ∈ [0, T]} (4.1)

Proceeding parallely to section 5 of [31] or [39] we might be tempted to solve the following optimization
problem,

arg inf
f∈F

J (f) def
= arg inf

f∈F

 1

MN

M∑
i=1

N∑
j=1

(
∂f

∂t
(ti,xj)− Lf(ti,xj)

)2

+
1

N

N∑
j=1

(f(0,xj)− p0(xj))
2

 (4.2)

where {xj}Nj=1 is a uniform sample from our compact domain of interest ΩI (see section 6.1 in [31]) and

{ti}Mi=1 is a sample from [0, T]. But it turns out problem (4.2) is not a well-behaved problem. The following
proposition explains why this is the case.

Proposition 4.1. Suppose (2.2) has a unique, strong solution p and

Lf = 0 (4.3)

also has a unique, strong, probability solution p∞. Then there exists a sequence of functions fk ∈ F inde-
pendent of the samples {xj}Nj=1, {ti}Mi=1 such that

lim
k→+∞

J (fk) = 0 (4.4)

but

lim
k→+∞

fk ̸= p (4.5)

Proof. WLOG assume that {ti}Mi=1 is ordered and 0 = t1 < t2 < · · · < tM . Since we have included
t1 = 0 in our sample, while considering ∂

∂t at t = t1 = 0 we’ll only consider the right derivative. For k ∈ N
define the sequence,

fk(t,x) =

{
p(t,x), t ≤ 1

k

ϕk(t) p(t,x) + (1− ϕk(t)) p∞(x), t > 1
k

(4.6)

where,

ϕk(t) = e1−kt (4.7)

4

Since p, p∞ are probability densities, it is easy to see that fk ∈ F , ∀ k ∈ N. The second term or the initial
condition term in J (fk) vanishes since fk(0,x) = p(0,x) = p0(x). Moreover since p is a zero of ∂

∂t − L,

N∑
j=1

(
∂fk
∂t

(t1,xj)− Lfk(t1,xj)

)2

= 0 (4.8)

where as noted before we have only considered the right time-derivative at t = t1 = 0. Now pick K > 0 :
1
K < t2. For k > K, using the fact that p, p∞ are both zeros of ∂

∂t − L we see that,

J (fk) =
1

MN

M∑
i=2

N∑
j=1

(
dϕk

dt
(ti)(p∞(xj)− p(ti,xj))

)2

(4.9)

Due to continuity of p, p∞ and compactness of ΩI there exists B ≥ 0 :

sup
{
p(t,x)2, p∞(x)2 : t ∈ [0, T], x ∈ ΩI

}
= B (4.10)

which implies ∀ k > K,

J (fk) ≤
2B

MN

M∑
i=2

N∑
j=1

(
dϕk

dt
(ti)

)2

=
2Be2k2

MN

M∑
i=2

N∑
j=1

e−2kti < 2Be2k2e−2kt2 (4.11)

Since t2 > 0 we have

lim
k→+∞

J (fk) = 0 (4.12)

But clearly the pointwise limit of fk is given by

f(t,x) =

{
p0(x), t = 0

p∞(x), t > 0
(4.13)

The proof assumes very little about the operator L and hence can be extended to other partial differential
equations of parabolic type. Only assumptions required to prove proposition 4.1 are the existence of strong,
unique probability solutions which are true for all of our example problems, see appendix 9.1 in [31] and
appendix 7.1 in this paper. Since we only have finite computational resources it is sensible to investigate loss
functions with finite sample-sizes and note that the proof of proposition 4.1 works for any choice of samples
{ti}Mi=1, {xj}Nj=1 with arbitrary but finite sample-sizes. Note that the pathological sequence we constructed

is independent of the samples {ti}Mi=1, {xj}Nj=1 which is an important component of the failure of the physics-
informed way. In the case of stationary Fokker-Planck equations we can also construct pathological functions
that make the physics-informed loss (defined in section 6.3 of [31]) vanish without converging to a solution by
simply interpolating a solution at the sample points with non-solutions at unsampled points. But the physics-
informed method still produces correct solutions in the stationary case since these pathological functions are
sample-dependent and as the sample-size increases, they resemble a solution more and more closely. From
the perspective of training a neural network to optimize problem 4.2 the main difficulty is revealed by the
limit of the minimizing sequence given in (4.13). The network can behave like the initial condition for a short
amount of time and then mimic p∞ for all subsequent times losing all variation in time. Moreover, one can
construct many such sequences with pathological behaviors, not to mention restricting neural networks to F
and have them be expressive is another challenge since normalization is an extremely difficult condition to
implement in high dimensions, see the discussion in sections 2 and 6.4 of [31]. Apart from these difficulties,
for other explorations of failure modes of physics-informed neural networks see [27], [2].

4.2. The Feynman-Kac formula. Due to the ineffectiveness of the physics informed method, we turn
to another very useful paradigm for solving high dimensional PDEs. The Feynman-Kac formula [34] has
been used very successfully in recent years to solve high-dimensional PDEs [19]. They have also been used

5

alongside deep-learning to create algorithms for semilinear parabolic PDEs [18]. Moreover, while verifying
algorithms for very high dimensional PDEs one often relies on the Feynman-Kac formula to get a reference
solution, see for example the examples given in sections 4, 5 of [39]. The pointwise nature of the Feynman-
Kac formula makes it very attractive for high-dimensional problems, since it waives the requirement for a
mesh. Below we briefly discuss a few versions of the formula and the challenges associated with using it for
(2.2).

The following version of the formula appears in [33] and it is one of the most well-known versions.

Theorem 4.2 (Feynman-Kac). Suppose f ∈ C2
0 (Rd) and q ∈ C(Rd). If q is bounded below then

v(t,x) = E
[
exp

(
−
∫ t

0

q(X̄s) ds

)
f(X̄t)

∣∣∣∣ X̄0 = x

]
(4.14)

is the unique solution of
∂u

∂t
= Au− qu

u(0,x) = f(x)
(4.15)

that’s bounded on K × Rd for every compact K ⊂ [0,+∞), where X̄t is a time-homogeneous Itô process
satisfying

dX̄t = µ̄(X̄t) dt+ σ̄(X̄t) dWt (4.16)

with

|µ̄(x)− µ̄(y)|+ |σ̄(x)− σ̄(y)| ≤ C|x− y|, ∀x,y ∈ Rd (4.17)

where C is a positive constant and A is the infinitesimal generator of X̄t given by

Af = µ̄ · ∇f +
1

2
tr(σ̄σ̄⊤ ⊙∇2f) (4.18)

Note the three requirements for theorem 4.2 are global Lipschitzness of µ̄ and σ̄, vanishing of the initial
condition f at infinity and the lower-boundedness of q. Lipschitzness of drift and diffusion coefficient ensures
that SDE (4.16) has a unique, non-exploding, strong solution [20]. Vanishing of the initial condition f and
lower-boundedness of q guarantee that the expectation in (4.14) is bounded.

If we try to apply formula (4.14) directly to the Fokker-Planck equation (2.3), we have to identify the
following quantities,

µ̄ = −µ
σ̄ = σ

q = −∇ · µ
(4.19)

In our examples none of the three requirements for theorem 4.2 are always satisfied. Concretely, the 2D
ring system (3.2) satisfies none of the requirements. Lipschitzness of the drift is too restrictive a condition
to model real world phenomena and therefore attempts have been made to relax this condition. In [43]
the Lipschitz condition is replaced with Hölder condition for 1D SDEs, furthermore in [15], [29] sufficient
conditions for existence of pathwise unique solutions of 1D SDEs have been discussed. [42] discusses the
more general case when the SDEs are multi-dimensional with non-Lipschitz drifts and gives us an identical
Feynman-Kac formula for (4.15) under the condition that (4.16) has a unique, weak solution. For the sake
of completeness, below we provide a special case of the more general result proved in theorem 7.5 of [42].

Theorem 4.3 (Feyman-Kac with non-Lipschitz drift). Assume the following.
1. (4.16) has a unique weak solution.
2. v(·, ·) : [0, T]× Rd → R lies in C1,2([0, T)× Rd) ∩ Cb([0, T]× Rd) and satisfies the Cauchy problem

(4.15).

6

3. f is uniformly bounded.
Then v is given by the formula (4.14).

The requirement that q be lower-bounded can be easily arranged while simultaneously simplifying (4.14)
by looking at an auxiliary equation. To derive this auxiliary equation we can write,

p(t,x) = h(t,x)p∞(x) (4.20)

where p∞ is a nonzero zero of the operator L. It is then easy to see that h satisfies the equation,

∂h(t,x)

∂t
= (σ2∇ log p∞ − µ) · ∇h+

σ2

2
∆h, x ∈ Rd, t ∈ (0, T]

h(0,x) =
p0(x)

p∞(x)
, x ∈ Rd

(4.21)

Note that L, being a linear operator, can have infinitely many distinct zeros and each such p∞ will give rise
to a different PDE for h. If we can compute p∞ then we can compute p by computing h. In [31] we provide
a deep learning method to compute positive zeros of L and thus for our purposes it suffices to compute h.
To compute h with the Feynman-Kac formula we identify the following quantities,

µ̄ = (σ2∇ log p∞ − µ)

σ̄ = σ

q = 0

(4.22)

In this construction q has automatically become lower-bounded. Moreover, the formula (4.15) simplifies
to

h(t,x) = E
[
p0(X̄t)

p∞(X̄t)

∣∣∣∣ X̄0 = x

]
(4.23)

where X̄t satisfies,

dX̄t = (σ2∇ log p∞ − µ) dt+ σ dWt (4.24)

Finally, p(t,x) can be computed with the formula,

p(t,x) = E
[
p0(Xt)

p∞(Xt)

∣∣∣∣X0 = x

]
p∞(x) (4.25)

Note that even if the computed p∞ is unnormalized since we both multiply and divide by p∞ in (4.25),
the normalization constant cancels out. Also, since µ̄ depends on p∞ through ∇ log p∞, the normalization
constant for p∞ is again eliminated and Xt appearing in (4.25) is independent of the normalization constant.
Therefore, we can recover the correct p with (4.25) for any nonzero zero of L which can be computed following
the recipe laid out in [31]. For the sake of convenience, we will refer to equations (4.21) and (4.24) as the
h-equation and the h-SDE respectively.

We have only dealt with two of the three requirements of theorem 4.2 so far by appealing to the
more general version of the Feynamn-Kac formula [42] and transforming the original FPE. The remaining
requirement that the initial condition vanishes at infinity translates to p0

p∞
vanishing at infinity. Even though

we do not impose this restriction in our examples, in section 4.4.3 we see that this condition is immaterial
to our situation since we restrict the trajectories of the h-SDE (4.24) to a finite domain and the expectation
in (4.25) is therefore bounded.

4.3. The algorithm. Following the discussion in section 4.2 we propose the following hybrid algo-
rithm 4.1 for solving (2.2) in high dimensions which uses the powers of both deep learning and the Feynman-
Kac formula. In order to generate trajectories of the h-SDE (4.16) we will use some time-discretized scheme
like Euler-Maruyama or Milstein [26]. Just as in the prequel [31], we will restrict ourselves to computing
the solution on a finite domain D where almost all the probability mass lies throughout t ∈ [0, T]. Be-
sides the space-time boundaries D, T , algorithm 4.1 has two other hyperparameters M,N describing the
time-discretization for Euler-Maruyama and the sample-size for estimating the Feynman-Kac expectation
respectively.

7

Algorithm 4.1 The p∞+FK algorithm

1. Choose D, T,M,N according to the PDE and available computational resources.
2. Use a known analytic zero of L or compute p∞ according to algorithm 6.1 in [31].
3. Pick t ∈ [0, T] and x ∈ D. Generate N trajectories of the SDE given by,

dXτ = (σ2∇ log p∞ − µ) dτ + σ dWτ

starting from x and running till time t with Euler-Maruyama method. Suppose the trajectories are

computed at times 0 = τ0 < τ1 < · · · < τM = t. Let X
(i)
j denote the j-th point (in time) in the i-th

trajectory.
4. Approximate p(τj ,x) with the following quantity,

p∞(x)

N

N∑
i=1

p0(X
(i)
j)

p∞(X
(i)
j)

4.4. Strengths and limitations. The main strength of algorithm 4.1 lies in the fact that we can focus
on the solutions pointwise without having to deal with global structures, thus somewhat mitigating the curse
of dimensionality. Also, generating trajectories for the Feynman-Kac expectation with Euler-Maruyama lends
itself to extreme parallelization, a must-have ingredient for solving high dimensional problems. The nature
of the algorithm makes it applicable to a fairly large set of problems. Moreover, to compute solutions for
the same problem but different initial conditions one can just reuse the same trajectory data and once the
trajectory data are generated, solutions can be found for all of the time-points used to generate the trajectory
data.

The limitations of algorithm 4.1 closely related to the properties dynamical system we are dealing with.
In order to explore these, first, we need to explore the behavior of the h-SDE (4.24) for different dynamical
systems.

4.4.1. Behavior of h-SDE trajectories and domain contraction. The stationary Fokker-Planck
equation Lp∞ = 0 has analytical solution for gradient systems. In this case, the solution can be expressed
as

p∞ ∝ exp

(
−2V

σ2

)
(4.26)

=⇒ σ2∇ log p∞ = 2µ (4.27)

=⇒ µ̄ = µ (4.28)

where V is defined as in (3.1), for a derivation see for example, section 3.1 in [31]. Consequently, the h-SDE
for gradient systems can be written as

dX̄t = µdt+ σ dWt (4.29)

So for the gradient case, the h-SDE is identical to the original SDE (2.1) describing the underlying dynamical
system. Since the dynamical system possesses an attractor, the trajectories of the h-SDE are attracted to
this this attractor and we can safely avoid blow-up even if the drift µ is non-Lipschitz.

But the same can not be said for the non-gradient systems where the drift term µ̄ in the h-SDE might
be dominated by −µ rather than being µ as in the original SDE, thus losing its attracting properties. In
such cases the solutions of the h-SDE might experience finite or infinite time blow-up.

Our knowledge of µ̄ is determined by our knowledge of p∞. If we do not have an analytic form for p∞
and have computed p∞ (up to the normalization constant) only up to the domain Ω then we can only be
sure of our knowledge of µ̄ up to the domain Ω. Consequently, if we want to compute the solution on the
domain D then we must select D ⊂ Ω in a way such that the trajectories of h-SDE that start inside D, do
not leave Ω till time T with high probability. To quantify this notion, we can choose a tolerance ε > 0 and
select D, T such that,

8

Figure 4.1. h-SDE trajectories for various systems. In both cases a pair of trajectories start from the same point (depicted
as a black dot) in D. While the trajectories for the gradient system might leave D (smaller rectangle), they do not leave Ω
(larger rectangle). However, the same is not true for the non-gradient system.

ξ(T,D,Ω) def
= Ex∼U(D)[P (X̄t ∈ Ω ∀ t ∈ [0, T]|X̄0 = x)] > 1− ε (4.30)

ξ(T,D,Ω) denotes the average probability that a trajectory stays inside Ω till time T given that it started
inside D, U(D) denotes the uniform distribution on D in (4.30). ξ helps us specify the space-time boundaries
for the effective employment of algorithm 4.1. While for a gradient system, choosing Ω such that it contains
the corresponding attractor, we can make sure that h-SDE trajectories originating from D do not leave Ω
with high probability, the same can not be said for a non-gradient system. Figure 4.1 shows the difference
between h-SDE trajectories for typical gradient and non-gradient systems. Since for gradient systems the
h-SDE trajectories do not leave Ω with high probability, ξ(T,D,Ω) ≈ 1 for any T . In fact, empirically it
might evaluate exactly to 1. But for non-gradient system ξ(T,D,Ω) is a decreasing function of T as seen in
figure 4.2 and in such cases we select the hyperparameter T for algorithm 4.1 according to (4.30) using a
pre-chosen tolerance ε.

We are only able to solve (2.2) on a subset D of where we solved its stationary counterpart, namely Ω.
We refer to this phenomenon as domain contraction. Even though we have included gradient systems in
the figures 4.1, 4.2 for expository purposes, since we have perfect knowledge of p∞ (up to the normalization
constant) over entire Rd, domain contraction is a practical issue only for non-gradient systems and T can be
chosen arbitrarily large for gradient systems.

4.4.2. Interpretation of finite time viability for non-gradient systems via Feynman-Kac on
finite domains. Since we are dealing with finite domains, we can also look at the h-SDE through the lens of
the Feynman-Kac formula on finite domains. In order to apply the finite domain version of the Feynman-Kac
formula one requires perfect knowledge of the solution at the boundary at all times. In our case we need to
know h(t,x) on ([0, T)× ∂Ω) ∪ ({0} × Ω̄). For the ease of discussion let us define the following quantity,

h(t,x) =

{
Ψ(T,x), ∀ x ∈ Ω̄, t = 0

Ψ(T − t,x) ∀ (t,x) ∈ [0, T)× ∂Ω
(4.31)

Assuming we know Ψ, the Feynman-Kac formula for h becomes,

h(t,x) = E
[
Ψ(τ ∧ T, X̄τ∧T)

∣∣ X̄0 = x
]

(4.32)

9

Figure 4.2. ξ(T,D,Ω) as a function of T for various systems.

where τ denotes the first exit-time of X̄ for Ω or,

τ(x)
def
= inf{s > 0 : X̄s ̸∈ Ω} (4.33)

For derivations of such formulae the interested reader can refer to theorem 4.4.5 in [17] or theorem 4.2 in
chapter 7 of [45] and its preceding section. Since in reality we only know h(t,x) at t = 0 and therefore have
no knowledge of Ψ(T − t,x) at any point other than t = 0, we can hope to effectively use (4.32) only if the
trajectories of h-SDE do not exit Ω till time T with high probability. In such a scenario τ ∧T becomes equal
to T and we are not forced to evaluate Ψ at any point where we have no knowledge of Ψ. Using the finite
domain version of Feynman-Kac therefore leads us to similar conclusions as in the previous section, namely,
algorithm 4.1 can be used to solve gradient and non-gradient systems up to arbitrarily large and finite times
respectively.

4.4.3. Effect allowing h-SDE trajectories to leave Ω in case of perfect knowledge of p∞ in Ω.
Since p∞ is not computed by algorithm 4.1 but rather is an input to it, a scenario of interest is when we have
perfect (rather than approximate) knowledge of p∞ on Ω. In such a scenario we would like the algorithm
to produce reasonably good approximate solutions even when we are willing tolerate ξ(T,D,Ω) ̸= 1 or some
h-SDE trajectories leaving Ω within our chosen T . To analyze this scenario let us define our knowledge of
p∞ as,

p̂∞(x) =

{
p∞(x), x ∈ Ω

p♯∞(x), x ∈ Ωc
(4.34)

where p♯∞ ̸= p∞ represents imperfect knowledge of p∞ outside Ω. Similarly we can define a modified h-SDE
as,

dX̂t = (σ2∇ log p̂∞ − µ) dt+ σ dWt (4.35)

and the corresponding solution generated by algorithm 4.1 as,

ĥ(t,x) = E

[
p0(X̂t)

p̂∞(X̂t)

∣∣∣∣∣ X̂0 = x

]
(4.36)

p̂(t,x) = ĥ(t,x)p̂∞(x) (4.37)

10

Now we are ready to analyze the pointwise error incurred when we allow h-SDE trajectories to escape Ω
within time T with probability less than ε or ξ(T,D,Ω) > 1− ε.

Proposition 4.4. Let Ē, Ê be the events2 that X̄, X̂ stay inside Ω till time t after starting at x ∈ D ⊂ Ω
respectively. Assume the following,

1. ξ(T,D,Ω) > 1− ε
2. ∃ a constant K > 0 such that,

p∞(x)E[h0(X̄t)|X̄0 = x, Ēc], p̂∞(x)E[ĥ0(X̂t)|X̂0 = x, Êc] < K ∀ (t,x) ∈ [0, T]×D (4.38)

where,

h0
def
=

p0
p∞

(4.39)

ĥ0
def
=

p0
p̂∞

(4.40)

Then,

Ex∼U(D)[|p̂(t,x)− p(t,x)|] < 2Kε ∀ t ∈ [0, T] (4.41)

Proof. Let x ∈ D and ∆h = h0 − ĥ0.

|p̂(t,x)− p(t,x)| = |∆1 +∆2| (4.42)

where

∆1 = p∞(x)E
[
p0(X̄t)

p∞(X̄t)

∣∣∣∣ X̄0 = x

]
− p̂∞(x)E

[
p0(X̄t)

p̂∞(X̄t)

∣∣∣∣ X̄0 = x

]
(4.43)

and,

∆2 = p̂∞(x)E
[
p0(X̄t)

p̂∞(X̄t)

∣∣∣∣ X̄0 = x

]
− p̂∞(x)E

[
p0(X̂t)

p̂∞(X̂t)

∣∣∣∣∣ X̂0 = x

]
(4.44)

Now note that,

∆1 =p∞(x)E[h0(X̄t)|X̄0 = x, Ē]P (Ē) + p∞(x)E[h0(X̄t)|X̄0 = x, Ēc] (1− P (Ē))

−p̂∞(x)E[ĥ0(X̄t)|X̄0 = x, Ē]P (Ē)− p̂∞(x)E[ĥ0(X̄t)|X̄0 = x, Ēc] (1− P (Ē))
(4.45)

Recalling that we have perfect knowledge of p∞ inside Ω we get,

∆1 =p∞(x)
[
E[∆h(X̄t)|X̄0 = x, Ē]P (Ē) + E[∆h(X̄t)|X̄0 = x, Ēc] (1− P (Ē))

]
(4.46)

=p∞(x)E[∆h(X̄t)|X̄0 = x, Ēc] (1− P (Ē)) (4.47)

where we arrive at the last equality by noticing that ∆h = 0 in the event of Ē. And,

∆2 =p̂∞(x) [E[ĥ0(X̄t)|X̄0 = x, Ē]P (Ē) + E[ĥ0(X̄t)|X̄0 = x, Ēc] (1− P (Ē))]

−p̂∞(x) [E[ĥ0(X̂t)|X̂0 = x, Ê]P (Ê) + E[ĥ0(X̂t)|X̂0 = x, Êc] (1− P (Ê))]
(4.48)

Since X̄, X̂ follow identical dynamics inside Ω, P (Ē) = P (Ê) and we have,

∆2 =p̂∞(x) [E[ĥ0(X̄t)|X̄0 = x, Ēc]− E[ĥ0(X̂t)|X̂0 = x, Êc]] (1− P (Ê)) (4.49)

2Note that Ē, Ê are events dependent on t,x but to avoid notational cluttering we do not make this dependence explicit.

11

Again noting p̂∞(x) = p∞(x) and P (Ē) = P (Ê) we get,

∆1 +∆2 = [p∞(x)E[h0(X̄t)|X̄0 = x, Ēc]− p̂∞(x)E[ĥ0(X̂t)|X̂0 = x, Êc]] (1− P (Ê)) (4.50)

=⇒ |∆1 +∆2| < 2K (1− P (Ê)) (4.51)

Since ξ is a monotone decreasing function of its first argument, the first assumption is equivalent to,

ξ(t,D,Ω) > 1− ε ∀ t ∈ [0, T] (4.52)

Therefore, according to the definition of ξ,

Ex∼U(D)[P (Ē)] > 1− ε ∀ t ∈ [0, T] (4.53)

which implies,

Ex∼U(D)[1− P (Ê)] < ε ∀ t ∈ [0, T] (4.54)

=⇒ Ex∼U(D)[|∆1 +∆2|] < 2Kε (4.55)

which completes our proof.
The second assumption in proposition 4.4 makes sure if we compute the probability densities using only

the trajectories that exit Ω before time t, we get bounded quantities independent of ε. Proposition 4.4 tells
us, under suitable circumstances, the average error that is caused by allowing some h-SDE trajectories to
leave Ω is proportional to the fraction of trajectories that leave Ω. If we modify the first assumption to
require that the inequality holds pointwise for every x ∈ D instead, we can bound the supremum norm of
the error over D instead of the average error.

5. Results. In this section we describe the results in a manner that parallels the examples in section 3
with additional problem-specific details. We refer to the solutions obtained via algorithm 4.1 as the learned
solutions in the figures below. We use the Monte-Carlo method as detailed in algorithm 7.1 to produce refer-
ence solutions in 2 and 3 dimensions. But in the absence of analytical solutions, we refrain from calculating
the difference between the reference solution and the solution produced by algorithm 4.1 since Monte-Carlo
solutions can be significantly erroneous, sometimes by more than an order of magnitude compared to its
counterpart, even for simple problems, as evidenced by figure 7.2 in the prequel [31]. When dealing with
high-dimensional PDEs, one widely accepted paradigm is to construct solutions that are statistically accu-
rate or have the correct coarse-grained structures, especially for particle-based methods in geophysics [6], [9]
and financial modelling [11]. We present our results in the same spirit. For each system we use a bimodal
initial condition as described in section 3. Figure 5.1 shows the initial condition for the noisy Lorenz-63
system defined in (3.7). For ease of visualization we have integrated out the last coordinate. The symmetry
of the initial condition implies the other 2D marginals are identical. The other initial conditions described
in section 3 are either identical or qualitatively similar. In order to produce 2D marginal densities we use
Gauss-Legendre quadrature the details of which can be found in appendix 9.3 of [31].

5.1. 10D ring system. Figure 5.2 shows the computed solution for the 2nD ring system presented in
section 3.1.2 for n = 5, at time t = 0.1. More specifically, the left panel of figure 5.2 depicts the probability
density when all but the variables x4, x5 are set to 0. For better visualization and comparison with a reference
solution, the learned solution has been normalized in a way such that,∫

R

∫
R
p(0.1, 0, 0, 0, 0, x4, x5, 0, 0, 0, 0) dx4 dx5 = 1

Here we have used M = 10, N = 105 and D = [−2, 2]10 for algorithm 4.1.
There are no analytical solutions for this problem and classical methods are unsuitable due to the curse of

dimensionality. Therefore, in order to compute a reference solution we use the careful design of the problem
itself. The system described by (3.4) and the initial condition (3.5) is essentially n identical, decoupled
2D systems and we can approximately solve this 2D system with Monte-Carlo method which is depicted in
the right panel of figure 5.2. We use 107 trajectories to generate the Monte-Carlo solution. Note that, to
compute the learned solution in figure 5.2 we use a neural network approximation of p∞ obtained via the
method described in [31] rather than using the analytical version of p∞. This demonstrates the viability of
algorithm 4.1 in conjunction with algorithm 6.1 of [31] for high dimensional problems.

12

Figure 5.1. Initial condition for the noisy Lorenz-63 system.

Figure 5.2. Solutions for the 10D time-dependent system at time t = 0.1. The learned solution has been normalized such
that

∫
R
∫
R p(0.1, 0, 0, 0, 0, x4, x5, 0, 0, 0, 0) dx4 dx5 = 1. The right panel depicts the Monte-Carlo solution for the 2D Fokker-

Planck equation corresponding to the variables x4, x5. The learned and Monte-Carlo solutions were computed using 105

(pointwise) and 107 trajectories respectively.

5.2. Noisy Lorenz-63 system. Figure 5.3 shows the solutions for the noisy Lorenz system defined by
(3.6) at time t = 0.03 with D = [−10, 10]× [−15, 15]× [7, 28],Ω = [−30, 30]× [−40, 40]× [0, 70]. As seen in
figure 4.2, ξ(t,D,Ω) ≈ 1. For easier visualization we present the 2D marginals p(t, x, y), p(t, y, z), p(t, z, x).
To compute p∞ in a functional form for this problem we use algorithm 6.1 in [31]. We use M = 3 and
N = 200 for the learned solution and 107 trajectories to generate the corresponding Monte-Carlo solution.

13

This shows that we can produce solutions with algorithm 4.1 that are comparable to Monte-Carlo method
using several orders of magnitude fewer trajectories for each point. Both methods use 0.01 as the step length
for Euler-Maruyama.

Figure 5.3. Solutions for the noisy Lorenz 63 system at time t=0.03. The learned and Monte-Carlo solutions were
computed using 200 (pointwise) and 107 trajectories respectively.

5.3. Noisy Thomas system. Figure 5.4 shows the solutions for the noisy Thomas system defined
by (3.8) at time t = 1.0 with D = [−8, 8]3 and Ω = [−10, 10]3. We only present p(t, x, y), noting that the
symmetry of the problem renders demonstrations of the other 2D marginals redundant. We use algorithm 6.1
in [31] for computing p∞. We useM = 10, N = 50 for the learned solution and the Monte-Carlo counterpart is
computed using 107 trajectories which reinstates our intuition that computing the Feynman-Kac expectation
requires far fewer trajectories compared to Monte-Carlo for a similar level of accuracy. Both methods use
0.1 as the step length for Euler-Maruyama. In figure 4.2 we see that ξ(t,D,Ω) ≈ 0.916. So even after letting

14

nearly 8.4% of the h-SDE trajectories escape Ω, we achieve a reasonable approximation.

Figure 5.4. Solutions for the noisy Thomas system at time t=1. The learned and Monte-Carlo solutions were computed
using 50 (pointwise) and 107 trajectories respectively.

5.4. One step filter. Suppose in the filtering problem described in section 2.2 we only observe x, z
coordinates of the noisy Lorenz 63 system and our observation noise standard deviation is σo = 5. The
one-step filtering density can be written as

p(x1|y1) ∝ p(x1|x0)p(y1|x1) (5.1)

For a derivation see chapter 6 of [37] or [14]. p(x1|x0) can be thought of as the solution to the corresponding
Fokker-Planck equation at time t = g = 0.03 (the observation gap) with the initial condition being equal to
the density of x0,. We can calculate the likelihood p(y1|x1) using σo which lets us estimate the 2D marginals
of the one-step filtering density for this problem. We calculate the solution to the Fokker-Planck equation
with algorithm 4.1 and Monte-Carlo. The final one-step filtering densities are shown in figure 5.5. Computing
the filtering density with Monte-Carlo in this way is akin to using the bootstrap particle filter, a popular
nonlinear filtering algorithm, see chapter 11 of [37] or [14] for more discussion on particle filters. Therefore,
we refer to the Monte-Carlo estimate for the filtering density as the particle filter estimate in figure 5.5.
We use the same M,N and the same number of trajectories for Monte-Carlo as we did in section 5.2. It is
interesting to note that the solution in figure 5.3 is bimodal whereas in the filtering density in figure 5.5 one
of the mode collapses after we make an observation.

6. Conclusions and future work. Physics-informed neural networks are unsuitable for a large class
of partial differential equations of parabolic type. But algorithm 4.1 in conjunction with algorithm 6.1 in
[31] gives us a viable method for computing solutions to Fokker-Planck equations in high dimensions. The
ability to focus on the solution pointwise lets us avoid the curse of dimensionality in a practical sense. To
compute the Feynman-Kac expectaion we can compute the Euler-Maruyama trajectories in a highly parallel
way and the same trajectories can be used to calculate solutions for different initial conditions. We are able to
compute solutions for gradient systems up to arbitrarily long times. But for non-gradient system we encounter
domain contraction, a phenomenon where we are able to calculate the solution on a subset of where know the
stationary solution. Due to blow-up of the h-SDE for non-gradient systems we can compute solutions only up
to a finite time. In case we have perfect knowledge of p∞, under ideal conditions the error that is introduced
by letting some trajectories of h-SDE escape the region where we know the stationary solution is proportional

15

Figure 5.5. One step filtering density for the noisy Lorenz 63 system. The learned and particle filter solutions were
computed using 200 (pointwise) and 107 trajectories respectively.

to the fraction of trajectories that escape. Even after allowing a significant portion of trajectories to escape,
we can achieve decent approximations. Moreover, algorithm 4.1 can achieve solutions that are comparable to
Monte-Carlo solutions using orders of magnitude fewer trajectories for each point. The connection between
the Fokker-Planck equation and the stochastic filtering problem suggests that modifications/extensions of
algorithm 4.1 can be useful for devising new filtering algorithms.

Acknowledgements. This work was supported by the Department of Atomic Energy, Government of
India, under project no. RTI4001.

7. Appendix.

16

7.1. Existence and uniqueness of solutions to example problems. Since appropriately scaling
t, µ we can change (2.3) to have unit diffusion, according to section 1 of [4] and theorem 9.4.6 and example
9.4.7 of [5] it suffices to prove that ∃C > 0 such that

µ · x ≤ C + C∥x∥22 , ∀ x ∈ Rd (7.1)

in order to confirm the existence of a unique solution to (2.2).
It is easy to check that the above condition is satisfied for the drift terms for each of the examples

discussed in section 3. For the 2D ring system in (3.2), we note that µ · x = −4r2(r2 − 1) ≤ 1, using
the fact that the function f(x) = x(1 − x) achieves global maximum at x = 1

2 , so we can choose C = 1.
For the noisy L63 system defined by (3.6) we have µ · x = −αx2 − y2 − βz2 + (α + ρ)xy ≤ (α + ρ)r2

so it suffices to set C = (α + ρ). Lastly, for the noisy Thomas system defined by (3.8) we have µ · x =
−br2 + x sin y + y sin z + z sinx ≤ 3r ≤ 3 + 3r2, therefore C = 3 is a suitable choice.

7.2. Monte Carlo algorithm. The relationship between (2.1) and (2.2) [36], [5] gives us the following
way of estimating solutions of Fokker-Planck equations. We can evolve multiple particles according to (2.1)
up to time t using Euler-Maruyama method [26], subdivide the domain D into d-dimensional boxes and
count the how many particles lie inside each box to compute the probability density at the centers of these
boxes. Here N denotes the multivariate normal distribution.

Algorithm 7.1 Monte Carlo algorithm

Sample {X(i)
0 }Ni=1 ∼ p0.

Set the time-step h = t
M .

for j = 1, 2 · · · ,M do
Sample wi

k ∼ N (0d, hId) ∀ i
X

(i)
k ← X

(i)
k−1 + µ

(
X

(i)
k−1

)
h+ σwi

k ∀ i

end
Subdivide the domain of interest D into d-dimensional boxes.
Count the number of X

(i)
S that are in a box to estimate the probability density at the center of the box.

REFERENCES

[1] L. J. Allen, An introduction to stochastic processes with applications to biology, CRC press, 2010.
[2] S. Basir, Investigating and mitigating failure modes in physics-informed neural networks (pinns), arXiv preprint

arXiv:2209.09988, (2022).
[3] J. Blechschmidt and O. G. Ernst, Three ways to solve partial differential equations with neural networks—a review,

GAMM-Mitteilungen, 44 (2021), p. e202100006.
[4] V. I. Bogachev, T. I. Krasovitskii, and S. V. Shaposhnikov, On uniqueness of probability solutions of the fokker-

planck-kolmogorov equation, Sbornik: Mathematics, 212 (2021), p. 745.
[5] V. I. Bogachev, N. V. Krylov, M. Röckner, and S. V. Shaposhnikov, Fokker–Planck–Kolmogorov Equations, vol. 207,

American Mathematical Society, 2022.
[6] P. A. Bosler, Particle methods for geophysical flow on the sphere, PhD thesis, University of Michigan, 2013.
[7] C. L. Bris and P.-L. Lions, Existence and uniqueness of solutions to fokker–planck type equations with irregular coeffi-

cients, Communications in Partial Differential Equations, 33 (2008), pp. 1272–1317.
[8] A. Carrassi, M. Bocquet, J. Demaeyer, C. Grudzien, P. Raanes, and S. Vannitsem, Data assimilation for chaotic

dynamics, Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. IV), (2022), pp. 1–42.
[9] N. Chen and A. J. Majda, Efficient statistically accurate algorithms for the fokker–planck equation in large dimensions,

Journal of Computational Physics, 354 (2018), pp. 242–268.
[10] P.-L. Chow and R. Khasminskii, Almost sure explosion of solutions to stochastic differential equations, Stochastic

Processes and their Applications, 124 (2014), pp. 639–645.
[11] S. Cui, A. Kurganov, and A. Medovikov, Particle methods for pdes arising in financial modeling, Applied Numerical

Mathematics, 93 (2015), pp. 123–139.
[12] P. Del Moral and P. Del Moral, Feynman-kac formulae, Springer, 2004.
[13] L. Delong, Backward stochastic differential equations with jumps and their actuarial and financial applications, Springer,

2013.
[14] A. Doucet, A. M. Johansen, et al., A tutorial on particle filtering and smoothing: Fifteen years later, Handbook of

nonlinear filtering, 12 (2009), p. 3.

17

[15] Z. Fu and Z. Li, Stochastic equations of non-negative processes with jumps, Stochastic Processes and their Applications,
120 (2010), pp. 306–330.

[16] C. Gardiner, Stochastic methods, vol. 4, Springer Berlin, 2009.
[17] E. Gobet, Monte-Carlo methods and stochastic processes: from linear to non-linear, CRC Press, 2016.
[18] J. Han, A. Jentzen, and W. E, Solving high-dimensional partial differential equations using deep learning, Proceedings

of the National Academy of Sciences, 115 (2018), pp. 8505–8510.
[19] M. Hutzenthaler, A. Jentzen, T. Kruse, et al., Multilevel picard iterations for solving smooth semilinear parabolic

heat equations, Partial Differential Equations and Applications, 2 (2021), pp. 1–31.
[20] N. Ikeda and S. Watanabe, Stochastic differential equations and diffusion processes, Elsevier, 2014.
[21] B. Jefferies, Evolution processes and the Feynman-Kac formula, vol. 353, Springer Science & Business Media, 2013.
[22] S. Kakutani, 131. on brownian motions in n-space, Proceedings of the Imperial Academy, 20 (1944), pp. 648–652.
[23] S. Kakutani, 143. two-dimensional brownian motion and harmonic functions, Proceedings of the Imperial Academy, 20

(1944), pp. 706–714.
[24] I. Karatzas, I. Karatzas, S. Shreve, and S. E. Shreve, Brownian motion and stochastic calculus, vol. 113, Springer

Science & Business Media, 1991.
[25] N. E. KARoUI and M. Quenez, Non-linear pricing theory and backward stochastic differential equations, Financial

mathematics, (1997), pp. 191–246.
[26] P. E. Kloeden, E. Platen, P. E. Kloeden, and E. Platen, Stochastic differential equations, Springer, 1992.
[27] A. Krishnapriyan, A. Gholami, S. Zhe, R. Kirby, and M. W. Mahoney, Characterizing possible failure modes in

physics-informed neural networks, Advances in Neural Information Processing Systems, 34 (2021), pp. 26548–26560.
[28] X.-M. Li and M. Scheutzow, Lack of strong completeness for stochastic flows, (2011).
[29] Z. Li and L. Mytnik, Strong solutions for stochastic differential equations with jumps, in Annales de l’IHP Probabilités

et statistiques, vol. 47, 2011, pp. 1055–1067.
[30] E. N. Lorenz, Deterministic nonperiodic flow, Journal of atmospheric sciences, 20 (1963), pp. 130–141.
[31] P. Mandal and A. Apte, Learning zeros of fokker-planck operators, 2023, https://arxiv.org/abs/2306.07068.
[32] M. E. Muller, Some continuous monte carlo methods for the dirichlet problem, The Annals of Mathematical Statistics,

(1956), pp. 569–589.
[33] B. Øksendal and B. Øksendal, Stochastic differential equations, Springer, 2003.
[34] H. Pham, Feynman-kac representation of fully nonlinear pdes and applications, Acta Mathematica Vietnamica, 40 (2015),

pp. 255–269.
[35] M. Raissi, P. Perdikaris, and G. E. Karniadakis, Physics-informed neural networks: A deep learning framework for

solving forward and inverse problems involving nonlinear partial differential equations, Journal of Computational
physics, 378 (2019), pp. 686–707.

[36] H. Risken and H. Risken, Fokker-planck equation, Springer, 1996.
[37] S. Särkkä and L. Svensson, Bayesian filtering and smoothing, vol. 17, Cambridge university press, 2023.
[38] R. Sawhney, B. Miller, I. Gkioulekas, and K. Crane, Walk on stars: A grid-free monte carlo method for pdes with

neumann boundary conditions, arXiv preprint arXiv:2302.11815, (2023).
[39] J. Sirignano and K. Spiliopoulos, Dgm: A deep learning algorithm for solving partial differential equations, Journal of

computational physics, 375 (2018), pp. 1339–1364.
[40] R. Strauss and F. Effenberger, A hitch-hiker’s guide to stochastic differential equations, Space Science Reviews, 212

(2017), pp. 151–192.
[41] R. Thomas, Deterministic chaos seen in terms of feedback circuits: Analysis, synthesis,” labyrinth chaos”, International

Journal of Bifurcation and Chaos, 9 (1999), pp. 1889–1905.
[42] F. Xi and C. Zhu, Jump type stochastic differential equations with non-lipschitz coefficients: non-confluence, feller and

strong feller properties, and exponential ergodicity, Journal of Differential Equations, 266 (2019), pp. 4668–4711.
[43] T. Yamada and S. Watanabe, On the uniqueness of solutions of stochastic differential equations, Journal of Mathematics

of Kyoto University, 11 (1971), pp. 155–167.
[44] H. C. Yeong, R. T. Beeson, N. Namachchivaya, and N. Perkowski, Particle filters with nudging in multiscale chaotic

systems: With application to the lorenz’96 atmospheric model, Journal of Nonlinear Science, 30 (2020), pp. 1519–1552.
[45] J. Yong and X. Y. Zhou, Stochastic controls: Hamiltonian systems and HJB equations, vol. 43, Springer Science &

Business Media, 1999.

18

https://arxiv.org/abs/2306.07068

	Introduction
	Problem Statement
	Time-dependent FPEs
	One step filtering problem

	Examples
	Gradient systems
	2D ring system
	2nD ring system

	Non-gradient Systems
	Noisy Lorenz-63 system
	Noisy Thomas system

	The LgFK algorithm
	Failure of the physics-informed way
	The Feynman-Kac formula
	The algorithm
	Strengths and limitations
	Behavior of h-SDE trajectories and domain contraction
	Interpretation of finite time viability for non-gradient systems via Feynman-Kac on finite domains
	Effect allowing h-SDE trajectories to leave Lg in case of perfect knowledge of Lg

	Results
	10D ring system
	Noisy Lorenz-63 system
	Noisy Thomas system
	One step filter

	Conclusions and future work
	Appendix
	Existence and uniqueness of solutions to example problems
	Monte Carlo algorithm

	References

