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Augmented Subspace Scheme for Eigenvalue Problem by
Weak Galerkin Finite Element Method

Yue Feng? Zhijin Guan! Hehu Xie! and Chenguang Zhou®

Abstract

This study proposes a class of augmented subspace schemes for the weak Galerkin (WG)
finite element method used to solve eigenvalue problems. The augmented subspace is built with
the conforming linear finite element space defined on the coarse mesh and the eigenfunction
approximations in the WG finite element space defined on the fine mesh. Based on this
augmented subspace, solving the eigenvalue problem in the fine WG finite element space
can be reduced to the solution of the linear boundary value problem in the same WG finite
element space and a low dimensional eigenvalue problem in the augmented subspace. The
proposed augmented subspace techniques have the second order convergence rate with respect
to the coarse mesh size, as demonstrated by the accompanying error estimates. Finally, a few
numerical examples are provided to validate the proposed numerical techniques.

Keywords. Eigenvalue problem, augmented subspace scheme, weak Galerkin finite ele-
ment method, second order convergence rate.
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1 Introduction

One of the most important tasks in contemporary scientific and engineering society is solving
eigenvalue problems. The difficulty of solving eigenvalue problems is invariably higher than that
of solving similar linear boundary value problems due to the increased computing and memory
requirements. Large-scale eigenvalue problem solving in particular will provide formidable obstacles
to scientific computing. Numerous eigensolvers have been developed so far, including the Jacobi-
Davidson type technique [4], the Preconditioned INVerse ITeration (PINVIT) method [5][9] 12], the
Krylov subspace type method (Implicitly Restarted Lanczos/Arnoldi Method (IRLM/TRAM) [25]),
and the Generalized Conjugate Gradient Eigensolver (GCGE) [16] 17, B7]. The orthogonalization
processes involved in solving Rayleigh-Ritz problems are a common bottleneck in the design of
effective parallel techniques for identifying a large number of eigenpairs, and they are included in
all of these widely used approaches.
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A class of augmented subspace methods and their multilevel correction methods has been pro-
posed recently in [7, [T, 18] 28 29| 30} B1L B2] for the solution of eigenvalue problems. This kind of
technique creates an augmented subspace using the low dimensional finite element space generated
on the coarse grid, which is employed in each correction step. The notion of an augmented sub-
space gives rise to a class of augmented subspace techniques that need just the final finite element
space on the finest mesh and the low dimension finite element space on the coarse mesh. Using the
augmented subspace methods, the solution of the eigenvalue problem on the final level of mesh can
be transformed to the solution of linear boundary value problems on the final level of mesh and the
solution of the eigenvalue problem on the low dimensional augmented subspace. Even the coarse
and finest meshes lack nested properties, these kinds of algorithms can still work [8]. The multilevel
correction methods, which are based on the augmented subspace methods, provide ways to con-
struct multigrid methods for eigenvalue problems [7, [T 28] 29, [31]. In addition, the authors design
an eigenpair-wise parallel eigensolver for the eigenvalue problems in [32]. A significant amount of
the wall time in the parallel computation is saved by using this kind of parallel approach, which
avoids performing orthogonalization and inner-products in the high dimensional space. However,
the aforementioned references are mostly investigated using conforming finite element methods.
There are few results on the augmented subspace approaches based on nonstandard finite element
methods for solving eigenvalue problems.

The WG method, which was initially introduced and explored in [27], concerns the finite el-
ement methods utilized to solve partial differential equations in which the differential operators,
such as gradient operator, divergence operator, curl operator, and so on, are approximated as
distributions by weak forms. The WG approach employs generalized discrete weak derivatives and
parameter-free stabilizers to weakly enforce continuity in the approximation space, in contrast to
the standard finite element technique. Consequently, it ought to be more convenient to create high
order precision discretization than the conforming finite element approach. Additionally, the WG
approach can be easily implemented on polygonal meshes thanks to the relaxation of the continuity
constraint, which also gives additional freedom for h- and p-adaptation. So far, the WG method
has been applied to various partial differential equations, such as the parabolic equation [I5] [39],
the biharmonic equation [21l 26] [38], the Brinkman equation [20], [36], the Helmholtz equation
[22] [24] and the Maxwell equation [23]. The convergence analysis and several lower bound findings
are produced in [34], where the WG approximation to the eigenvalue problems is firstly studied.
Then, using the WG approach, the authors create a kind of two-grid or two-level schemes [35], and
in [33], the shifted-inverse power technique is taken into consideration under the two-grid schemes.
Based on the theoretical analysis presented in [35], it can be inferred that there is no independent
relationship between the coarse and fine mesh sizes. As a result, the approaches cannot be used
to develop an eigensolver for algebraic eigenvalue problems resulting from differential operator
eigenvalue problems discretized by WG.

This paper’s contribution is the augmented subspace methods for eigenvalue problem that are
based on the WG approximation. To the best of our knowledge, this is the first work aimed at the
numerical analysis of the WG finite element discretization-based augmented subspace approaches
for eigenvalue problems. In contrast to the findings in [35], our approaches’ selections for the coarse
and fine mesh sizes are independent of one another. The algebraic eigenvalue problems that result
from the WG approximation to the differential eigenvalue problems can then be solved by designing
an eigensolver using the proposed techniques. Furthermore, we demonstrate the algebraic error
estimate for the WG augmented subspace approaches that follows
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when the computing domain is convex.

This paper is organized as follows. We provide the WG approaches for the eigenvalue problems
and deduce the associated error estimates in Section These results give explicit dependence
of the error estimates on the eigenvalue distribution which is another contribution of this paper.



The majority of this work, Section [3] contains the augmented subspace techniques and the asso-
ciated error estimates. A few numerical examples are given in Section [d] to validate the suggested
augmented subspace algorithms’ convergence rates. Lastly, the final section has a few closing
thoughts.

2 Discretization by WG finite element method

The WG finite element approach for the second order elliptic eigenvalue problem is presented in
this section. Additionally, the associated error estimates are offered. The letter C, with or without
subscripts, symbolizes a generic positive constant for this purpose that may vary at various places
in this work.

Here, we consider the numerical method to solve the following second order elliptic eigenvalue
problem: Find (\,u) € R x H}(Q2) such that

-V (AVu) = Au, inQ,
u = 0, onodQ, (2.1)
(AVu,Vu) = 1,

where © denotes a convex bounded polygonal or polyhedral domain in R¢, d = 2,3, and A €
[L2°(2)]"? is a symmetric matrix-valued function on € with suitable regularity. Assume that
there exist positive constants ¢ and C' such that the matrix A satisfies the following property

c€le < T A(x)e < CeT¢ forall € € R and z € Q. (2.2)

In order to define the WG finite element method for the eigenvalue problem, (2.1]) should be
written as the following variational form: Find (A,u) € R x V such that a(u,u) =1 and

a(u,v) = Xb(u,v), Yv eV, (2.3)
where V := H}(Q) [1] and
a(u,v) = (AVu, Vo),  b(u,v) = (u,v). (2.4)

Furthermore, based on the bilinear forms a(-,-) and b(,-), we can define the norms on the space
V' as follows

v, = Va(v,v), YveV, |w|,=Vbw,w), Ywe L*(Q). (2.5)

It is well known that the eigenvalue problem ([2.3) has an eigenvalue sequence {\;} (cf. [2[]),

O< A< A< A <o) lim Mg = 0.
k—o0

And the associated eigenfunctions are provided as
UL, U2yt Uy~ " -

Here a(u;, u;) = §;; (0;; denotes the Kronecker function).

Now, let us define the WG finite element space for the eigenvalue problem . First we
generate a shape-regular, quasi-uniform mesh 7, of the computing domain Q C R¢ (d = 2,3).
Denote by &, the set of all edges or faces of the mesh 7. For simplicity, in this paper, we only
consider the triangle or tetrahedral mesh. The diameter of a cell K € 7, is denoted by hx and the
mesh size h describes the maximal diameter of all cells K € T;. For each cell K € Tp,, we use K
and 0K to denote the interior and the boundary of K. In the sense of geometry, Ky is identical



to K. Then we identify them if no ambiguity. Based on the mesh 7,, we can construct the WG
finite element space denoted by V}, as follows

W, = {v 2|k, € Pr(Ko) for K € Tp;vle € Ps(e) for e € &, and v|. =0 for e € &, N 5‘9}, (2.6)

where P,.(Kj) denotes the set of polynomials of degree no more than the integer r > 0, Ps(e) is
the set of polynomials of degree no more than the integer s > 0. In this paper, we are concerned
with the cases of s =r or r 4+ 1. From the definition of V}, it is easy to know that the function in
V}, does not require any continuity across interior edges/faces. Actually, the function in V}, can be
characterized by its value on the interior of each element and its value on edges/faces. Therefore,
the functions in V}, can be represented with two components, v = {vg, v}, where vy denotes the
value of v on all Ky and v}, denotes the value of v on &,. The polynomial space P;(e) consists of two
choices: s =7 or r + 1 and the corresponding weak function space will sometimes be abbreviated
as Vy., or V, .1, respectively.

In order to define the WG method for the eigenvalue problem , we introduce the discrete
weak gradient operator, which is defined on each element K € 7T,. For the choices of V} given
above, i.e., using V,, or V, ., suitable definitions of the weak gradient involve the Raviart-
Thomas (RT) element or the Brezzi-Douglas-Marini (BDM) element [10], respectively. Let K be
either a triangle or a tetrahedron and denote by ﬁt(K ) the set of homogeneous polynomials of
order t in the variable x = (z1,...,24)" . Define the BDM element by G,.(K) = [Pr41(K)]* and
the RT element by G,.(K) = [P,(K)]” + P,(K)x for r > 0. Then, we can define a discrete space

), = {q € (L2(2))? : al, € GH(K) for K € n}.

In the definitions of V}, and Xj, the RT element is coupled with V;., while the BDM element is
coupled with V;., 1. We should point out that 3 is not necessarily a subspace of H(div, §2), since
it does not require any continuity in the normal direction across edges/faces.

The discrete weak gradient of v, € V}, denoted by Vv is defined as the unique polynomial
(Vwon)|x € Gr(K) satisfying the following equation

(Vutn, ) = — (00, V- Q) + (vp,q- M)y, forall q € G, (K), (2.7)

where n is the unit outward normal vector on K. Clearly, such a discrete weak gradient is always
well-defined. Furthermore, if v € H'(K), i.e., v, = vo|yx, and Vo € G,(K). Then we have
Vwv = Vv. Here we only consider the V;..-RT and V; ,;-BDM pairs on simplicial elements. Of
course, there are many other different choices of discrete spaces in the WG method, defined on
either simplicial meshes or general polytopal meshes [21] [26].

In order to define an interpolation operator for the WG finite element space, we define an L?
projection from V' onto V}, by setting Qnv = {Qov, Qpv}, where Qovly, is the local L? projection
of v to P, (Ky), for K € Tp,, and Qpv], is the local L? projection to Ps(e), for e € &,. We also

introduce Qj, the L? projection onto ;. It is well known that the following operator identity
holds [27]:

QpVu =V, Qprv, forallveV. (2.8)

For the V, ,-RT and V, ,41-BDM pairs, the identity (2.8]) shows that the discrete weak gradient is
a good approximation to the classical gradient [27].

Then, the WG finite element method for the eigenvalue problem (2.3)) can be defined as follows:
Find (Ap,@p) € R x V}, such that ap(up, @) = 1 and

an(tn, vr) = by (i, vp), Yy € Vi, (2.9)



where

ah(uh,vh) = (Aunh,vah)Th: Z(Akuh,vwvh)K, (210)
KE7~}L
bu(un,vn) = (uo,v0)7, = Y (10,v0)K- (2.11)
KeTy

Based on the bilinear form ay,(+, ), we can define the following discrete norm on the space V}, as
follows

[Vl = Van(v,v), Vv V. (2.12)

We can also define the semi-norm ||-||, , by the bilinear form by(-,-) on the space V},

Hw||b7h = bh(wvw)a V’LU S Vvh- (213)

From [2, [3], we obtain B B B B
0<An< o< < <o < Ao

and corresponding eigenfunctions
al,h7ﬂ2,h7"' aak,ha"' 7aNh,ha (214)

where ap, (U p, Ujn) = 6i5, 1 < 14,5 < Nj (N, is the dimension of the finite element space V},).

For the following analysis in this paper, we define p; = 1/A; for i = 1,2,---, and i, = 1/A; 5
fori=1,---, N

In order to state the error estimates for the eigenpair approximation by the WG finite element
method, we define the WG finite element projection Py : V +— V}, as follows

ap(Pru,vp) = )\bh(u,vh), Yoy, € Vi (2.15)
It is obvious that the finite element projection operator P has following error estimates.

Lemma 2.1. ([27]) Assume the source equation corresponding to the eigenvalue problem has
H5(Q) regularity and the eigenfunction u of belongs to H™1(Q) and 0 < m < r + 1.
Then the following error estimates hold
1Qru = Prull, ), < C1h™[[ullmi1, (2.16)
|Qu— Prully, < o™l (2.17)

N

Before stating error estimates of the WG finite element method for the eigenvalue problem, we
introduce the following lemma.

Lemma 2.2. For any eigenpair (\,u) of , the following equality holds

(Njh — Nbr(Pru, @jp) = Xop(u — Pru,@jp), j=1,---,Np.
Proof. Since —Aby,(Pru, ;) appears on both sides, we only need to prove that
;\j7hbh(77;bu,ﬂj7;b) = Abp(w, Ujp).
From , and , the following equalities hold

N hbn (Pru, @ n) = an(Pru, ) = Ab(u, 4jp)-

Then the proof is completed. O



Now, let us consider the error estimates for the first k eigenpair approximations associated with
Ap <o < A

Theorem 2.1. Let us define the spectral projection F;%h 2 Vi, > span{y p, - -+, Uk,n} as follows
ah(Fk)hwh,ﬂLh) = ah(wh, ai,h), i=1,---,k for weV,. (2.18)

Then the associated exact eigenfunctions uy,--- ,ur of eigenvalue problem have the following
error estimates

_ \/,Ll,k h .
| @nus — Fk,thUzHa n < 2[1Qnui — Prtsillan + = | Qpu; — Pruillyy, 1<i<k, (2.19)
where 6 ;.1 s defined as follows
1 1
Aipo Ail

Ok,ih = (2.20)

min
k<j<Np

Furthermore, these k exact eigenfunctions have the following error estimate in ||-||, , -norm

|Qnui — FienQuuilf,, < <2+ ‘g’;“ h) 1Qnu; — Pruilly,, 1<i<k (2.21)

Proof. Since (I — Fy, p)Ppu; € Vi, and (I — Fyp)Pru; € span{iigi1p,- - ,0n,.n}, the following

orthogonal expansion holds

([ Fk h Phul = Z Q;Uj hy (2.22)
Jj=k+1

where o; = ap(Prui, 4j,5). From Lemma we have

_ T _ Ajh i _
o; = an(Paui, wjn) = Njubn (Prug, ) = <—22——bp (u; — Ppu;, )
Ajh = Ai
1
= ———bp(u; — Prui, djp)- 2.23
o o = P ) (2.23)
From the orthogonal property of eigenfunctions @; 5, -+ , 4w, », We acquire

1= ap(j,n, @jn) = Njpbn (g, Ujn) = Nj,
which leads to the following property
2 1 _
@j,nllyp = 5— = By (2.24)
s )\j,h

Because of (2.9) and the definitions of eigenfunctions @y p,--- , N, n, We obtain the following
equalities

_ Uj h Uk, 1 .
CL]—L(’LLJ‘?h,’LLk;,h) = 5jkta bh - Js ,— 5 = 0jk, 1 S j,]{i S Nh- (225)
,nlly " knlly, g

Then due to (2.22)), (2.23), (2.24) and (2.25), we have the following estimates

2

Nh Nh
— Fion)Prui ih = Q;jUj,h = of
[T = Fn)Puui [,
j=k+1 ap  G=RHL



Np

= Z (1)2 b (u; — Phus, Uj h)2
i — Hjn ’

j=k+1
1 M 2 Ui p ?
< 52 Z l@j.nlly 5 bn (Uz — Phui, M)
kyih g1 J:hllb,h
1 N B Uj,h ?
=5 2 Fanbn = Pa i
R =kt hellp,
_ Nn _ 2
< u;;l’h Z bn (Uv — Prug, 7Hau]h >
kb jpi J,h”b,h
Hk+1,h Al Uj,h ’ < Pr+1n 2
== Z by, (Qhui — Pru;, IIﬂ-z«:H ) <5 1Qnui — Pruill,,,  (2:26)
kb it 3:hllp, b k,i,h
where the last inequality holds since Huftill\bh’ cee Hﬂjlzill\bh constitute an orthonormal basis for the

space V}, in the sense of the inner product by(-, ).
From (2.26)), the following inequality holds

(I = Fion)Prui]|,, < V“’““ 1Qns — Prilly - (2.27)

From , | F.nlla.n <1 and the triangle inequality, it follows that
|Qnu; — Fk,thuiHayh = 1Qnus — Prull,, + ||(1 - Fk,h)PhUiHayh + || Fren (Ph — Qh)UiHavh
< N@uui = Pt g, + 11 = Fin)Puill,p, + | F ]l 1P = Qu)uil

VHk+1,h
< 2(|@Qnu; — Prtiilla,n + ﬁ |Qnui — Pruilly,, -
K3

This is the desired result (2.19).
Similarly, with the help of (2.22)), (2.23)), (2.24) and (2.25)), we have following estimates

2

Nh Nh,
_ _ 2
H(I Fin Phuleh Z Qs h = Z O‘? .l
j=k+1 b I=RHL
Np, 1 2 5
_ 2
= > () e P il
j=k+1 i Kjh
1 a ’
_ ih

<o 3 Nl b (= P, 20—

k,i,h j=k+1 ||u.]7h||b,h

Np, _ 2 ~2

1 _ Wjp Hit1,n 2
= — > Hibn (Qhui—Phuu H_'jll ) < 52“' 1Qnu; — Pruilly ), »

kish ;g1 Uj,hllp p k,i,h

which leads to the inequality
Nk+1,h
(I = F.n PhUsz RS e Qnus — Pruillyy, - (2.28)
K2

From the definition of spectral projection (2.18]), for any w € V},, we have

Ninbn (Fi pw, @i, p) = an(Fg pw, i p) = ap(w, @) = Nipbp(w,05p), =1, k.



This means the following equation holds
bh(Fk,hw,ﬂi,h) = bh(w,ﬂi7h), =1, ,k, Yw € Vh,

which leads to ||Fk,h||b,h <1

From (23,
the eigenfunction approximations in the |||, , -norm

we find the following error estimates for

|Qnu; — F‘/c,thuiHb’h < |@nui — Pruilly, + ||(1T — F_’k,h)lphuiHb,h + || Fro,n (Pru; — Qhui)Hbvh
< ( 1) 1P = Quuslly p + (I = Fen) Pl ,

(2 + u;jl h) 1Qnui — Pruilly, -

This is the second desired result (2.21]) and the proof is completed. O

For the sake of simplicity in notation and to make sense of the estimates and (2.21)),
we assume that the eigenvalue gap dj ;5 has a uniform lower bound, which is represented by dy ;
(which can be understood as the “true” separation of the eigenvalues A1, - -+, Ax from the unwanted
eigenvalues) in the following sections of this paper. When the mesh size is sufficiently small, this
assumption makes sense. Based on Theorem and the convergence consequences of the WG
finite element method for boundary value problems, we then acquire the following convergence
order.

Corollary 2.1. Under the conditions of Lemma Theorem and Oi;.n having o uniform
lower bound 0y, ;, the following error estimates hold

|Qnui — F thqua p < Csh™|ullmir, 1<i<k, (2:29)
|Qnus — FinQuuill, , < Cah™ *fluflmsr, 1<i<k. (2.30)

The following theorem gives the error estimates for the one eigenpair approximation and the
proof is similar to that of Theorem

Theorem 2.2. Let (\,u) denote an exact eigenpair of the eigenvalue problem . Assume the
eigenpair approzimation (X p,U; ) has the property that fi; 5, = 1/X;p, is the closest to p = 1/A.
The corresponding spectral projector E; j, : Vi, — span{a; 5} is defined as follows

an(Ei pw, Ui p) = ap(w, @;p), for w e V.

Then the following error estimate holds

VIR
1Qnu — Ein@null,,, < 2(Qnu— Phrullan + 51“;1 |@ru — Prully p, » (2.31)

where 6y 1, is defined as follows

1) = ‘ — | *1 (2 32)
= mln = mln . .
Aok VE Hih = H )\ A

Ve

Furthermore, the eigenfunction approzimation @;y has the following error estimate in ||-||, ,-norm

1Qnu — EinQrullon < (2 + Zih> 1Qnui — Pruillyy, - (2.33)



Proof. Since (I — E; p)Ppu € Vi, and (I — Ejp)Pru € span{tis,p, -+, Uim1,hy Uit1,hy " s UNy ks
the following orthogonal expansion holds

(I - Ei,h)Phu = Z QU 1y (2.34)
J#i
where o; = ap(Ppu, 4,,) has the same equality (2.23)).
Then due to (2.23)), (2.24), (2.25)) and (2.34]), we have following estimates

2

(I—Eipn PhuHa B = Zaju] h = Za?

J#i ah IFE

2 ~ 2
_ Uj h
= E b (u — Pru, i) < g .5l u — Ppu, —L0—
<M Hjn ) ( Y o bh ,Huj,th,h

J#i h i

2
= Zﬂa,hbh <u Pru, |_ujh>

,\ h iz |51l 5
- - 2 2
s
< BNy (e P, ) BN (9 Py,
X, i Huj,th,h 5>\ h i [,
f1,n 2
= 52 = Puullyp (2.35)
where the last inequality holds since ”Efaﬁ S ”uﬁ: ﬁ constitute an orthonormal basis for the
by gihllp, n
space V}, in the sense of the inner product by (-, -).
From (2.35)), the following inequality holds
1,k
I = BunPul, < 52 Q= Pl (2.36)

)

From (2.36), || Einlle,r < 1 and the triangle inequality, it follows that

1Qnu — Ei nQnull, ), = 1Qnu — Prull, , + 11 = Ein)Prull, j, + 1 Ein(Pr — Qu)ull,
< Qnu — Prull, p, + ||(I — Ein)Prull,p + 1Einll, 5 [(Pr— @u)ull,

< 2||Qnu — Prul|a,n +

1Qnu — Prully, -

This is the desired result (2.31]).
Similarly, with the help of (2.23)), (2.24)), (2.25) and (2.34)), we have the following estimates

2

2
[({ — Ein Phqu h = ZO‘J“J, = 205 Hujah”b,h

J#i b 7

2
= Z (/J, uj h) by, (u — ’Phu,ﬂj}h)2 ”ﬂj’th,h

J#i
B 2
Uj.h
ZH%thh <u73h , 7‘3 )

u
h i ||uj,h||b7h



2 g
Uj.p Hin
52 ZMJ hbh Qhu ’Phu e L L S 52 — PhuHih 5
Nh 1, h”bh Xh
which leads to the inequality
[L1,h
I(I = Eip)Paull,, < 5- — Puttl, - (2.37)

Oxh

s

Similarly to the proof of Theorem we also have || E; p|lp,, < 1. Then from (2.37) and the
triangle inequality, we find the following error estimates for the eigenfunction approximations in
the [-||, ,-norm

1@nu — EinQuull, ), < 1@nu — Prully , + 11 = Ein)Prully,, + 1 Ein(Pru — Quull, ),

< (U 1 Benllon) 1Prs — Qually + 1T — Exp)Pral, , < @+gh)Qw Pualy .

This is the second desired result (2.33)) and the proof is completed. O

Likewise, for the sake of simplicity in notation and to make sense of the estimates and
(2.33)), we assume that the eigenvalue gap 65 5 defined by equally has a uniform lower bound,
indicated by J,, which can be understood as the “true” separation of the eigenvalue A from others
in the following sections of this paper. When the mesh size is small enough, this assumption is
also reasonable. Next, we have the following convergence result for the eigenvalue problems using
the WG finite element method, which is based on Theorem

Corollary 2.2. Under the conditions of Lemmal[2.1, Theorem[2.9 and dx » having a uniform lower
bound &y, the following error estimates hold

1@nu — EinQnull,,, < Csh™|ullm+1, (2.38)
1Qnu — EinQuull,, < Coh™*||ullms1. (2.39)

Remark 2.1. The convergence analysis of the WG finite element method for eigenvalue problems
has been provided in [3])]. Compared with the results there, the convergence results in Theorems
and[2.9 are sharper and gives the explicit dependence of the included constants on the eigenvalue
distributions.

3 Augmented subspace method and its error estimates

The augmented subspace techniques for the WG eigenvalue problem are first laid out in
this section. These schemes involve solving the eigenvalue problem on the augmented subspace
Vi, which is generated by the coarse conforming linear finite element space Wy, and a WG
finite element function in the fine finite element space V},. They also involve solving the auxiliary
linear boundary value problem in the fine finite element space V}. Next, the related analysis of
convergence for these augmented subspace schemes is addressed.

As in [30], we first create a coarse mesh Ty with the mesh size H, and the corresponding
conforming linear finite element space Wy is defined on the mesh Ty. This allows us to design
the augmented subspace technique. The coarse conforming linear finite element space Wy is a
subspace of the fine WG finite element space Vj, which is defined on the fine mesh 7,. This is
because, for the sake of simplicity, we assume in this paper that the coarse mesh 7Ty and the fine
mesh T, have nested properties.

For the positive integer £ and given eigenfunction approximations ugzz, e ug)h which are the

approximations for the first k eigenfunctions @y p,- -, 4, of ( ., we can do the augmented

10



Algorithm 1: Augmented subspace method for the first k eigenpairs

1. For £ =1, we define u(éf)b = u(éf)b, i=1,---,k, and the augmented subspace
VIS, n=Wmg+ spaun{u1 ot k h} Then solve the following eigenvalue problem: Find
()\EE,)L, Z(Z})l) eRx VY L such that an(u E})L,uz(zz) =1 and

ah(ugfz,vH,h) = )\E’Z,)Lbh(u%)l,vH n), Yom.n € VI%L, 1=1,--- k. (3.1)
2. Solve the following linear boundary value problems: Find u A(Hl) € Vj, such that
ah(ﬂg’z}jl),vh) = )\EQbh( EZ;)L,Uh) Yop, € Vi, i=1,--- k. (3.2)
3. Define the augmented subspace V(H ) = =Wy + span{u (E+1) o Hl)} and solve the

following eigenvalue problem: Find ()\(['H), EZ,:F 1)) € R x Vg;:l) such that
ah(ugz,jl)mgz,jl)) =1 and

ah(ugf}jl);vH,h) )\z(z:l)b ( (€+1)

Solve 1) to obtain ()\gtj;:l) y:l)), ,(/\Ej;:l) ;f;l)).

4. Set £ ={+ 1 and go to Step 2 for the next iteration until convergence.

omn),  Yugn € Vir, i=1- k. (3.3)

subspace iteration step which is defined by Algorithm [1|to improve the accuracy of ugzzl, e ,u,(:i)h.

For each ¢, it is easy to know, the eigenvalue problems (3.1]) and (3.3)) has the following eigen-
values [2], B],

0<A) <A < <A < <aQ)

and corresponding eigenfunctions

14 14 14 4
g’])wug’;—u'” ’u](c’3747... 7u§\]3{1h’h7 (34)

where Ny, = dimVy), = Ny + k and ap(ul),ul) = 6;5, 1 < i,j < Ny .

From the min-max principle [2, B3] and V;ﬁl C Vp, the eigenvalues /\1 [EEN ,)\%)H ..n brovide
upper bounds for the first N 5 eigenvalues of (2.9 .

Nw <MD, Hin > p,  1<i< Ny (3.5)

'l

Since the low dimensional augmented subspace VIEI 5 is a subspace of the WG finite element space

Vi, the error estimates of eigenfunction approximations uglzw o u,i )h to the exact eigenfunctions

Ui p, -+, Uk can be deduced from the similar way of the conformlng finite element method for
the eigenvalue problem.

In order to give the error estimates for the augmented subspace method defined by Algorithm
we define the subspace projection 771(;7 Vi Vgh as follows

ap (Pg?hwh, UH,h) = ap (wh,vH,h) s V’UHJL S Vlg)h’ for wy, € V). (3.6)

11



0

In order to give the error estimate of ||w, — P we define the following quantity for error

analysis:
na(Wn) = sup  inf |[Thf —wnall,,, (3.7)
fer?(q) wHEWH
Hf”z;,hzl

where Tj, : L%(Q) +— V}, is defined as
an(Tuf,v) = bu(f,v), YveV, for fe L*(Q). (3.8)

Then the projection operator Pg?h has following error estimates

||wh - Pg}hwhﬂmh = inf ||wh - 'UH,hHa,hy for wy, € Vy, (39)
UH,hEVI(f;;l
Hwh - 'Pl(f,)hwth,h < Ua(WH)H'wh - Pg?hwhﬂa,h, for wy, € Vj,. (310)
Lemma 3.1. Let us define the spectral projection F,gn;) Vi — span{u(lf',?,n- ,ul(:,?} for any
integer m > 1 as follows
(F,g h)w,uyz)) h(w,ul(mh)) i=1,---,k for weV,. (3.11)
Then the exact eigenfunctions 4y p,- -+ ,Ug,p Of (.) and the eigenfunction approzimations uglj;l),
ukezl from Algomthm 1| with the integer £ > 1 have the following error estimate
lasn - FQaa| < 1+ “ﬁ” W) [|(1 = PP (3.12)
a,h (5k,i,h) a.h

where (51(52,,1 is defined as follows

1 1
s, = min |— — < 3.13
k,ih k<j<Np )\(f})][ )\ivh ( )
Furthermore, the following ||-||, ,,-norm error estimate holds
i — FLa; < (W) |[t@sn — FL s 3.14
Uih = Fy p@in|| < Ma(Wa) ||[@in = Fy pUin| (3.14)
, b,k , ah
where

_ Hk+1,h
77(1(VVH) = (1 + 5(2 ) na(WH)' (315)

Eyish

Proof. Since (I — F,g}e})b)Pg)h]h € V y and (I — F,f})L)P(Iz plin € span{u,ch1 hot “’NHh nts the
following orthogonal expansion holds

Nin
4 4 4
(I = FSDPy i = > ajull), (3.16)
j=k+1

where o = ah(P(e)huZ By U § ,)1) From Lemma, we have

29N

) _ 4 4 0) _ 4 NOE _ 4 4

aj = an(Pyiinul)) = N by (P, i, u ;Z)—/\(éi;\bh(ui,h—ﬁr)h“zh’ ulf))
jh T i,h

12



1

¢
- 0 bn (i, *PHhUzha ul )) (3.17)
Hih = Hsp
From the orthogonal property of eigenfunctions ugli;l, e TLEVL} > We have
0 @

2
Y 4
L= an(ufip,uf) = Abn (u) ulf) H ()H

which leads to the following property

(©) (0)
H th )\Z = Hihe (3.18)

;-\_/

Because of 1) and the definitions of eigenfunctions ui‘f;” e ’U%L,h,h’ we obtain the fol-
lowing equah ies

MO, o
ap, (uyf)mul(f)h) Ojk,  bn J . T =0jky 1 <7,k < Npp. (3.19)

Jsiall ]
b,h b,h

Then due to (3.5)), (3.16]), (3.17)), (3.18) and (3.19)), we have following estimates

2
N N
(I — F(Z))’P(e) U, : ih ault = ijh a?
k.h) T H YR ah J%5.h - J
’ j=k+1 ah J=kH1
Nin 1 2
_ (e (0)
= Z < (€)> bh(ulh*,PHhuz hau] h)
j=k+1 /1‘ /u’jh
2
() (6) (ézb
(5(@) 2 H H = Pa i ) © H
kan)® 55 bk
2
(0)
1 Rl _ 0 - Ujh
( ) Z ui,h - PH’huiJ'L? (;)
( ki, h) =k+ ’ ’u’j)hH
2
H(f) Nu,h o O]
k+1,h N (. 3,h
= SIRE ,Z bn | Wi = Prntin: T,
kyi,h)” j=k+1 Ujh b
(6)
Fit1,h ‘ _ 0 H2
LN g g, — P, , 3.20
= (51(3;1)2 Wi,h = FprpWih bk (3.20)
u(z) w®
where the last inequality holds since | BT ‘ (JZ)H S h“ constitute an orthonormal basis for
Ui,h YN no

the space ng}l in the sense of the inner product b (-, -).

Combining (3.5) and (3.20) leads to the following inequality

2 77 2
| = FOP | < Eezova | - P - (3.21)
b TG

13



From 1' and the orthogonal property ap ((1 — P}f?h)ai ny (I — F,EKZ)Pg?hﬂi,h) =0, it follows that

|

O\ —
uzh—’PHhuzh -‘r Fkh)PHhulh h

BE+1,h o H 50 - H2
<1+ ((5,(3 h)277a(WH)> (I PH,h)ul,h ah

2
_ 0 -
Usp — Fy Ui n =

’ a,h

)

This is the desired result (3.12)).
Similarly, with the help of (3.5)), (3.16)), (3.17)), (3.18) and (3.19)), we have the following estimates

9 Ng» 2 NHh 9
4 ) — 4 4
|- PR, = | & asilll = 3 oo
G=kt1 y  d=k+1

NH,h 1 2 () () 2
_ Z (M) bh(ui,h PHh“”” ]h) ‘ jvth,h

Jj=k+1 Hj,
2
(&)
o p - Uik
Z ’ bk by, Uj,h PHJLUz,ha u(e)
3 Ji.h b.h
2
Nu,n () 2
1 N (D)2 _ (Bedrn)™ |- o - |7
=~ Z (15 0)%n | tip — Hhuz}u < —= ‘Ui,h _’PH’hUzth
Gian) 5 “)H (02.)°
-9
Petin || @ - H2
T2 ’u%h Prntin],
which leads to the inequality
¢ 0 - Hi+1,h || - 0
|- Flgv%)ﬂ(ﬁf?h““h“b - 5 s - ngﬁ)h“i”’Hb n (3.22)

711

From (3.10)), (3.22) and the triangle inequality, we have the following error estimates for the
eigenvector approximations in the ||-|[, ,-norm

Uip — F( i, hH < ‘ Uih — Pl(ﬁf,)hﬂi,h”b . H(I - FISZ})L)Pg)hﬂzth h

)

< (1o e -, = (145t -2
(5 b,k 5k I ’ a,h

z,h

Hk+1,h
: (H 50 ) o0%i)|

k,i,h

() ~
Uzh*Fkhuzh wh

This is the second desired result (3.14) and the proof is completed. O

Theorem 3.1. Under the conditions of Lemma[3.1], Algorithm[1] has the following error estimate
fort>1

’ Flgéij_l)uz h”ah SW‘ﬂi,h*Fé ;)ﬂz hH . (3.23)
where
3 n2(Wa Pk+1,h
Y= Ai,h\/l + —(—(6421)2 (1 + (Zl ) ng(WH). (3.24)
)‘k+1,h(5k,i,h ) 5k,i,h

14



Proof. From Algorithm it is easy to know that ugtizl, e “Eﬁz is the orthogonal basis for the

space span{ugé;l, e (Z) nt- We define the by (-, -)-orthogonal projection operator W,EZZL to the space
span{u1 By (e) } Then there exist k£ real numbers q1,--- ,qr € R such that ﬂ](ﬁﬂiyh has the

followmg expansmn

4
i = qu @. (3.25)

From 1} and the definition of VI({EH) in Step 3 of Algorithm 1L we obtain the orthogonal property

of the projection operator P(Hl) together with 1 , (3-10)), i and 1 , the following
inequalities hold

q o é — —
=ap | Uip — Z >\’L h (][) ( +1)7 Uj,n — ’Pj(r{—;l)uz,h

2
7)( +1 H L = ap (uz h — ,PH—; )ul hvﬂzh _,P(Z_‘_l )

3.h
k
3 _ 0 (0 - 041) -
= Xi,nbp | Wi — Z ;)L Ei,u h— 7)1({71 i
k
< _ _ 1) - 3 _ o - 041) -

= Xinbp | Uin — Z Ui p — 7’( M )uz n | = Xinbn (ui,h - W;(c}luz‘,h, Ui, p — PI(LIJ;Z i h)

< S\i,h ’uzh *W/(jhuz hH ’Uzh*P(Hl)_z hH

< Ain ’ Uj h Fzge})ﬂzhH ’ Ui p — P(HI)_Z h”b .

< Ninfla(Wir) ’ Ui p — F,§ ;)lﬂz hH Na(Wr) ‘ U n — P(HD_',h ) (3.26)
where 7, (Wpr) is defined in Lemma Then from ({3.26)), it follows that

i — Pt < XinTla Wen)na(Wa) || n — FL s 3.27
Usj,h H,h Usj,h =~ z,hna( H)na( H) Uj,h k’huz,h b . ( . )
a,h a,
() (e+1) _
Since uy , 7,0+, U py only come from 1) and Lemma we have fori=1,--- |k
2(W
A Y I L (e e
ah Ak+1,h (5k ih ) “
Together with (3.27)), we arrive at
B 2
‘ Ui p — F]S’Z}jl)ai,hH < )\i,h 1+ %ﬁa(WH)na(WH> ‘ Ui p — Fg%ﬂhhH >
a,h Ak+1,h (5k,i,h ) ah

which is the desired result (3.23)) and the proof is completed. O

Remark 3.1. According to Theorem[3.1], the augmented subspace techniques have a second order
convergence rate, as indicated by the convergence result . Furthermore, we ought to lower
the term n,(Wg), which is dependent on the coarse conforming linear finite element space Wy,
in order to speed up the convergence rate. In other words, the convergence can be accelerated by
expanding the subspace Wi.
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Remark 3.2. Since the error estimates for the eigenvalue approximation can be simply inferred
from the following error expansion, we are only concerned with the error estimates for the eigen-
vector approximation in this paper

ap(tip — ¥, — V) < b(Uin — U, Ui p — V)

an (Ui n, ) — (i ni p,9P)

0<Xi—Aip= — X\ +2 ;
" b, ¥) W) b, ¥)
where ¢ is the eigenfunction approximation for the exact eigenfunction @; and
’):_ _ ah(¢7¢)
tb(, )

Since each linear equation can be solved separately, it follows that Step 2 of Algorithm [I] can
be performed using the parallel computing approach. Nevertheless, a kind of parallel methods
for eigenvalue problems can be designed using the augmented subspace approach. The eigenvalue
problem is solved in Step 3 of Algorithm |1l However, we must perform the inner products of
the k vectors in the high dimensional space V}, in order to generate the matrices for . This is a
very low scalable procedure for the parallel computing [I7, 32, [37]. That is to say, a bottleneck for
parallel computing does exist in the inner product calculation for many high dimensional vectors.
We provide an additional version of the augmented subspace technique for a single (possibly non-
smallest) eigenpair, which represents the single process version of this kind of parallel schemes, to
get around this crucial bottleneck. Algorithm [2]defines the relevant numerical approach. This idea
in relation to the conforming finite element technique has already been put out and examined in

[32].
In Algorithm we assume that the given eigenpair approximation (/\Eg,i,uz(é,)l) € R x V;, with

different superscripts is the closest to an exact eigenpair (S\i,h, @) of (2.9). Based on this set-
ting, we can give the following convergence result for the augmented subspace method defined by

Algorithm

For each ¢, it is easy to know, the eigenvalue problem (3.28]) and (3.30]) also have the following
eigenvalues 2] [3],

0<Af) <AY) <A <<l
and corresponding eigenfunctions
(ORI (£) (0)
U U st 5 U gy UG s (3.31)

where Np j, = dimvgi)h = Ny +1 and ah(ugﬁ)l, u%{) =0;5,1<4,5 < Npp.

It is simple to understand that the WG finite element space V}, is a subspace of the low di-

mensional augmented subspace VP(IQL in Algorithm Then, Algorithm s error estimates are
comparable to those of Algorithm |1 We also utilize the definitions (3.6 and (3.7) for the sake of
simplicity in notation. Next, we apply the property (3.5) and error estimates (3.9)), and finally, we

employ (3.10]) for the eigenvalue problems ([3.28) and (3.30]).

Lemma 3.2. Let (A, @) denote an exact eigenpair of the eigenvalue problem . Assume the

7(12) has the property that NEI;)L = 1/)\7(12 is closest to i, = 1/\,. The

spectral projector EZ(Q Vi o= span{ugﬁ} according to the eigenpair approrimation ()\ge}z,uﬁ) €

R x V;ﬁl is defined as follows

etgenpair approximation (A%, U

ah(Ei(,Z,zwmifh) = ah(w7ugelz), for w € Vj,.

Then the eigenpair approximation (/\Ee,z,uz(z,i) € R x Vgﬁ% produced by Algorithm @ satisfies the
following error estimates

- (W
|an - EQun]| < Xy 14 alWi) an =Pl . (3.32)
5 a,h )‘1,’1 5§\ )h) ’ a,h



Algorithm 2: Augmented subspace method for one eigenpair

1. For £ = 1, we define u(éf)b = u(éf)b, and the augmented subspace V]S{%; =Wy + Span{u

Then solve the following eigenvalue problem: Find ()\EZ,)I, EZ})L) e R x Vlg)h such that

ah(ugﬁ,ugﬁi) =1 and

~(0)

ah(ug?LwH}h) )\( )bh( 5})1 Hh)7 YUHh € VIS?I (3.28)

2. Solve the following linear boundary value problem: Find ﬁy}j De V4, such that

ah(ﬂg’l}jl),vh) )\(Z)bh( Ez,vh) Yo € Vj,. (3.29)

3. Define the augmented subspace V(H ) =

eigenvalue problem: Find ()\(Hl), 5[;1)) e R x Vg:l) such that ap,(u (e,jl), 56;1)) 1 and

=Wg+ span{ul h } and solve the following

(€+1) )_ )\(é-l-l)b ( €+1)

ah( ih oV 7UH,h), VUH,h S V[Sli;:—l). (3.30)

Solve and the output (/\yh+ 1), uge}j 1)) is chosen such that u(ul) has the largest
component in Span{u( + )} among all eigenfunctions of ||

4. Set £ ={+ 1 and go to Step 2 for the next iteration until convergence.

Hﬂh—Ei(ﬁzﬁthh < Na(Wh) Hﬂh—Ez(elzﬂhH . (3.33)

k) a’)

where 0y, and 7o (W) are defined as follows

1 1 1
5 = min ——, BWp) =14+ —r Wa). 3.34
A\h T e )\(1) M 77a( H) < 5\17h5§\g% 77!1( H) ( )
Proof. Since (I — Eg,i)P( ) n € V h and (I — E; h)’P(Z WUn € spam{u1 Bt 56)1 b 591 B

U%L W 5t the following orthogonal expansion holds

¢
(I = ES)DPun =Y ajull), (3.35)
J#t
where o; = ah(Pg)huh, u( )) From Lemma we have the same equality 1)
From the orthogonal property of eigenfunctions uga, e Q%L s We acquire

_ (0) (5) (0) ([) (f) ([) ()
L= an(ugpo i n) = A5 pbalus poip) = A H th

which leads to the following property

<e> _ 1w
Hb h )\(Z}) = Hihe (3.36)

J,n
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Because of | .30 and the definition of eigenfunctions uﬁl, e ,u%l{ ,.n» We obtain the
following equa ities Y

© (5) (13)
ap, (u] hor Uk, ) =

Ok, =0k, 1<7,k< Ngp. (3.37)

Tl Tl
Then due to (3.5), (3.17), (3:19), (3-35) and (3.36)), we have following estimates

2

2
Oyvp© - 17 _ ol _ _ 1 N0
H(I - Ei,h)PH,huhHa W Zajuj,h - ZO‘? - Z <(@> by (1 — PH nlhs U h)
’ i ah I g#i \Hh Tl
2
()
1 2 U
<5 > ‘ U%H bn | un — Pg?hﬂm 7(5)"1
(59 )2 & bk u H
\Nh/ o G J.h
b,h
) w) “(‘2 2
gGaR bl
2
() (0)
H1h Fih || - © —?
bn | @ a < — ||up, — Py, u (3.38)
1 Z h h — h hs = ¢ H h H,h hH )
5() por (E)H (5(}1)2 bh
NG
where the last inequality holds since |HT, cee (]Z)H‘h " _ constitute an orthonormal basis for
1,h YN poh

the space Vg% in the sense of the inner product by(-,-).

Combining (3.5) and (3.38)) leads to the following inequality
9 _
Hi,h o

Na
O VS

|~ EQYPD,an

)

alo-rgmll, e

From 1l and the orthogonal property ap((I — Pg)h)ﬂh, (I - E%)Pé?huh) =0, it follows that

Jon — 0],

2
_ Huhfpl(q)huh +HI Efii)P}IhuhHah

1, 2
(1 o ) Ju -,
Ak
This is the desired result (3.32)).
Similarly, with the help of (3.5), (3.17), (3.35)), (3.36) and (3.37)), we have following estimates

a,

IN

2
O () — I ¢
H(I_E”(”S)Pg’)huthh: Zaﬂé% :Za? j’thh
’ JF#i bk J#i ’
. 2
— (¢ (£) (4)
Z( - (@) bi (@n — Pgyan, ul))? th
Hh —
2
O]
us
<e>H PO, iy,

j’th,h
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1 0 %) u(‘éi)«b (/‘5221)2 (0 2
_ 2 _—— - J, . = =
- (5(6) )2 Z(“j,h) b | n = Py, 0 < (5(5) )2 Huh PHﬁuthh

MNh/) o G ik i Ah s
= M(l)h Hﬁ"*ng)hathh’

(830)? :
which leads to the inequality
O\ (0) ~ Hih || - 0 -
- s, < o -7k, o0

From (3.10)), (3.40) and the triangle inequality, we have the following error estimates for the
eigenvector approximations in the ||-|[, ,-norm

_ 0 - (O)\p(6)
< o =P, + - B,

s

S e =Piaml),, < {1+ 55 Jnan | I
<l1 I- 1 a -
= ( + (5)\ ) PH h)uh bp = + 5(2) Na(Wr) PH h)uh n

This is the second desired result (3.33)) and the proof is completed. O

Theorem 3.2. Under the conditions of Lemma[3.3, Algorithm[Z has the following error estimate
forl>1

_ 0+1) _
Huh — Ei(,h )uh

3 na(Wr) 1 2 () _
< Xiny 1+ = 1+ — 2 (W) Huh — %, (3.41)
ol \/ Ma(@a )\ Aadin ) "

Proof. We define the b(-, -)-orthogonal projection operator 7r( ) to the space span{uZ h} Then there

exists a real number g € R such that 7r( )ah = qu( ). Then from the orthogonal property of the

projection operator Pg:;l), d3.10|), (13.29[) and (]3.33[), we obtain

2
Hﬂh - Pg;l)’ahH N =ap (uh — P( H.h )ﬁh,ﬂh — ’Pg:;l)l_th>
i S0 o (z+1)_
=ap | up — ()qlh Jun — Py
PYS
i,h

o 0+1) X‘,h ~(¢ _ 04+1) -
=ap (uh, Up — PL};DUO - 7)\&) qap (ug),jl),uh - Pz(qj;rll)uh)
ih

= Apbn (uh,uh Pl(qj,:l)ﬂh) Ai,hbn (quz(-,eﬁ,ﬂh - szl)uh)

= by (ﬂh — W,(f)ﬂh,ﬂh . ’P}f:;l)ﬂh> <A H Up — W}(L )Uh”b N H P(“_l)_ Hb A
<o ], o
’ b.h b,h

)

- 1
< (1 + w) e (Wir) Huh ~EQu
)\1,h Ah

N.(Wg) Huh — P(EH

a,h ah
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Hah - P}ffh”ahH - (3.42)

a’?

< 1
< A (]. + (&) (WH) Huh — Efﬁzﬁh

Since the approximation uﬁr b only comes from dj or , together with Lemma we
have
_ (64+1) n2(Wr) H (Z+1>
an — B, < 14t H i pUtyg, (3.43)
H h ah \/ A h(5(4+1)) ah
From ({3.42), there holds
- 1
o, < (1L ) o [ - | 44
ah Al’h(SA,h
Combining (3.43)) with (3.44)), we have the following estimate
_ 2(Wy 1
Huh ES a| < 1+ 1 (z+1)) L+ —— | 02 (W) Hah ~ B .
ah )\1 h(5 ) )\1,h5,\)h ah
This is the desired result (3.41]) and the proof is complete. O

4 Applications to Laplace eigenvalue problem

This section will demonstrate the applications of the augmented subspace techniques introduced
in Section [3|to the Laplace eigenvalue problem and provide the associated convergence rates. It is
noteworthy that the finest WG finite element space has little bearing on the coarse mesh 7Ty mesh
size selection in augmented subspace techniques. Compared to the two-grid WG finite element
technique [33] B3], wherein the choices of coarse and fine meshes are not free each other, this
represents a significant distinction.

Here, we are concerned with the following standard Laplace eigenvalue problem: Find (A, u) €
R x H}(2) such that

—Au = Au, in €,
u = 0, ondQ, (4.1)
|’U,‘% = 1,

where | - |; represents H!-type semi-norm and the computing domain is set to be the unit square
Q2 =(0,1) x (0,1). Then, in (2.3), the bilinear forms a(-,-) and b(-,-) are defined as follows

a(u,v) = / Vu - Vod(, b(u,v) = / uvdS).
Q Q

Additionally, the norms ||-[|, , and |||, , defined in (2.12)) and (2.13) are equivalent to the H'-type
semi-norm |-|; and L? norm ||-||,, respectively. In order to use the WG finite element discretization
method, we employ the meshes defined in Section 2.

Here, the problem is treated using the augmented subspace techniques specified by Algo-
rithms [1] and In this section, the regular refinement is used to create the fine mesh 7; from
the coarse mesh Ty. The WG finite element space on the fine mesh 7 is set to V},, and the
coarse conforming linear finite element space on the coarse mesh Ty is set to Wy. We consider
the computational domain 2 to be convex for the sake of simplicity.
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In order to give the explicit convergence rate of the augmented subspace methods defined by
Algorithms [1] and [2| we need to estimate the quantity n, (W) in (3.7)). For this aim, we define the
conforming linear finite element projection Pp : H}(Q) — Wy as follows

a(Prw,vg) = a(w,vy), Yog € Wy, for w € Hy(Q). (4.2)
It is well known that the following error estimate holds
ITf = PuTflly < CH|Tfll2 < CH| fllon, (4.3)

where T : L?(Q) — H{ () is defined as follows

a(Tf,v) =b(f,v), Yve Hi(Q). (4.4)
In order to deduce the estimate for the term 1, (Wy ), we define the norm || - ||1,, as follows
Wollf = > (IVeoll§ x + hillvo — vall3s) -
KeTh
Obviously, the norm || - ||, coincides with | - |1 on the Sobolev space H{}(f2). Furthermore, there
is the following equivalence between || - ||1,, and || - ||4,» on the WG finite element space V},.

Lemma 4.1. ([I9]) For any vy, € V},, the following inequalities hold
Crllvnllin < llonllan < Csllonllin, (4.5)
where C7 and Cg are two constants independent of the mesh size h.
Then ||Thf — PuT fla,n has following inequalities

|Tnf —PaT flan < |Tnf — QnTf

a,h + HQhTf - PHTf”a,h

< | Twf — QuT fllan + CIQLTf — PuT fll1,n

<|NThf = QuT fllap + CINQLTf = Tfll1n + CITf = PuT fll1,n

S|NTwf = QuT fllap + CINRLTf =T fll1n +CITf —PuaTfl
<Ch+h+H)|Tfll2 < CH|f|lb,n (4.6)

where the constant depends on the shape of the mesh 7.
From the definition of n,(Wg) in (3.7), and (4.6), we can obtain the following estimates

naWu) < sup inf |Thf —wnll,, < sup |Taf = PaTfl,,

fELz(Q) wy EWg f6L2(Q)
£y, n=1 171y, =1
< sup CH|flpn = CH. (4.7)
fEL?(R)
”f“b,h:l

Based on Theorems [3.1] and [3.2] the convergence results for the augmented subspace method
can be concluded with the following inequalities

|in = FG ]| < cem)®||an - FQaa] oi=tek @)
] Ui — F,g,jl)ﬂi,th’h <CH ’ i — FG i L =Lk (4.9)

and
‘ @i — B < c(cH)* ‘ i — B, " (4.10)




Hﬂh - Ez([}j—l)ﬂhH < CH ’ Ui p — Ei(z}j_l)ﬂith . (411)
> b,h ’ a,h

The goal of this section is to validate these convergence findings using a few numerical examples.The

exact WG finite element eigenfunction can be found by directly solving the eigenvalue problem

on the fine WG finite element space V. Let this be noted. To aid with comprehension, the

nomenclature in all of the following figures denotes the exact WG finite element eigenfunctions and

the augmented subspace approximations, respectively, with and without the “dir” superscript.

4.1 Augmented subspace method for P,/P, WG finite element space

For the WG finite element space Py/ Py, we examine the performance of the augmented subspace
approach described by Algorithms [I] and [2] in the first subsection. Here, Wy is defined as the
conforming linear finite element space on the coarse mesh 7y in all numerical cases. The Py/ P,
WG finite element space V}, defined on the finer mesh 7, can be written as follows

Vi, = {v 1|k, € Po(Ko) for K € Tp;vl|e € Pole) for e € &, and v], =0 for e € &, N 8(2}.

The fine mesh 7}, is obtained from the coarse mesh 7y by the regular refinement. Here, we set the
size h = \/5/256 for the fine mesh 7y,.

We also verify the convergence results for the conforming linear finite element space Wy with
various sizes H by examining the numerical errors corresponding to the results in —. The
goal is to determine how the mesh size H affects the convergence rate. In this case, the regular
type of quasiuniform mesh Ty is also specified as the coarse mesh.

Under the boundary condition restriction, the initial eigenfunction approximation is specified
to be rand vectors in this case. Next, we employ the augmented subspace approach, as specified
by Algorithms [I] and [2], to carry out the iteration steps. The convergence behaviors for the first
eigenfunction using the augmented subspace techniques are displayed in Figure [T} and they cor-
respond to the coarse mesh sizes H = v/2/8, v/2/16, v/2/32, and /2/64, respectively. The rates
of convergence associated with || - ||o,» and ||-||, , are, respectively, 0.048945, 0.012834, 0.00279122,
0.00058513 and 0.052177, 0.01405, 0.0032556,’ 0.00076374. As a consequence, the results (4.8])-
hold and validate the second order convergence speed of the augmented subspace technique
described by Algorithms [I] and 2]

Next, we evaluate Algorithm [I] in terms of its ability to compute the first 4 eigenpairs. The
corresponding convergence behaviors for the smallest 4 eigenfunctions by Algorithm [T]are displayed
in Figure[2| The conforming linear finite element space on the mesh with sizes H = v/2/8, v/2/16,
v/2/32, and v/2/64, respectively, forms the coarse space Wy. Employing the 4-th eigenfunction as
an example, we can determine the related convergence rates, which indicate the second convergence
order of the algorithm given by Algorithm [I} to be 0.3353, 0.11061, 0.029854, and 0.0054112.
Furthermore, we are able to observe from Figure [2| that the 4-th eigenfunction’s convergence rate
is slower than the 1-st eigenfunction’s, which is in accordance with Theorem [3.1]

Assessing Algorithm [2]'s performance in determining the single 4-th eigenpair is the next objec-
tive. Since smallest eigenpairs is not the goal, the eigenvalue problem is solved on the coarse
WG finite element space Vg to provide the initial eigenfunction approximation. The augmented
subspace approach, which is specified by Algorithm is then used to carry out the iteration
phases. The coarse space was the linear finite element space on the mesh with sizes H = /2 /8,
\/5/ 16, \/5/327 and \/5/647 respectively. The corresponding convergence behaviors for the only
4-th eigenfunction by Algorithm are depicted in Figure |3} The norms [|-|,» and [|-[|; , in Figure
[3] correspond to the convergence rates, which are 0.35325, 0.12501, 0.034437 and 0.0083731, and
0.35058, 0.12584, 0.035226 and 0.0090371, respectively. According to these findings, the augmented
subspace approach described by Algorithm [2| has a second order speed of convergence, validating

the findings of (4.10)-(4.11)).
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Figure 1: The convergence behaviors for the first eigenfunction by Algorithm [I| corresponding to
the Py/Py WG finite element method and the coarse mesh size H = v/2/8, v/2/16, v/2/32 and

V/2/64, respectively.
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Figure 2: The convergence behaviors for the smallest 4 eigenfunctions by Algorithm [If with the
Py/Py WG finite element method and the coarse space being the linear finite element space on the
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mesh with size H = v/2/8, v/2/16, v/2/32 and 1/2/64, respectively.
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Figure 3: The convergence behaviors for the only 4-th eigenfunction by Algorithmwith the Py/ Py
WG finite element method and the coarse space being the linear finite element space on the mesh
with size H = v/2/8, v/2/16, v/2/32 and \/2/64, respectively.

4.2 Augmented subspace method for P;/P;, WG finite element space

We examine the augmented subspace method’s performance for the WG finite element space Py /P,
as described by Algorithms [1] and [2| in the second subsection. Also, Wy is designated as the
conforming linear finite element space on the coarse mesh Tg in these numerical tests. Here, V}, is
the P;/P; WG finite element space defined on the fine mesh 7, which is generated by the regular
refinement from the coarse mesh 7.

Here, we set the size h = \/5/ 256 for the fine mesh 7, and the WG finite element space V}, is
defined as follows

Vi, = {v 1|k, € P1(Ko) for K € Tp;vle € Pi(e) for e € &, and v], =0 for e € &, ﬂ@Q}.

We also check the numerical errors corresponding to the conforming linear finite element space
Wy with different sizes H. This helps to confirm the convergence results for the P;/P; WG finite
element technique described in —. Here, also determining how the convergence rate varies
with mesh size H is a goal. In this case, the regular type of quasiuniform mesh 7T is also specified
as the coarse mesh.

In a similar vein, under the boundary condition restriction, the initial eigenfunction approxi-
mation is also made to be rand vectors. The convergence characteristics for the first eigenfunction
using the augmented subspace techniques are displayed in Figure [l which corresponds to the
coarse mesh sizes H = /2/8, v/2/16, v/2/32, and v/2/64, respectively. || - |la.n and [l have
respective convergence rates of 0.053287, 0.013798, 0.0036045, 0.00075399 and 0.05535, 0.014936,
0.0038268, 0.00090686. The findings support the results — by demonstrating the second
order convergence speed of the augmented subspace technique specified in Algorithms [] and [2}

Next, we additionally examine Algorithm [IJs performance in terms of computing the first 4
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Figure 4: The convergence behaviors for the first eigenfunction by Algorithm [I| corresponding to
the P;/P, WG finite element method and the coarse mesh size H = v/2/8, v/2/16, v/2/32 and
V/2/64, respectively.

eigenpairs. The corresponding convergence behaviors for the smallest 4 eigenfunctions by Algo-
rithm [1| are presented in Figure The conforming linear finite element space on the mesh with
sizes H = v/2/8, v/2/16, v/2/32, and v/2/64, respectively, constitutes the coarse space. By employ-
ing the 4-th eigenfunction as an example, we can also get the related convergence rates 0.29933,
0.10565, 0.029315, and 0.0065776, which reflect second convergence order of Algorithm

The final objective is evaluating the efficiency of Algorithm [2] in determining the only 4-th
eigenpair. Similarly, the coarse WG finite element space Vj is used to solve the eigenvalue problem
to get the initial eigenfunction approximation. The corresponding convergence behaviors for
the only 4-th eigenfunction by Algorithm [2] are displayed in Figure[6] The conforming linear finite
element space on the mesh with sizes H = v/2/8, v/2/16, v/2/32, and /2/64, respectively, is the
coarse space. The convergence rates associated with |- |4, and |||, , are 0.33464, 0.1179, 0.027908,
0.0030174 and 0.35213, 0.12511, 0.034041, 0.0084659, respectivel};, as depicted in Figure [f} The

results (4.10)-(4.11)) are likewise validated by these findings.

5 Concluding remarks

In this study, two augmented subspace strategies for addressing the eigenvalue problems using the
WG finite element method are proposed, with the assistance of conforming linear finite element
space on the coarse mesh. We construct the associated error estimates, which demonstrate that
the WG method’s augmented subspace scheme has a second convergence order in relation to the
coarse mesh size.

We can develop a sort of eigensolver for algebraic eigenvalue problems, which originate from the
discretization of the differential eigenvalue problem using the WG finite element technique, based
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on these provided augmented subspace approaches. Moreover, the methods presented here provide
a means of designing the parallel eigensolver for the WG finite element discretization technique,
which will be the subject of our next research project.
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