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Abstract

This study proposes a class of augmented subspace schemes for the weak Galerkin (WG)
finite element method used to solve eigenvalue problems. The augmented subspace is built with
the conforming linear finite element space defined on the coarse mesh and the eigenfunction
approximations in the WG finite element space defined on the fine mesh. Based on this
augmented subspace, solving the eigenvalue problem in the fine WG finite element space
can be reduced to the solution of the linear boundary value problem in the same WG finite
element space and a low dimensional eigenvalue problem in the augmented subspace. The
proposed augmented subspace techniques have the second order convergence rate with respect
to the coarse mesh size, as demonstrated by the accompanying error estimates. Finally, a few
numerical examples are provided to validate the proposed numerical techniques.

Keywords. Eigenvalue problem, augmented subspace scheme, weak Galerkin finite ele-
ment method, second order convergence rate.
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1 Introduction

One of the most important tasks in contemporary scientific and engineering society is solving
eigenvalue problems. The difficulty of solving eigenvalue problems is invariably higher than that
of solving similar linear boundary value problems due to the increased computing and memory
requirements. Large-scale eigenvalue problem solving in particular will provide formidable obstacles
to scientific computing. Numerous eigensolvers have been developed so far, including the Jacobi-
Davidson type technique [4], the Preconditioned INVerse ITeration (PINVIT) method [5, 9, 12], the
Krylov subspace type method (Implicitly Restarted Lanczos/Arnoldi Method (IRLM/IRAM) [25]),
and the Generalized Conjugate Gradient Eigensolver (GCGE) [16, 17, 37]. The orthogonalization
processes involved in solving Rayleigh-Ritz problems are a common bottleneck in the design of
effective parallel techniques for identifying a large number of eigenpairs, and they are included in
all of these widely used approaches.
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A class of augmented subspace methods and their multilevel correction methods has been pro-
posed recently in [7, 11, 18, 28, 29, 30, 31, 32] for the solution of eigenvalue problems. This kind of
technique creates an augmented subspace using the low dimensional finite element space generated
on the coarse grid, which is employed in each correction step. The notion of an augmented sub-
space gives rise to a class of augmented subspace techniques that need just the final finite element
space on the finest mesh and the low dimension finite element space on the coarse mesh. Using the
augmented subspace methods, the solution of the eigenvalue problem on the final level of mesh can
be transformed to the solution of linear boundary value problems on the final level of mesh and the
solution of the eigenvalue problem on the low dimensional augmented subspace. Even the coarse
and finest meshes lack nested properties, these kinds of algorithms can still work [8]. The multilevel
correction methods, which are based on the augmented subspace methods, provide ways to con-
struct multigrid methods for eigenvalue problems [7, 11, 28, 29, 31]. In addition, the authors design
an eigenpair-wise parallel eigensolver for the eigenvalue problems in [32]. A significant amount of
the wall time in the parallel computation is saved by using this kind of parallel approach, which
avoids performing orthogonalization and inner-products in the high dimensional space. However,
the aforementioned references are mostly investigated using conforming finite element methods.
There are few results on the augmented subspace approaches based on nonstandard finite element
methods for solving eigenvalue problems.

The WG method, which was initially introduced and explored in [27], concerns the finite el-
ement methods utilized to solve partial differential equations in which the differential operators,
such as gradient operator, divergence operator, curl operator, and so on, are approximated as
distributions by weak forms. The WG approach employs generalized discrete weak derivatives and
parameter-free stabilizers to weakly enforce continuity in the approximation space, in contrast to
the standard finite element technique. Consequently, it ought to be more convenient to create high
order precision discretization than the conforming finite element approach. Additionally, the WG
approach can be easily implemented on polygonal meshes thanks to the relaxation of the continuity
constraint, which also gives additional freedom for h- and p-adaptation. So far, the WG method
has been applied to various partial differential equations, such as the parabolic equation [15, 39],
the biharmonic equation [21, 26, 38], the Brinkman equation [20, 36], the Helmholtz equation
[22, 24] and the Maxwell equation [23]. The convergence analysis and several lower bound findings
are produced in [34], where the WG approximation to the eigenvalue problems is firstly studied.
Then, using the WG approach, the authors create a kind of two-grid or two-level schemes [35], and
in [33], the shifted-inverse power technique is taken into consideration under the two-grid schemes.
Based on the theoretical analysis presented in [35], it can be inferred that there is no independent
relationship between the coarse and fine mesh sizes. As a result, the approaches cannot be used
to develop an eigensolver for algebraic eigenvalue problems resulting from differential operator
eigenvalue problems discretized by WG.

This paper’s contribution is the augmented subspace methods for eigenvalue problem that are
based on the WG approximation. To the best of our knowledge, this is the first work aimed at the
numerical analysis of the WG finite element discretization-based augmented subspace approaches
for eigenvalue problems. In contrast to the findings in [35], our approaches’ selections for the coarse
and fine mesh sizes are independent of one another. The algebraic eigenvalue problems that result
from the WG approximation to the differential eigenvalue problems can then be solved by designing
an eigensolver using the proposed techniques. Furthermore, we demonstrate the algebraic error
estimate for the WG augmented subspace approaches that follows∥∥∥ūh − u

(ℓ+1)
h

∥∥∥
a,h

≤ CH2
∥∥∥ūh − u

(ℓ)
h

∥∥∥
a,h

,

when the computing domain is convex.

This paper is organized as follows. We provide the WG approaches for the eigenvalue problems
and deduce the associated error estimates in Section 2. These results give explicit dependence
of the error estimates on the eigenvalue distribution which is another contribution of this paper.
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The majority of this work, Section 3, contains the augmented subspace techniques and the asso-
ciated error estimates. A few numerical examples are given in Section 4 to validate the suggested
augmented subspace algorithms’ convergence rates. Lastly, the final section has a few closing
thoughts.

2 Discretization by WG finite element method

The WG finite element approach for the second order elliptic eigenvalue problem is presented in
this section. Additionally, the associated error estimates are offered. The letter C, with or without
subscripts, symbolizes a generic positive constant for this purpose that may vary at various places
in this work.

Here, we consider the numerical method to solve the following second order elliptic eigenvalue
problem: Find (λ, u) ∈ R×H1

0 (Ω) such that −∇ · (A∇u) = λu, in Ω,
u = 0, on ∂Ω,

(A∇u,∇u) = 1,
(2.1)

where Ω denotes a convex bounded polygonal or polyhedral domain in Rd, d = 2, 3, and A ∈
[L∞(Ω)]

d×d
is a symmetric matrix-valued function on Ω with suitable regularity. Assume that

there exist positive constants c and C such that the matrix A satisfies the following property

cξT ξ ≤ ξTA(x)ξ ≤ CξT ξ for all ξ ∈ Rd and x ∈ Ω. (2.2)

In order to define the WG finite element method for the eigenvalue problem, (2.1) should be
written as the following variational form: Find (λ, u) ∈ R× V such that a(u, u) = 1 and

a(u, v) = λb(u, v), ∀v ∈ V, (2.3)

where V := H1
0 (Ω) [1] and

a(u, v) = (A∇u,∇v), b(u, v) = (u, v). (2.4)

Furthermore, based on the bilinear forms a(·, ·) and b(·, ·), we can define the norms on the space
V as follows

∥v∥a =
√
a(v, v), ∀v ∈ V, ∥w∥b =

√
b(w,w), ∀w ∈ L2(Ω). (2.5)

It is well known that the eigenvalue problem (2.3) has an eigenvalue sequence {λj} (cf. [2, 6]),

0 < λ1 ≤ λ2 ≤ · · · ≤ λk ≤ · · · , lim
k→∞

λk = ∞.

And the associated eigenfunctions are provided as

u1, u2, · · · , uk, · · · .

Here a(ui, uj) = δij (δij denotes the Kronecker function).

Now, let us define the WG finite element space for the eigenvalue problem (2.3). First we
generate a shape-regular, quasi-uniform mesh Th of the computing domain Ω ⊂ Rd (d = 2, 3).
Denote by Eh the set of all edges or faces of the mesh Th. For simplicity, in this paper, we only
consider the triangle or tetrahedral mesh. The diameter of a cell K ∈ Th is denoted by hK and the
mesh size h describes the maximal diameter of all cells K ∈ Th. For each cell K ∈ Th, we use K0

and ∂K to denote the interior and the boundary of K. In the sense of geometry, K0 is identical
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to K. Then we identify them if no ambiguity. Based on the mesh Th, we can construct the WG
finite element space denoted by Vh as follows

Vh =
{
v : v|K0

∈ Pr(K0) for K ∈ Th; v|e ∈ Ps(e) for e ∈ Eh, and v|e = 0 for e ∈ Eh ∩ ∂Ω
}
, (2.6)

where Pr(K0) denotes the set of polynomials of degree no more than the integer r ≥ 0, Ps(e) is
the set of polynomials of degree no more than the integer s ≥ 0. In this paper, we are concerned
with the cases of s = r or r + 1. From the definition of Vh, it is easy to know that the function in
Vh does not require any continuity across interior edges/faces. Actually, the function in Vh can be
characterized by its value on the interior of each element and its value on edges/faces. Therefore,
the functions in Vh can be represented with two components, v = {v0, vb}, where v0 denotes the
value of v on all K0 and vb denotes the value of v on Eh. The polynomial space Ps(e) consists of two
choices: s = r or r + 1 and the corresponding weak function space will sometimes be abbreviated
as Vr,r or Vr,r+1, respectively.

In order to define the WG method for the eigenvalue problem (2.3), we introduce the discrete
weak gradient operator, which is defined on each element K ∈ Th. For the choices of Vh given
above, i.e., using Vr,r or Vr,r+1, suitable definitions of the weak gradient involve the Raviart-
Thomas (RT) element or the Brezzi-Douglas-Marini (BDM) element [10], respectively. Let K be

either a triangle or a tetrahedron and denote by P̂t(K) the set of homogeneous polynomials of

order t in the variable x = (x1, . . . , xd)
T
. Define the BDM element by Gr(K) = [Pr+1(K)]

d
and

the RT element by Gr(K) = [Pr(K)]
d
+ P̂r(K)x for r ≥ 0. Then, we can define a discrete space

Σh =
{
q ∈

(
L2(Ω)

)d
: q|K ∈ Gr(K) for K ∈ Th

}
.

In the definitions of Vh and Σh, the RT element is coupled with Vr,r while the BDM element is
coupled with Vr,r+1. We should point out that Σh is not necessarily a subspace of H(div,Ω), since
it does not require any continuity in the normal direction across edges/faces.

The discrete weak gradient of vh ∈ Vh denoted by ∇wvh is defined as the unique polynomial
(∇wvh)|K ∈ Gr(K) satisfying the following equation

(∇wvh,q)K = − (v0,∇ · q)K + ⟨vb,q · n⟩∂K for all q ∈ Gr(K), (2.7)

where n is the unit outward normal vector on ∂K. Clearly, such a discrete weak gradient is always
well-defined. Furthermore, if v ∈ H1(K), i.e., vb = v0|∂K , and ∇v ∈ Gr(K). Then we have
∇wv = ∇v. Here we only consider the Vr,r-RT and Vr,r+1-BDM pairs on simplicial elements. Of
course, there are many other different choices of discrete spaces in the WG method, defined on
either simplicial meshes or general polytopal meshes [21, 26].

In order to define an interpolation operator for the WG finite element space, we define an L2

projection from V onto Vh by setting Qhv ≡ {Q0v,Qbv}, where Q0v|K0
is the local L2 projection

of v to Pr (K0), for K ∈ Th, and Qbv|e is the local L2 projection to Ps(e), for e ∈ Eh. We also
introduce Qh the L2 projection onto Σh. It is well known that the following operator identity
holds [27]:

Qh∇v = ∇wQhv, for all v ∈ V. (2.8)

For the Vr,r-RT and Vr,r+1-BDM pairs, the identity (2.8) shows that the discrete weak gradient is
a good approximation to the classical gradient [27].

Then, the WG finite element method for the eigenvalue problem (2.3) can be defined as follows:
Find (λ̄h, ūh) ∈ R× Vh such that ah(ūh, ūh) = 1 and

ah(ūh, vh) = λ̄hbh(ūh, vh), ∀vh ∈ Vh, (2.9)
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where

ah(uh, vh) = (A∇wuh,∇wvh)Th
=
∑

K∈Th

(A∇wuh,∇wvh)K , (2.10)

bh(uh, vh) = (u0, v0)Th
=
∑

K∈Th

(u0, v0)K . (2.11)

Based on the bilinear form ah(·, ·), we can define the following discrete norm on the space Vh as
follows

∥v∥a,h =
√
ah(v, v), ∀v ∈ Vh. (2.12)

We can also define the semi-norm ∥·∥b,h by the bilinear form bh(·, ·) on the space Vh

∥w∥b,h =
√
bh(w,w), ∀w ∈ Vh. (2.13)

From [2, 3], we obtain
0 < λ̄1,h ≤ λ̄2,h ≤ · · · ≤ λ̄k,h ≤ · · · ≤ λ̄Nh,h,

and corresponding eigenfunctions

ū1,h, ū2,h, · · · , ūk,h, · · · , ūNh,h, (2.14)

where ah(ūi,h, ūj,h) = δij , 1 ≤ i, j ≤ Nh (Nh is the dimension of the finite element space Vh).

For the following analysis in this paper, we define µi = 1/λi for i = 1, 2, · · · , and µ̄i,h = 1/λ̄i,h
for i = 1, · · · , Nh.

In order to state the error estimates for the eigenpair approximation by the WG finite element
method, we define the WG finite element projection Ph : V 7→ Vh as follows

ah(Phu, vh) = λbh(u, vh), ∀vh ∈ Vh. (2.15)

It is obvious that the finite element projection operator Ph has following error estimates.

Lemma 2.1. ([27]) Assume the source equation corresponding to the eigenvalue problem has
H1+s(Ω) regularity and the eigenfunction u of (2.1) belongs to Hm+1(Ω) and 0 ≤ m ≤ r + 1.
Then the following error estimates hold

∥Qhu− Phu∥a,h ≤ C1h
m∥u∥m+1, (2.16)

∥Qhu− Phu∥b,h ≤ C2h
m+s∥u∥m+1. (2.17)

Before stating error estimates of the WG finite element method for the eigenvalue problem, we
introduce the following lemma.

Lemma 2.2. For any eigenpair (λ, u) of (2.3), the following equality holds

(λ̄j,h − λ)bh(Phu, ūj,h) = λbh(u− Phu, ūj,h), j = 1, · · · , Nh.

Proof. Since −λbh(Phu, ūj,h) appears on both sides, we only need to prove that

λ̄j,hbh(Phu, ūj,h) = λbh(u, ūj,h).

From (2.3), (2.9) and (2.15), the following equalities hold

λ̄j,hbh(Phu, ūj,h) = ah(Phu, ūj,h) = λb(u, ūj,h).

Then the proof is completed.
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Now, let us consider the error estimates for the first k eigenpair approximations associated with
λ̄1,h ≤ · · · ≤ λ̄k,h.

Theorem 2.1. Let us define the spectral projection F̄k,h : Vh 7→ span{ū1,h, · · · , ūk,h} as follows

ah(F̄k,hwh, ūi,h) = ah(wh, ūi,h), i = 1, · · · , k for w ∈ Vh. (2.18)

Then the associated exact eigenfunctions u1, · · · , uk of eigenvalue problem (2.3) have the following
error estimates∥∥Qhui − F̄k,hQhui

∥∥
a,h

≤ 2∥Qhui − Phui∥a,h +

√
µ̄k+1,h

δk,i,h
∥Qhui − Phui∥b,h , 1 ≤ i ≤ k, (2.19)

where δk,i,h is defined as follows

δk,i,h = min
k<j≤Nh

∣∣∣∣ 1

λ̄j,h
− 1

λi

∣∣∣∣ . (2.20)

Furthermore, these k exact eigenfunctions have the following error estimate in ∥·∥b,h-norm∥∥Qhui − F̄k,hQhui
∥∥
b,h

≤
(
2 +

µ̄k+1,h

δk,i,h

)
∥Qhui − Phui∥b,h , 1 ≤ i ≤ k. (2.21)

Proof. Since (I − F̄k,h)Phui ∈ Vh and (I − F̄k,h)Phui ∈ span{ūk+1,h, · · · , ūNh,h}, the following
orthogonal expansion holds

(I − F̄k,h)Phui =

Nh∑
j=k+1

αj ūj,h, (2.22)

where αj = ah(Phui, ūj,h). From Lemma 2.2, we have

αj = ah(Phui, ūj,h) = λ̄j,hbh
(
Phui, ūj,h

)
=

λ̄j,hλi
λ̄j,h − λi

bh
(
ui − Phui, ūj,h

)
=

1

µi − µ̄j,h
bh
(
ui − Phui, ūj,h

)
. (2.23)

From the orthogonal property of eigenfunctions ū1,h, · · · , ūNh,h, we acquire

1 = ah(ūj,h, ūj,h) = λ̄j,hbh(ūj,h, ūj,h) = λ̄j,h ∥ūj,h∥2b,h ,

which leads to the following property

∥ūj,h∥2b,h =
1

λ̄j,h
= µ̄j,h. (2.24)

Because of (2.9) and the definitions of eigenfunctions ū1,h, · · · , ūNh,h, we obtain the following
equalities

ah(ūj,h, ūk,h) = δjk, bh

(
ūj,h

∥ūj,h∥b,h
,

ūk,h
∥ūk,h∥b,h

)
= δjk, 1 ≤ j, k ≤ Nh. (2.25)

Then due to (2.22), (2.23), (2.24) and (2.25), we have the following estimates

∥∥(I − F̄k,h)Phui
∥∥2
a,h

=

∥∥∥∥∥∥
Nh∑

j=k+1

αj ūj,h

∥∥∥∥∥∥
2

a,h

=

Nh∑
j=k+1

α2
j
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=

Nh∑
j=k+1

(
1

µi − µ̄j,h

)2

bh
(
ui − Phui, ūj,h

)2
≤ 1

δ2k,i,h

Nh∑
j=k+1

∥ūj,h∥2b,h bh

(
ui − Phui,

ūj,h
∥ūj,h∥b,h

)2

=
1

δ2k,i,h

Nh∑
j=k+1

µ̄j,hbh

(
ui − Phui,

ūj,h
∥ūj,h∥b,h

)2

≤ µ̄k+1,h

δ2k,i,h

Nh∑
j=k+1

bh

(
ui − Phui,

ūj,h
∥ūj,h∥b,h

)2

=
µ̄k+1,h

δ2k,i,h

Nh∑
j=k+1

bh

(
Qhui − Phui,

ūj,h
∥ūj,h∥b,h

)2

≤ µ̄k+1,h

δ2k,i,h
∥Qhui − Phui∥2b,h , (2.26)

where the last inequality holds since
ū1,h

∥ū1,h∥b,h
, · · · , ūj,h

∥ūj,h∥b,h
constitute an orthonormal basis for the

space Vh in the sense of the inner product bh(·, ·).
From (2.26), the following inequality holds∥∥(I − F̄k,h)Phui

∥∥
a,h

≤
√
µ̄k+1,h

δk,i,h
∥Qhui − Phui∥b,h . (2.27)

From (2.27), ∥F̄k,h∥a,h ≤ 1 and the triangle inequality, it follows that∥∥Qhui − F̄k,hQhui
∥∥
a,h

= ∥Qhui − Phui∥a,h +
∥∥(I − F̄k,h)Phui

∥∥
a,h

+
∥∥F̄k,h(Ph −Qh)ui

∥∥
a,h

≤ ∥Qhui − Phui∥a,h +
∥∥(I − F̄k,h)Phui

∥∥
a,h

+
∥∥F̄k,h

∥∥
a,h

∥(Ph −Qh)ui∥a,h

≤ 2∥Qhui − Phui∥a,h +

√
µ̄k+1,h

δk,i,h
∥Qhui − Phui∥b,h .

This is the desired result (2.19).

Similarly, with the help of (2.22), (2.23), (2.24) and (2.25), we have following estimates

∥∥(I − F̄k,h)Phui
∥∥2
b,h

=

∥∥∥∥∥∥
Nh∑

j=k+1

αj ūj,h

∥∥∥∥∥∥
2

b,h

=

Nh∑
j=k+1

α2
j ∥ūj,h∥

2
b,h

=

Nh∑
j=k+1

(
1

µi − µ̄j,h

)2

bh
(
ui − Phui, ūj,h

)2 ∥ūj,h∥2b,h
≤ 1

δ2k,i,h

Nh∑
j=k+1

∥ūj,h∥4b,h bh

(
ui − Phui,

ūj,h
∥ūj,h∥b,h

)2

=
1

δ2k,i,h

Nh∑
j=k+1

µ̄2
j,hbh

(
Qhui − Phui,

ūj,h
∥ūj,h∥b,h

)2

≤
µ̄2
k+1,h

δ2k,i,h
∥Qhui − Phui∥2b,h ,

which leads to the inequality∥∥(I − F̄k,h)Phui
∥∥
b,h

≤ µ̄k+1,h

δk,i,h
∥Qhui − Phui∥b,h . (2.28)

From the definition of spectral projection (2.18), for any w ∈ Vh, we have

λ̄i,hbh(F̄k,hw, ūi,h) = ah(F̄k,hw, ūi,h) = ah(w, ūi,h) = λ̄i,hbh(w, ūi,h), i = 1, · · · , k.
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This means the following equation holds

bh(F̄k,hw, ūi,h) = bh(w, ūi,h), i = 1, · · · , k, ∀w ∈ Vh,

which leads to ∥F̄k,h∥b,h ≤ 1.

From (2.28), ∥F̄k,h∥b,h ≤ 1 and the triangle inequality, we find the following error estimates for
the eigenfunction approximations in the ∥·∥b,h-norm∥∥Qhui − F̄k,hQhui

∥∥
b,h

≤ ∥Qhui − Phui∥b,h +
∥∥(I − F̄k,h)Phui

∥∥
b,h

+
∥∥F̄k,h(Phui −Qhui)

∥∥
b,h

≤
(
1 + ∥F̄k,h∥b,h

)
∥Phui −Qhui∥b,h +

∥∥(I − F̄k,h)Phui
∥∥
b,h

≤
(
2 +

µ̄k+1,h

δk,i,h

)
∥Qhui − Phui∥b,h .

This is the second desired result (2.21) and the proof is completed.

For the sake of simplicity in notation and to make sense of the estimates (2.19) and (2.21),
we assume that the eigenvalue gap δk,i,h has a uniform lower bound, which is represented by δk,i
(which can be understood as the “true” separation of the eigenvalues λ1, · · · , λk from the unwanted
eigenvalues) in the following sections of this paper. When the mesh size is sufficiently small, this
assumption makes sense. Based on Theorem 2.1 and the convergence consequences of the WG
finite element method for boundary value problems, we then acquire the following convergence
order.

Corollary 2.1. Under the conditions of Lemma 2.1, Theorem 2.1 and δk,i,h having a uniform
lower bound δk,i, the following error estimates hold∥∥Qhui − F̄k,hQhui

∥∥
a,h

≤ C3h
m∥u∥m+1, 1 ≤ i ≤ k, (2.29)∥∥Qhui − F̄k,hQhui

∥∥
b,h

≤ C4h
m+s∥u∥m+1, 1 ≤ i ≤ k. (2.30)

The following theorem gives the error estimates for the one eigenpair approximation and the
proof is similar to that of Theorem 2.1.

Theorem 2.2. Let (λ, u) denote an exact eigenpair of the eigenvalue problem (2.3). Assume the
eigenpair approximation (λ̄i,h, ūi,h) has the property that µ̄i,h = 1/λ̄i,h is the closest to µ = 1/λ.
The corresponding spectral projector Ei,h : Vh 7→ span{ūi,h} is defined as follows

ah(Ei,hw, ūi,h) = ah(w, ūi,h), for w ∈ Vh.

Then the following error estimate holds

∥Qhu− Ei,hQhu∥a,h ≤ 2∥Qhu− Phu∥a,h +

√
µ̄1,h

δλ,h
∥Qhu− Phu∥b,h , (2.31)

where δλ,h is defined as follows

δλ,h := min
j ̸=i

|µ̄j,h − µ| = min
j ̸=i

∣∣∣∣ 1

λ̄j,h
− 1

λ

∣∣∣∣ . (2.32)

Furthermore, the eigenfunction approximation ūi,h has the following error estimate in ∥·∥b,h-norm

∥Qhu− Ei,hQhu∥b,h ≤
(
2 +

µ̄1,h

δλ,h

)
∥Qhui − Phui∥b,h . (2.33)
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Proof. Since (I − Ei,h)Phu ∈ Vh and (I − Ei,h)Phu ∈ span{ū1,h, · · · , ūi−1,h, ūi+1,h, · · · , ūNh,h},
the following orthogonal expansion holds

(I − Ei,h)Phu =
∑
j ̸=i

αj ūj,h, (2.34)

where αj = ah(Phu, ūj,h) has the same equality (2.23).

Then due to (2.23), (2.24), (2.25) and (2.34), we have following estimates

∥(I − Ei,h)Phu∥2a,h =

∥∥∥∥∥∥
∑
j ̸=i

αj ūj,h

∥∥∥∥∥∥
2

a,h

=
∑
j ̸=i

α2
j

=
∑
j ̸=i

(
1

µ− µ̄j,h

)2

bh
(
u− Phu, ūj,h

)2 ≤ 1

δ2λ,h

∑
j ̸=i

∥ūj,h∥2b,h bh

(
u− Phu,

ūj,h
∥ūj,h∥b,h

)2

=
1

δ2λ,h

∑
j ̸=i

µ̄j,hbh

(
u− Phu,

ūj,h
∥ūj,h∥b,h

)2

≤ µ̄1,h

δ2λ,h

∑
j ̸=i

bh

(
u− Phu,

ūj,h
∥ūj,h∥b,h

)2

=
µ̄1,h

δ2λ,h

∑
j ̸=i

bh

(
Qhu− Phu,

ūj,h
∥ūj,h∥b,h

)2

≤ µ̄1,h

δ2λ,h
∥Qhu− Phu∥2b,h , (2.35)

where the last inequality holds since
ū1,h

∥ū1,h∥b,h
, · · · , ūj,h

∥ūj,h∥b,h
constitute an orthonormal basis for the

space Vh in the sense of the inner product bh(·, ·).
From (2.35), the following inequality holds

∥(I − Ei,h)Phu∥a,h ≤
√
µ̄1,h

δλ,h
∥Qhu− Phu∥b,h . (2.36)

From (2.36), ∥Ei,h∥a,h ≤ 1 and the triangle inequality, it follows that

∥Qhu− Ei,hQhu∥a,h = ∥Qhu− Phu∥a,h + ∥(I − Ei,h)Phu∥a,h + ∥Ei,h(Ph −Qh)u∥a,h
≤ ∥Qhu− Phu∥a,h + ∥(I − Ei,h)Phu∥a,h + ∥Ei,h∥a,h ∥(Ph −Qh)u∥a,h

≤ 2∥Qhu− Phu∥a,h +

√
µ̄1,h

δλ,h
∥Qhu− Phu∥b,h .

This is the desired result (2.31).

Similarly, with the help of (2.23), (2.24), (2.25) and (2.34), we have the following estimates

∥(I − Ei,h)Phu∥2b,h =

∥∥∥∥∥∥
∑
j ̸=i

αj ūj,h

∥∥∥∥∥∥
2

b,h

=
∑
j ̸=i

α2
j ∥ūj,h∥

2
b,h

=
∑
j ̸=i

(
1

µ− µ̄j,h

)2

bh
(
u− Phu, ūj,h

)2 ∥ūj,h∥2b,h
≤ 1

δ2λ,h

∑
j ̸=i

∥ūj,h∥4b,h bh

(
u− Phu,

ūj,h
∥ūj,h∥b,h

)2
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=
1

δ2λ,h

∑
j ̸=i

µ̄2
j,hbh

(
Qhu− Phu,

ūj,h
∥ūj,h∥b,h

)2

≤
µ̄2
1,h

δ2λ,h
∥Qhu− Phu∥2b,h ,

which leads to the inequality

∥(I − Ei,h)Phu∥b,h ≤ µ̄1,h

δλ,h
∥Qhu− Phu∥b,h . (2.37)

Similarly to the proof of Theorem 2.1, we also have ∥Ei,h∥b,h ≤ 1. Then from (2.37) and the
triangle inequality, we find the following error estimates for the eigenfunction approximations in
the ∥·∥b,h-norm

∥Qhu− Ei,hQhu∥b,h ≤ ∥Qhu− Phu∥b,h + ∥(I − Ei,h)Phu∥b,h + ∥Ei,h(Phu−Qhu)∥b,h

≤ (1 + ∥Ei,h∥b,h) ∥Phu−Qhu∥b,h + ∥(I − Ei,h)Phu∥b,h ≤
(
2 +

µ̄1,h

δλ,h

)
∥Qhu− Phu∥b,h .

This is the second desired result (2.33) and the proof is completed.

Likewise, for the sake of simplicity in notation and to make sense of the estimates (2.31) and
(2.33), we assume that the eigenvalue gap δλ,h defined by (2.32) equally has a uniform lower bound,
indicated by δλ, which can be understood as the “true” separation of the eigenvalue λ from others
in the following sections of this paper. When the mesh size is small enough, this assumption is
also reasonable. Next, we have the following convergence result for the eigenvalue problems using
the WG finite element method, which is based on Theorem 2.2.

Corollary 2.2. Under the conditions of Lemma 2.1, Theorem 2.2 and δλ,h having a uniform lower
bound δλ, the following error estimates hold

∥Qhu− Ei,hQhu∥a,h ≤ C5h
m∥u∥m+1, (2.38)

∥Qhu− Ei,hQhu∥b,h ≤ C6h
m+s∥u∥m+1. (2.39)

Remark 2.1. The convergence analysis of the WG finite element method for eigenvalue problems
has been provided in [34]. Compared with the results there, the convergence results in Theorems 2.1
and 2.2 are sharper and gives the explicit dependence of the included constants on the eigenvalue
distributions.

3 Augmented subspace method and its error estimates

The augmented subspace techniques for the WG eigenvalue problem (2.9) are first laid out in
this section. These schemes involve solving the eigenvalue problem on the augmented subspace
VH,h, which is generated by the coarse conforming linear finite element space WH , and a WG
finite element function in the fine finite element space Vh. They also involve solving the auxiliary
linear boundary value problem in the fine finite element space Vh. Next, the related analysis of
convergence for these augmented subspace schemes is addressed.

As in [30], we first create a coarse mesh TH with the mesh size H, and the corresponding
conforming linear finite element space WH is defined on the mesh TH . This allows us to design
the augmented subspace technique. The coarse conforming linear finite element space WH is a
subspace of the fine WG finite element space Vh, which is defined on the fine mesh Th. This is
because, for the sake of simplicity, we assume in this paper that the coarse mesh TH and the fine
mesh Th have nested properties.

For the positive integer ℓ and given eigenfunction approximations u
(ℓ)
1,h, · · · , u

(ℓ)
k,h which are the

approximations for the first k eigenfunctions ū1,h, · · · , ūk,h of (2.9), we can do the augmented

10



Algorithm 1: Augmented subspace method for the first k eigenpairs

1. For ℓ = 1, we define û
(ℓ)
i,h = u

(ℓ)
i,h, i = 1, · · · , k, and the augmented subspace

V
(ℓ)
H,h =WH + span{û(ℓ)1,h, · · · , û

(ℓ)
k,h}. Then solve the following eigenvalue problem: Find

(λ
(ℓ)
i,h, u

(ℓ)
i,h) ∈ R× V

(ℓ)
H,h such that ah(u

(ℓ)
i,h, u

(ℓ)
i,h) = 1 and

ah(u
(ℓ)
i,h, vH,h) = λ

(ℓ)
i,hbh(u

(ℓ)
i,h, vH,h), ∀vH,h ∈ V

(ℓ)
H,h, i = 1, · · · , k. (3.1)

2. Solve the following linear boundary value problems: Find û
(ℓ+1)
i,h ∈ Vh such that

ah(û
(ℓ+1)
i,h , vh) = λ

(ℓ)
i,hbh(u

(ℓ)
i,h, vh), ∀vh ∈ Vh, i = 1, · · · , k. (3.2)

3. Define the augmented subspace V
(ℓ+1)
H,h =WH + span{û(ℓ+1)

1,h , · · · , û(ℓ+1)
k,h } and solve the

following eigenvalue problem: Find (λ
(ℓ+1)
i,h , u

(ℓ+1)
i,h ) ∈ R× V

(ℓ+1)
H,h such that

ah(u
(ℓ+1)
i,h , u

(ℓ+1)
i,h ) = 1 and

ah(u
(ℓ+1)
i,h , vH,h) = λ

(ℓ+1)
i,h bh(u

(ℓ+1)
i,h , vH,h), ∀vH,h ∈ V

(ℓ+1)
H,h , i = 1, · · · , k. (3.3)

Solve (3.3) to obtain (λ
(ℓ+1)
1,h , u

(ℓ+1)
1,h ), · · · , (λ(ℓ+1)

k,h , u
(ℓ+1)
k,h ).

4. Set ℓ = ℓ+ 1 and go to Step 2 for the next iteration until convergence.

subspace iteration step which is defined by Algorithm 1 to improve the accuracy of u
(ℓ)
1,h, · · · , u

(ℓ)
k,h.

For each ℓ, it is easy to know, the eigenvalue problems (3.1) and (3.3) has the following eigen-
values [2, 3],

0 < λ
(ℓ)
1,h ≤ λ

(ℓ)
2,h ≤ · · · ≤ λ

(ℓ)
k,h ≤ · · · ≤ λ

(ℓ)
NH,h,h

,

and corresponding eigenfunctions

u
(ℓ)
1,h, u

(ℓ)
2,h, · · · , u

(ℓ)
k,h, · · · , u

(ℓ)
NH,h,h

, (3.4)

where NH,h = dimV
(ℓ)
H,h = NH + k and ah(u

(ℓ)
i,h, u

(ℓ)
j,h) = δij , 1 ≤ i, j ≤ NH,h.

From the min-max principle [2, 3] and V
(ℓ)
H,h ⊂ Vh, the eigenvalues λ

(ℓ)
1,h, · · · , λ

(ℓ)
NH,h,h

provide

upper bounds for the first NH,h eigenvalues of (2.9)

λ̄i,h ≤ λ
(ℓ)
i,h, µ̄i,h ≥ µ

(ℓ)
i,h, 1 ≤ i ≤ NH,h. (3.5)

Since the low dimensional augmented subspace V
(ℓ)
H,h is a subspace of the WG finite element space

Vh, the error estimates of eigenfunction approximations u
(ℓ)
1,h, · · · , u

(ℓ)
k,h to the exact eigenfunctions

ū1,h, · · · , ūk,h can be deduced from the similar way of the conforming finite element method for
the eigenvalue problem.

In order to give the error estimates for the augmented subspace method defined by Algorithm

1, we define the subspace projection P(ℓ)
H,h : Vh 7→ V

(ℓ)
H,h as follows

ah

(
P(ℓ)
H,hwh, vH,h

)
= ah (wh, vH,h) , ∀vH,h ∈ V

(ℓ)
H,h, for wh ∈ Vh. (3.6)
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In order to give the error estimate of ∥wh −P(ℓ)
H,hwh∥b,h, we define the following quantity for error

analysis:

ηa(WH) = sup
f∈L2(Ω)
∥f∥b,h=1

inf
wH∈WH

∥Thf − wH∥a,h , (3.7)

where Th : L2(Ω) 7→ Vh is defined as

ah(Thf, v) = bh(f, v), ∀v ∈ Vh for f ∈ L2(Ω). (3.8)

Then the projection operator P(ℓ)
H,h has following error estimates

∥wh − P(ℓ)
H,hwh∥a,h = inf

vH,h∈V
(ℓ)
H,h

∥wh − vH,h∥a,h, for wh ∈ Vh, (3.9)

∥wh − P(ℓ)
H,hwh∥b,h ≤ ηa(WH)∥wh − P(ℓ)

H,hwh∥a,h, for wh ∈ Vh. (3.10)

Lemma 3.1. Let us define the spectral projection F
(m)
k,h : Vh 7→ span{u(m)

1,h , · · · , u
(m)
k,h } for any

integer m ≥ 1 as follows

ah(F
(m)
k,h w, u

(m)
i,h ) = ah(w, u

(m)
i,h ), i = 1, · · · , k for w ∈ Vh. (3.11)

Then the exact eigenfunctions ū1,h, · · · , ūk,h of (2.9) and the eigenfunction approximations u
(ℓ+1)
1,h ,

· · · , u(ℓ+1)
k,h from Algorithm 1 with the integer ℓ ≥ 1 have the following error estimate∥∥∥ūi,h − F

(ℓ)
k,hūi,h

∥∥∥
a,h

≤
√

1 +
µ̄k+1,h

(δ
(ℓ)
k,i,h)

2
η2a(WH)

∥∥∥(I − P(ℓ)
H,h)ūi,h

∥∥∥
a,h

, (3.12)

where δ
(ℓ)
k,i,h is defined as follows

δ
(ℓ)
k,i,h = min

k<j≤Nh

∣∣∣∣∣ 1

λ
(ℓ)
j,h

− 1

λ̄i,h

∣∣∣∣∣ . (3.13)

Furthermore, the following ∥·∥b,h-norm error estimate holds∥∥∥ūi,h − F
(ℓ)
k,hūi,h

∥∥∥
b,h

≤ η̄a(WH)
∥∥∥ūi,h − F

(ℓ)
k,hūi,h

∥∥∥
a,h

. (3.14)

where

η̄a(WH) =

(
1 +

µ̄k+1,h

δ
(ℓ)
k,i,h

)
ηa(WH). (3.15)

Proof. Since (I − F
(ℓ)
k,h)P

(ℓ)
H,hūi,h ∈ V

(ℓ)
H,h and (I − F

(ℓ)
k,h)P

(ℓ)
H,hūi,h ∈ span{u(ℓ)k+1,h, · · · , u

(ℓ)
NH,h,h

}, the
following orthogonal expansion holds

(I − F
(ℓ)
k,h)P

(ℓ)
H,hūi,h =

NH,h∑
j=k+1

αju
(ℓ)
j,h, (3.16)

where αj = ah(P(ℓ)
H,hūi,h, u

(ℓ)
j,h). From Lemma 2.2, we have

αj = ah(P(ℓ)
H,hūi,h, u

(ℓ)
j,h) = λ

(ℓ)
j,hbh

(
P(ℓ)
H,hūi,h, u

(ℓ)
j,h

)
=

λ
(ℓ)
j,hλ̄i,h

λ
(ℓ)
j,h − λ̄i,h

bh
(
ūi,h − P(ℓ)

H,hūi,h, u
(ℓ)
j,h

)
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=
1

µ̄i,h − µ
(ℓ)
j,h

bh
(
ūi,h − P(ℓ)

H,hūi,h, u
(ℓ)
j,h

)
. (3.17)

From the orthogonal property of eigenfunctions u
(ℓ)
1,h, · · · , ū

(ℓ)
NH,h,h

, we have

1 = ah(u
(ℓ)
j,h, u

(ℓ)
j,h) = λ

(ℓ)
j,hbh(u

(ℓ)
j,h, u

(ℓ)
j,h) = λ

(ℓ)
j,h

∥∥∥u(ℓ)j,h

∥∥∥2
b,h
,

which leads to the following property∥∥∥u(ℓ)j,h

∥∥∥2
b,h

=
1

λ
(ℓ)
j,h

= µ
(ℓ)
j,h. (3.18)

Because of (3.1), (3.3) and the definitions of eigenfunctions u
(ℓ)
1,h, · · · , u

(ℓ)
NH,h,h

, we obtain the fol-
lowing equalities

ah(u
(ℓ)
j,h, u

(ℓ)
k,h) = δjk, bh

 u
(ℓ)
j,h∥∥∥u(ℓ)j,h

∥∥∥
b,h

,
u
(ℓ)
k,h∥∥∥u(ℓ)k,h

∥∥∥
b,h

 = δjk, 1 ≤ j, k ≤ NH,h. (3.19)

Then due to (3.5), (3.16), (3.17), (3.18) and (3.19), we have following estimates

∥∥∥(I − F
(ℓ)
k,h)P

(ℓ)
H,hūi,h

∥∥∥2
a,h

=

∥∥∥∥∥∥
NH,h∑
j=k+1

αju
(ℓ)
j,h

∥∥∥∥∥∥
2

a,h

=

NH,h∑
j=k+1

α2
j

=

NH,h∑
j=k+1

(
1

µ̄i,h − µ
(ℓ)
j,h

)2

bh
(
ūi,h − P(ℓ)

H,hūi,h, u
(ℓ)
j,h

)2

≤ 1

(δ
(ℓ)
k,i,h)

2

NH,h∑
j=k+1

∥∥∥u(ℓ)j,h

∥∥∥2
b,h
bh

ūi,h − P(ℓ)
H,hūi,h,

u
(ℓ)
j,h∥∥∥u(ℓ)j,h

∥∥∥
b,h


2

=
1

(δ
(ℓ)
k,i,h)

2

NH,h∑
j=k+1

µ
(ℓ)
j,hbh

ūi,h − P(ℓ)
H,hūi,h,

u
(ℓ)
j,h∥∥∥u(ℓ)j,h

∥∥∥
b

2

≤
µ
(ℓ)
k+1,h

(δ
(ℓ)
k,i,h)

2

NH,h∑
j=k+1

bh

ūi,h − P(ℓ)
H,hūi,h,

u
(ℓ)
j,h∥∥∥u(ℓ)j,h

∥∥∥
b,h


2

≤
µ
(ℓ)
k+1,h

(δ
(ℓ)
k,i,h)

2

∥∥∥ūi,h − P(ℓ)
H,hūi,h

∥∥∥2
b,h
, (3.20)

where the last inequality holds since
u
(ℓ)
1,h∥∥∥u(ℓ)
1,h

∥∥∥
b

, · · · ,
u
(ℓ)
NH,h,h∥∥∥u(ℓ)
NH,h,h

∥∥∥
b

constitute an orthonormal basis for

the space V
(ℓ)
H,h in the sense of the inner product bh(·, ·).

Combining (3.5) and (3.20) leads to the following inequality∥∥∥(I − F
(ℓ)
k,h)P

(ℓ)
H,hūi,h

∥∥∥2
a,h

≤ µ̄k+1,h

(δ
(ℓ)
k,i,h)

2
η2a(WH)

∥∥∥(I − P(ℓ)
H,h)ūi,h

∥∥∥2
a,h

. (3.21)
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From (3.21) and the orthogonal property ah((I−P(ℓ)
H,h)ūi,h, (I−F

(ℓ)
k,h)P

(ℓ)
H,hūi,h) = 0, it follows that∥∥∥ūi,h − F

(ℓ)
k,hūi,h

∥∥∥2
a,h

=
∥∥∥ūi,h − P(ℓ)

H,hūi,h

∥∥∥2
a,h

+
∥∥∥(I − F

(ℓ)
k,h)P

(ℓ)
H,hūi,h

∥∥∥2
a,h

≤

(
1 +

µ̄k+1,h

(δ
(ℓ)
k,i,h)

2
η2a(WH)

)∥∥∥(I − P(ℓ)
H,h)ūi,h

∥∥∥2
a,h

.

This is the desired result (3.12).

Similarly, with the help of (3.5), (3.16), (3.17), (3.18) and (3.19), we have the following estimates

∥∥∥(I − F
(ℓ)
k,h)P

(ℓ)
H,hūi,h

∥∥∥2
b
=

∥∥∥∥∥∥
NH,h∑
j=k+1

αju
(ℓ)
j,h

∥∥∥∥∥∥
2

b

=

NH,h∑
j=k+1

α2
j

∥∥∥u(ℓ)j,h

∥∥∥2
b

=

NH,h∑
j=k+1

(
1

µ̄i,h − µ
(ℓ)
j,h

)2

bh
(
ūi,h − P(ℓ)

H,hūi,h, u
(ℓ)
j,h

)2 ∥∥∥u(ℓ)j,h

∥∥∥2
b,h

≤ 1

(δ
(ℓ)
k,i,h)

2

NH,h∑
j=k+1

∥∥∥u(ℓ)j,h

∥∥∥4
b,h

bh

ūi,h − P(ℓ)
H,hūi,h,

u
(ℓ)
j,h∥∥∥u(ℓ)j,h

∥∥∥
b,h


2

=
1

(δ
(ℓ)
k,i,h)

2

NH,h∑
j=k+1

(µ
(ℓ)
j,h)

2bh

ūi,h − P(ℓ)
H,hūi,h,

u
(ℓ)
j,h∥∥∥u(ℓ)j,h

∥∥∥
b,h


2

≤
(µ

(ℓ)
k+1,h)

2

(δ
(ℓ)
k,i,h)

2

∥∥∥ūi,h − P(ℓ)
H,hūi,h

∥∥∥2
b,h

≤
µ̄2
k+1,h

(δ
(ℓ)
k,i,h)

2

∥∥∥ūi,h − P(ℓ)
H,hūi,h

∥∥∥2
b,h
,

which leads to the inequality∥∥∥(I − F
(ℓ)
k,h)P

(ℓ)
H,hūi,h

∥∥∥
b,h

≤ µ̄k+1,h

δ
(ℓ)
k,i,h

∥∥∥ūi,h − P(ℓ)
H,hūi,h

∥∥∥
b,h
. (3.22)

From (3.10), (3.22) and the triangle inequality, we have the following error estimates for the
eigenvector approximations in the ∥·∥b,h-norm∥∥∥ūi,h − F

(ℓ)
k,hūi,h

∥∥∥
b,h

≤
∥∥∥ūi,h − P(ℓ)

H,hūi,h

∥∥∥
b,h

+
∥∥∥(I − F

(ℓ)
k,h)P

(ℓ)
H,hūi,h

∥∥∥
b,h

≤

(
1 +

µ̄k+1,h

δ
(ℓ)
k,i,h

)∥∥∥(I − P(ℓ)
H,h)ūi,h

∥∥∥
b,h

≤

(
1 +

µ̄k+1,h

δ
(ℓ)
k,i,h

)
ηa(WH)

∥∥∥(I − P(ℓ)
H,h)ūi,h

∥∥∥
a,h

≤

(
1 +

µ̄k+1,h

δ
(ℓ)
k,i,h

)
ηa(WH)

∥∥∥ūi,h − F
(ℓ)
k,hūi,h

∥∥∥
a,h

.

This is the second desired result (3.14) and the proof is completed.

Theorem 3.1. Under the conditions of Lemma 3.1, Algorithm 1 has the following error estimate
for ℓ ≥ 1 ∥∥∥ūi,h − F

(ℓ+1)
k,h ūi,h

∥∥∥
a,h

≤ γ
∥∥∥ūi,h − F

(ℓ)
k,hūi,h

∥∥∥
a,h

, (3.23)

where

γ = λ̄i,h

√
1 +

η2a(WH)

λ̄k+1,h

(
δ
(ℓ+1)
k,i,h

)2
(
1 +

µ̄k+1,h

δ
(ℓ)
k,i,h

)
η2a(WH). (3.24)
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Proof. From Algorithm 1, it is easy to know that u
(ℓ)
1,h, · · · , u

(ℓ)
k,h is the orthogonal basis for the

space span{u(ℓ)1,h, · · · , u
(ℓ)
k,h}. We define the bh(·, ·)-orthogonal projection operator π

(ℓ)
k,h to the space

span{u(ℓ)1,h, · · · , u
(ℓ)
k,h}. Then there exist k real numbers q1, · · · , qk ∈ R such that π

(ℓ)
k,hūi,h has the

following expansion

π
(ℓ)
k,hūi,h =

k∑
j=1

qju
(ℓ)
j,h. (3.25)

From (3.6) and the definition of V
(ℓ+1)
H,h in Step 3 of Algorithm 1, we obtain the orthogonal property

of the projection operator P(ℓ+1)
H,h , together with (3.2), (3.10), (3.14) and (3.25), the following

inequalities hold∥∥∥ūi,h − P(ℓ+1)
H,h ūi,h

∥∥∥2
a,h

= ah

(
ūi,h − P(ℓ+1)

H,h ūi,h, ūi,h − P(ℓ+1)
H,h ūi,h

)
= ah

ūi,h −
k∑

j=1

λ̄i,h
qj

λ
(ℓ)
j,h

û
(ℓ+1)
j,h , ūi,h − P(ℓ+1)

H,h ūi,h


= λ̄i,hbh

ūi,h −
k∑

j=1

qj

λ
(ℓ)
j,h

λ
(ℓ)
j,hu

(ℓ)
j,h, ūi,h − P(ℓ+1)

H,h ūi,h


= λ̄i,hbh

ūi,h −
k∑

j=1

qju
(ℓ)
j,h, ūi,h − P(ℓ+1)

H,h ūi,h

 = λ̄i,hbh

(
ūi,h − π

(ℓ)
k,hūi,h, ūi,h − P(ℓ+1)

H,h ūi,h

)
≤ λ̄i,h

∥∥∥ūi,h − π
(ℓ)
k,hūi,h

∥∥∥
b,h

∥∥∥ūi,h − P(ℓ+1)
H,h ūi,h

∥∥∥
b,h

≤ λ̄i,h

∥∥∥ūi,h − F
(ℓ)
k,hūi,h

∥∥∥
b,h

∥∥∥ūi,h − P(ℓ+1)
H,h ūi,h

∥∥∥
b,h

≤ λ̄i,hη̄a(WH)
∥∥∥ūi,h − F

(ℓ)
k,hūi,h

∥∥∥
a,h

ηa(WH)
∥∥∥ūi,h − P(ℓ+1)

H,h ūi,h

∥∥∥
a,h

, (3.26)

where η̄a(WH) is defined in Lemma 3.1. Then from (3.26), it follows that∥∥∥ūi,h − P(ℓ+1)
H,h ūi,h

∥∥∥
a,h

≤ λ̄i,hη̄a(WH)ηa(WH)
∥∥∥ūi,h − F

(ℓ)
k,hūi,h

∥∥∥
a,h

. (3.27)

Since u
(ℓ+1)
1,h , · · · , u(ℓ+1)

k,h only come from (3.3), and Lemma 3.1, we have for i = 1, · · · , k

∥∥∥ūi,h − F
(ℓ+1)
k,h ūi,h

∥∥∥
a,h

≤
√
1 +

η2a(WH)

λ̄k+1,h

(
δ
(ℓ+1)
k,i,h

)2 ∥∥∥(I − P(ℓ+1)
H,h )ūi,h

∥∥∥
a,h

.

Together with (3.27), we arrive at∥∥∥ūi,h − F
(ℓ+1)
k,h ūi,h

∥∥∥
a,h

≤ λ̄i,h

√
1 +

η2a(WH)

λ̄k+1,h

(
δ
(ℓ+1)
k,i,h

)2 η̄a(WH)ηa(WH)
∥∥∥ūi,h − F

(ℓ)
k,hūi,h

∥∥∥
a,h

,

which is the desired result (3.23) and the proof is completed.

Remark 3.1. According to Theorem 3.1, the augmented subspace techniques have a second order
convergence rate, as indicated by the convergence result (3.23). Furthermore, we ought to lower
the term ηa(WH), which is dependent on the coarse conforming linear finite element space WH ,
in order to speed up the convergence rate. In other words, the convergence can be accelerated by
expanding the subspace WH .
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Remark 3.2. Since the error estimates for the eigenvalue approximation can be simply inferred
from the following error expansion, we are only concerned with the error estimates for the eigen-
vector approximation in this paper

0 ≤ λ̂i − λ̄i,h =
ah(ūi,h − ψ, ūi,h − ψ)

b(ψ,ψ)
− λ̄i,h

b(ūi,h − ψ, ūi,h − ψ)

b(ψ,ψ)
+ 2

ah(ūi,h, ψ)− b(λ̄i,hūi,h, ψ)

b(ψ,ψ)
,

where ψ is the eigenfunction approximation for the exact eigenfunction ūi,h and

λ̂i =
ah(ψ,ψ)

b(ψ,ψ)
.

Since each linear equation can be solved separately, it follows that Step 2 of Algorithm 1 can
be performed using the parallel computing approach. Nevertheless, a kind of parallel methods
for eigenvalue problems can be designed using the augmented subspace approach. The eigenvalue
problem (3.3) is solved in Step 3 of Algorithm 1. However, we must perform the inner products of
the k vectors in the high dimensional space Vh in order to generate the matrices for (3.3). This is a
very low scalable procedure for the parallel computing [17, 32, 37]. That is to say, a bottleneck for
parallel computing does exist in the inner product calculation for many high dimensional vectors.
We provide an additional version of the augmented subspace technique for a single (possibly non-
smallest) eigenpair, which represents the single process version of this kind of parallel schemes, to
get around this crucial bottleneck. Algorithm 2 defines the relevant numerical approach. This idea
in relation to the conforming finite element technique has already been put out and examined in
[32].

In Algorithm 2, we assume that the given eigenpair approximation (λ
(ℓ)
i,h, u

(ℓ)
i,h) ∈ R × Vh with

different superscripts is the closest to an exact eigenpair (λ̄i,h, ūi,h) of (2.9). Based on this set-
ting, we can give the following convergence result for the augmented subspace method defined by
Algorithm 2.

For each ℓ, it is easy to know, the eigenvalue problem (3.28) and (3.30) also have the following
eigenvalues [2, 3],

0 < λ
(ℓ)
1,h ≤ λ

(ℓ)
2,h ≤ · · · ≤ λ

(ℓ)
k,h ≤ · · · ≤ λ

(ℓ)
NH,h,h

,

and corresponding eigenfunctions

u
(ℓ)
1,h, u

(ℓ)
2,h, · · · , u

(ℓ)
k,h, · · · , u

(ℓ)
NH,h,h

, (3.31)

where NH,h = dimV
(ℓ)
H,h = NH + 1 and ah(u

(ℓ)
i,h, u

(ℓ)
j,h) = δij , 1 ≤ i, j ≤ NH,h.

It is simple to understand that the WG finite element space Vh is a subspace of the low di-

mensional augmented subspace V
(ℓ)
H,h in Algorithm 2. Then, Algorithm 2’s error estimates are

comparable to those of Algorithm 1. We also utilize the definitions (3.6) and (3.7) for the sake of
simplicity in notation. Next, we apply the property (3.5) and error estimates (3.9), and finally, we
employ (3.10) for the eigenvalue problems (3.28) and (3.30).

Lemma 3.2. Let (λ̄h, ūh) denote an exact eigenpair of the eigenvalue problem (2.9). Assume the

eigenpair approximation (λ
(ℓ)
i,h, u

(ℓ)
i,h) has the property that µ

(ℓ)
i,h = 1/λ

(ℓ)
i,h is closest to µ̄h = 1/λ̄h. The

spectral projector E
(ℓ)
i,h : Vh 7→ span{u(ℓ)i,h} according to the eigenpair approximation (λ

(ℓ)
i,h, u

(ℓ)
i,h) ∈

R× V
(ℓ)
H,h is defined as follows

ah(E
(ℓ)
i,hw, u

(ℓ)
i,h) = ah(w, u

(ℓ)
i,h), for w ∈ Vh.

Then the eigenpair approximation (λ
(ℓ)
i,h, u

(ℓ)
i,h) ∈ R × V

(ℓ)
H,h produced by Algorithm 2 satisfies the

following error estimates∥∥∥ūh − E
(ℓ)
i,hūh

∥∥∥
a,h

≤ λ̄i,h

√
1 +

η2a(WH)

λ̄1,h
(
δ
(ℓ)
λ,h

)2 ∥∥∥ūh − P(ℓ)
H,hūh

∥∥∥
a,h

, (3.32)
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Algorithm 2: Augmented subspace method for one eigenpair

1. For ℓ = 1, we define û
(ℓ)
i,h = u

(ℓ)
i,h, and the augmented subspace V

(ℓ)
H,h =WH + span{û(ℓ)i,h}.

Then solve the following eigenvalue problem: Find (λ
(ℓ)
i,h, u

(ℓ)
i,h) ∈ R× V

(ℓ)
H,h such that

ah(u
(ℓ)
i,h, u

(ℓ)
i,h) = 1 and

ah(u
(ℓ)
i,h, vH,h) = λ

(ℓ)
i,hbh(u

(ℓ)
i,h, vH,h), ∀vH,h ∈ V

(ℓ)
H,h. (3.28)

2. Solve the following linear boundary value problem: Find û
(ℓ+1)
i,h ∈ Vh such that

ah(û
(ℓ+1)
i,h , vh) = λ

(ℓ)
i,hbh(u

(ℓ)
i,h, vh), ∀vh ∈ Vh. (3.29)

3. Define the augmented subspace V
(ℓ+1)
H,h =WH + span{û(ℓ+1)

i,h } and solve the following

eigenvalue problem: Find (λ
(ℓ+1)
i,h , u

(ℓ+1)
i,h ) ∈ R× V

(ℓ+1)
H,h such that ah(u

(ℓ+1)
i,h , u

(ℓ+1)
i,h ) = 1 and

ah(u
(ℓ+1)
i,h , vH,h) = λ

(ℓ+1)
i,h bh(u

(ℓ+1)
i,h , vH,h), ∀vH,h ∈ V

(ℓ+1)
H,h . (3.30)

Solve (3.30) and the output (λ
(ℓ+1)
i,h , u

(ℓ+1)
i,h ) is chosen such that u

(ℓ+1)
i,h has the largest

component in span{û(ℓ+1)
i,h } among all eigenfunctions of (3.30).

4. Set ℓ = ℓ+ 1 and go to Step 2 for the next iteration until convergence.

∥∥∥ūh − E
(ℓ)
i,hūh

∥∥∥
b,h

≤ η̄a(WH)
∥∥∥ūh − E

(ℓ)
i,hūh

∥∥∥
a,h

, (3.33)

where δλ,h and η̄a(WH) are defined as follows

δ
(ℓ)
λ,h = min

j ̸=i

∣∣∣∣∣ 1

λ
(ℓ)
j,h

− 1

λ̄h

∣∣∣∣∣ , η̄a(WH) =

(
1 +

1

λ̄1,hδ
(ℓ)
λ,h

)
ηa(WH). (3.34)

Proof. Since (I − E
(ℓ)
i,h)P

(ℓ)
H,hūh ∈ V

(ℓ)
H,h and (I − E

(ℓ)
i,h)P

(ℓ)
H,hūh ∈ span{u(ℓ)1,h, · · · , u

(ℓ)
i−1,h, u

(ℓ)
i+1,h, · · · ,

u
(ℓ)
NH,h,h

}, the following orthogonal expansion holds

(I − E
(ℓ)
i,h)P

(ℓ)
H,hūh =

∑
j ̸=i

αju
(ℓ)
j,h, (3.35)

where αj = ah(P(ℓ)
H,hūh, u

(ℓ)
j,h). From Lemma 2.2, we have the same equality (3.17).

From the orthogonal property of eigenfunctions u
(ℓ)
1,h, · · · , ū

(ℓ)
NH,h,h

, we acquire

1 = ah(u
(ℓ)
j,h, u

(ℓ)
j,h) = λ

(ℓ)
j,hbh(u

(ℓ)
j,h, u

(ℓ)
j,h) = λ

(ℓ)
j,h

∥∥∥u(ℓ)j,h

∥∥∥2
b,h
,

which leads to the following property∥∥∥u(ℓ)j,h

∥∥∥2
b,h

=
1

λ
(ℓ)
j,h

= µ
(ℓ)
j,h. (3.36)
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Because of (3.28), (3.30) and the definition of eigenfunctions u
(ℓ)
1,h, · · · , u

(ℓ)
NH,h,h

, we obtain the
following equalities

ah(u
(ℓ)
j,h, u

(ℓ)
k,h) = δjk, bh

 u
(ℓ)
j,h∥∥∥u(ℓ)j,h

∥∥∥
b,h

,
u
(ℓ)
k,h∥∥∥u(ℓ)k,h

∥∥∥
b,h

 = δjk, 1 ≤ j, k ≤ NH,h. (3.37)

Then due to (3.5), (3.17), (3.19), (3.35) and (3.36), we have following estimates

∥∥∥(I − E
(ℓ)
i,h)P

(ℓ)
H,hūh

∥∥∥2
a,h

=

∥∥∥∥∥∥
∑
j ̸=i

αju
(ℓ)
j,h

∥∥∥∥∥∥
2

a,h

=
∑
j ̸=i

α2
j =

∑
j ̸=i

(
1

µ̄h − µ
(ℓ)
j,h

)2

bh
(
ūh − P(ℓ)

H,hūh, u
(ℓ)
j,h

)2

≤ 1

(δ
(ℓ)
λ,h)

2

∑
j ̸=i

∥∥∥u(ℓ)j,h

∥∥∥2
b,h
bh

ūh − P(ℓ)
H,hūh,

u
(ℓ)
j,h∥∥∥u(ℓ)j,h

∥∥∥
b,h


2

=
1

(δ
(ℓ)
λ,h)

2

∑
j ̸=i

µ
(ℓ)
j,hbh

ūh − P(ℓ)
H,hūh,

u
(ℓ)
j,h∥∥∥u(ℓ)j,h

∥∥∥
b

2

≤
µ
(ℓ)
1,h

(δ
(ℓ)
λ,h)

2

∑
j ̸=i

bh

ūh − P(ℓ)
H,hūh,

u
(ℓ)
j,h∥∥∥u(ℓ)j,h

∥∥∥
b,h


2

≤
µ
(ℓ)
1,h

(δ
(ℓ)
λ,h)

2

∥∥∥ūh − P(ℓ)
H,hūh

∥∥∥2
b,h
, (3.38)

where the last inequality holds since
u
(ℓ)
1,h∥∥∥u(ℓ)
1,h

∥∥∥
b

, · · · ,
u
(ℓ)
NH,h,h∥∥∥u(ℓ)
NH,h,h

∥∥∥
b

constitute an orthonormal basis for

the space V
(ℓ)
H,h in the sense of the inner product bh(·, ·).

Combining (3.5) and (3.38) leads to the following inequality∥∥∥(I − E
(ℓ)
i,h)P

(ℓ)
H,hūh

∥∥∥2
a,h

≤ µ̄1,h

(δ
(ℓ)
λ,h)

2
η2a(WH)

∥∥∥(I − P(ℓ)
H,h)ūh

∥∥∥2
a,h

. (3.39)

From (3.39) and the orthogonal property ah((I − P(ℓ)
H,h)ūh, (I − E

(ℓ)
i,h)P

(ℓ)
H,hūh) = 0, it follows that∥∥∥ūh − E

(ℓ)
i,hūh

∥∥∥2
a,h

=
∥∥∥ūh − P(ℓ)

H,hūh

∥∥∥2
a,h

+
∥∥∥(I − E

(ℓ)
i,h)P

(ℓ)
H,hūh

∥∥∥2
a,h

≤

(
1 +

µ̄1,h

(δ
(ℓ)
λ,h)

2
η2a(WH)

)∥∥∥(I − P(ℓ)
H,h)ūh

∥∥∥2
a,h

.

This is the desired result (3.32).

Similarly, with the help of (3.5), (3.17), (3.35), (3.36) and (3.37), we have following estimates

∥∥∥(I − E
(ℓ)
i,h)P

(ℓ)
H,hūh

∥∥∥2
b,h

=

∥∥∥∥∥∥
∑
j ̸=i

αju
(ℓ)
j,h

∥∥∥∥∥∥
2

b,h

=
∑
j ̸=i

α2
j

∥∥∥u(ℓ)j,h

∥∥∥2
b,h

=
∑
j ̸=i

(
1

µ̄h − µ
(ℓ)
j,h

)2

bh
(
ūh − P(ℓ)

H,hūh, u
(ℓ)
j,h

)2 ∥∥∥u(ℓ)j,h

∥∥∥2
b,h

≤ 1

(δ
(ℓ)
λ,h)

2

∑
j ̸=i

∥∥∥u(ℓ)j,h

∥∥∥4
b,h

bh

ūh − P(ℓ)
H,hūh,

u
(ℓ)
j,h∥∥∥u(ℓ)j,h

∥∥∥
b,h


2
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=
1

(δ
(ℓ)
λ,h)

2

∑
j ̸=i

(µ
(ℓ)
j,h)

2bh

ūh − P(ℓ)
H,hūh,

u
(ℓ)
j,h∥∥∥u(ℓ)j,h

∥∥∥
b,h


2

≤
(µ

(ℓ)
1,h)

2

(δ
(ℓ)
λ,h)

2

∥∥∥ūh − P(ℓ)
H,hūh

∥∥∥2
b,h

≤
µ̄2
1,h

(δ
(ℓ)
λ,h)

2

∥∥∥ūh − P(ℓ)
H,hūh

∥∥∥2
b,h
,

which leads to the inequality∥∥∥(I − E
(ℓ)
i,h)P

(ℓ)
H,hūh

∥∥∥
b,h

≤ µ̄1,h

δ
(ℓ)
λ,h

∥∥∥ūh − P(ℓ)
H,hūh

∥∥∥
b,h
. (3.40)

From (3.10), (3.40) and the triangle inequality, we have the following error estimates for the
eigenvector approximations in the ∥·∥b,h-norm∥∥∥ūh − E

(ℓ)
i,hūh

∥∥∥
b,h

≤
∥∥∥ūh − P(ℓ)

H,hūh

∥∥∥
b,h

+
∥∥∥(I − E

(ℓ)
i,h)P

(ℓ)
H,hūh

∥∥∥
b,h

≤

(
1 +

µ̄1,h

δ
(ℓ)
λ,h

)∥∥∥(I − P(ℓ)
H,h)ūh

∥∥∥
b,h

≤

(
1 +

µ̄1,h

δ
(ℓ)
λ,h

)
ηa(WH)

∥∥∥(I − P(ℓ)
H,h)ūh

∥∥∥
a,h

≤

(
1 +

µ̄1,h

δ
(ℓ)
λ,h

)
ηa(WH)

∥∥∥ūh − E
(ℓ)
i,hūh

∥∥∥
a,h

.

This is the second desired result (3.33) and the proof is completed.

Theorem 3.2. Under the conditions of Lemma 3.2, Algorithm 2 has the following error estimate
for ℓ ≥ 1

∥∥∥ūh − E
(ℓ+1)
i,h ūh

∥∥∥
a,h

≤ λ̄i,h

√
1 +

η2a(WH)

λ̄1,h
(
δ
(ℓ+1)
λ,h

)2
(
1 +

1

λ̄1,hδ
(ℓ)
λ,h

)
η2a(WH)

∥∥∥ūh − E
(ℓ)
i,hūh

∥∥∥
a,h

. (3.41)

Proof. We define the b(·, ·)-orthogonal projection operator π
(ℓ)
h to the space span{u(ℓ)i,h}. Then there

exists a real number q ∈ R such that π
(ℓ)
h ūh = qu

(ℓ)
i,h. Then from the orthogonal property of the

projection operator P(ℓ+1)
H,h , (3.10), (3.29) and (3.33), we obtain∥∥∥ūh − P(ℓ+1)

H,h ūh

∥∥∥2
a,h

= ah

(
ūh − P(ℓ+1)
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i,h , ūh − P(ℓ+1)

H,h ūh
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≤ λ̄h

(
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1
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(ℓ)
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H,h ūh
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. (3.42)

Since the approximation u
(ℓ+1)
i,h only comes from (3.28) or (3.30), together with Lemma 3.2, we

have ∥∥∥ūh − E
(ℓ+1)
i,h ūh

∥∥∥
a,h

≤
√
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(
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H,h )ūh

∥∥∥
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. (3.43)

From (3.42), there holds
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i,hūh

∥∥∥
a,h

. (3.44)

Combining (3.43) with (3.44), we have the following estimate

∥∥∥ūh − E
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i,h ūh
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√
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η2a(WH)
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(ℓ)
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a,h

.

This is the desired result (3.41) and the proof is complete.

4 Applications to Laplace eigenvalue problem

This section will demonstrate the applications of the augmented subspace techniques introduced
in Section 3 to the Laplace eigenvalue problem and provide the associated convergence rates. It is
noteworthy that the finest WG finite element space has little bearing on the coarse mesh TH mesh
size selection in augmented subspace techniques. Compared to the two-grid WG finite element
technique [33, 35], wherein the choices of coarse and fine meshes are not free each other, this
represents a significant distinction.

Here, we are concerned with the following standard Laplace eigenvalue problem: Find (λ, u) ∈
R×H1

0 (Ω) such that  −∆u = λu, in Ω,
u = 0, on ∂Ω,

|u|21 = 1,
(4.1)

where | · |1 represents H1-type semi-norm and the computing domain is set to be the unit square
Ω = (0, 1)× (0, 1). Then, in (2.3), the bilinear forms a(·, ·) and b(·, ·) are defined as follows

a(u, v) =

∫
Ω

∇u · ∇vdΩ, b(u, v) =

∫
Ω

uvdΩ.

Additionally, the norms ∥·∥a,h and ∥·∥b,h defined in (2.12) and (2.13) are equivalent to the H1-type

semi-norm | · |1 and L2 norm ∥·∥0, respectively. In order to use the WG finite element discretization
method, we employ the meshes defined in Section 2.

Here, the problem (4.1) is treated using the augmented subspace techniques specified by Algo-
rithms 1 and 2. In this section, the regular refinement is used to create the fine mesh Th from
the coarse mesh TH . The WG finite element space on the fine mesh Th is set to Vh, and the
coarse conforming linear finite element space on the coarse mesh TH is set to WH . We consider
the computational domain Ω to be convex for the sake of simplicity.
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In order to give the explicit convergence rate of the augmented subspace methods defined by
Algorithms 1 and 2, we need to estimate the quantity ηa(WH) in (3.7). For this aim, we define the
conforming linear finite element projection PH : H1

0 (Ω) 7→WH as follows

a(PHw, vH) = a(w, vH), ∀vH ∈WH , for w ∈ H1
0 (Ω). (4.2)

It is well known that the following error estimate holds

∥Tf − PHTf∥1 ≤ CH∥Tf∥2 ≤ CH∥f∥b,h, (4.3)

where T : L2(Ω) 7→ H1
0 (Ω) is defined as follows

a(Tf, v) = b(f, v), ∀v ∈ H1
0 (Ω). (4.4)

In order to deduce the estimate for the term ηa(WH), we define the norm ∥ · ∥1,h as follows

∥v∥21,h =
∑

K∈Th

(
∥∇v0∥20,K + h−1

K ∥v0 − vb∥2∂K
)
.

Obviously, the norm ∥ · ∥1,h coincides with ∥ · ∥1 on the Sobolev space H1
0 (Ω). Furthermore, there

is the following equivalence between ∥ · ∥1,h and ∥ · ∥a,h on the WG finite element space Vh.

Lemma 4.1. ([19]) For any vh ∈ Vh, the following inequalities hold

C7∥vh∥1,h ≤ ∥vh∥a,h ≤ C8∥vh∥1,h, (4.5)

where C7 and C8 are two constants independent of the mesh size h.

Then ∥Thf − PHTf∥a,h has following inequalities

∥Thf − PHTf∥a,h ≤ ∥Thf −QhTf∥a,h + ∥QhTf − PHTf∥a,h
≤ ∥Thf −QhTf∥a,h + C∥QhTf − PHTf∥1,h
≤ ∥Thf −QhTf∥a,h + C∥QhTf − Tf∥1,h + C∥Tf − PHTf∥1,h
≤ ∥Thf −QhTf∥a,h + C∥QhTf − Tf∥1,h + C∥Tf − PHTf∥1
≤ C(h+ h+H)∥Tf∥2 ≤ CH∥f∥b,h, (4.6)

where the constant depends on the shape of the mesh TH .

From the definition of ηa(WH) in (3.7), and (4.6), we can obtain the following estimates

ηa(WH) ≤ sup
f∈L2(Ω)
∥f∥b,h=1

inf
wH∈WH

∥Thf − wH∥a,h ≤ sup
f∈L2(Ω)
∥f∥b,h=1

∥Thf − PHTf∥a,h

≤ sup
f∈L2(Ω)
∥f∥b,h=1

CH∥f∥b,h = CH. (4.7)

Based on Theorems 3.1 and 3.2, the convergence results for the augmented subspace method
can be concluded with the following inequalities∥∥∥ūi,h − F

(ℓ+1)
k,h ūi,h

∥∥∥
a,h

≤ C
(
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(1)
k,hūi,h

∥∥∥
a,h

, i = 1, · · · , k, (4.8)∥∥∥ūi,h − F
(ℓ+1)
k,h ūi,h

∥∥∥
b,h

≤ CH
∥∥∥ūi,h − F

(ℓ+1)
k,h ūi,h

∥∥∥
a,h

, i = 1, · · · , k, (4.9)

and ∥∥∥ūi,h − E
(ℓ+1)
i,h ūi,h

∥∥∥
a,h

≤ C
(
CH

)2ℓ ∥∥∥ūi,h − E
(1)
i,h ūi,h

∥∥∥
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, (4.10)
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∥∥∥ūh − E
(ℓ+1)
i,h ūh

∥∥∥
b,h

≤ CH
∥∥∥ūi,h − E

(ℓ+1)
i,h ūi,h

∥∥∥
a,h

. (4.11)

The goal of this section is to validate these convergence findings using a few numerical examples.The
exact WG finite element eigenfunction can be found by directly solving the eigenvalue problem
on the fine WG finite element space Vh. Let this be noted. To aid with comprehension, the
nomenclature in all of the following figures denotes the exact WG finite element eigenfunctions and
the augmented subspace approximations, respectively, with and without the “dir” superscript.

4.1 Augmented subspace method for P0/P0 WG finite element space

For the WG finite element space P0/P0, we examine the performance of the augmented subspace
approach described by Algorithms 1 and 2 in the first subsection. Here, WH is defined as the
conforming linear finite element space on the coarse mesh TH in all numerical cases. The P0/P0

WG finite element space Vh defined on the finer mesh Th can be written as follows

Vh =
{
v : v|K0

∈ P0(K0) for K ∈ Th; v|e ∈ P0(e) for e ∈ Eh, and v|e = 0 for e ∈ Eh ∩ ∂Ω
}
.

The fine mesh Th is obtained from the coarse mesh TH by the regular refinement. Here, we set the
size h =

√
2/256 for the fine mesh Th.

We also verify the convergence results for the conforming linear finite element space WH with
various sizes H by examining the numerical errors corresponding to the results in (4.8)-(4.11). The
goal is to determine how the mesh size H affects the convergence rate. In this case, the regular
type of quasiuniform mesh TH is also specified as the coarse mesh.

Under the boundary condition restriction, the initial eigenfunction approximation is specified
to be rand vectors in this case. Next, we employ the augmented subspace approach, as specified
by Algorithms 1 and 2, to carry out the iteration steps. The convergence behaviors for the first
eigenfunction using the augmented subspace techniques are displayed in Figure 1, and they cor-
respond to the coarse mesh sizes H =

√
2/8,

√
2/16,

√
2/32, and

√
2/64, respectively. The rates

of convergence associated with ∥ · ∥a,h and ∥·∥b,h are, respectively, 0.048945, 0.012834, 0.00279122,
0.00058513 and 0.052177, 0.01405, 0.0032556, 0.00076374. As a consequence, the results (4.8)-
(4.11) hold and validate the second order convergence speed of the augmented subspace technique
described by Algorithms 1 and 2.

Next, we evaluate Algorithm 1 in terms of its ability to compute the first 4 eigenpairs. The
corresponding convergence behaviors for the smallest 4 eigenfunctions by Algorithm 1 are displayed
in Figure 2. The conforming linear finite element space on the mesh with sizes H =

√
2/8,

√
2/16,√

2/32, and
√
2/64, respectively, forms the coarse space WH . Employing the 4-th eigenfunction as

an example, we can determine the related convergence rates, which indicate the second convergence
order of the algorithm given by Algorithm 1, to be 0.3353, 0.11061, 0.029854, and 0.0054112.
Furthermore, we are able to observe from Figure 2 that the 4-th eigenfunction’s convergence rate
is slower than the 1-st eigenfunction’s, which is in accordance with Theorem 3.1.

Assessing Algorithm 2’s performance in determining the single 4-th eigenpair is the next objec-
tive. Since smallest eigenpairs is not the goal, the eigenvalue problem (2.3) is solved on the coarse
WG finite element space VH to provide the initial eigenfunction approximation. The augmented
subspace approach, which is specified by Algorithm 2, is then used to carry out the iteration
phases. The coarse space was the linear finite element space on the mesh with sizes H =

√
2/8,√

2/16,
√
2/32, and

√
2/64, respectively. The corresponding convergence behaviors for the only

4-th eigenfunction by Algorithm 2 are depicted in Figure 3. The norms ∥ · ∥a,h and ∥·∥b,h in Figure
3 correspond to the convergence rates, which are 0.35325, 0.12501, 0.034437 and 0.0083731, and
0.35058, 0.12584, 0.035226 and 0.0090371, respectively. According to these findings, the augmented
subspace approach described by Algorithm 2 has a second order speed of convergence, validating
the findings of (4.10)-(4.11).
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Figure 1: The convergence behaviors for the first eigenfunction by Algorithm 1 corresponding to
the P0/P0 WG finite element method and the coarse mesh size H =

√
2/8,

√
2/16,

√
2/32 and√

2/64, respectively.
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Figure 2: The convergence behaviors for the smallest 4 eigenfunctions by Algorithm 1 with the
P0/P0 WG finite element method and the coarse space being the linear finite element space on the
mesh with size H =

√
2/8,

√
2/16,

√
2/32 and

√
2/64, respectively.
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Figure 3: The convergence behaviors for the only 4-th eigenfunction by Algorithm 2 with the P0/P0

WG finite element method and the coarse space being the linear finite element space on the mesh
with size H =

√
2/8,

√
2/16,

√
2/32 and

√
2/64, respectively.

4.2 Augmented subspace method for P1/P1 WG finite element space

We examine the augmented subspace method’s performance for the WG finite element space P1/P1,
as described by Algorithms 1 and 2, in the second subsection. Also, WH is designated as the
conforming linear finite element space on the coarse mesh TH in these numerical tests. Here, Vh is
the P1/P1 WG finite element space defined on the fine mesh Th, which is generated by the regular
refinement from the coarse mesh TH .

Here, we set the size h =
√
2/256 for the fine mesh Th and the WG finite element space Vh is

defined as follows

Vh =
{
v : v|K0 ∈ P1(K0) for K ∈ Th; v|e ∈ P1(e) for e ∈ Eh, and v|e = 0 for e ∈ Eh ∩ ∂Ω

}
.

We also check the numerical errors corresponding to the conforming linear finite element space
WH with different sizes H. This helps to confirm the convergence results for the P1/P1 WG finite
element technique described in (4.8)-(4.11). Here, also determining how the convergence rate varies
with mesh size H is a goal. In this case, the regular type of quasiuniform mesh TH is also specified
as the coarse mesh.

In a similar vein, under the boundary condition restriction, the initial eigenfunction approxi-
mation is also made to be rand vectors. The convergence characteristics for the first eigenfunction
using the augmented subspace techniques are displayed in Figure 4, which corresponds to the
coarse mesh sizes H =

√
2/8,

√
2/16,

√
2/32, and

√
2/64, respectively. ∥ · ∥a,h and ∥·∥b,h have

respective convergence rates of 0.053287, 0.013798, 0.0036045, 0.00075399 and 0.05535, 0.014936,
0.0038268, 0.00090686. The findings support the results (4.8)-(4.11) by demonstrating the second
order convergence speed of the augmented subspace technique specified in Algorithms 1 and 2.

Next, we additionally examine Algorithm 1’s performance in terms of computing the first 4
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Figure 4: The convergence behaviors for the first eigenfunction by Algorithm 1 corresponding to
the P1/P1 WG finite element method and the coarse mesh size H =

√
2/8,

√
2/16,

√
2/32 and√

2/64, respectively.

eigenpairs. The corresponding convergence behaviors for the smallest 4 eigenfunctions by Algo-
rithm 1 are presented in Figure 5. The conforming linear finite element space on the mesh with
sizes H =

√
2/8,

√
2/16,

√
2/32, and

√
2/64, respectively, constitutes the coarse space. By employ-

ing the 4-th eigenfunction as an example, we can also get the related convergence rates 0.29933,
0.10565, 0.029315, and 0.0065776, which reflect second convergence order of Algorithm 1.

The final objective is evaluating the efficiency of Algorithm 2 in determining the only 4-th
eigenpair. Similarly, the coarse WG finite element space VH is used to solve the eigenvalue problem
(2.3) to get the initial eigenfunction approximation. The corresponding convergence behaviors for
the only 4-th eigenfunction by Algorithm 2 are displayed in Figure 6. The conforming linear finite
element space on the mesh with sizes H =

√
2/8,

√
2/16,

√
2/32, and

√
2/64, respectively, is the

coarse space. The convergence rates associated with ∥·∥a,h and ∥·∥b,h are 0.33464, 0.1179, 0.027908,
0.0030174 and 0.35213, 0.12511, 0.034041, 0.0084659, respectively, as depicted in Figure 6. The
results (4.10)-(4.11) are likewise validated by these findings.

5 Concluding remarks

In this study, two augmented subspace strategies for addressing the eigenvalue problems using the
WG finite element method are proposed, with the assistance of conforming linear finite element
space on the coarse mesh. We construct the associated error estimates, which demonstrate that
the WG method’s augmented subspace scheme has a second convergence order in relation to the
coarse mesh size.

We can develop a sort of eigensolver for algebraic eigenvalue problems, which originate from the
discretization of the differential eigenvalue problem using the WG finite element technique, based
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Figure 5: The convergence behaviors for the smallest 4 eigenfunctions by Algorithm 1 with the
P1/P1 WG finite element method and the coarse space being the linear finite element space on the
mesh with size H =
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Figure 6: The convergence behaviors for the only 4-th eigenfunction by Algorithm 2 with the P1/P1

WG finite element method and the coarse space being the linear finite element space on the mesh
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on these provided augmented subspace approaches. Moreover, the methods presented here provide
a means of designing the parallel eigensolver for the WG finite element discretization technique,
which will be the subject of our next research project.
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