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ABSTRACT 

This paper presents a numerically exact cable finite element model for static nonlinear analysis of cable 

structures. The model derives the exact expression of the tension field using the geometrically exact beam 

theory coupled with the fundamental mechanical characteristics of cables. The equations for the cable element 

are formulated by addressing the equilibrium conditions at the element boundaries and ensuring compatibility 

within the element. Unlike previous studies that typically provide explicit expressions for cable models, this 

study develops a formulation that emphasizes numerical precision and broad applicability. It achieves this by 

deriving linearized equations with implicit expressions incorporating integrals. The proposed model 

accurately computes internal forces and deformation states, and determines the unstrained length of the cable. 

Additionally, it accounts for the variability in cross-sectional stiffness along the cable’s length. The paper 

discusses solution implementations using the complete tangent matrix and element internal iterations. The 

effectiveness of the proposed cable element is demonstrated through numerical examples.  

Keywords: Cable structures; Exact tension field; Nonlinear analysis; Finite element method; Unstrained 

length  

 

1 Introduction 

Cable structures are utilized extensively in various engineering fields, including large-span suspension 

bridges, cable-stayed bridges, aerial tramways, and aerospace deployable structures [1]. The complex 

geometric configurations and significant geometric nonlinearity amplify the complexity of numerical 

simulations for these structures. These complexities present significant challenges in accurately predicting 

the performance of cable structures and effectively managing their construction processes. Consequently, 

developing efficient and precise computational methods for cable structures is a critical focus within this 

field. Extensive research has been conducted on various methodologies to analyze cable behavior. Two 

primary approaches have been extensively employed: the finite element method using interpolation functions 

and the analytical method, which includes explicit expressions of a catenary.  

The finite element method is applied to simulate the nonlinear behaviors of cable structures. Currently, 

the finite element models predominantly utilized for these simulations include: cable element models based 

on modified physical properties, truss element models, and cable element models employing high-order 

interpolation functions. The cable element model based on modified physical properties typically adjusts the 
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elastic modulus to account for sag effects, following the methodology outlined in the Ernst formula and its 

revisions [2, 3]. However, this model does not account for hardening effects due to large displacements. As a 

result, this model achieves high accuracy primarily only under conditions of high cable stress and low chord 

angles. The truss element model simulates the nonlinear behavior of cables using multiple truss elements [4, 

5]. Increasing the number of truss elements enhances the approximation to the actual solution, yet also 

significantly increases computational demands, which challenges its practical application in engineering. 

The cable element model that uses high-order interpolation functions more accurately represents the cable’s 

shape and accounts for the sag effect, outperforming the model based on modified physical properties. It also 

addresses the high computational load issue associated with the truss element model. Advanced 

implementations of this model include elements with 3 to 6 nodes [6-9]. In addition, some cable elements 

with high-order interpolation functions are developed on the basis of the geometrically exact beam theory 

[10-20], examples being the rotation-free geometrically exact beam element [21], umbilical cables in 

deep-sea remotely operated vehicle systems [22], and the rotational quaternion-based geometrically exact 

beam element model for simulating flexible cables in the automotive industry [23]. Despite their advantages, 

these models still require a significant number of elements to accurately represent the cable’s form, leading 

to considerable computational loads.  

The analytical approach effectively addresses the sag effect and typically requires just a two-node 

element to maintain computational accuracy. O’Brien and Francis [24] first proposed this element based on 

the analytical expressions of the elastic catenary, demonstrating that a single analytical element can represent 

each cable within a structure. In this model, the overall equilibrium of a stretched cable element is achieved 

using Lagrangian coordinates, with the precise cable profile derived by applying boundary conditions at the 

cable’s endpoints. Subsequent researches have enhanced the elastic catenary element by including thermal 

effects and diverse loading types [25-29]. For instance, Salehi Ahmad Abad et al. [30] developed an 

extended three-dimensional catenary element that accommodates thermal effects and distributed lateral loads 

across various directions. Crusells-Girona et al. [31] applied a mixed variational method in curvilinear 

coordinates based on the elastic catenary expressions to model cables with material and geometric 

nonlinearity. Impollonia et al. [32] introduced the elastic catenary theory for extensible cables under 

uniformly distributed loads and three-dimensional point forces. In the context of three-dimensional cable 

structures, Greco et al. [33] utilized the elastic catenary solution for uniform distributed loads and additional 

point forces, formulating the equations based on the equilibrium at free nodes and compatibility at the 

terminal node of each cable. Additionally, form-finding is performed using the catenary force density 

method. The catenary element has also been applied in the nonlinear analysis of cable-supported bridges [34, 

35] and suspension bridges [36-38]. Despite these applications, the catenary model has its limitations. 

Rezaiee-Pajand et al. [25] proposed the elastic hyperbolic element for nonlinear thermo-elastic analysis to 

address some of these disadvantages. In addition, the parabolic approach has also been utilized [39] for the 

analysis and design of practical cable structures, though the error of this method increases with the 

sag-to-span ratio. While the analytical approach offers a solution with acceptable accuracy, its applicability 

remains limited to scenarios with uniform cross-sectional stiffness. High-precision cable elements designed 

for cables with non-uniform cross-sectional stiffness along the cable axis require further research. Moreover, 
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the elements based on analytical functions may become unstable during the solution process if the relative 

positions of the nodes within an element change.  

Santos and Almeida [40] introduced a complementary-dual force-based finite element formulation for 

the geometrically exact quasi-static analysis of cable structures employing both Hookean and Neo-Hookean 

materials. This formulation treats the axial force as an indeterminate field quantity and integrates the nodal 

equilibrium constraint using the Lagrange multiplier method, facilitating the derivation of the element 

stiffness matrix via variational principles. With its capability to accurately represent the tension field, this 

element provides high computational precision for deformation analysis and internal force calculations. 

However, this formulation does not address scenarios where the unstrained length of the cable is the 

unknown variable, including specific applications like form-finding in cable structures and construction 

monitoring of cable systems. Therefore, further research is essential to develop a high-precision cable 

element that can accurately compute deformation, internal forces, and the unstrained length of cables.  

This paper introduces a numerically exact cable finite element model for static nonlinear analysis of 

cable structures. The model precisely derives the tension field expression using geometrically exact beam 

theory and the fundamental mechanical properties of cables. The equation system for the cable element is 

developed based on equilibrium conditions at the element boundaries and compatibility conditions within the 

element. Unlike existing studies that often provide explicit expressions for cable models, this work aims to 

offer a cable element formulation with enhanced numerical accuracy and broader applicability. This is 

accomplished by directly deriving linearized equations with implicit integral expressions. The proposed 

model is suitable for cables with non-uniform cross-sectional stiffness along the cable axis and utilizes a 

two-node element format to improve computational efficiency. The cable element model is capable of 

determining internal forces, deformation states, and the unstrained length of the cable. The effectiveness of 

the proposed model is demonstrated through numerical examples.  

2 Formulation of the cable 

2.1 Basic assumptions 

The following assumptions are adopted for the cable:  

(A1) The cable is assumed to be perfectly flexible, with no flexural stiffness.  

(A2) The cable does not undergo shear deformation.  

(A3) Material properties remain linear in the deformed state.  

(A4) The self-weight distributed along the axis of unstrained cable remains constant.  

2.2 Equilibrium equations and strain expressions 

With respect to an orthonormal reference system with base vectors  
T

1 1 0=g  and  
T

2 0 1=g , Fig. 

1 shows the reference and deformed configurations of a cable, where 0L  and L  represent the unstrained 

length and deformed length, respectively,   refers to the rotation of the cross-section, and q represents the 

self-weight along the axis of unstrained cable. The centroid lines of the cable for the deformed configuration 

and unstrained configuration are described by ( )sr  and ( )0 sr , respectively, and  00,s L  is the 

Lagrangian coordinate, referred to as the arc-length of the unstrained cable between the generic centroid 
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point c and the cable origin a. Specifically, ( )sr  and ( )0 sr  contain two components corresponding to 1g  

and 2g , and they are expressed as 

( ) ( ) ( ) 
T

1 2s r s r s=r  (1) 

( ) ( ) ( ) 
T

0 01 02s r s r s=r  (2) 

In the planar geometrically exact beam theory, the generalized strains ( )G s , ( )G s  and ( )G s  

measuring the extension deformation, shearing deformation and curvature in the cross-sectional coordinate 

system are expressed as [12] 

( ) ( ) ( ) ( ) ( )1, 2,cos sin 1G s ss r s s r s s= + −    (3) 

( ) ( ) ( ) ( ) ( )2, 1,cos sinG s ss r s s r s s= −    (4) 

( ) ( ) ( ), 0,G s ss s s= −    (5) 

where ( )0 s  is the rotation of cross-section in the reference configuration, and ( ) ( )
,

d d
s

s =   denotes the 

first derivative with respect to s. Specially, the subscript ‘G’ is used for denoting the quantities 

corresponding to the cross-sectional coordinate system. Meanwhile, the differential equilibrium equations of 

the planar geometrically exact beam theory can be expressed as 

( ) ( )
1 , 0g sN s n s− =  (6) 

( ) ( )
2 , 0g sN s q s− =  (7) 

( ) ( ) ( ) ( ) ( ) ( )
1 2, 2, 1, 0g s s g s gM s r s N s r s N s m s− + − =  (8) 

where ( )
1gN s  and ( )

2gN s  are the internal force components in two directions 1g  and 2g , respectively, 

( )gM s  is the bending moment, ( )n s  and ( )q s  represent the distributed external forces along the axis in 

two directions 1g  and 2g , respectively, and ( )m s  refers to the distributed external moment.  

L
a

b

a b

2g

1go

( )sr

( )0 sr

( )s

aH

aV

bH

bV

s
( )1,sr s

( )2,sr s

( )q s

c

0L

c

q

s

Reference configuration

Deformed configuration

(unstrained configuration)

( )1
sG

( )2
sG

 

Fig. 1. The reference and deformed configurations of the cable.  
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For a cable with zero horizontal load and distributed moment, so ( ) 0n s =  and ( ) 0m s = . Meanwhile, 

assumption (A4) can be expressed as ( )q s q=  ( 0q  ). Then, according to assumption (A1), the 

differential equilibrium equations of the cable can be rewritten as 

( )
1, 0g sN s =  (9) 

( )
2 , 0g sN s q− =  (10) 

( ) ( ) ( ) ( )
1 22, 1,s g s gr s N s r s N s=  (11) 

According to assumption (A2), the following relations can be obtained  

( ) ( ) ( ) ( )2, 1,cos sin 0s sr s s r s s− =   (12) 

With the relation ( ) ( )2 2cos sin 1s s+ =   introduced, the expressions of ( )cos s  and ( )sin s  can be 

derived as 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2

1, 1, 2,

2 2

2, 1, 2,

cos

sin

s s s

s s s

s r s r s r s

s r s r s r s

= +

= +




 (13) 

Furthermore, by substituting Eq. (13) into Eq. (3), the generalized strains ( )G s  can be expressed by 

( )1r s  and ( )2r s  as 

( ) ( ) ( )2 2

1, 2, 1G s ss r s r s= + −  (14) 

2.3 Expression of the tension 

The solution of Eqs. (9) can be expressed as 

( )
1gN s H=  (15) 

where H represents the internal force component ( )
1gN s  at node b and is regarded as one of the force 

parameters. It is shown that the internal force component ( )
1gN s  is constant along the cable.  

The solution of Eqs. (10) can be expressed as 

( )
0

2 0d
L

g
s

N s V q V qL qs= + = + −   (16) 

where V represents the internal force component ( )
2gN s  at node b and is regarded as another force 

parameter. Fig. 2 demonstrates the relationship between ( )
2gN s  and V . It can be observed that ( )

2gN s  is 

related to the Lagrangian coordinate s, the unstrained length 0L  and the distributed load q under a given V. 

For a specified set of s, 0L  and q, the total load on the  0,s L  interval is constant and can be expressed as 

0

d
L

s
q  . In other words, the internal force component ( )

2gN s  in any deformed state is determined by V.  
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aH

aV

V

H

( )
1gN s H=
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s
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d d
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0

0d
L

s
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0

d
L

s
q s

q

0L
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Fig. 2. Definition of internal force fields.  

 

Considering that the direction of tension is always perpendicular to the cross-section due to the zero 

shear deformation as introduced in assumption (A2), the tension ( )GN s  ( )( )0GN s   can be expressed as 

( ) ( ) ( ) ( )
1 2

22 2 2

0G g gN s N s N s H V qL qs= + = + + −  (17) 

2.4 Description of deformed configuration 

Based on assumptions (A1) and (A2), the constitutive equation of the cable’s cross-section can be 

expressed as 

( ) ( ) ( ) 0G G GN s C s s=   (18) 

where ( )GC s  represents the tension stiffness of the cross-section, which is a function of s. By substituting 

Eq. (18), Eq. (14) can be further expressed as 

( ) ( ) ( ) ( )
2

2 2 1

1, 2, 1s s G Gr s r s C s N s− + = +   (19) 

By utilizing the relation of Eq. (11) that ( ) ( ) ( ) ( )
1 2

2 2 2 2

2, 1,s g s gr s N s r s N s=  into Eq. (19) and considering the 

relation in Eq. (17), ( )2

1,sr s and ( )2

2,sr s  can be expressed by the stress resultants as  

( ) ( ) ( ) ( )
1

2
2 2 1 1

1,s g G Gr s N s C s N s− − = +   (20) 

( ) ( ) ( ) ( )
2

2
2 2 1 1

2,s g G Gr s N s C s N s− − = +   (21) 

Taking into account the force and deformation characteristics of the cable, it is observed that the horizontal 

internal force component and the first derivative of the horizontal component of the position vector are 

consistently positive in the deformed state, namely ( )
1

0gN s   and ( )1, 0sr s  , and it can be inferred that 



7 

 

( ) ( )
22, 0s gr s N s   according to Eq. (11). Therefore, the following expressions of ( )1,sr s  and ( )2,sr s  can 

be established 

( ) ( ) ( ) ( )
1

1 1

1,s g G Gr s N s C s N s− − = +   (22) 

( ) ( ) ( ) ( )
2

1 1

2,s g G Gr s N s C s N s− − = +   (23) 

By integrating ( )1,sr s  and ( )2,sr s , the configuration of the cable under a given position at the starting 

node can be described as follows 

( ) ( ) ( ) ( ) ( )
1

1 1

1 1 1, 1
0 0

d d
s s

a a

s g G Gr s r r r N C N     − − = + = + +    (24) 

( ) ( ) ( ) ( ) ( )
2

1 1

2 2 2, 2
0 0

d d
s s

a a

s g G Gr s r r r N C N     − − = + = + +    (25) 

where 1

ar  and 2

ar  represent the position components at the starting node a. It can be observed that the 

deformed configuration of the cable depends on the internal force fields ( )
1gN s  and ( )

2gN s , the tension 

stiffness ( )GC s  and the position of the starting node ( 1

ar  and 2

ar ). For the sake of simplicity, the 

configuration of the cable can be expressed as 

( ) ( ) ( ) ( )1 1

0
d

s
a

g G Gs C N   − − = + + r r F  (26) 

where 

( )
( )

( )
1

2

1

02

,
a

ga

ga

g

N s Hr
s

V qL qsN sr

       
=   = =     

+ −       

r F  (27) 

3 Implementation of finite element  

This section presents the implementation of the solution for cable structures. The cable element is 

developed based on the exact definition of the tension field, as depicted in Eqs. (15) and (16). The equations 

of a cable element are established by considering two types of conditions: the equilibrium conditions at 

element boundaries and the compatibility condition within the element. Subsequently, the linearization of the 

element equations and the expression of element tangent matrix are provided. Finally, the solution methods 

for scenarios involving given unstrained length and unstrained length to be solved are presented, 

respectively.  

3.1 Equations of a cable element 

As indicated by the formulations of the configuration states in Eqs. (24) and (25) and the internal forces 

in Eqs. (15) and (16), it is evident that the element state is wholly defined by the positional quantities at the 

starting and ending nodes (four quantities), the internal forces at the ending node (the two internal force 

parameters), and the unstrained length of the cable element. Without additional specified conditions, six 

equations can be established to construct the equation system of the cable element. Fig. 3 illustrates a 

schematic diagram of the established element equation, and the composition of the equation system is 

detailed below.  
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a

b

2g

1go
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b b
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( )0 sr

( )0Lr
b

r

b
b b 

( )q s

b

0L

s

q

 

Fig. 3. Deformation compatibility of the cable element.  

 

Four equations are obtained according to the boundary conditions of internal forces at the two 

boundaries, 0s =  and 
0s L= , and they are  

( )  
T

00a a

g g gH V qL= − = − + =F F S  (28) 

( )  
T

0

b b

g g gL H V= = =F F S  (29) 

where a

gS  and b

gS  can be considered as the external boundary force vectors at the starting and ending 

nodes, respectively.  

Furthermore, it is essential to ensure the compatibility condition within the element. For the proposed 

cable element, the kinematical boundary conditions at 
0s L=  should be satisfied. This implies that the 

position of the ending node obtained by Eq (26) (point b  in Fig. 3) should align with the output position of 

the ending node (point b  in Fig. 3). Consequently, the following equation can be formulated.  

( )
0

0 ,
0

d
L

b a

s s s= − − =h r r r 0  (30) 

3.2 Linearization of the equations 

In the context of the finite element method, the implementation of an incremental/iterative solution 

necessitates the derivation of linearized equations. This section provides a detailed presentation of the 

linearization of the element equations as outlined in Eqs. (28), (29) and (30) for the unknowns 1

ar , 2

ar , 1

br , 

2

br , H , V  and 0L .  

(1) The variation of a

gF  

The variation of a

gF  in Eq. (28) can be expressed as 

1 2 2 0

a

g H V q L= − − −F g g g     (31) 

(2) The variation of b

gF  

The variation of b

gF  in Eq. (29) can be expressed as 



9 

 

1 2

b

g H V= +F g g    (32) 

(3) The variation of 
0h  

The variation of 
0h  in Eq. (30) can be expressed as 

0 1 1 2 2 1 1 2 2 0

b b a a

H V Lr r r r H V L= + − − − − −h g g g g B B B         (33) 

In Eq. (33), 
HB  and 

VB  can be obtained by 

( ) ( )

( )

0

0, 1,0

0
2,

d
d

L

Ls s

H

s

s s r s H
s

r s HH

   
= =  

   




r
B  (34) 

( ) ( )

( )

0

0, 1,0

0
2,

d
d

L

Ls s

V

s

s s r s V
s

r s VV

   
= =  

   




r
B  (35) 

where ( )1,sr s H  , ( )2,sr s H  , ( )1,sr s V   and ( )2,sr s V   can be expressed by introducing Eqs. 

(22), (23), (15) and (16) as 

( ) ( ) ( )  ( ) ( ) ( )1 1 1 1 2 3

1,s G G G G Gr s H H C s N s C s N s H N s
H

− − − − −
   = + = + − 

 (36) 

( ) ( ) ( ) ( )  ( ) ( )1 1 3

2, 0 0s G G Gr s H V qL qs C s N s H V qL qs N s
H

− − −
   = + − + = − + − 

 (37) 

( ) ( ) ( )  ( ) ( )1 1 3

1, 0s G G Gr s V H C s N s H V qL qs N s
V

− − −
   = + = − + − 

 (38) 

( ) ( ) ( ) ( )  ( ) ( ) ( ) ( )
21 1 1 1 3

2, 0 0s G G G G Gr s V V qL qs C s N s C s N s V qL qs N s
V

− − − − −
   = + − + = + − + − 

 (39) 

Furthermore, LB  in Eq. (33) can be obtained as 

( )
0

,
0

0

d
L

s

L

s s

L


=



 r
B  (40) 

In contrast to the derivation of HB  and VB , the derivation of LB  requires differentiation of the integral 

limit. Due to the fact that the cross-section stiffness of the cable is a function of s, it is difficult to obtain an 

analytical expression for ( )
0

,
0

d
L

s s s r , which will make it difficult to derive the expression for LB . 

Therefore, the method with numerical integration expression is employed to derive the expression in the 

form of numerical integration.  

By introducing the GPN  integration point  ( )0,1 1,2, ,i GPi N =  and their weight coefficients 

( )1,2, ,i GPw i N=  with 
1

1
GPN

i

i

w
=

=  to implement the numerical integration, LB  can be expressed as 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

0

, 0 , 0 1, 0 0 1, 0 00

1 1 2, 0 0 2, 0 00 0

d GP GP

L
N N

s i s i i s i i s i

L

i i i s i i s i

s s w L L w r L w L r L L

w r L w L r L LL L

  

 = =

    +    
= = =  

+     


 

r r
B  (41) 

By introducing Eqs. (22), (23), (15) and (16), ( )1, 0sr s L   and ( )2, 0sr s L   can be expressed as 

( ) ( ) ( )3

1, 0 0 0 0s i i i G ir L L q H V qL N L   −  = − +  (42) 
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( ) ( ) ( ) ( ) ( )
21 1 3

2, 0 0 0 0 0 0s i i G i i G i i i G ir L L q C L q N L q V qL N L       − − −  = + + +  (43) 

where 1i i= −  .  

To maintain consistency in expression, 
HB  and 

VB  are also expressed in numerical integration form 

as 

( )

( )

( ) ( )

( ) ( )
0 1, 0 1, 0

0
12, 0 2, 0

d
GPN

L s i s i

H

is i s i

r s H w L r L H
s

r s H w L r L H



=

      
= =   

      
B  (44) 

( )

( )

( ) ( )

( ) ( )
0 1, 0 1, 0

0
12, 0 2, 0

d
GPN

L s i s i

V

is i s i

r s V w L r L V
s

r s V w L r L V



=

      
= =   

      
B  (45) 

(4) Incremental equations 

Based on the expressions of a

gF , b

gF  and 0h , the Taylor series expansion of the element equations 

for the (i+1)th step in incremental/iterative solution can be expressed as follows 

, 1 , , 1

1 2 2 0

a i a i a i

g g gH V q L+ + −  −  −  =F F g g g S  (46) 

, 1 , , 1

1 2

b i b i b i

g g gH V+ + +  +  =F F g g S  (47) 

1

0 0 1 1 2 2 1 1 2 2 0

i i a a b b i i i

H V Lr r r r H V L+  −  −  +  +  −  −  −  =h h g g g g B B B 0  (48) 

where the quantities in current state are denoted as superscript i, and i

HB , i

VB  and i

LB  are used to denote 

HB , 
VB  and 

LB  in current state that 

( ) ( ) ( )
0 00 0 0, , , , , , , ,i i i i i i i i i i i i

H H V V L LH V L H V L H V L=  =  =B B B B B B  (49) 

Based on Eqs. (46)-(48), six incremental equations can be established as follows.  

4 3 4

32 2 3 2

,

4 4

, ,

e e ie
F Fr

ee e i e i

h r h h

 −

− −

       
=     

         

0 K Ed

dK K E





 (50) 

where 
4 3

,e i

F −K  , 
2

,e i

h r−K  and 
2 3

,e i

h −K   represent the element tangent matrices, e

rd  and 
3

ed  represent 

vectors of incremental element state, 
4

,e i

FE  and 
2

,e i

hE  refer to the element residual force vector and element 

residual vector for deformation compatibility, respectively, they are expressed as 

 
T

1 2 1 2

e a a b b

r r r r r =    d  (51) 

 
3

T

0

e H V L =   d  (52) 

4

, 1 ,

,

, 1 ,

a i a i

g ge i

F b i b i

g g

+

+

 − 
=  

−  

S F
E

S F
 (53) 

2

,

0

e i i

h = −E h  (54) 

4 3

1 2 2

1 2 2 1

e

F

q
−



− − − 
=  

 

g g g
K

g g 0
  (55) 

 
2 1 2 1 2

e

h r− = − −K g g g g  (56) 

2 3

,e i i i i

h H V L−
 = − − − K B B B  (57) 
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Within a cable element, there are seven unknowns to be resolved, while only six equations are 

established in Eq. (50). Hence, an additional condition must be provided for the implementation of the 

solution. Subsequently, the following section introduces the incremental equation systems of the element for 

two scenarios: solution with given unstrained length and solution with unstrained length to be solved. Fig. 4 

illustrates an example containing a cable element with given 
0L  (cable element (1)) and a cable element 

with unstrained length to be solved under given ( )0GN L  (cable element (2)).  

 

( )q s

q

Deformed configuration?

GN

L

( )1

0
L

Cable element (1)
Cable element (2)

( )2

0
?L =

( )1
a

( )2
a

( )1
b

( )2
b

H

V

( )1
a ( )2

b
( )1

b
( )2

a

 

Fig. 4. An example with two forms of cable element.  

 

a) Cable element with given unstrained length 

For the case where the unstrained length is given, the element incremental equation system can be 

simplified as follows considering that 0L  is a known quantity 

4 2 4

22 2 2 2

,

4 4

, ,

e e ie
F Fr

ee e i e i

h r h h

 −

− −

       
=     

        

0 K Ed

dK K E





 (58) 

where  

 
2

Te H V =  d  (59) 

4 2

1 2

1 2

e

F −

− − 
=  

 

g g
K

g g
  (60) 

2 2

,e i i i

h H V−
 = − − K B B  (61) 

b) Cable element with unstrained length to be solved 

For the scenario where the unstrained length is considered as an unknown, an additional equation 

reflecting an extra relationship or constraint condition must be introduced for the implementation of the 

solution. The additional equation can be expressed as 

( )0 1 2 1 2, , , , , , 0a a b b

Gh G H V L r r r r= =  (62) 

The variation of Rh  can be expressed as 
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1 2 1 2 0

01 2 1 2

a a b b

G a a b b

G G G G G G G
h r r r r H V L

H V Lr r r r
       

      
= + + + + + +

     
 (63) 

Then, the Taylor series expansion of Eq. (62) for the (i+1)th step in incremental/iterative solution can be 

expressed as follows 

1

1 2 1 2 0

01 2 1 2

0i i a a b b

G G a a b b

G G G G G G G
h h r r r r H V L

H V Lr r r r

+       
 +  +  +  +  +  +  +  =

     
 (64) 

By integrating Eq. (64) and Eqs. (46)-(48), the element incremental equation system for 

incremental/iterative solution with an additional equation can be written by 

4 3 4

3 33 3 3

,

4 4

,, ,

e e ie
F Fr

e e ie i e i

hh r h





 −

− −

       
=     

         

0 K Ed

d EK K
 (65) 

where  

3

, 0

i

e i

h i

Gh

 − 
=  

−  

h
E  (66) 

3

1 2 1 2

,

1 2 1 2

e i

h r

a a b b

G G G G

r r r r

−

− − 
 =    
 
     

g g g g

K  (67) 

3 3

,

0

i i i

H V L

e i

h G G G

H V L

−

 − − −
 

=    
    

B B B

K  (68) 

3.3 Implementation of solution 

3.3.1 Solution based on complete tangent matrix 

The incremental equation system for the entire structure can be constructed by aggregating the 

incremental equations of all elements, encompassing Eqs. (58) and (65). Leveraging the element equation 

system and element tangent matrices obtained in Sec. 3.1 and Sec. 3.2, the global residual vector and tangent 

matrix can be derived through an assembly process. Notably, each column in the tangent matrix should 

correspond to the unknown variables in the structural system, while each row in the tangent matrix aligns 

with the equations constituting the structural system. Regarding the incremental position states ar  and 

br , it is crucial to consider the displacement compatibility between adjacent elements. Generally, for two 

connected cable elements, the components of the incremental position states at their intersection are 

consistent, and thus are designated as the same unknowns in the global incremental equation system. In 

contrast to the incremental position states, the incremental internal force parameters H  and V , as well 

as the increment unstrained length 0L  of each element, are regarded as independent unknowns in global 

incremental equation system. If the relationship of internal parameters ( H , V  and 0L ) between elements 

is not explicitly specified, the total number of degrees of freedom (DOFs) for a structure containing 
0,e Ln  

cable element with given unstrained length and ,e Nn  cable element with unstrained length to be solved is 

0, ,2 2 3node e L e Nn n n+ + , where noden  represents the total number of nodes in the structure. Meanwhile, the total 
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number of incremental equations for the structure is also 
0, ,2 2 3node e L e Nn n n+ + , comprising 2 noden  

equilibrium equations at the nodes and 
0, ,2 3e L e Nn n+  equations satisfying the deformation compatibility 

requirement. For the entire cable structure with eltN  cable elements and 
nodeN  nodes, the equation system 

can be expressed as 

( )
( )

( )

( ) ( )

( ) ( ) ( ) ( )
( )

( )
00

nodeext

, elt
0

0 1,2, ,

d 1,2, ,

j

e

e

j j
e C

Lb e a e e

s

j N

s s e N



 − = =


 − − = =





F F

r r r 0

 (69) 

where the superscript ‘(e)’ represents the element index, the subscript ‘(j)’ refers to the index of node, 
( )j

C  

represents the set of elements related to j-th node, 
( )
( )e

j
F  refers to the nodal force of e-th element at j-th node, 

and is 
( )ext j

F  the external force at j-th node.  

Following Newton’s iteration scheme, the incremental equation system of the whole structure expressed 

as follows is solved at each iteration step 0,1, 2,i =  

, ,g i g i

T g f =K d E  (70) 

where ,g i

TK  represents the tangent matrix of the entire structure, ,g i

fE  is the residual vector of the entire 

structure and gd  refers to the incremental state vector of the entire structure. By solving the above 

equations, gd  can be obtained and the state vector of the entire structure can be updated by adding gd  

to the previous state vector i

gd  as 1i i

g g g

+ = + d d d . It should be noted that ,g i

fE  can be expressed as 

,

,

,

g i

g i f

f g i

h

  
=  

  

E
E

E
 (71) 

where ,g i

fE  and ,g i

hE  represent the residual force vector of the structure and the residual vector of 

deformation compatibility, respectively, they can be expressed as 

( ) ( ) ( )
( )

( )

( ) ( ) ( )
( )

( )

( ) ( ) ( )
( )

( )

1
00

2
00

elt
00

elt elt elt

1 1 1

,
0

2 2 2
, ,

0

,
0

d

d

d
N

La b

s

La b
g i s
h

La N N b N

s

s s

s s

s s

 
+ − 

 
 + −

=  
 
 
 + −
 







r r r

r r r
E

r r r

  (72) 

, , ,g i g i g i

f f f= −E S F   (73) 

with 

( )

( )

( )

( )
( )

( )

( )
( )

( )

( )
( )

( )

1

2

node

node

node

1

ext 1

2
ext 2, ,

ext

,

N

e

e C

e

g i g i e C
f f

eN

N
e C







 
 

   
   
   

=   =   
   
   
   

  




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S F

F
F

  (74) 
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The equilibrium configuration for a specified geometrically nonlinear analysis problem can be attained 

using a standard incremental/iterative approach employing the Newton-Raphson method with load control 

[41]. In respect of implementation, the convergence condition for equilibrium iteration is expressed as  

,g i g

f tolE  (75) 

where gtol  represents a convergence tolerance in structural level iteration.  

3.3.2 Solution based on element internal iteration 

The previously described solution method, which relies on the complete tangent matrix, results in a 

larger scale of the tangent matrix and is contingent upon whether the unstrained length of the element is 

known. Therefore, it is imperative to differentiate between internal and external degrees of freedom based on 

the attributes of unknowns, with the aim of minimizing the size of the overall tangent matrix and 

regularizing its number of DOFs. In the absence of specific instructions, this paper adopts the following 

solution approach involving two-level iterations.  

Given that the incremental internal force parameters ( H  and V ) and incremental unstrained length 

( 0L ) are independent unknowns for each cable element, and do not require consistency between elements, 

they can be ascertained as unknown variables within the element through internal iteration. Consequently, 

the equilibrium equations at the structural level can be formulated as 

, ,g i g i

f f=F S  (76) 

where ,g i

fF  is the nodal force vector of the structure, and ,g i

fS  is the external nodal load vector of the 

structure. Then, the incremental equation system for the structure can be expressed as  

, , , ,g i g i g i g i

T g f f f = − =K d S F E  (77) 

where ,g i

TK  represents the tangent stiffness matrix of the structure with the size of 2 2node noden n , and gd  

refers to the incremental position state vector of the structure made up of the position vector e

rd  of all 

nodes. By solving the above equation, gd  can be obtained and the position vector of all nodes can be 

updated by adding gd  to the previous position vector of the structure i

gd  as 1i i

g g g

+ = + d d d . Especially, 

the tangent stiffness matrix of the structure is obtained by assembling operation of the condensed element 

tangent matrix ,

,

e i

T cK  with the size of 4 4 , which is expressed as follows.  

a) For cable element with given unstrained length  

( )
4 2 2 2 2

1
, ,

,

e i e e i e

T c F h h r

−

− − −= −K K K K   (78) 

b) For cable element with unstrained length to be solved 

( )
4 3 3 3 3

1
, ,

,

e i e e i e

T c F h h r 

−

− − −= −K K K K  (79) 

The convergence condition for equilibrium iteration in structural level is expressed as  

,g i g

f tolE  (80) 

In the element-level solution, it is essential to iteratively ascertain the internal force parameters and the 

unstrained length based on the assumption of fixed nodal positions, to guarantee the deformation 
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compatibility of the cable element. In this iterative process within a cable element, the internal force 

parameters and the unstrained length can be updated through  

( )
2 2 2 2 2

1
, 1 , , ,e j e j e j e j

h h

−
+

−= +d d K E    (81) 

( )
3 3 3 3 3

1
, 1 , , ,e j e j e j e j

h h  

−
+

−= +d d K E  (82) 

for the cable element with given unstrained length and unstrained length to be solved, respectively, where 

1,2,3,j =  is the number of iterations. The convergence condition for element-level iteration is expressed 

as  

eR tol  (83) 

where etol  is the convergence tolerance in element-level iteration and R  is  

0 0

0 0

for given

for to be solvedG

L
R

h H L

   
= 

 +            

h r

h r
 (84) 

For a better understanding, the flowchart of structural state determination with element-level iteration 

under given load conditions is presented in Fig. 5.  
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Fig. 5. Flowchart of structural state determination under given load.  

 

4 Numerical examples 

The performance of the proposed cable finite element is evaluated using multiple numerical examples. 

Key aspects of the implementation and solution algorithm are highlighted as follows: (1) The efficiency of 

the solution process is gauged by the number of elements needed to reach convergence. (2) Depending on 

the problem, the final equilibrium states are achieved using an iterative solution method, which employs 
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either a load control or arc-length control strategy. (3) Unless specified otherwise, the convergence tolerance 

for the global system and individual elements are set to 81.0 10gtol −=   and 81.0 10etol −=  , respectively.  

4.1 Example 1: a cable under self-weight 

The computational performance of the proposed cable element is validated using an isolated cable, 

depicted in Fig. 6. The cable span is designated as 304.8mhl = . Three cases of height differences between 

the two supports as follows are examined 

0 for Case A

50m for Case B

100m for Case C

vl




= 



 (85) 

The self-weight per unit unstrained length of the cable is specified as 5.0kN mq = , while the elastic 

modulus and cross-sectional area are set to 8 21.310 10 kN m  and 6 2548.4 10 m− , respectively. The two 

ends of the cable are denoted as a and b, respectively, with the midpoint corresponding to the unstrained 

configuration represented by c. Under the self-weight of the cable, two solution problems are addressed: (1) 

Determination of equilibrium state under given unstrained length, and (2) Determination of equilibrium state 

under given horizontal force. In implementation, the solution method involving element internal iteration is 

employed, addressing both scenarios with given unstrained length and given horizontal force, respectively.  
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 (a) Solution problem under given L0  (b) Solution problem under given H 

Fig. 6. Description of solution problems for the isolated cable.  

 

4.1.1 Solution for the problem with given unstrained length 

As depicted in Fig. 6a), the unstrained length of the cable is specified as 0 308.8mL = , and 

subsequently, the equilibrium state of the cable can be determined using an iterative solution algorithm with 

a numerical model comprising various elements. For comparative purposes, the following four numerical 

models are employed to address the problem:  

(a) Numerical model utilizing truss element, denoted as TRUSS. In this model, the cable is represented 

by truss elements, and the self-weight of the cable is modeled as nodal load. To circumvent potential issues 

related to singular structural stiffness during the initial stages of the solution, the dynamic relaxation method 

[5] is adopted as the primary solution strategy. Upon reaching a stage where the tension of the truss elements 
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is adequate to avoid structural stiffness singularity, the Newton-Raphson method [41] with static load control 

is utilized to expedite solution convergence.  

(b) Numerical model employing beam element, denoted as BEAM. In this model, the cable is modeled 

using beam elements constructed based on the rotation-free planar Kirchhoff rod formulation [18], with the 

self-weight of the cable also represented by nodal load. Notably, instead of NURBS as used in Ref. [18], 

cubic Hermite interpolation is employed for discretization of the beam element. The Newton-Raphson 

method [41] with static load control is deployed for solving. Additionally, the flexural stiffness of the 

cross-section is set to a relatively small value to align the characteristics of the beam element more closely 

with those of the cable.  

(c) Numerical model featuring catenary element based on explicit analytical functions, denoted as 

CATENARY. In this model, the catenary cable element and solution method are implemented in accordance 

with the formulation provided by Ref. [26, 27].  

(d) Numerical model incorporating the proposed Cable element based on Exact Tension field, denoted 

as CET.  

The coordinates (x, y) of point c in the equilibrium states obtained using the four numerical models with 

varying numbers of equal length elements are presented in Table 1, Table 2 and Table 3, respectively, for 

the three cases involving different height differences between the two supports. Additionally, the horizontal 

and vertical components of cable force at point b (H and V) obtained by TRUSS and CET are displayed in 

Table 4. In these four tables, eN  represents the number of elements used in the numerical models.  

Table 1, Table 2 and Table 3 demonstrate that CET and TRUSS yield consistent displacement 

solutions (with consideration to five significant digits). In scenarios where there is adequate refinement, the 

numerical model utilizing truss elements can account for the influence of tension and reflect the stiffness 

characteristics of the cable (without flexural stiffness). Consequently, the convergent results obtained from 

TRUSS can be deemed accurate and utilized as reference data. For the three considered cases, a single 

proposed cable element is found to be adequate for achieving convergence and producing precise 

displacement solutions consistent with the convergent solution provided by TRUSS.  

For the BEAM, it is often necessary to assign a relatively small value to the flexural stiffness to closely 

emulate the mechanical characteristics of the cable. For Case B and Case C, the flexural stiffness of the 

cross-section is set to 20.01kN m , resulting in convergent displacement solutions obtained by BEAM that 

align with those of TRUSS. However, for Case A, a low value of cross-section flexural stiffness can trigger 

numerical instability during the solution process. After conducting trial computations, it becomes essential to 

set the flexural stiffness to at least 4 21.0 10 kN m  to ensure numerical stability. Owing to the influence of 

flexural stiffness, a minor disparity exists between the convergent displacement solution of BEAM and that 

of TRUSS. Additionally, due to the fact that the beam elements utilized in BEAM are based on cubic 

interpolation functions, which do not precisely replicate the actual cable shape, a substantial number of 

elements is still necessary for BEAM to achieve convergent displacement solutions.  
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Table 1 Location (x, y) of point c obtained by the four numerical models (Case A).  

eN  (x, y) /m 

TRUSS BEAM CATENARY CET 

1 - - 152.40, -36.337 152.40, -36.132 

2 152.40, -40.320 152.40, -37.092 152.40, -36.337 152.40, -36.132 

4 152.40, -37.033 152.40, -36.120   

8 152.40, -36.350 152.40, -36.141   

16 152.40, -36.186 152.40, -36.137   

32 152.40, -36.146 152.40, -36.134   

64 152.40, -36.135 152.40, -36.133   

128 152.40, -36.133 152.40, -36.133   

256 152.40, -36.132    

512 152.40, -36.132    

Converged 152.40, -36.132 152.40, -36.133 152.40, -36.337 152.40, -36.132 

 

Table 2 Location (x, y) of point c obtained by the four numerical models (Case B). 

eN  (x, y) /m 

TRUSS BEAM CATENARY CET 

1 - - 157.20, -5.9691 157.16, -5.6887 

2 157.80, -8.7963 157.32, -5.9550 157.20, -5.9694 157.16, -5.6887 

4 157.30, -6.3599 157.16, -5.5375 157.20, -5.9737  

8 157.19, -5.8511 157.16, -5.6580 157.20, -5.9745  

16 157.17, -5.7289 157.16, -5.6836 157.20, -5.9747  

32 157.16, -5.6987 157.16, -5.6878 157.20, -5.9747  

64 157.16, -5.6911 157.16, -5.6885   

128 157.16, -5.6893 157.16, -5.6887   

256 157.16, -5.6889 157.16, -5.6887   

512 157.16, -5.6888    

1024 157.16, -5.6887    

2048 157.16, -5.6887    

Converged 157.16, -5.6887 157.16, -5.6887 157.20, -5.9747 157.16, -5.6887 

 

The computational performance of CATENARY is contingent upon the setting of vl . For Case A, a 

single catenary element proves adequate for deriving a convergent displacement solution, while for Case B 

and Case C, multiple catenary elements are requisite for achieving convergent results. From the standpoint 

of precise convergent displacement solutions, CATENARY cannot generate displacement solutions 

consistent with those of TRUSS (in terms of five significant digits). This indicates that despite its quicker 

convergence speed compared to TRUSS and BEAM, errors in the displacement solutions obtained by 

CATENARY arise from the simplified approximation of the analytical function used to construct the 

catenary element.  

As depicted in Table 4, CET achieves convergent force solutions using only one element for the three 

cases with different vl . In contrast, TRUSS necessitates more elements to attain convergent force solutions 

compared to achieving convergent displacement solutions. From the outcomes presented in Table 4, it is 
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evident that as the number of elements increases, the force solutions obtained by TRUSS progressively 

approach the convergent solutions obtained by CET, underscoring the exceptional accuracy of the proposed 

cable element in terms of solution accuracy for internal forces.  

 

Table 3 Location (x, y) of point c obtained by the four numerical models (Case C). 

eN  (x, y) /m 

TRUSS BEAM CATENARY CET 

1 - - 157.73, 32.687 157.57, 33.277 

2 154.84, 41.724 157.24, 34.458 157.73, 32.685 157.57, 33.277 

4 155.79, 38.786 157.44, 33.719 157.73, 32.683  

8 156.79, 35.671 157.53, 33.391 157.73, 32.683  

16 157.42, 33.719 157.56, 33.305   

32 157.56, 33.290 157.56, 33.284   

64 157.57, 33.277 157.57, 33.279   

128 157.57, 33.277 157.57, 33.278   

256  157.57, 33.277   

512  157.57, 33.277   

Converged 157.57, 33.277 157.57, 33.277 157.73, 32.683 157.57, 33.277 

 

Table 4 The components of cable force at point b obtained by TRUSS and CET.  

Case TURSS CET 

eN  H/kN V/kN eN  H/kN V/kN 

A 256 1599.96 768.984 1 1599.97 772.000 

 512 1599.96 770.489 2 1599.97 772.000 

 1024 1599.97 771.245    

 2048 1599.97 771.623    

 4092 1599.97 771.811    

B 1024 1844.57 1089.55 1 1844.57 1090.30 

 2048 1844.57 1089.92 2 1844.57 1090.30 

 4092 1844.57 1090.11    

 8184 1844.57 1090.21    

C 64 3179.68 1820.46 1 3179.78 1832.56 

 128 3179.76 1826.52 2 3179.78 1832.56 

 256 3179.78 1829.55    

 512 3179.78 1831.06    

 

Additionally, the solution process of CET with two elements is examined, and the first two update 

processes for Case B are illustrated in Fig. 7. Typically, each update process comprises two steps. In step 1, 

the element state determination is carried out through element-level iteration starting from the initial state of 

the element, where the determined state of each element in the previous update process is used as the initial 

state. For the first update process, the initial state of each element is set by the user. In step 2, the 

incremental positions of all nodes are determined via global solution based on the established state of all 

elements. Fig. 7a) illustrates the first update process, wherein the initial position of c is set to the midpoint of 
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a and b, while the state of the element is placed horizontally with an unstrained length. As shown in Fig. 7a), 

the shape of each element undergoes changes during the element state determination process. Typically, 

significant changes occur in the initial iterations, but as the iterations progress, convergence is gradually 

achieved. Fig. 7b) showcases the second update process, where the elements steadily converge to the state 

related to the updated nodal positions determined in the previous update process. In practical calculations, 

the number of iterations in element state determination during the first and second update processes does not 

exceed 9 and 6, respectively. Subsequently, in the solving process, the number of iterations in element state 

determination gradually diminishes. At the global level, only six iterations are required to complete the 

solution, affirming the outstanding convergence of the solution process.  

 

 

(a) The first update process 

 

(b) The second update process 

Fig. 7. Element state determination and nodal position update.  
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4.1.2 Solution for the problem with given horizontal force 

This section validates the applicability of the proposed cable element in determining the unstrained 

length under a specified horizontal force, as depicted in Fig. 6b). The specific steps for conducting this 

validation are outlined below:  

Step (a): The completed state obtained by CET in Sec. 4.1.1 for each case (refer to Table 1, Table 2 

and Table 3) is adopted as the initial state for the subsequent solutions. For each case, the horizontal force 

component at node b determined by CET in Table 4 is recorded as 
0H .  

Step (b): A numerical model featuring two proposed cable elements is constructed and designated as 

Model-2. In this model, the left cable element is defined as the element with a specified unstrained length, 

while the right one is defined as the element subjected to the given horizontal force, as illustrated in Fig. 4. 

At the onset of the solution process, the unstrained length of both cable elements is set to half of the distance 

between points a and b.  

Step (c): With the prescribed horizontal force at the right end having a value of 0H , the solution for 

the unstrained length of the right element ( )2

0L  is conducted using Model-2. Subsequently, the total 

unstrained length of the cable is ( ) ( )1 2

0 0 0L L L= + . It should be noted that the unstrained length of the left cable 

element remains unchanged. In this verification, the coefficient   is set to 0.3 and 1.7, respectively.  

Step (d): Reconstruct a numerical model consisting of two proposed cable elements with the designated 

unstrained length, denoted as Model-1. Specifically, the unstrained length of both elements is set to 

( ) ( )1 2

0 0 0 2L L L= = . Subsequently, the internal force components at the right end, including H and V, along 

with the position of point c (x, y) in the completed state, can be derived by solving Model-1. The relative 

error of the verification of the proposed cable element can then be quantified as 

( )0 0H H H= −    (86) 

For the element with the unstrained length to be solved, the additional equation can be expressed as  

0 0Gh H H= − =  (87) 

Then, the components in Eqs. (67) and (68) are 

01 2 1 2

0, 1
a a b b

G G G G G G G

V L Hr r r r

      
= = = = = =   =

     
 (88) 

The verification data for the three scenarios of height disparity between two supports are outlined in 

Table 5. The findings indicate that the proposed cable element effectively resolves the unstrained length of 

the cable, affirming the accuracy of the formulation posited in this paper.  

Fig. 8 exhibits the deformed configuration images for Case B ( 50mvl = ), serving to further scrutinize 

the solution process for the unstrained length of the cable. The figure depicts the configuration state during 

global iteration, featuring only the configuration changes in element state determination before global 

iteration for clarity. As depicted in the figure, the unstrained length of the right cable element continuously 

evolves as the iteration process advances, ultimately converging to a stable outcome. It is noteworthy that the 

intersection point of the two elements in the figure does not correspond to point c after deformation, given 
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that the unstrained lengths of the two elements are no longer equal. Consequently, Model-1 is reconfigured 

to ascertain the position of point c. For the two settings of   for Case B, the total number of global 

iterations is 8 and 5, respectively. The numbers of element-level iterations for the two elements required in 

each global iteration, denoted as ( )1

iteN  and ( )2

iteN , along with the unstrained length of the right element, are 

detailed in Table 6. Analysis of Table 6 reveals that the number of iterations needed for element state 

determination does not exceed 10, and, as the solution progresses, the number of iterations within the 

element state determination diminishes. These results indicate the favorable convergence of the proposed 

method in solving implementation.  

 

Table 5 Verification of solution for unstrained length.  

Case   0H  Solved by Model-2 Solved by Model-1   
( )2

0L /m 0L /m H/kN V/kN (x, y) /m 

A 0.3 479.99 290.085 442.485 479.99 1106.2 (152.40, -146.88) 0.00 

 1.7 2719.9 144.725 297.125 2719.9 742.81 (152.40, -20.689) 0.00 

B 0.3 553.37 252.66 407.097 553.37 1158.0 (166.72, -94.351) 0.00 

 1.7 3135.8 143.842 298.278 3135.8 1268.9 (155.13, 7.4071) 0.00 

C 0.3 953.94 185.962 346.354 953.94 1239.8 (169.77, -9.8886) 0.00 

 1.7 5405.6 137.550 297.942 5405.6 2527.7 (155.27, 40.456) 0.00 

 

Table 6 Number of element-level iterations and the unstrained length (Case B).  

Global iteration 0.3=  1.7=  
( )1

iteN  ( )2

iteN  ( )2

0L /m ( )1

iteN  ( )2

iteN  ( )2

0L /m 

1 9 4 187.730 6 4 141.396 

2 7 4 208.905 5 4 143.684 

3 6 4 230.166 3 3 143.841 

4 6 4 245.078 2 2 143.842 

5 5 3 251.579 1 1 143.842 

6 4 3 252.634    

7 3 2 252.660    

8 2 2 252.661    

 

Furthermore, analogous verification has been carried out on the cable element subjected to prescribed 

tension. Given the similarity of the verification process to the work explicated in this section for the element 

under specified horizontal force, and considering the length constraints of this article, the specific details of 

the verification for the element under designated tension will not be elaborated.  
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(a) Solution process for 0.3=  

 

(b) Solution process for 1.7=  

Fig. 8. Solution process of unstrained length for Case B.  

 

4.2 Example 2: Transport pulley system 

The examination of the stability of a cable supported by a pulley, previously explored by Bruno and 

Leonardi [42] and Crusells-Girona et al. [31] is undertaken. Fig. 9 illustrates the structural model, 

comprising an inclined cable anchored at both ends and supported by an intermediate roller. The 

cross-sectional area and elastic modulus of the cable are represented as 4 28.05 10 m−  and 7 21.6 10 kN m , 

respectively. Additionally, the unstrained length and the self-weight per unit unstrained length of the cable 

are specified as 500m  and 26.20679 10 kN m− , respectively. Under the assumption that the pulley can 

move horizontally freely and with negligible pulley radius, this example aims to ascertain the equilibrium 
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configurations of the cable, such that the tension experiences no abrupt change along the roller support, 

while neglecting friction.  

 

300 m

5
0
 m

5
0
 m

62.0679 N mq =

 

Fig. 9. Structural model of the transport pulley system.  

 

The solution to this example encompasses two key aspects: (1) Establishing the correlation between the 

horizontal position of the pulley and the horizontal reaction at the pulley, assuming continuous cable tension 

at the pulley location; and (2) Determining the horizontal position of the pulley and the unstrained lengths of 

the two cable sections, ensuring continuous cable tension and zero horizontal pulley reaction. The solution 

method based on the complete tangent matrix is adopted, considering the need to incorporate additional 

conditions on the unstrained lengths and tensions of the elements. To implement the aforementioned solution, 

a numerical model featuring two proposed cable elements, wherein the unstrained length is considered one 

of the unknown variables, is constructed. As depicted in Fig. 10, the DOFs for element 1 and element 2 are 

designated as ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 1 1

1 2 1 2 0

a a b b
r r r r H V L  and ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 2 2

1 2 1 2 0

b b c c
r r r r H V L , 

respectively. The equations for each cable element are delineated in Eqs. (28)-(30), with the linearized 

equations presented in Eq. (50). The numbers in parentheses following each physical quantity in Fig. 10 

denote the sequence of degrees of freedom of the corresponding quantity in the global system. Specifically, 

s

GN  represents the tension value at the pulley, considered an unknown of the system, while bF  refers to the 

horizontal pulley reaction, aligning with the discrepancy in values between the horizontal forces of the two 

cable elements. Excluding the physical quantities on the constrained degrees of freedom, the system entails a 

total of 8 unknowns to be solved, namely ( )
1

b
r , ( )1

H , ( )1
V , ( )1

0L , ( )2
H , ( )2

V , ( )2

0L  and s

GN . However, only 

5 equations have been obtained for the system thus far from the equations of the two elements, which pertain 

to the equilibrium relationship in the horizontal direction at the pulley (1 equation) and the deformation 

compatibility of the two elements (4 equations). Therefore, three more equations are required. Consequently, 

three additional equations are necessitated. Considering the relationship between the unstrained lengths of 

the two elements and the consistency between the tensions of the two elements at the pulley and the provided 

tension s

GN , the following three equations can be introduced 

( ) ( )1 2

0 0 500 0gh L L= + − =  (89) 

( ) ( ) ( ) ( )
2 2 21 1 1

0s

G Gh H V N   = + − =
   

 (90) 
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( ) ( ) ( ) ( ) ( )
2 2 22 2 2 2

0 0s

G Gh H V qL N   = + + − =
   

   (91) 

where Eq. (89) guarantees that the total of unstrained lengths of the two elements amounts to 500m, Eqs. (90) 

and (91) ensure that the tension values of element 1 and element 2 respectively align with the value s

GN  at 

the pulley. Subsequently, the Taylor series expansion of Eqs. (89)-(91) for the (i+1)th step in 

incremental/iterative solution can be articulated as follows 

( ) ( )1 21

0 0 0i i

g gh h L L+  +  +  =  (92) 

( ) ( ) ( ) ( ) ( ) ( )1 , 1 1 , 1 1 1 1
2 2 2 0

i i s s

G G G Gh h H H V V N N
+

 +  +  −  =  (93) 

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )2 , 1 2 , 2 2 2 2 2 2 2 2

0 0 02 2 2 2 0
i i s s

G G G Gh h H H V qL V q V qL L N N
+

 +  + +  + +  −  =  (94) 

Subsequently, a comprehensive linearized equation system comprising 8 equations can be formulated to 

effectuate iterative solution.  
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Fig. 10. Numerical model of the transport pulley system.  

 

The solution of the relationship between the horizontal position of the pulley and the horizontal pulley 

reaction proves challenging when employing the iteration method with load control under a given bF , or the 

iteration method with displacement control under a given horizontal pulley reaction. This difficulty arises 

from the potential occurrence of multiple states with different bF  that satisfy the continuous cable tension 

at the pulley within the range of ( )  1 100.62,147.00
b

r  , as highlighted in Ref. [32]. Consequently, the 

incremental/iterative solution method with arc-length control [41] is employed to resolve the relationship 

between ( )
1

b
r  and bF . In this context, bF  is treated as the load factor, and the generalized displacement 

vector in the arc-length method comprises ( )
1

b
r , ( )1

H , ( )1
V , ( )1

0L , ( )2
H , ( )2

V , ( )2

0L  and s

GN . Fig. 11 

illustrates the established relationship between ( )
1

b
r  and bF , which is consistent with the figure provided by 

Ref. [31]. When specifying the arc-length, directly attaining the solution in the equilibrium state with zero 

horizontal pulley reaction using the arc-length control method proves challenging. Nonetheless, the solution 

of the arc-length control iteration method facilitates the identification of three points close to the equilibrium 

state based on the change in sign of the horizontal pulley reaction, as shown by the red points in Fig. 11.  
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Fig. 11. Relation between ( )
1

b
r  and bF  obtained by arc-length control method.  

 

Commencing from these three approximate equilibrium points (illustrated as the red points in Fig. 11), 

the equilibrium state with zero horizontal pulley reaction can be ascertained utilizing the iteration method 

with load control (zero load). The requisite number of iterations for resolving these three equilibrium states 

does not surpass 3. The unstrained lengths of element 1 ( )1

0L  and the tension value s

GN  for the three 

equilibrium states obtained are detailed in Table 7, alongside results from other studies. Table 7 

demonstrates that the equilibrium states derived from the method proposed in this paper closely align with 

those documented in the literature, notably exhibiting high consistency with the findings of Impollonia et al. 

[32]. These results attest to the capability of the proposed method to address transportation pulley system 

problems with minimal computational expense, while also validating its efficacy in resolving issues 

involving undetermined unstrained length.  

 

Table 7 Results for the equilibrium states from different studies.  

Method Equilibrium state 1 Equilibrium state 2 Equilibrium state 3 
( )1

0L /m s

GN /kN ( )1

0L /m s

GN /kN ( )1

0L /m s

GN /kN 

Bruno and Leonardi [42] 111.07 15.499 - - 446.37 17.952 

Such et al. [28] 111.96 14.531 - - 446.92 17.966 

Impollonia et al. [32] 110.83 14.531 221.52 10.631 447.30 17.982 

Crusells-Girona et al. [31] 110.83 14.514 221.53 10.622 447.30 17.960 

Present work 110.833 14.5309 221.518 10.6310 447.295 17.9819 

 

To enhance comprehension, Fig. 12 illustrates the equilibrium configurations and tension distributions 

for three equilibrium states, with states 1 and 3 representing stable equilibrium, while state 2 denotes an 

unstable equilibrium, corroborated by observations from Fig. 11. As depicted by Fig. 12, the horizontal 

positions of the pulley corresponding to the three equilibrium states are ( )
1 47.254m

b
r = , ( )

1 136.535m
b

r =  

and ( )
1 283.149m

b
r = , respectively, and the tension at the pulley is continuous. Utilizing the pulley locations 
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and the determined unstrained lengths corresponding to the three equilibrium states, the numerical model 

employing adequate truss elements can yield consistent tension outcomes and validate the accuracy of the 

solution method with proposed cable element.  
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Fig. 12. Deformed shapes of equilibrium states and their tension distributions.  

 

4.3 Example 3: Plane cable net 

A plane cable net comprising inclined and horizontal members is analyzed to validate the applicability 

of the proposed cable element. The geometry and initial configuration of the cable structure are illustrated in 

Fig. 13. The cross-sectional area of the cable is 146.45 mm², the elastic modulus is 82,737 MPa, and the 

self-weight per unit of unstrained length is 1.459 N/m. The unstrained lengths for the inclined and horizontal 

cables are set at 31.760 m and 30.419 m, respectively. The internal nodes are subjected to a concentrated 

force of 35.586kNcF = . The structure is modeled using 12 cable elements, where each cable is modeled 

using a single cable element.  
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Fig. 13. The plane cable net.  
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Although only the formulation of planar cable element is presented in Sec. 2 and Sec. 3, they can be 

applied to the analysis of three-dimensional cable structures with a simple transformation. Fig. 14 

demonstrates the relationship between the global coordinate system (xyz) and the local coordinate system of 

a cable element (
2−

1
g g ). As displayed in Fig. 14, the cable’s base vectors 2g  is consistent with the z-axis, 

and the direction of 
1g  can be determined by the angle  . Then, the nodal forces in global coordinate 

system can be expressed as  

cos , cos

sin , sin

ax a bx b

ay a by b

H H H H

H H H H

 

 

=     =

=      =
 (95) 

where , , ,ax bx ay byH H H H  are the nodal forces corresponding to the global coordinate system. Based on the 

above relationship (Eq. (95)), the transformation between global coordinate system and local coordinate 

system of the cable element can be established.  

a

Hax

Hay
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b

x
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Vb
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Hbx
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z ( )2g

1g




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Fig. 14. The cable element in global coordinate system.  

 

The displacements of node 4 (relative to the initial configuration), obtained using the proposed cable 

element and those provided by other researchers, are documented in Table 8. As indicated in the table, the 

results closely align with those from previous studies, suggesting that the proposed element yields 

satisfactory outcomes in the static analysis of cable nets.  

 

Table 8 Comparison of displacements for node 4 in plane cable net.  

Researcher (s) Method 
Displacement at node 4/mm 

x -direction y - direction z - direction 

Saafan [43] Elastic straight -40.35 -40.35 -448.27 

Tibert [44] Elastic catenary -40.48 -40.48 -450.00 

Tibert [44] Associate catenary -40.78 -40.78 -453.36 

Thai & Kim [45] Elastic catenary -40.13 -40.13 -446.50 

West & Kar [46] Nonlinear equilibrium -40.39 -40.39 -447.99 

Rezaiee-Pajand et al. [25] Elastic hyperbolic -40.75 -40.75 -452.79 

Present Exact tension field -40.45 -40.45 -449.47 
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4.4 Example 4: Hyperbolic paraboloid net 

A hyperbolic cable network is selected to verify the accuracy of the proposed cable element. As 

depicted in Fig. 15, the structure comprises 31 cable segments that are pretensioned with a force of 200 N 

before external loads are applied. The internal joints (nodes 5, 6, 7, 10, 11, 12, 15, 16, and 20) are subjected 

to concentrated loads of 15.7 N. The elastic modulus and the cross-sectional area of all cables are uniformly 

set at 128.3 GPa and 0.785 mm², respectively. The self-weight per unit unstrained length for all cables is 

0.195 N/m. Experimental results for this configuration are provided by [47].  

In this study, 31 cable elements are utilized to model the network, with each cable segment represented 

by a single cable element. Initially, cable elements are defined as straight, and the unstrained length of each 

cable can be determined as follows prior to load application 

0

EA
L d

P EA
= 

+
 (96) 

where E  and A  represent the elastic modulus and cross-sectional area of the cable, respectively, and d  

refers to the distance between two nodes of the cable element in the initial configuration.  
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Fig. 15. Hyperbolic paraboloid net.  

 

The vertical displacements of specific nodes, as obtained using the proposed cable element, are 

compared with previous studies in Table 9. The values in parentheses within Table 9 indicate the relative 

errors (%) compared to experimental results. Notably, the average relative error, defined below, is employed 

to assess the accuracy of the solution:  

( )
2

,

2

,

Error 100%
i i EXP

i C i EXP

u u

u

−
=   (97) 

where i  represents the index of node, C refers to the set of internal joints, iu  and ,i EXPu  represent the 

vertical displacements of i-th node obtained by numerical method and experiment, respectively. As shown in 

Table 9, the displacement solutions derived from the proposed cable element closely align with the 

experimental results. A comparison of average relative errors across various numerical methods reveals that 

the overall error associated with the proposed cable element is comparatively small. This demonstrates the 

proposed cable element’s superior accuracy in solution determination.  
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Table 9 Comparison of vertical displacements (mm) of hyperbolic paraboloid net. 

Node Experiment 

[47] 

Dynamic 

Relaxation 

[47] 

Elastic 

catenary [45] 

Elastic 

catenary [48] 

Elastic 

hyperbolic 

[25] 

Present 

5 -19.50 -19.30 (1.03) -19.56 (0.31) -19.51 (0.05) -19.51 (0.05) -19.50 (0.02) 

6 -25.30 -25.30 (0.00) -25.70 (1.58) -25.65 (1.38) -25.58 (1.10) -25.56 (1.05) 

7 -22.80 -23.00 (0.88) -23.37 (2.50) -23.37 (2.50) -23.28 (2.10) -23.27 (2.04) 

10 -25.40 -25.90 (1.97) -25.91 (2.01) -25.87 (1.85) -25.83 (1.69) -25.81 (1.63) 

11 -33.60 -33.80 (0.60) -34.16 (1.67) -34.14 (1.60) -33.95 (1.04) -33.94 (1.00) 

12 -28.80 -29.40 (2.08) -29.60 (2.78) -29.65 (2.95) -29.42 (2.15) -29.41 (2.10) 

15 -25.20 -26.40 (4.76) -25.86 (2.62) -25.86 (2.62) -25.61 (1.62) -25.60 (1.59) 

16 -30.60 -31.70 (3.59) -31.43 (2.71) -31.47 (2.84) -31.02 (1.37) -31.00 (1.31) 

17 -21.00 -21.90 (4.29) -21.56 (2.67) -21.57 (2.71) -21.24 (1.12) -21.22 (1.07) 

20 -21.00 -21.90 (4.29) -21.57 (2.71) -21.62 (2.95) -20.83 (0.81) -20.83 (0.81) 

21 -19.80 -20.50 (3.54) -20.14 (1.72) -20.15 (1.76) -19.19 (3.08) -19.18 (3.13) 

22 -14.20 -14.80 (4.23) -14.55 (2.46) -14.55 (2.46) -13.81 (2.74) -13.81 (2.74) 

Error  10.63 7.81 7.94 6.14 6.06 

Note: the values in parentheses (.) represent the relative errors (%) with respect to the experiment results.  

 

4.5 Example 5: Cable with non-uniform cross-sectional stiffness 

This section further validates the solution accuracy of the proposed cable element for cables with 

non-uniform cross-sectional stiffness. The example of single cable as shown in Fig. 6a) is used for this 

validation, and the basic value of cross-sectional stiffness is set to 0 71840.4kNGC = . For the cable with 

non-uniform stiffness, the cross-sectional stiffness along the cable’s axis is determined by 

( ) ( ) 0

G GC s s C=  (98) 

where ( )s  represents the stiffness coefficient describing the variation of cross-sectional stiffness along 

the axis of the cable. For ( )s , two scenarios including linear distribution (I) and quadratic distribution (II) 

are defined as 

( )

( )

( ) ( )

1 2 1

0

2 1 1 22

22

00

for linear distribution (I)

4 4
for quadratic distribution (II)

s

L
s

s s
LL

  


   




+ −


= 

− − + +



 (99) 

where 0L  represents the unstrained length of the cable, and 1  and 2  refer to the given parameters 

determining the distribution of ( )s .  

Assuming an unstressed cable length of 308.8 m and setting parameters as 1 0.5 =  and 2 1.5 = , the 

coordinates (x, y) of point c (refer to Fig. 6a)) in the equilibrium states under two scenarios are obtained by 

( )s  using both the proposed cable element (CET) and the truss element (TRUSS). These coordinates are 

detailed in Table 10, Table 11 and Table 12, respectively, for three different cases of height differences 

between the two supports (as defined in Eq. (85)). Particularly, results under various refinements are 

provided to illustrate their convergence trend. The findings confirm that the proposed cable element is highly 
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suitable for cables with non-uniform cross-sectional stiffness and demonstrates exceptional solution 

accuracy, thus validating the formulation presented in this paper.  

 

Table 10 Location (x, y) of point c obtained by the four numerical models (Case A).  

eN  (x, y) /m 

Linear distribution (I: 
1 20.5, 1.5 = = ) Quadratic distribution (II: 

1 20.5, 1.5 = = ) 

TRUSS CET TRUSS CET 

1 - 153.44, -37.040 - 152.40, -38.837 

2 153.21, -39.907 153.44, -37.040 152.40, -41.783 152.40, -38.837 

4 153.39, -37.738  152.40, -39.604  

8 153.43, -37.231  152.40, -39.079  

16 153.44, -37.089  152.40, -38.905  

32 153.44, -37.052  152.40, -38.854  

64 153.44, -37.043  152.40, -38.841  

128 153.44, -37.041  152.40, -38.838  

256 153.44, -37.040  152.40, -38.838  

512 153.44, -37.040  152.40, -38.837  

 

Table 11 Location (x, y) of point c obtained by the four numerical models (Case B).  

eN  (x, y) /m 

Linear distribution (I: 
1 20.5, 1.5 = = ) Quadratic distribution (II: 

1 20.5, 1.5 = = ) 

TRUSS CET TRUSS CET 

1 - 158.45, -6.4077 - 157.62, -8.8277 

2 158.59, -7.8850 158.45, -6.4077 157.95, -10.015 157.62, -8.8277 

4 158.48, -6.7777  157.69, -9.0917  

8 158.46, -6.5262  157.64, -8.9583  

16 158.46, -6.4427  157.63, -8.8807  

32 158.45, -6.4165  157.62, -8.8411  

64 158.45, -6.4098  157.62, -8.8309  

128 158.45, -6.4081  157.62, -8.8285  

256 158.45, -6.4078  157.62, -8.8279  

512 158.45, -6.4077  157.62, -8.8277  

 

Table 12 Location (x, y) of point c obtained by the four numerical models (Case C).  

eN  (x, y) /m 

Linear distribution (I: 1 20.5, 1.5 = = ) Quadratic distribution (II: 1 20.5, 1.5 = = ) 

TRUSS CET TRUSS CET 

1 - 159.75, 32.838 - 158.74, 29.467 

2 159.41, 33.432 159.75, 32.838 158.07, 31.609 158.74, 29.467 

4 159.56, 33.266  158.31, 30.861  

8 159.67, 33.026  158.57, 30.038  

16 159.74, 32.870  158.72, 29.547  

32 159.75, 32.838  158.75, 29.464  

64 159.75, 32.838  158.74, 29.465  

128 159.75, 32.838  158.74, 29.466  

256 159.75, 32.838  158.74, 29.467  

512 159.75, 32.838  158.74, 29.467  
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5 Conclusions 

This paper presents a numerically exact cable finite element model for static nonlinear analysis of cable 

structures. Within this model, the tension field is precisely derived using geometrically exact beam theory 

alongside the fundamental mechanical properties of cables. The model formulates the cable finite element 

considering given and to-be-solved unstrained lengths, by deriving linearized equations with implicit integral 

expressions. Additionally, the implementation involves solutions using a complete tangent matrix and 

element internal iterations. Numerical examples validate the effectiveness and computational efficiency of 

the proposed cable finite element and its solution methods. The following conclusions are drawn:  

(1) The proposed cable finite element, based on an exact representation of the tension field, 

demonstrates exceptional accuracy, typically requiring only one element per cable segment for precise 

results.  

(2) The accuracy of the finite element formulation, considering both specified and to-be-solved 

unstrained lengths, supports efficient implementation of iterative solutions in nonlinear analysis of cable 

structures.  

(3) The proposed finite element effectively tackles the challenge of determining the state of a cable with 

an unsolved unstrained length, highlighting the broad applicability of the element. 

(4) The proposed element can simulate the static nonlinear behavior of cables with non-uniform 

cross-sectional stiffness, thereby aiding in the performance optimization of cable systems.  

(5) By incorporating an iterative algorithm with arc-length control and additional control conditions, the 

finite element can address complex problems, such as analyzing the relationship between pulley position and 

horizontal pulley reaction in a transport pulley system.  
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