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Abstract
Modern SMT solvers, such as Z3, offer user-
controllable strategies, enabling users to tailor solv-
ing strategies for their unique set of instances, thus
dramatically enhancing the solver performance for
their use case. However, this approach of strat-
egy customization presents a significant challenge:
handcrafting an optimized strategy for a class of
SMT instances remains a complex and demanding
task for both solver developers and users alike.
In this paper, we address this problem of automatic
SMT strategy synthesis via a novel Monte Carlo
Tree Search (MCTS) based method. Our method
treats strategy synthesis as a sequential decision-
making process, whose search tree corresponds to
the strategy space, and employs MCTS to navigate
this vast search space. The key innovations that
enable our method to identify effective strategies,
while keeping costs low, are the ideas of layered
and staged MCTS search. These novel heuristics
allow for a deeper and more efficient exploration of
the strategy space, enabling us to synthesize more
effective strategies than the default ones in state-of-
the-art (SOTA) SMT solvers. We implement our
method, dubbed Z3alpha, as part of the Z3 SMT
solver. Through extensive evaluations across six
important SMT logics, Z3alpha demonstrates su-
perior performance compared to the SOTA synthe-
sis tool FastSMT, the default Z3 solver, and the
CVC5 solver on most benchmarks. Remarkably,
on a challenging QF BV benchmark set, Z3alpha
solves 42.7% more instances than the default strat-
egy in the Z3 SMT solver.

1 Introduction
Satisfiability Modulo Theories (SMT) solvers [De Moura and
Bjørner, 2011] are key tools in diverse fields such as soft-

∗This paper is an extended version of our IJCAI 2024 paper with
the same title. The code and data are available at: https://github.
com/JohnLyu2/z3alpha.

ware engineering [Cadar et al., 2008], verification [Gurfinkel
et al., 2015], security [Song et al., 2008], and artificial intelli-
gence [Pulina and Tacchella, 2012]. It has long been observed
that no single solver or algorithm excels across all instances
of a given SMT logic or of a problem class. As a result, mod-
ern SMT solvers, such as Z3 [De Moura and Bjørner, 2008],
offer user-controllable strategies [De Moura and Passmore,
2013], enabling users to customize a decision procedure for
their class of instances. A strategy can be thought of as an
algorithmic recipe for selecting, sequencing, and parameter-
izing tactics. Each tactic is a well-defined algorithmic proof
rule or symbolic reasoning step, provided by the solver. For
example, propagate-values is a Z3 tactic that propagates
equalities, while sat and smt are the tactic wrappers of the
main SAT and SMT solver in Z3. A strategy builds a de-
cision procedure by combining tactics, as shown in an ex-
emplar strategy (if is-pb (then propagate-values sat) smt).
This strategy specifies a solving algorithm that, given an input
instance, applies propagate-values followed by sat if the in-
stance is a pseudo-boolean problem (as checked using is-pb),
or applies smt otherwise.

Default solver strategies are typically optimized for well-
established benchmarks, such as those in the SMT-LIB li-
brary [Barrett et al., 2016]. However, as the scope of SMT
applications continues to grow rapidly, users frequently en-
counter specialized, evolving, and unprecedented classes of
instances. In these scenarios, the default or the existing cus-
tomized strategies might not be as effective. Consequently,
there arises a need for novel customized strategies, specif-
ically designed to efficiently address the unique challenges
posed by users’ specific problems. Traditionally, this task
of strategy customization has been undertaken by human ex-
perts through extensive experimentation and benchmark anal-
ysis. However, even with their expertise and efforts, the task
remains challenging due to the intricate interactions among
tactics and the vast search space for potential strategies.

Early attempts have been made to synthesize SMT strate-
gies automatically. For instance, StratEVO [Ramı́rez et al.,
2016] searches for an optimal strategy using evolutionary al-
gorithms, while FastSMT [Balunovic et al., 2018] synthe-
sizes a tailored strategy using imitation learning and decision
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tree learning techniques. While these methods show promise
in automating strategy customization, they suffer from issues
such as a lack of robustness, limited interpretability, and ex-
tensive training times.

To address these issues, we introduce a novel SMT strat-
egy synthesis method that employs Monte Carlo Tree Search
(MCTS). MCTS is a heuristic search algorithm, widely ap-
plied in computer board game players as a lookahead plan-
ning algorithm [Browne et al., 2012]. Its prominence further
escalated following its successful integration into the ground-
breaking deep reinforcement learning systems AlphaGo [Sil-
ver et al., 2016] and AlphaZero [Silver et al., 2017], where
MCTS was employed as a policy improvement operator.
Recently, MCTS has shown remarkable success as a stan-
dalone algorithm in solving complex symbolic or combinato-
rial search problems, as evidenced in Khalil et al. [2022] and
Sun et al. [2023]. Its key strengths, including its ability to
effectively balance exploration and exploitation and its adap-
tiveness to the nuances of varied search problems, make it an
excellent method for such challenging tasks. Our work is the
first to apply MCTS to the SMT strategy synthesis problem.

1.1 The Strategy Synthesis Problem
The SMT strategy synthesis problem is defined as automati-
cally identifying an optimal strategy that yields the best per-
formance for a given benchmark set P . This performance is
typically measured in terms of metrics such as the number of
P -instances successfully solved within a specified wallclock
timeout t. P is intended to be a representative subset of the
broader benchmark set Q, which is of interest to the user, with
the expectation that a strategy performing well on P general-
izes effectively to Q. It is important to note that due to the
infinite nature of the strategy search space and the empirical
approach to strategy evaluation, finding a rigorously optimal
solution is impractical. Consequently, our objective is to dis-
cover a near-optimal solution within a reasonable search time,
based on empirical measurements. This research focuses on
strategy synthesis for Z3, a solver that is widely regarded as
one of the most prevalent SMT solvers in use today.

1.2 Our Contributions
1. Z3alpha: An MCTS-based Strategy Synthesizing

Solver: We present a novel MCTS-based framework,
dubbed Z3alpha, for the SMT strategy synthesis
problem, which automatically constructs tailored solver
strategies for a given class of problem instances. To the
best of our knowledge, Z3alpha is the first MCTS-
based method developed for the SMT strategy synthesis
problem.

2. Layered and Staged MCTS: To address the unique
challenges inherent to strategy synthesis, that cannot be
solved by the conventional MCTS alone, we develop
two innovative heuristics, namely, layered search and
staged search on top of the MCTS framework. The lay-
ered search method effectively narrows the search space
by treating certain auxiliary tasks as independent search
problems. On the other hand, the staged search tech-
nique segments the entire search problem into sequen-
tial sub-problems, enabling the use of results from early

stages to expedite the search in later stages. Together,
these two techniques work symbiotically to enhance the
search efficiency and effectiveness in finding the opti-
mal strategy, an essential improvement given the time-
consuming nature of strategy evaluations.

3. Extensive Experimental Evaluation: We implemented
our proposed method, dubbed Z3alpha, on top of the
leading SMT solver Z3. To assess its performance,
we conducted comprehensive experiments, comparing
Z3alpha with the state-of-the-art (SOTA) synthesis
tool FastSMT, as well as Z3’s own handcrafted de-
fault strategy and the CVC5 solver. These experi-
ments spanned a broad spectrum, including instances
from six different SMT logics (namely, QF {BV, LIA,
LRA, NIA, NRA, S}), representing a wide range of
problem sizes and solver runtimes. Across all ex-
periments, Z3alpha consistently demonstrated supe-
rior and robust performance. This impressive perfor-
mance strongly highlights the benefits of automatic strat-
egy customization, promoting broader adoption of user-
controllable strategies within the SMT community.

2 Related Work
2.1 MCTS for Symbolic/Combinatorial Problems
MCTS has long been viewed as a powerful planning algo-
rithm for board games [Browne et al., 2012]. Recently,
there has been a noticeable trend towards its application in
solving symbolic and combinatorial problems. For instance,
BaMCTS [Khalil et al., 2022], an MCTS-based method,
has shown remarkable success in identifying backdoors in
Mixed Integer Linear Programming (MIP) problems. Sym-
bolic Physics Learner [Sun et al., 2023] uses MCTS to dis-
cover nonlinear mathematical formulas for symbolic regres-
sion problems. Cameron et al. [2022] proposed an extension
to MCTS, Monte Carlo Forest Search (MCFS), which steers
the SAT branching policy. AlphaMapleSAT [Jha et al., 2024]
is an MCTS-based cube-and-conquer SAT solver. AlphaDev
[Mankowitz et al., 2023] is an MCTS-guided deep reinforce-
ment learning agent that synthesizes assembly programs. Re-
markably, it has successfully discovered sorting algorithms
that surpass the best previously known human-designed algo-
rithms.

Our work is, to the best of our knowledge, the first appli-
cation of MCTS to address the SMT strategy synthesis prob-
lem. Different from AlphaDev, which considers the synthe-
sis of assembly programs as sequencing individual instruc-
tions, we present the strategy program as an expression tree.
The increased complexity in program structure and the ex-
tended program evaluation time present unique challenges to
the strategy synthesis problem.

2.2 MCTS Variants
It is a well-known problem that the basic MCTS method does
not generalize well between related states and actions. It re-
sults in a notably inefficient search in scenarios where the
search space is extensive. To counter this issue, various tech-
niques have been proposed.



One prevalent technique is the rapid action value estima-
tion (RAVE) algorithm [Gelly and Silver, 2011], which in-
corporates an action-specific term QRAVE into the MCTS tree
policy. Its basic assumption is that there is an intrinsic value
associated with each action regardless of its position. Game
abstraction [Johanson, 2013] is another common technique,
especially used in Poker, to expedite the search. It abstracts
similar actions or states into a single category to reduce the
search space. Option Monte Carlo Tree Search (O-MCTS)
[De Waard et al., 2016] uses options [Sutton et al., 1999]
in the MCTS framework, to mimic the human behaviors of
defining subgoals and subtasks in game playings. An option
is a predefined method for reaching a specific subgoal, with
its own policy and termination function. In O-MCTS, the
agent selects among options instead of actions.

Our layered and staged search methods share similarities
with these MCTS variants. The layered search method re-
duces action and state spaces, but, instead of abstracting, it
separates certain auxiliary actions aside and optimizes them
in parallel. This separation generalizes values among sub-
trees, but, unlike RAVE which shares values between actions
in different positions, it merges subtrees. The staged search
chooses among previously found rewarding sub-solutions, is
similar to choosing among options. However, it does not have
a separate predefined policy for each choice.

2.3 SMT Strategy Synthesis
StratEVO [Ramı́rez et al., 2016] presents a pioneering
effort in automated strategy generation, utilizing a genetic
programming algorithm [Koza, 1994] to evolve strategies
from a predefined strategy population. Unfortunately, the
StratEVO tool is not publicly available, which precludes
us from conducting an empirical comparison.
FastSMT [Balunovic et al., 2018], recognized as the

SOTA tool in SMT strategy synthesis, applies a dual-phase
learning approach. First, it applies the DAgger [Ross et
al., 2011] algorithm to train a deep neural network (DNN),
in order to discover a collection of branch-free strategies,
each tailored for specific instances. These strategies are
then synthesized into one single, unified strategy through
an entropy-based decision-tree learning algorithm [Poole and
Mackworth, 2010]. Chen et al. [2021] proposed a strategy
synthesis method specifically for symbolic execution, where,
similar to FastSMT, strategies are synthesized with decision
tree techniques from a list of branch-free strategies found by
an offline trained DNN.

Our method also adopts a two-step structure in our staged
search approach. However, we utilize MCTS for both steps.
Compared to FastSMT, our method shows superior and
more robust empirical results across six SMT logics, as de-
tailed in Section 5. Further, the strategies synthesized by
FastSMT tend to be less interpretable, sometimes involving
more than a thousand branches.

3 Preliminaries
SMT Solvers, SMT Logics, and SMT-LIB: Satisfiabil-
ity Modulo Theories (SMT) solvers determine the satisfia-
bility of first-order logic formulas, with the interpretation

⟨Strategy⟩ → ⟨Tactic⟩
| (using-params ⟨Strategy⟩ ⟨ParamSettings⟩)
| (then ⟨Tactic⟩ ⟨Strategy⟩)
| (or-else ⟨Strategy⟩ ⟨Strategy⟩)
| (try-for ⟨Strategy⟩ ⟨Constant⟩)
| (if ⟨Predicate⟩ ⟨Strategy⟩ ⟨Strategy⟩)

⟨Tactic⟩ → simplify | smt | sat | solve-eqs | elim-uncnstr | ...
⟨ParamSettings⟩ → ⟨ParamSetting⟩ | ⟨ParamSetting⟩ ⟨ParamSettings⟩
⟨ParamSetting⟩ → : ⟨Parameter⟩ ⟨Constant⟩

⟨Parameter⟩ → som | flat | seed | elim and | ...
⟨Predicate⟩ → ⟨BProbe⟩ | (⟨Operator⟩ ⟨NProbe⟩ ⟨Constant⟩)
⟨BProbe⟩ → is-unbounded | is-pb | is-qflia | ...

⟨Operator⟩ →> |< | ≥ | ≤ |= | ̸=
⟨NProbe⟩ → num-consts | num-exprs | size | ...

⟨Constant⟩ → true | false | 0 | -1 | 1 | ...

Figure 1: Context-free grammar G the Z3 strategy language

of symbols constrained by specific theories [Kroening and
Strichman, 2016]. SMT-LIB refers to an international initia-
tive aimed at facilitating research and development in SMT
solvers [Barrett et al., 2016]. The SMT-LIB initiative main-
tains a large library of SMT benchmarks, grouped by vari-
ous SMT logics. A logic consists of one or more theories
with certain restrictions, and is named after such theories and
restrictions. “QF” refers to the restriction to quantifier-free
formulas, “BV” refers to the theory of fixed-size bit-vectors,
“S” refers to the theory of strings and regular expressions,
“IA” and “RA” refer to integer and real arithmetic. “N” be-
fore “IA” or “RA” means the non-linear fragment of these
arithmetics. SMT-COMP [Bobot et al., 2023] is an annually
held competition that arose from the SMT-LIB initiative for
SMT solvers.
The Z3 Strategy Language: The Z3 SMT solver offers a
user-controllable strategy language, allowing users to craft
their customized decision procedure algorithm. A strategy
selects, sequences, and parameterizes tactics, where each tac-
tic is a built-in reasoning step in Z3. The context-free gram-
mar (CFG) G for the strategy language we consider in this
research is shown in Figure 1, where variables are enclosed
in angle brackets and terminals are highlighted in bold.

The start symbol ⟨Strategy⟩ represents a strategy and is de-
fined recursively. A strategy may consist of either a single
tactic or a series of tactics linked in sequence by the tactic
combinator then. Each tactic can be configured with a vari-
ety of parameters. The combinator or-else applies the second
strategy if the first strategy fails, while the combinator try-for
makes the strategy fail if it does not return within the speci-
fied timeout (millisecond). Z3 also provides built-in probes,
which evaluate formula measures, e.g., the number of con-
stants in the formula. Predicates over them can be built using
relational operators. The if combinator constructs branching
strategies based on these predicates. We refer readers to the



official Z3 guide [Microsoft, 2023] for more information on
the strategy language.
Monte Carlo Tree Search: Monte Carlo Tree Search
(MCTS) is a best-first search technique. It searches for the
optimal decisions by estimating action values from numerous
simulated trajectories. To search more efficiently, the method
biases simulations towards previously rewarding trajectories,
yet it maintains a balance by exploring less-visited paths as
well. Alongside the simulations, an MCTS tree is progres-
sively constructed to store the action value estimations.
Each MCTS simulation consists of 4 steps:

1. Selection: Starting from the root node, a tree-search pol-
icy traverses the MCTS tree until a leaf node is selected.
The Upper Confidence Bounds applied for Trees (UCT)
[Kocsis and Szepesvári, 2006] is the most common al-
gorithm used for the tree-search policy in MCTS. UCT
balances exploiting the child node with the highest value
estimation and exploring the less-visited children.

2. Expansion: The MCTS tree is expanded from the se-
lected leaf node by adding child(ren) node(s) represent-
ing unexplored actions.

3. Rollout: If the selected leaf node is non-terminal, the
simulation continues by subsequently choosing actions
according to a rollout policy (usually a random policy)
until reaching a terminal state.

4. Backup: After evaluation, the episode reward is backed
up to update the action values alongside the traversed
tree path.

4 Z3alpha: MCTS for Strategy Synthesisis
4.1 Modeling Strategy Synthesis as an MDP
If we view strategy synthesis as constructing a strategy string
from G by sequentially applying production rules to the left-
most variable, this process can be modeled as a deterministic
Markov Decision Process (MDP). An MDP is a mathemati-
cal framework in which an agent makes action decisions in a
series of states, with each action leading to a new state. The
agent seeks to maximize rewards over time through choices
of actions. In a deterministic MDP, each action results in a
deterministic state transition.

In our formulation of the strategy synthesis problem, the
states are the sentential strings derived from G, while the ac-
tions are the production-rule applications. The entire process
of constructing a strategy is one single episode of the MDP.
In an episode, the reward RT is only received at the terminal
step T . RT is determined by the performance measure of the
synthesized strategy over a given benchmark set P .

Our reward system is designed to align with the evalua-
tion criteria of SMT-COMP, prioritizing strategies that solve
the highest number of instances. Simultaneously, when two
strategies solve a similar number of P -instances, we want to
steer the search towards the faster strategy. To embody these
goals, we base our reward on the PAR-10 score over P . PAR-
10 computes the average runtime for successfully solved in-
stances and imposes a penalty for unsolved instances. The
penalty is equal to the timeout value multiplied by a factor of
10.

Figure 2: Illustration of the MCTS framework for strategy synthesis

With this modeling, the MDP search tree is directly rep-
resentative of the strategy space, and the objective becomes
identifying the path with the highest reward Rt in the search
tree, corresponding to the optimal strategy for P .

4.2 The MCTS Framework for Strategy Synthesis
We instantiate MCTS for this optimal strategy search prob-
lem. We use UCT as the tree policy in the selection phase and
rollout randomly in the rollout phase. Notably, in the backup
phase, we apply the max-backup rule [Sabharwal et al., 2012;
Sun et al., 2023]. This approach updates the action values
with the best observed return, rather than the average. It en-
courages more aggressive exploitation towards the previously
best-performing strategy, aligning with our goal.

Therefore, the MCTS method continuously runs simula-
tions, and in each simulation, the agent explores and assesses
a single strategy, updating and retaining the best strategy seen
so far. The MCTS stops when a simulation budget is reached.
At the end of this process, the strategy with the highest re-
ward RT is selected and presented as the synthesized SMT
strategy for the specified instance set P . Figure 2 illustrates
our basic MCTS framework, using a simplified CFG G′ for
illustrative purposes. G′ is defined as S → T S | smt and
S → T simplify | aig, where S and T symbolize variables for
strategy and tactic, respectively.

The primary challenge in synthesizing strategies through
this conventional MCTS method is the extensive time re-
quired to evaluate each strategy, which involves calling an
SMT solver on all instances in P . This leads to a very lim-
ited exploration of potential paths, particularly given the im-
mense search space created by the rich strategy language. To
address this issue, we first add domain-knowledge rules re-
stricting valid actions. For example, no tactic could be ap-
plied sequentially following a solver tactic such as smt. We
refer readers to the Appendix for a comprehensive list of such
rules. More importantly, we have introduced two heuristic
methods, namely the layered search and the staged search, on
top of the conventional MCTS, facilitating a deeper and more
effective exploration of the strategy space.

4.3 Layered Search
To solve the above-mentioned challenge, we propose a lay-
ered search method to optimize the tactic parameters within
strategy synthesis. As shown in our CFG G, each tactic can



Figure 3: Comparison of the conventional MCTS and the layer-
search in treating tactic parameter tuning

be paired with multiple parameters. Using the conventional
MCTS with the grammar G, the selection of each candidate
value for a parameter is represented by one production rule,
and the agent needs to make sequential production-rule deci-
sions to configure all parameters for a given tactic, leading to
exponential growth in the problem search tree, as shown in
Figure 3(a).

To address this issue, our layered search method ap-
proaches the tuning of each tactic parameter as a sepa-
rate Multi-Armed Bandit (MAB) problem [Robbins, 1952].
As shown in Figure 3(b), the two parameters som and
max degree for one application of the tactic simplify are
modeled as two MABs respectively. Each arm in the MAB
represents one candidate value. For example in Figure 3(b),
arm 16, 32, and 64 in the MAB max degree are three pre-
selected candidate values for this parameter. Note that the
parameter MABs are associated with a tree edge, correspond-
ing to one specific application of a tactic, not to this tactic in
general. For instance, simplify may be applied serval times
in the strategy building. For each application, there will be
two MABs representing the tuning of som and max degree
associated with it.

One key point is that these parameter-tuning MABs are
not part of the main MCTS tree. They are engaged to se-
lect parameter values when their associated tree edge is tra-
versed, and they are updated based on the episode reward dur-
ing the Backup phase. However, such MABs do not expand
the MCTS search tree after the parameter configuration, since
they are separate components from the main search tree. This
is in contrast to conventional MCTS, which also employs
MAB principles to select among children nodes to explore,
where these nodes constitute part of the search tree. For ex-
ample, in Figure 3(a), the search tree is expanded sixfold to
accommodate all possible combinations of these two param-
eters in the conventional MCTS framework. In contrast, in
the layered search framework (Figure 3(b)), MABs for the
two parameters are isolated from the search tree, creating no
additional branches in the tree.

The rationale behind the layer search is twofold. Firstly,
tactics such as simplify may have dozens of parameters, and

it is common for a tactic to be used multiple times within
a strategy. Thus, navigating a search space that is fully ex-
panded by all possible parameter combinations becomes im-
practical, especially given the time-intensive nature of strat-
egy evaluation. Secondly, we argue that parameter tuning,
although important, serves more as an auxiliary task in com-
parison to the tasks of tactic selection and sequencing. By
employing the layered search method, we maintain the pri-
mary focus on the more important task. At the same time,
the isolated MABs efficiently optimize the parameters with-
out overwhelming the main search process.

4.4 Staged Search
While the layered search method successfully narrows down
the search space, it does not alleviate the issue of signifi-
cant time consumption required for each simulation evalua-
tion. To discover a complex strategy, especially one involv-
ing nested branching, MCTS must expand over a broad space
and delve deeply, often resulting in an impractically lengthy
search time. This is where the staged search comes into play.

The staged search method divides the entire search pro-
cess into two stages. In the first stage, the MCTS focuses
on finding high-performing linear strategies (actions intro-
ducing branches are not considered in the first stage). Here,
a linear strategy is defined as a sequence of tactics without
branching, where tactics are only connected with the combi-
nator then. In the second stage, the MCTS looks for a sin-
gle best strategy that combines these selected linear strate-
gies. In other words, the second-stage MCTS works with the
full grammar of G but restricts the actions so that every ex-
plored strategy is a combination of the selected linear strate-
gies through branching. By doing so, the key advantage is
that the evaluation of the combined strategies can be done
speedily based on the cached linear-strategy performances in
the first stage, without costly SMT solver calls.

This is possible because, when executing any branched
strategy Sc on a given instance f , there is always an
equivalent sequence of branch-free strategy applications,
[S0, S1, ..., SN ]. For example, if we apply ((if is-pb (or-else
(try-for (then simplify sat) 4000) smt) smt)) to a pseudo-
boolean instance, the execution path is first to try (then sim-
plify sat), a linear strategy, for 4 seconds and then to execute
smt, another linear strategy. Thus, when evaluating Sc for
each input instance f , we first convert Sc to its equivalent
linear strategy sequence [S0, S1, ..., SN ], where the perfor-
mance of each linear strategy S0, S1, ..., SN on f is known
and cached in the first stage. Then, the performance of Sc can
be derived directly from these cached results without further
call to the SMT solver. This approach enables MCTS to tra-
verse a significantly larger search space in the second stage,
facilitating the discovery of effective complex strategies.

Another advantage of our staged search method is its adap-
tiveness to long timeouts. Strategy synthesis typically op-
erates under short solver-instance timeouts, for example, 10
seconds in the FastSMT study. Increasing the timeout lin-
early raises the total synthesis time, making it prohibitively
costly to synthesize strategies with extended timeouts, like
5 minutes or more, through direct evaluation. Our staged
search method provides a practical approach to synthesiz-



Timeout(s) Logic Benchmark Test Size Z3alpha Z3alpha0 FastSMT Z3 CVC5 Z3str4

10

QF BV
Sage2 6444 52.9 41.3 51.3 37.1 36.6 -
core 270 99.6 99.6 100.0 75.6 82.6 -

QF NIA
AProVE 1712 94.8 92.5 90.3 90.0 69.9 -
leipzig 68 91.2 89.1 88.2 89.7 25.0 -

QF NRA hycomp 1982 91.4 90.8 89.1 84.7 85.5 -
QF LIA entire logic 12476 76.2 - 31.2 74.6 64.8 -
QF LRA entire logic 1003 73.6 - 74.0 71.0 63.6 -
QF S entire logic 18173 99.0 - - 98.2 98.4 97.2

60 QF BV Sage2 6444 69.8 - 67.7 57.7 77.8 -
300 QF BV Sage2 6444 75.8 - 72.6 69.8 93.3 -

Table 1: Z3alpha vs. SOTA Solvers: Percentage (%) of instances solved from the selected SMT-LIB benchmarks across six SMT logics (
In each experiment, the result of the leading tool is highlighted in bold, while the second-best is underscored.)

ing strategies under such extended timeouts. In the first
stage, the linear strategy candidates are still selected based on
their performance with a short timeout period (e.g., 10 sec-
onds), ensuring broad exploration. These strategies are then
re-evaluated under the specified long timeout (e.g., 5 min-
utes). The second-stage MCTS leverages these re-evaluation
results, enabling the synthesis of customized strategies opti-
mized for these extended timeout scenarios.

5 Experiment Design, Results, and Analysis
5.1 Experimental Design
We evaluated Z3alpha across six logics, namely QF {BV,
NIA, NRA, LIA, LRA, S}. We benchmarked our perfor-
mance against the SOTA strategy synthesis tool, FastSMT,
as well as the default handcrafted strategy in Z3. CVC5 was
also included as a baseline for comparison. To assess the ro-
bustness of Z3alpha, we designed a series of experiments
tailored to different scenarios.
Experimental Design for Specific Classes of Benchmarks:
In Section 5.3, we describe the evaluation of the solvers on
five important SMT-LIB benchmark sets, namely, Sage2
(QF BV), core (QF BV), AProVE (QF NIA), leipzig
(QF NIA), and hycomp (QF NRA), covering three differ-
ent logics. These specific benchmark sets were chosen as
they were also utilized in the FastSMT study, following the
same training-testing split. The size of these benchmark sets
varies, ranging from 167 to 7436 instances. A 10-second
timeout was chosen for evaluation, a common practice in
the SMT strategy synthesis research [Ramı́rez et al., 2016;
Balunovic et al., 2018]. This timeout period was also justi-
fied as Z3alphawas able to solve over 90% of the testing in-
stances in four out of the five benchmark sets within this time
frame. Additionally, in this section, we included a version of
our tool, Z3alpha0, that did not employ staged search, for
ablation study purposes.
Experimental Design for Benchmarks from Diverse Ap-
plications: In Section 5.4, we extended our experiments
to the entire SMT-LIB QF LIA and QF LRA benchmarks,
which are obtained from diverse applications. These experi-
ments were intended to evaluate the versatility and adaptabil-
ity of Z3alpha in handling diverse problem sets. For both
QF LIA and QF LRA, we randomly selected 750 SMT-LIB

instances for our training set, and utilized all remaining in-
stances in the logic (12,476 instances and 1,003 instances for
QF LIA and QF LRA, respectively) as our testing set.
Experimental Design for Long Timeout: In Section 5.5,
we expanded our experiments to include longer timeouts,
specifically 1-minute and 5-minute durations. These evalu-
ations were conducted on the most challenging benchmark
set, Sage2, from Section 5.3. Z3alpha synthesized new
strategies for these scenarios, using the method described in
Section 4.4. FastSMT used the identical strategy as in Sec-
tion 5.3 for these extended timeout cases, adhering to the ap-
proach described in its paper.
Experimental Design for User-defined Tactics: Z3 al-
lows users to implement new rewrite rules or solver algo-
rithms as tactics. Section 5.6 evaluated the capability of
Z3alpha in synthesizing strategies that integrate both user-
defined and built-in tactics. This experiment targeted the
QF S logic. In recent years, the Z3 String Constraint Solver
team 1 implemented new tactics, such as the arrangement-
based solver Z3str3 [Berzish et al., 2017], the Length Ab-
straction Solver (LAS) [Mora et al., 2021], and specialized
rewrite rules for regular expressions [Berzish et al., 2021] for
string constraint problems. These tactics are in addition to the
default built-in sequence solver in Z3. Z3str4 [Mora et al.,
2021] combines the aforementioned tactics using a meticu-
lously handcrafted strategy. In this experiment, we leveraged
Z3alpha to construct a strategy using the same set of tac-
tics as in Z3str4 and then compared their performances.
Z3alpha was trained on 750 randomly chosen QF S in-
stances from SMT-LIB. The testing was conducted on all the
remaining 18,173 instances in the logic.

5.2 Experimental Setup
For every experiment, there were a training instance set and a
testing instance set. Z3alpha, as well as FastSMT, synthe-
sized strategies based on the training set while reporting ex-
periment results on the testing set. The approach aligns with
our problem statement, wherein our goal is to synthesize a
strategy based on a representative set P , and the strategy is
expected to generalize well.

In each experiment, Z3alpha first selected 20 linear
strategies from 800 first-stage MCTS simulations. Subse-

1https://z3string.github.io/

https://z3string.github.io/


quently, during the second stage with 300,000 simulations,
Z3alpha searched for the most effective strategy that com-
bined these linear strategy candidates. The final synthesized
strategy was the one that yielded the lowest PAR-10 score
during the second-stage search. To keep a similar time bud-
get, the non-staged-search version Z3alpha0 ran MCTS for
1,000 simulations with the full CFG G, in search of the best
strategy (including branching ones).
Competing Solvers: Z3alpha was implemented in Python
3.10 and was integrated with Z3-4.12.2. FastSMT was
also integrated with the same version of Z3. Both tools
constructed their strategies using the identical tactic and pa-
rameter set offered by Z3, and executed these strategies
with Z3. See the Appendix for a detailed description of
the tactic and parameter candidates for each SMT logic.
Baseline solvers used in the experiment were Z3-4.12.2
and CVC5-1.0.5. We compared our performance with
FastSMT in all experiments other than the experiment de-
scribed in Section 5.6, since Z3str4 does not provide
Python APIs for the user-defined tactics that are required by
FastSMT.
Computational Environments: Both our synthesis and test-
ing were conducted on a high-performance CentOS 7 cluster
equipped with Intel E5-2683 v4 (Broadwell) processors run-
ning at 2.10 GHz, accompanied by 75 gigabytes of memory.
Variability: Both the Z3alpha and FastSMT algorithms
make use of randomness, leading to the possibility of synthe-
sizing different strategies in separate runs. To account for this
variability, the results in Section 5.3 were average from 5 runs
with different random seeds. Since little variability was found
in Section 5.3 and the much more intense computational na-
ture of the later experiments, we only report results from one
run in later sections.
Metrics: Consistent with the evaluation criteria used in the
SMT-COMP, our performance metric was based on the num-
ber of correctly solved instances. For clearer comprehension
by our readers, we present these results as a percentage, re-
flecting the proportion of solved instances out of the total
tested. Additionally, we include results, such as PAR-2 and
PAR-10 scores, in the Appendix for further reference.

5.3 Analysis of QF BV, QF NIA, QF NRA Results
The first part of Table 1 summarizes the results on the five
selected benchmark sets, namely Sage2, core, AProVE,
leipzig, and hycomp, across the QF BV, QF NIA, and
QF NRA logics. Notably, Z3alpha surpassed the de-
fault Z3 strategy, as well as CVC5 in all of these bench-
mark sets, achieving the leading position in four of the five
sets among all tested tools. In the particularly challenging
QF BV benchmark set Sage2, Z3alpha excelled by solv-
ing an impressive 42.7% more instances than the default strat-
egy did. Furthermore, Z3alpha outperformed Z3alpha0
across all benchmarks, underscoring the effectiveness of the
staged search. The synthesis time for Z3alpha was on par
with, and in most experiments, less than, the synthesis time
for FastSMT. For instance, while the strategy synthesis for
AProVE took 759.6 minutes, Z3alpha completed the task
in 293.1 minutes, in which the stage-1 and stage-2 took 213.7
and 79.4 minutes respectively. One key distinction between

the synthesized strategies from Z3alpha and FastSMTwas
that Z3alpha strategies are more interpretable. For exam-
ple, the FastSMT strategies for AProVE can have more than
a thousand branches, while Z3alpha strategies usually have
less than five branches.

5.4 Analysis of QF LIA and QF LRA Results
When tested across SMI-LIB benchmarks in the entire logic
of QF LIA and QF LRA, Z3alpha also demonstrated con-
sistent performance, as shown in rows of QF LIA and
QF LRA in Table 1. Z3alpha solved 2.2% and 3.7% more
instances than Z3 in QF LIA and QF LRA, respectively.
While FastSMT solved 4 more instances than Z3alpha in
QF LRA, its performance suffered significantly in QF LIA,
solving 58.2% fewer instances than the default Z3 strategy.

5.5 Analysis of QF BV Results with Long Timeout
The results for experiments of 1-minute-timeout and 5-
minute-timeout are shown in Table 1. In every scenario,
Z3alpha continued to maintain superior performance com-
pared to both FastSMT and Z3. The performance advantage
over FastSMT slightly increased when the timeouts were
extended. However, an important shift was the significantly
better performance of CVC5 over the Z3-based methods for
Sage2 under long timeouts. This suggests a promising fu-
ture research direction of extending the strategy synthesis
method across different solvers.

5.6 Results with User-Defined Tactics for QF S
The test results for Z3alpha with user-defined QF S tactics
are shown in the QF S row of Table 1. Z3alpha demon-
strated superior performance over all baseline solvers. Inter-
estingly, the handcrafted Z3str4 strategy, despite employ-
ing the same tactic portfolio as Z3alpha, performed worse
than the default Z3 strategy. The under-performance could
be attributed to two factors: (1) the Z3str4 strategy was op-
timized for logics including both QF S and QF SLIA, which
could be sub-optimal for QF S alone; (2) the tuning of the
Z3str4 strategy was carried out on an earlier version of Z3.
These points emphasize the importance and benefits of auto-
mated strategy customization, tailored for specific problems
and updated base solvers.

6 Conclusions
In this work, we present Z3alpha, a novel MCTS-based
method for SMT strategy synthesis. Z3alpha introduces
layered and staged search heuristics upon the conventional
MCTS framework, enabling a low-cost and effective search
within the expansive strategy space. The superiority of
Z3alphawas demonstrated by extensive experiments across
six SMT logics. In all the experiments, Z3alpha consis-
tently surpassed the default Z3 solver and outperformed both
FastSMT and CVC5 in the majority of cases.

Our method is currently implemented only upon Z3, be-
cause other prominent solvers, like CVC5, to the best of our
knowledge, do not offer an interface to group preprocessing
and solving steps flexibly. We hope our strong empirical re-
sults will encourage a universal user-controllable strategy lan-



guage in the SMT community. There is substantial poten-
tial to further enhance solver performance by applying our
method across tactics from different solvers, thereby leverag-
ing their complementary strengths.
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Appendix
A Additional Methodology Details
Domain Knowledge Rules: In Section 4.2, we mention
that, in order to reduce the action space, additional domain-
knowledge-based simplification rules are introduced to the
problem modeling. Such rules include:

1. When ⟨Strategy⟩ → ⟨Tactic⟩ is applied, ⟨Tactic⟩ can
only choose a solver-wrapper tactic, e.g., smt. When
⟨Strategy⟩ → (then ⟨Tactic⟩ ⟨Strategy⟩) is applied,
solver-wrapper tactics cannot be chosen for ⟨Tactic⟩.

2. Do not apply the try-for rule for a strategy that has al-
ready been set for a try-for timeout.

3. The if predicate can only appear at the first three depths
of the constructed strategy’s syntax tree. Moreover, do
not apply the if rule after any tactic application, since
tactic applications may alter the formula measures, dis-
abling the staged search.

4. Certain candidate values are preselected for numerical
tactic parameters, try-for timeouts, and numerical probe
comparisons.

5. Do not apply the tactic nla2bv more than once in a se-
quence of tactic applications.

6. Apply the tactic bit-blast only immediately after apply-
ing the tactic simplify.

We recognize that certain simplification rules might elim-
inate parts of the search space that include effective strate-
gies. Nevertheless, these rules are instrumental in substan-
tially reducing the vast search space and enabling efficient
search techniques like the stage search. Our empirical exper-
imental results strongly indicate that the remaining space still
encompasses robust strategies.
Tactic and Parameter Pools: We list the pool of tactic and
parameter candidates for each tested SMT logic in a series
of tables, specifically from Table 4 to Table 9. Note that
the candidate selection is identical for both Z3alpha and
FastSMT.
Staged Search Framework: Figure 4 illustrates the staged
MCTS framework. A set of n linear strategies is selected
from the first-stage MCTS, and these linear strategies are syn-
thesized into one final combined strategy SF in the second-
stage MCTS. Note that we may opt for a subset P1 of the
complete training benchmark set P for the first stage. This is
because each stage-1 MCTS simulation can be expensive for
a large training set, since it involves calling an SMT solver
for every training instance. After selecting linear strategies
using a smaller subset, we can evaluate the selected strategies
across all instances in P , with results cached for the second
stage. This approach eliminates the resource-intensive need
to evaluate every strategy explored in the first stage on the full
set P , while still providing larger-scale evaluation data for the
second-stage MCTS.
Selection Criteria of Linear Strategies: After the first-
stage MCTS, we select n linear strategies for the second-
stage synthesis. This selection is performed iteratively from
the pool of linear strategies explored in the first stage using a

Figure 4: The Staged MCTS Framework

greedy algorithm. The idea is to incrementally build a linear
strategy portfolio that collectively performs the best. Here,
we define the virtual best strategy for a strategy set as an or-
acle that, for each instance, perfectly selects the best strategy
from the strategy set without any overhead. Then, the selec-
tion criterion is to select the linear strategy that, when added
to the incumbent selected strategy set, maximizes the virtual
best strategy performance for a given instance set. Starting
from an empty set, we apply this criterion to add one linear
strategy at a time to the set until n strategies are selected.
Consistent with the entire synthesis process, performance is
measured by the average PAR-10 score.

B Additional Experimental Details
B.1 Training and Testing Benchmarks
In experiments for specific benchmark classes (Section 5.3),
we used the same experimental benchmark sets that were
used in the FastSMT study [Balunovic et al., 2018]. They
divided each benchmark set, i.e., Sage2, core, AProVE,
leipzig, and hycomp, into a training set, a validation set,
and a test set. For Z3alpha synthesis, we retained the test
set for evaluation and merged the training and validation sets
to form the Z3alpha training benchmark set P . Within it,
the FastSMT training set was specifically used as the train-
ing subset P1 for the first-stage MCTS.

For QF LIA, QF LRA, and QF S experiments, we ran-
domly selected 750 instances to constitute the Z3alpha
training set P , while designating all remaining instances in
the SMT-LIB as the test set. From P , 250 instances were
chosen as the stage-1 training subset P1. Our experiments
showed that this training size was sufficient to develop robust
strategies for the logic. In these experiments, P1 served as the
training set for FastSMT, and the set difference P \ P1 con-
stituted the validation set, aligning with the FastSMT bench-
mark split sizes for large sets. All competing solvers were
evaluated on the same test set.

B.2 Experimental Results in PAR-2 and PAR-10
Table 2 and Table 3 show the experimental results as average
PAR-2 and PAR-10 scores, respectively. The PAR-2 score
was calculated based on the solver runtime for each success-
fully solved instance in the test set, and a penalty of twice
the timeout for unsolved instances. Similarly, the PAR-10
score imposed a penalty of ten times the timeout for the un-
solved. A lower score in both PAR-2 and PAR-10 indicates
superior performance. Notably, the PAR-2 and PAR-10 re-



Timeout(s) Logic Benchmark Test Size Z3alpha Z3alpha0 FastSMT Z3 CVC5 Z3str4

10

QF BV
Sage2 6444 11.01 12.97 11.30 13.68 14.02 -
core 270 1.06 1.14 0.89 6.08 5.21 -

QF NIA
AProVE 1712 1.27 1.64 2.89 3.28 6.62 -
leipzig 68 2.13 2.58 2.87 2.63 15.72 -

QF NRA hycomp 1982 1.90 1.95 2.29 3.19 3.17 -
QF LIA entire logic 12476 5.23 - 13.88 5.52 7.61 -
QF LRA entire logic 1003 5.93 - 5.92 6.46 7.74 -
QF S entire logic 18173 0.41 - - 0.57 0.42 0.71

60 QF BV Sage2 6444 43.57 - 43.82 57.41 38.77 -
300 QF BV Sage2 6444 163.26 - 181.00 214.23 80.71 -

Table 2: Z3alpha vs. SOTA Solvers: Average PAR-2 score on the selected SMT-LIB benchmarks across six SMT logics ( In each
experiment, the result of the leading tool is highlighted in bold, while the second-best is underscored.)

Timeout(s) Logic Benchmark Test Size Z3alpha Z3alpha0 FastSMT Z3 CVC5 Z3str4

10

QF BV
Sage2 6444 48.66 59.97 50.27 64.01 64.71 -
core 270 1.36 1.49 0.89 25.64 19.14 -

QF NIA
AProVE 1712 5.45 7.64 10.63 11.27 30.69 -
leipzig 68 9.19 11.29 12.28 10.87 75.72 -

QF NRA hycomp 1982 8.82 9.27 10.98 14.69 14.75 -
QF LIA entire logic 12476 24.23 - 68.93 25.81 35.78 -
QF LRA entire logic 1003 27.06 - 26.74 29.67 36.85 -
QF S entire logic 18173 1.23 - - 2.00 1.72 2.96

60 QF BV Sage2 6444 188.30 - 198.68 260.47 145.52 -
300 QF BV Sage2 6444 743.14 - 837.61 940.12 240.86 -

Table 3: Z3alpha vs. SOTA Solvers: Average PAR-10 score on the selected SMT-LIB benchmarks across six SMT logics ( In each
experiment, the result of the leading tool is highlighted in bold, while the second-best is underscored.)

sults strongly aligned with the results of the number of solved
instances, as presented in Table 1.

Tactic Parameter

simplify

elim and
blast distinct

local ctx
som
flat

pull cheap ite
hoist mul

push ite bv
propagate-values push ite bv
ctx-simplify -
elim-uncnstr -
solve-eqs -
purify-arith -
max-bv-sharing -
aig -
reduce-bv-size -
ackermannize bv -
bit-blast -
smt random seed
sat -
qfbv -

Table 4: Selected tactic and parameter candidates for QF BV



Tactic Parameter

simplify

elim and
blast distinct

local ctx
som
flat

hi div0
pull cheap ite

hoist mul
push ite bv

propagate-values push ite bv
ctx-simplify -
elim-uncnstr -
solve-eqs -
max-bv-sharing -
nla2bv nla2bv max bv size
bit-blast -
smt random seed

qfnra-nlsat
inline vars

factor
seed

lia2card -
card2bv -
cofactor-term-ite -
qfnia -

Table 5: Selected tactic and parameter candidates for QF NIA

Tactic Parameter

simplify

elim and
blast distinct

local ctx
som
flat

hi div0
pull cheap ite

hoist mul
push ite bv

propagate-values push ite bv
ctx-simplify -
elim-uncnstr -
solve-eqs -
max-bv-sharing -
nla2bv nla2bv max bv size
bit-blast -
smt random seed

qfnra-nlsat
inline vars

factor
seed

qfnra -

Table 6: Selected tactic and parameter candidates for QF NRA

Tactic Parameter

simplify

elim and
blast distinct

local ctx
som
flat

pull cheap ite
push ite arith

hoist ite
arith lhs

propagate-values push ite bv
ctx-simplify -
elim-uncnstr -
solve-eqs -
propagate-ineqs -

add-bounds add bound lower
add bound upper

normalize-bounds -
lia2pb lia2pb max bits
smt random seed
qflia -

Table 7: Selected tactic and parameter candidates for QF LIA

Tactic Parameter

simplify

elim and
blast distinct

local ctx
som
flat

propagate-values -
ctx-simplify -
elim-uncnstr -
solve-eqs -
smt random seed
qflra -

Table 8: Selected tactic and parameter candidates for QF LRA

Tactic Parameter

simplify

elim and
blast distinct

local ctx
som
flat

propagate-values -
ctx-simplify -
elim-uncnstr -
solve-eqs -
ext str -
ext strSimplify -
ext strToRegex -
ext strToWE -
arr -
las -
smt random seed

Table 9: Selected tactic and parameter candidates for QF S
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