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Abstract

Multiscale phenomena manifest across various scientific domains, presenting a
ubiquitous challenge in accurately and effectively simulating multiscale dynam-
ics in complex systems. In this paper, a novel decoupling solving paradigm is
proposed through modelling large-scale dynamics independently and treating
small-scale dynamics as a slaved system. A Spectral Physics-informed Neu-
ral Network (PINN) is developed to characterize the small-scale system in
an efficient and accurate way, addressing the challenges posed by the rep-
resentation of multiscale dynamics in neural networks. The effectiveness of
the method is demonstrated through extensive numerical experiments, includ-
ing one-dimensional Kuramot-Sivashinsky equation, two- and three-dimensional
Navier-Stokes equations, showcasing its versatility in addressing problems of
fluid dynamics. Furthermore, we also delve into the application of the pro-
posed approach to more complex problems, including non-uniform meshes,
complex geometries, large-scale data with noise, and high-dimensional small-scale
dynamics. The discussions about these scenarios contribute to a comprehensive
understanding of the method’s capabilities and limitations. By enabling the acqui-
sition of large-scale data with minimal computational demands, coupled with the
efficient and accurate characterization of small-scale dynamics via Spectral PINN,
our approach offers a valuable and promising approach for researchers seeking to
tackle multiscale phenomena effectively.
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1 Main

Multiscale phenomena manifest across a wide array of scientific disciplines, spanning
from physics [1] and biology [2] to engineering [3] and social systems [4]. These phe-
nomena entail intricate patterns and interactions across various spatiotemporal scales,
rendering the prediction and analysis of complex systems a formidable challenge [5, 6].
At the heart of this complexity lies the interplay between large-scale dynamics, which
encapsulate dominant patterns and structures, and small-scale dynamics, character-
ized by finer details and rapid fluctuations [7]. While large-scale dynamics offer a
macroscopic view of system behavior, small-scale dynamics significantly influence the
overall system dynamics. Accurately predicting and comprehending the full range of
spatiotemporal scales not only enhances our capacity to simulate and model diverse
phenomena but also unlocks unprecedented insights into emergent properties, facil-
itating the design and optimization of novel materials, biological processes, and
technological systems [8].

In the pursuit of unravelling multiscale dynamics in complex systems, traditional
numerical methodologies such as in fluid mechanics, Direct Numerical Simulation
(DNS) [9], Large Eddy Simulation (LES) [10] and Lattice Boltzmann (LBM) have
been widely employed. DNS aims to provide detailed insights into the smallest fea-
tures by providing a comprehensive resolution of all scales in the flow field. Despite
significant advancements in high-performance computing, the computational demands
associated with DNS increases with the complexity of the system. Consequently, the
application of DNS at high Reynolds numbers becomes economically and computa-
tionally impractical, especially in scenarios representing both natural and engineering
fluid flows [11]. On the other hand, LES strikes a pragmatic balance by employing sub-
grid scale models, resulting in a more computationally feasible approach. Nevertheless,
the efficiency of LES also faces challenges, as accurately modelling subgrid-scale inter-
actions remains a persistent issue, potentially introducing inaccuracies in predicting
small-scale dynamics [12]. Alternatively, the LBM has emerged as a simpler and more
parallelizable approach based on the lattice Boltzmann equation on a mesoscopic
scale. While LBM excels in processing complex boundaries, its requirement for a
large number of lattice numbers with a very small time step makes field acquisition
time-consuming and computationally expensive. To enhance the small-scale simula-
tions, several important techniques have been developed [13, 14], such as multigrid
methods, domain decomposition methods, adaptive mesh refinement techniques, and
multi-resolution methods using wavelets. These approaches, while focusing computa-
tional resources on local regions, may encounter challenges in achieving a substantial
enhancement in resolution and computational efficiency across the entire simulation
domain [15].

With the development of artificial intelligence [16], neural networks (NNs) have
shown great potential in the field of fluid dynamics for their abilities to learn complex
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relationships from data and predict the behaviour of fluid flows [17, 18]. One area where
NNs have been particularly successful is in the study of modelling the Reynolds stress
tensor in Reynolds-averaged Navier-Stokes (RANS) simulations [19, 20] and subgrid-
scale modelling in LES [21]. By leveraging the flexibility and adaptability of NNs,
these approaches aim to capture intricate flow behaviours that may be challenging
for conventional models to represent accurately. [22] captures the small-scale dynam-
ics of turbulence via the velocity gradient tensor through deep neural networks on
existing DNS data at low and moderate Reynolds and demonstrate the capability for
predicting their dynamics at both seen and higher unseen Reynolds. Additionally, the
advancement of single-image super-resolution methods [23] has partly addressed the
challenge of achieving high-resolution reconstruction of flow fields [24, 25]. However,
it is essential to acknowledge the inherent challenges associated with this approach,
including the susceptibility to noise amplification and the computational demands
involved in processing high-resolution data. For practical scientific or engineering prob-
lems with definite governing equations, introducing appropriate physics into deep
learning algorithms can lead to better solutions for these problems [26].

NNs have also emerged as a novel tool for directly solving partial differential
equations (PDEs), to obtain comprehensive flow field solutions. Methods like Physics-
Informed Neural Networks (PINNs) [27], DGM [28], Deep Ritz Method (DRM) [29]
and PhyCRNet [30] utilize neural networks to approximate solutions by incorporat-
ing governing equations and boundary conditions to the loss function or the neural
network architecture. This kind of approach opens avenues for more efficient and accu-
rate solutions to complex fluid dynamics problems and has demonstrated remarkable
success in providing efficient solutions for problems ranging from turbulence mod-
elling to the simulation of complex flows [31, 32]. Nevertheless, these methods often
fail to solve challenging PDEs when the solution exhibits high-frequency or multiscale
structure due to the ‘spectral bias’, as highlighted in prior works [33–35]. While some
efforts have been made to enhance multiscale simulation by imposing multiscale pri-
ors into the network [36, 37], improvements remain limited. In addition to solution
approximation, another category of neural network applications involves solution map-
ping between infinite-dimensional function spaces. Approaches such as DeepOnet [38],
Fourier Neural Operator (FNO) [39] and PDE-Net [40] are proposed to learn to solve
an entire family of PDEs. These methods can approximate complex operators raising
in PDEs that are highly non-linear and have demonstrated promising results across
a wide range of applications [41]. While these methods hold promise for achieving or
accelerating multiscale simulations [42–44], challenges still arise in terms of limited
generalization and computational intensity.

Inspired by the scale decomposition principles from adiabatic elimination[45], clas-
sical center-manifold theory[46, 47], Mori-Zwanzig formalism[48] and the extended
evolutionary renormalization group (RG) method[49], we develop a novel decoupling
solving mode to simulate the multiscale dynamics through modelling the large-scale
dynamics independently and treating the small-scale dynamics as a slaved system. The
large-scale dynamics can be resolved through modern low computational demands,
such as coarse meshes or Reynolds-Averaged Navier-Stokes (RANS) simulations. The
PINN is selected as the fundamental architecture to characterize the small-scale
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dynamics based on the large-scale dynamics for their capability to address limita-
tions associated with conventional methods. Unlike traditional approaches, PINNs
operates without the reliance on predefined meshes, showcasing natural adaptability
to varying scales within the system. This intrinsic mesh independence is particularly
valuable when dealing with complex fluid dynamics where small-scale features demand
precise representation. Furthermore, PINNs offer a significant advantage in terms of
computational efficiency. By mitigating the need for elaborate meshes, these neu-
ral networks can substantially reduce the associated computational expenses, making
them a cost-effective alternative to traditional methods. This efficiency, however, does
not compromise accuracy, as PINNs maintain a high level of precision in capturing the
intricate details of the underlying physics. To mitigate the challenges related to the
‘spectral bias’ in PINNs, the equation for solving the small-scale dynamics is derived
and directly learned in the spectral space. In our investigation, the Fourier space is
taken for representing functions at different scales [36], which is leveraged to over-
come the limitations and improve the overall performance of the model. Throughout
this article, we demonstrate the capabilities of the proposed method by applying it to
extensive numerical experiments. This decoupling approach simplifies the analysis and
prediction of spatiotemporal systems, enabling a deep understanding of interactions
between different scales and facilitating more efficient computational simulations.

2 Results

We consider the general classical form of PDEs in an operator form with a finite time
horizon T ∈ R+ and a bounded domain D ⊂ Rd:

∂u

∂t
= A (u), in [0, T ]×D,

u = g, in [0, T ]× ∂D,

u = u0, in {0} ×D,

(1)

where u : [0, T ]×D → Rd̄ is the solution and u(t, ·) belongs to a function space X . A
is a nonlinear partial differential operator with domain D(X ) ⊂ X . u0 and g denote
the initial and boundary conditions, respectively.

The function space X is an infinite-dimensional space and Eq. (1) usually can’t be
solved accurately in this space. Consider X N as a finite-dimensional subspace of X ,
and the function space X has the following decomposition X = X N ⊕ (X /X N ).
If the solution u(t, ·) is well-approximated in X N , the space X /X N can be negligi-
ble. Therefore, the solution discussed in this paper is approximated in X N and it is
consistently denoted as u(t, x) for the sake of simplicity throughout the manuscript.

While X N is already a finite-dimensional space, it’s crucial to choose N large
enough to obtain a sufficiently accurate solution, which may still incur high compu-
tational costs. Let X M be a finite-dimensional subspace of X N that captures the
dominant behaviour or large-scale patterns of the solution. Simultaneously, introduce

a complementary space X M⊥
to account for small-scale behaviours and serve as an

additional correction. Furthermore, the finite-dimensional space can be decomposed
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as:
X N = X M ⊕ X M⊥

, (2)

where M < N . Then we could use different methods to solve the problem on X M and

X M⊥
respectively and obtain a high-fidelity solution with lower computational costs.

Let PM and QM denote the projection operator from X to X M and X M⊥
,

respectively. Then the well-resolved solution can be expressed as u = pM + qM with
pM = PMu and qM = QMu. Essentially, pM and qM are synergistic. If we project
Eq. (1), respectively, onto the large-scale space and small-scale space, we obtain:

∂pM
∂t

= PMA (pM + qM ), (3)

∂qM
∂t

= QMA (pM + qM ). (4)

According to Eq. (4), qM can be treated as parasitic structures from pM , which helps
to capture the fine-scale details and accurately represent the solution behaviour. The
above belongs to the classical realm of the nonlinear Galerkin method used to describe
the decomposition of a complex system in the sense of slow-and-fast modes [50]. Based
on this solution decomposition, it is possible to obtain the dominant dynamics and the
correction term of the solution in a decoupled way, which can simplify the problem,
enable a deep understanding of interactions between different scales, and make it more
computationally feasible. Generally, the dynamics of pM can be easily and properly
captured even when the term related to qM is neglected in Eq. (3). Therefore, this
paper develops a spectral PINN method to obtain qM by Eq. (4) with given pM ,
which establishes a general computationally feasible way to characterize the small-scale
dynamics accurately and efficiently.

2.1 Case 1: One-dimensional Kuramoto–Sivashinsky equation

The Kuramoto–Sivashinsky (KS) equation holds a pivotal position in the realm of non-
linear partial differential equations, particularly within the study of spatiotemporal
chaos and pattern formation. Its unique ability to capture complex patterns and intri-
cate spatiotemporal dynamics makes it a valuable tool for investigating flame front
stability, reaction-diffusion systems, and various other physical contexts. Character-
ized by fourth-order spatial derivative and nonlinear terms, we consider the following
KS equation in one space dimension with periodic boundary conditions:

∂u

∂t
+ u

∂u

∂x
+

∂2u

∂x2
+

∂4u

∂x4
= 0, in [0, T ]× [L1, L2],

u(x, 0) = u0(x), in{0} × [L1, L2],

(5)

where u ∈ C([0, T ];Hr
per((L1, L2);R)) with r > 0, u0 ∈ L((L1, L2);R) is the ini-

tial condition. To generate the numerical solution as the ground-truth reference, the
equation is solved by the pseudo-spectral method combined with the exponential time-
differencing fourth-order Runge–Kutta formula. In particular, we start from a simple
flow with the initial condition u(x, 0) = − sin(πx/10), x ∈ [−10, 10]. The time integra-
tion is implemented until the final time T = 50s with a time-step size of 0.1. The spatial
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a Inputs & Outputs

t: time Spectral PINNs Ŭ⊥
θ (t) inverse Fourier Transform qM (t)

b Spectral PINNs

Automatic
Differentiation

FFT-based
Differentiation

dŬ⊥
θ (t)
dt

(ık)nŬ⊥
θ (t)

Loss function L(θ)Ŭ(t)pM (t) Fourier Transform

t

· · ·

· · ·

· · ·

· · ·

Ŭ⊥
Re,M+1,θ(t)

Ŭ⊥
Im,M+1,θ(t)

Ŭ⊥
Re,M+2,θ(t)

Ŭ⊥
Im,N,θ(t)

...
...

...
...

Fig. 1 llustrations of the problem set-up and schematic diagram of the spectral PINN
configuration. a. The network takes time as input and predicts the Fourier coefficient of the small-
scale data, followed by an inverse Fourier Transform. b. Schematic diagram of the spectral PINN
method.

discretisation is implemented with 512 Fourier modes. To generate large-scale data
specially, the Fourier transform is applied to the entire dataset, yielding large-scale
data characterized by 4 modes, and small-scale dynamics represented by 10 modes.
Prediction models are then constructed based on the large-scale data. Significantly,
the energy distribution is quantified from the numerical results, revealing that 89.98%
of the total energy is attributed to the large-scale components, while the remaining
10.02% is associated with the small-scale components. We let the small-scale solution
be represented by a 6-layer deep neural network, each followed by a GELU activa-
tion function. The input layer takes one feature, and subsequent hidden layers have
100, 300, 500, and 300 neurons, respectively, before reaching the output layer with 20
neurons which represent the real and imaginary parts of the 10 modes, respectively.
The network is trained for 5,000 epochs using the Adam optimizer [51]. The mean
squared error of the residuals of the equation and initial condition is used as the opti-
mization objective for obtaining a set of model parameters. The Cosine learning rate
warmup [52] is employed, where the learning rate increases linearly from 0 to 0.008
over 50 epochs and decreases from 0.008 to 0 over the remaining epochs following a
cosine curve.

The detailed results are presented in Fig. 2. It is seen that the training errors
converge with an increase in training steps. After 5000 epochs, the error associated
with the PDE equation is minimized to 0.0027, reflecting the model’s ability to sat-
isfy the underlying equations. The error of the initial condition is impressively low at
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Fig. 2 KS equation with the initial condition u(x, 0) = −sin(πx/10): a. Comprehensive depic-
tion of the full-scale field and extracted large-scale field. b. Comparative analysis of the small-scale
dynamics derived from the numerical simulation and the proposed method. c. The training trajec-
tory of the network. d. Comparison of the PDFs of the obtained small-scale fields. e. Comparative
assessment of the real and imaginary components of Fourier coefficients signifying the small-scale
dynamics, with the mode-specific colouration of data points.

0.0004, indicating the model’s proficiency in reproducing the specified initial condi-
tions. Specifically, a comparison is made between the Fourier coefficients of the learned
small-scale solutions and their exact counterparts. The observed match in the imagi-
nary part with the reference is noteworthy. While a marginal error is noted in the real
part for this particular case, the accuracy remains within acceptable bounds. Conse-
quently, the predicted contour patterns and the probability density functions (PDFs)
of the fields demonstrate a satisfactory match with the exact results. The mean average
error over the solution is around 0.0003, indicating an excellent fit to the exact solu-
tion. The surprising result strongly indicates that the algorithm is accurately learning
the underlying partial differential equation of the small-scale dynamics.

It is important to note that the above study deliberately avoids regions where
the KS equation exhibits chaotic behaviour, of which the small-scale dynamics are
relatively simple to obtain. To better reveal the proposed method, an exploration into
a chaotic flow is considered by expanding the spatial domain to [0, 32π] and altering
the initial condition to u(x, 0) = cos(x/16)(1+sin(x/16)). The equation is numerically
integrated over the extended spatial domain up to the final time T = 100s with time-
step size 0.1, and implementing 1024 Fourier modes for spatial discretisation. This
expanded computational setup allows for the generation of intricate solutions. In this
case, the large-scale data is characterized by 15 modes, and the accurate representation
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Fig. 3 KS equation with the initial condition u(x, 0) = cos(x/16)(1 + sin(x/16)): a. Com-
prehensive depiction of the full-scale field and extracted large-scale field. b. Comparative analysis of
the small-scale dynamics derived from the numerical simulation and the proposed method. c. The
training trajectory of the network. d. Comparison of the PDFs of the obtained small-scale fields. e.
Comparative assessment of the real and imaginary components of Fourier coefficients signifying the
small-scale dynamics, with mode-specific colouration of data points.

of chaotic small-scale dynamics with 20 modes is undertaken for prediction based
on the large-scale data. The energies of the large and small scales are 76.74% and
23.23%, respectively. The solution is represented by the deep neural network that
shares the same architecture in a 6-layer deep neural network, each layer followed by
a GELU activation function. The input layer processes one feature, and subsequent
hidden layers consist of 100, 300, 500, and 300 neurons, respectively, before reaching
the output layer with 40 neurons which represent the real and imaginary parts of the
20 modes, respectively. The network undergoes training for 5,000 epochs using the
Adam optimizer. The mean squared error of the residuals of the equation and initial
condition is used as the optimization objective for obtaining a set of model parameters.
The Cosine learning rate warmup is also implemented, with the learning rate linearly
increasing from 0 to 0.008 over 50 epochs and then decreasing from 0.008 to 0 over
the remaining epochs following a cosine curve.

Fig. 3 shows the detailed results. It is evident that, as the number of training
steps increases, the training errors converge. After 5,000 epochs, the errors of the
PDE equation and initial condition are decreased to 0.064 and 0.0000028, respectively.
A meticulous comparison is also conducted between the Fourier coefficients of the
acquired small-scale solutions and their exact counterparts. Specifically, the Fourier
coefficients and whole flow field of the learned and exact chaotic small-scale solutions
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Fig. 4 2D NS equations: a. A comprehensive depiction of the full-scale, extracted large-scale
and small-scale fields derived from the numerical simulation, along with the predicted small-scale
dynamics obtained with the proposed method. The detailed results at each time step are provided
in the Supplementary Video 1. b. The training trajectory of the network. c. Comparison of the
probability density of the obtained small-scale fields. d. Comparative assessment of the real and
imaginary components of Fourier coefficients signifying the small-scale dynamics, with mode-specific
colouration of data points.

are compared and visualized. The error of the Fourier coefficients converges at 1.16,
indicating the model’s effective capture of the chaotic Fourier modes in the small-scale
data. It is observed that, whether the predicted contour patterns or the PDFs, exhibit
a commendable congruence with the exact results and all the fine structures are all
identically reproduced. In the meanwhile, the mean average error of the prediction,
which is around 0.008, is much smaller compared with the scale of the ground truth,
showing the accuracy of the proposed method as a PDE solver.

2.2 Case 2: Two-dimensional Navier-Stokes equations

As the basic equation for modelling the weather, ocean currents, water flow in a pipe
and airflow around a wing, we consider the following two-dimensional (2D) viscous,
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incompressible Navier-Stokes (NS) equations:

∂tω + u · ∇ω = ν∇2ω, in[0, T ]× [0, L]2

ω = ω0, in {0} × [0, L]2
(6)

where u ∈ C
(
[0, T ];Hr

per

(
(0, L)2;R2

))
for any r > 0 is the velocity field, ω = ∇× u

is the vorticity, w0 ∈ L2
per

(
(0, L)2;R

)
is the initial vorticity, ν ∈ R+is the viscos-

ity coefficient. We consider the system with ν = 5.0 × 10−4. The time integration is
implemented until the final time T = 1s with time-step size 0.001. With L = 2π, 128
Fourier modes are employed to implement the spatial discretisation along x and y
directions. The initial condition of the problem is randomly sampled while periodic BC
is adopted. The equation is solved by the pseudo-spectral method combined with the
Crank-Nicholson method. In this equation, large-scale data is systematically acquired
with a cut-off radius set at 60. Remarkably, an in-depth analysis of the energy distri-
bution, based on numerical results, reveals a substantial concentration of 83.97% of
the total energy within the large-scale components. The small-scale data targeted for
prediction corresponds to those with cut-off radii exceeding 60 but falling below 85,
with 15.78% of the energy concentrated in the resulting small-scale components. The
neural network, representing the solution us, is designed as a 6-layer deep architecture
with each layer followed by a GELU activation function. The input layer accommo-
dates a single feature, followed by hidden layers with 100, 500, 1000, 2000, and 9956
neurons, respectively. The network undergoes training for 10,000 epochs using the
Adam optimizer. The chosen loss function is MSELoss. The learning rate undergoes
a Cosine learning rate warm-up, initiating with a linear increase from 0 to 0.0006
over 100 epochs and concluding with a decrease from 0.0006 to 0 over the remaining
epochs, following a cosine curve.

The convergence results obtained with the proposed method are depicted in Fig. 4.
After training, the MSE of the model drops to 0.56. To illustrate the effectiveness of
our approach, Visualization of the learned small-scale dynamics in conjunction with
the exact solution is also presented. The mean average error of the overall solution
is about 0.002, which is much smaller compared with the scale of the ground truth.
Absolute differences in the figure show that our model performs well in solving the
small-scale equation. The model performs sufficiently well in capturing overall flow
features. Particularly noteworthy is the comparison of Fourier coefficients and PDFs
between the learned and exact small-scale solutions showcased, which presents an
outstanding fit for the exact solution.

2.3 Case 3: Three-dimensional Navier-Stokes equations

Due to the curse of dimensionality, solving PDEs on three dimensional (3D) spatial
domain is considered to be more challenging than the 2D problems. In this section,
we explore the scalability of the proposed method on the following 3D Navier-Stokes
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equations:

∂tu+ u · ∇u = −∇p+
1

Re
∇2u, in [0, T ]× [0, L]3

∇ · u = 0, in [0, T ]× [0, L]3

u = u0, in {0} × [0, L]3

(7)

where u ∈ C
(
[0, T ];Hr

per

(
(0, L)3;R3

))
for any r > 0 is the velocity field. u0 ∈

L2
per

(
(0, L)3;R3

)
is the initial velocity. To characterize the small-scale flow, we con-

sider the system with Taylor-Reynolds number Reλ = 950. The initial condition is also
randomly generated while periodic BC is adopted. To generate high-fidelity numerical
results for comparison, the equation is solved by the pseudo-spectral method with the
following transformed form, where the pressure is eliminated [53]:

∂tU = −
(
I − kkT

kTk

)
· F (u · ∇u)− 1

Re
kTkU , (8)

Where U = F (u) and F (u·∇u) is obtained by pseudo-spectral real space evaluation.
With L = 2π, 64 Fourier modes are employed to implement the spatial discretisa-
tion along x, y and z directions. The temporal discretisation employed in this study
adheres to a Kolmogorov time scale of less than 0.1s, thereby dictating a time inter-
val of 0.2s for solution convergence, covering the temporal span from 9s to 9.2s with
a time-step magnitude of 0.001. The Kolmogorov time scale for this case is less than
0.1s, thus guiding our selection of a time interval of 0.2s for analysis, spanning from
9s to 9.2s with a time-step size of 0.001s, to effectively characterize the small-scale
dynamics. Acquisition of large-scale data is systematically executed within a pre-
scribed cut-off radius of 8, revealing from numerical analyses a notable aggregation
of 87.61% of the total energy within the large-scale components. Concurrently, the
small-scale data, earmarked for predictive modelling, encompasses instances with a
cut-off radius surpassing 8 but remaining below 16, with a discernible 10.87% energy
concentration within the resultant small-scale components. The neural network, rep-
resenting the solution corresponding to the small-scale behaviour, is designed as a
5-layer deep architecture with each layer followed by a GELU activation function. The
input layer accommodates a single feature, followed by hidden layers with 5000, 10000
and 20000 neurons, respectively, culminating in the output layer with 89772 neurons.
The network undergoes training for 10,000 epochs utilizing the Adam optimizer, with
the mean square loss as the loss function. We start with a learning rate of 0.0002 and
ReduceLROnPlateau [54] scheduler is used during the training phase to dynamically
update the learning rate based on the total loss.

The convergence and performance of the proposed method for solving the 3D
Navier-Stokes equations are comprehensively depicted in Fig. 5. As the trajectories of
loss convergence suggested, the training errors exhibit convergence with the number
of training steps increasing. To highlight the significance of our approach, we present
visual representations of the learnt small-scale dynamics in comparison to the exact
solution. The mean average error for the entire solution is less than 0.01, demonstrating
the model’s precision in predicting complex flow dynamics. The absolute differences
depicted in the figures demonstrate the model’s ability to resolve small-scale equations
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Fig. 5 3D NS equations: a. Comparative analysis of the small-scale dynamics derived from the
numerical simulation and the proposed method. The detailed results at each time step are provided
in the Supplementary Video 2. b. Comparative assessment of the real and imaginary components of
Fourier coefficients signifying the small-scale dynamics, with mode-specific colouration of data points.
c. The training trajectory of the network. d. Comparison of the probability density of the obtained
small-scale fields.

while still accurately reflecting overall flow features. The model’s capacity to predict
even minute changes in the flow structure is emphasized. The comparison of the Fourier
coefficients and PDFs of the predicted small-scale solutions to their precise counter-
parts is particularly significant. Although the extent of adherence does not reach the
level of precision observed in prior instances, the observed deviations predominantly
manifest in proximity to the zero velocity regime, exerting minimal influence on the
overarching field. This scrutiny reveals an amazing conformity to the exact solution,
increasing trust in the model’s correctness and reliability.

3 Discussion

In this study, we solely aim to demonstrate the method’s potential, without incorpo-
rating advanced strategies for PINNs, such as adaptive loss [55] or gradient-enhanced
techniques [56]. Nevertheless, the effectiveness of our proposed method has been
demonstrated in tackling fluid dynamics problems with uniform meshes and regular
geometries. The choice of Fourier transform has provided a structured representa-
tion that captures the frequency content of the solution. While these cases serve as
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Fig. 6 KS equation with 10% noise on the large-scale under the initial condition
u(x, 0) = cos(x/16)(1+sin(x/16)): a. Comparative analysis of the small-scale dynamics derived from
the numerical simulation and the proposed method. b. The training trajectory of the network. c.
Comparison of the PDFs of the obtained small-scale fields. d. Comparative assessment of the real
and imaginary components of Fourier coefficients signifying the small-scale dynamics, with the mode-
specific colouration of data points.

foundational examples, our method’s adaptability extends beyond such straightfor-
ward scenarios. In our subsequent discussions, we will delve into the application of
our approach to more complex problems, addressing challenges associated with non-
uniform meshes, complex geometries, large-scale data with noise, and high-dimensional
small-scale dynamics.

To address non-uniform meshes, various strategies can be employed to enhance
the adaptability of our proposed method. One effective approach involves utilizing
Chebyshev Polynomial expansions, which are particularly well-suited for irregularly
spaced points. Chebyshev polynomials offer advantages in accurately representing
functions on non-uniform grids, providing a robust solution for spatially varying
data. Alternatively, PINNs present a modern and versatile solution to transform non-
uniform meshes into uniform ones. PDE loss that enforces the governing equations
on the large-scale dynamics and data losses that ensure consistency with observed
measurements are incorporated. This integration of PINNs allows for adaptive mesh
transformations, enabling the model to effectively learn and represent complex spatial
dependencies, making our method adaptable to a wide range of mesh configurations
in fluid dynamics simulations.

For dealing with complex geometries, two possible solutions are listed here.
Firstly, the use of domain decomposition techniques can be employed, where the com-
plex geometry is broken down into simpler subdomains where the proposed method
can be applied more easily. This allows for a step-by-step approach to solving complex
problems. Secondly, employing advanced mesh generation algorithms, such as adaptive
mesh refinement, can help in discretizing complex geometries more effectively. These
algorithms dynamically adjust the mesh resolution based on the solution’s behaviour,
allowing for a more accurate representation of the underlying physical phenomena in
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Fig. 7 KS equation without unsteady terms under the initial condition u(x, 0) =
cos(x/16)(1 + sin(x/16)): a. Comparative analysis of the small-scale dynamics derived from the
numerical simulation and the proposed method. b. The training trajectory of the network. c. Com-
parison of the PDFs of the obtained small-scale fields. d. Comparative assessment of the real and
imaginary components of Fourier coefficients signifying the small-scale dynamics, with the mode-
specific colouration of data points.

intricate geometries. Combining these strategies with the proposed method opens up
avenues for tackling a wide range of complex problems efficiently and accurately.

In scenarios with large-scale data corrupted by noise, our proposed method
demonstrates a degree of robustness, as evidenced by its application to the KS equation
with synthetic measurements of large-scale data accompanied by 10% Gaussian noise.
The learned small-scale dynamics and Fourier coefficients in conjunction with the
exact solution of the 2D NS equation are presented in Fig. 6. Despite the presence
of noise, the method exhibits resilience, with the predicted dynamics maintaining key
structures, even though the overall accuracy may be slightly compromised compared
to a noise-free scenario. This resilience suggests that our approach can effectively han-
dle noise-induced uncertainties in large-scale data. To further address noise-related
challenges, alternative solutions can be explored. Denoising techniques, such as sig-
nal processing algorithms or machine learning-based approaches specifically designed
for noise reduction, can be applied to pre-process the large-scale data. Additionally,
incorporating advanced regularization methods in the training process can mitigate
the impact of noise on the learning process.

Considering the number of modes for small-scale dynamics, it can be
extremely high in complex cases, thus making direct modelling computationally
demanding. In our cases, we employ a strategy of truncation by discarding higher-
order modes that contribute minimally to the overall energy of the system. This
selective neglect of modes with negligible energy allows for a substantial reduction in
computational complexity without compromising the accuracy of the simulation. To
further enhance the representation of complex small-scale features, alternative strate-
gies with improved network architectures can be explored. Hierarchical models allow
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for a multi-level representation of features, capturing both global and local characteris-
tics. Decomposed networks, on the other hand, can separate the modelling of different
modes, providing a modular approach to handle the complexity of high-dimensional
small-scale dynamics in fluid systems.

Addressing challenges associated with uncertain or hard-to-specify initial
conditions is an integral aspect of our study. Notably, we have identified a viable
solution in cases where the relaxation time of the linear part in Eq. (3) is significantly
smaller than that of Eq. (3). In such instances, a reliable approximation emerges as
QMA (pM+qM ) = 0. It is noteworthy that the unsteadiness observed in the small-scale
dynamics predominantly stems from the large-scale, rather than being an inherent
characteristic. This is justified by the observation that the evolution of the small-scale,
induced by itself, is markedly smaller than other contributing terms. The efficacy
of this solution is demonstrated through testing on the chaotic KS case, where the
learned small-scale dynamics and Fourier coefficients, coupled with the exact solution,
are presented in Fig. 7. While overall accuracy may experience a slight compromise
compared to the unsteady scenario, particularly evident within the Fourier space, the
proposed method demonstrates notable robustness, preserving essential structural fea-
tures in the predicted dynamics. Despite the inclusion of unsteady terms, the proposed
method demonstrates notable robustness, preserving essential structural features in
the predicted dynamics.

4 Conclusions

This paper introduces a novel approach for characterizing small-scale dynamics in
complex systems through the development of a decoupling method. By modelling
large-scale dynamics independently and treating small-scale dynamics as a slaved sys-
tem, a Spectral PINN is proposed to approach the small-scale system in an orthogonal
basis function space, specifically utilizing Fourier space in this paper. The proposed
method introduces a new solving mode, where large-scale data is initially obtained with
relatively low computational demands, such as coarse meshes or Reynolds-Averaged
Navier-Stokes (RANS) simulations. Subsequently, the proposed Spectral PINN is
employed to capture detailed structures of the small-scale dynamics, bringing dis-
tinct benefits for improving efficiency and accuracy. The effectiveness of the method is
demonstrated through extensive numerical experiments, ranging from one-dimensional
Kuramoto–Sivashinsky equations to three-dimensional Navier-Stokes equations, show-
casing its versatility in addressing fluid dynamics problems. Furthermore, the paper
delves into the application of the proposed approach to more complex problems,
including non-uniform meshes, complex geometries, large-scale data with noise, and
high-dimensional small-scale dynamics. The results and insights obtained from these
scenarios contribute to a comprehensive understanding of the method’s capabilities
and limitations. In summary, the development of the method takes advantage of
both deep learning and first principles while avoiding the drawbacks associated with
exclusively data-driven systems, expanding the possibilities for reliably and effectively
predicting complicated multiscale systems.
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5 Methodology

As a typical PDE, Eq. (4) can certainly be solved through traditional numerical meth-
ods. However, extremely fine grids are required, which leads to prohibitively high
computational costs. To mitigate this challenge and efficiently address small-scale phe-
nomena, the use of Physics-Informed Neural Networks (PINNs) presents a promising
alternative, which leverages the power of deep learning to approximate complicated,
nonlinear problems. PINNs offer a cost-effective approach for solving both large-scale
and small-scale flow simulations since their computational cost is independent of grid
resolution. It makes PINNs a particularly attractive option for tackling small-scale
phenomena. In this section, we offer a brief introduction to PINNs and present a
detailed overview of our proposed spectral PINN, specifically designed to solve Eq. (4).

5.1 Classical PINN

Before introducing the proposed method, the Classical PINN is first introduced. For
solving the Eq. (1) with the PINN framework, a deep neural network is defined to
approximate the solution u and enforce the underlying physics of the system. The net-
work takes the form uθ(t, x), where θ represents the parameters of the neural network.
The loss function for PINN comprises multiple components, capturing the differential
equation, initial condition, and boundary condition constraints. Specifically, the loss
is given by:

LPDE = ∥∂uθ

∂t
− A (uθ)∥2L2(0,T ;L2(D)),

LIC = ∥uθ(0, x)− u0(x)∥2L2(D),

LBC = ∥uθ(t, x)− g(t, x)∥2L2(0,T ;L2(∂D)),

L(θ) = wPDELPDE + wICLIC + wBCLBC ,

(9)

and three components of the loss function are typically approximated using a suitable
numerical quadrature with quadrature points in space-time constituting data sets
SPDE = {(tiPDE , x

i
PDE)}NPDE

i=1 , SIC = {(tiIC , xi
IC)}NIC

i=1 , SBC = {(tiBC , x
i
BC)}NBC

i=1 ,
wPDE , wIC and wBC are weighted to balance the PDE, the initial condition and
the boundary condition. The loss function penalizes deviations from the PDE, initial
condition, and boundary condition at their respective data points. In the PDE loss,
the exact derivatives are computed using automatic differentiation. The training of
the PINN involves minimizing this loss function through optimization algorithms such
as stochastic gradient descent or Adam. PINN demonstrate the ability to learn the
underlying dynamics of the system, making them a versatile and effective tool for
solving complex PDEs.

5.2 Spectral PINN

To capture the dominant behaviour of the solution for separating the large-scale and
small-scale dynamics in the finite-dimensional space, the choice of projection operators
PM and QM is crucial. Assuming {ϕk}Nk=1 as the orthogonal basis for X N , the
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following modal decomposition of u can be introduced:

u(t, x) =

N∑
k=1

Uk(t)ϕk(x), (10)

where Uk(t) is determined by the inner product ⟨u, ϕk⟩X N . Theoretically, X N can be
constructed by proper orthogonal decomposition eigenmodes, Fourier modes, orthog-
onal function spaces, operator normal modes, or Koopman modes, etc. It’s important
to note that when representing u(t, x), modal expansion coefficients are randomly dis-
tributed in mode order and encompass a broad range of spatial scales. Therefore,
spectral expansions (e.g. Fourier modal expansions, Chebyshev Polynomial expan-
sions) are more suitable for this problem. In this paper, a finite Fourier modal space is
utilized to construct the spectral PINN, i.e., X N = {exp(ıkx)}Nk=1. Accordingly, the
subspace of large-scale and small-scale can be defined as X M = {exp(ıkx)}Mk=1 and

X M⊥
= {exp(ıkx)}Nk=M+1, respectively. And the solutions for Eq.(3) and Eq. (4) can

be represented respectively as:

pM (t, x) =

M∑
k=1

Uk(t)e
−ıkx,

qM (t, x) =

N∑
k=M+1

Uk(t)e
−ıkx.

(11)

The FFT and inverse FFT are potent tools that could be employed to convert between
the spatial domain and frequency domain. So the discretisation of bounded domain
D should be considered and then we can define u(t) = ({u(t, xj)}Nj=1) and U(t) =

({Uk(t)}Nk=1) for convenience. Then the Eq. (1) can be considered in the discrete
frequency domain as:

dU(t)

dt
= F

(
A
(
F−1(U(t))

))
. (12)

The following discussion and the proposed spectral PINN in this paper focus on this
frequency equation rather than the original equation in the spatial domain. The most
concerned equation that is used in the loss function of spectral PINN, i.e., the equation
for small-scale behaviour, could be presented in the discrete frequency domain as:

dŬ⊥(t)
dt

= F
(
QMA

(
F−1(U(t)

))
, (13)

with Ŭ⊥(t) = (0, {Uk(t)}Nk=M+1) which could be used to achieve the small-scale solu-
tion. Here a zero-vector 0 is employed to extend the length to N . For convenience,
let Ŭ(t) = ({Uk(t)}Mk=1,0) denote the frequency solution set corresponding to the

large-scale solution, and it’s trivial that U(t) = Ŭ(t) + Ŭ⊥(t).

17



Given the intricacy of small-scale behaviour, a neural network with a single input,
the time t, is employed as a tool to solve the Eq. (13). The neural network propa-
gator Gϱ

Ŭ(t)
(t; θ) subjects to the nonlinear equation and the data of specified initial

conditions, and the following holds with a proper precision:

Ŭ⊥(t) ≈ Gϱ

Ŭ(t)
(t; θ). (14)

The abstract description of Gϱ

Ŭ(t)
(t; θ) is considered as:

Gϱ

Ŭ(t)
(t; θ) : R+ × R|θ| → X M⊥

, (15)

where θ indicates the set of all parameters, including weights and biases, and |θ| is
the cardinality of θ. ϱ denotes activation functions, and both ϱ and the large-scale
physics Ŭ(t) should be specified in advance. For the sake of brevity, the output of
neural network Gϱ

Ŭ(t)
(t; θ) is denoted by Ŭ⊥

θ (t).

With the output of neural networks, Ŭ⊥
θ (t), the loss function used in spectral PINN

could be defined as follows:

LPDE = ∥dŬ
⊥
θ (t)

dt
−

F
(
A
(
F−1(Ŭ⊥

θ (t) + Ŭ(t))
))

∥2L2(0,T ;l2),

LIC = ∥Ŭ⊥
θ (0)− Ŭ⊥

0 ∥2l2 ,
L(θ) = wPDELPDE + wICLIC ,

(16)

where Ŭ(t) is given by classic numerical methods or neural networks with low cost
because it only captures the large-scale behaviour.
Remark 1. In the formulation of loss functions for the proposed spectral PINN, only
the residuals from the physics-guided nonlinear equations are involved. It is possible to
include experimental data in the loss function and even omit the residual part. This
means that it can be applied to more complicated problems without a simple equation
as guidance, i.e., it can be treated as a purely data-driven process.

In computing loss functions, the temporal derivative is typically computed using
automatic differentiation for accuracy. However, for high-dimensional problems like
three-dimensional Navier-Stokes problems or domains with extensive data or numer-
ous modes, the cost of automatic differentiation can be significant or may even be
impractical. In such cases, the finite difference method serves as an alternative for
solving the temporal derivative. But for the spatial derivative within the nonlinear
operator A , it can be easily represented in the Fourier space with properties of the
Fourier transform:

∂nu

∂xn
= F−1((ık)nF (u)).
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So the formulation of the loss functions for spectral PINN avoids the direct computa-
tion of spatial derivatives, especially for high-order derivatives, which can significantly
reduce computational complexity while ensuring high accuracy.
Remark 2. Classical PINN is designed to learn the global solution point by point in
the spatial domain for every time step. This task can involve complicated functions
with intricate patterns and interactions in both time and space, especially for systems
with chaotic behaviour or turbulence. In contrast to the classical PINN, spectral PINN
benefits from the transformation to frequency space, a low-dimensional representation
focusing on essential, local frequency information corresponding to the whole space
domain, simplifying the learning task. Fourier coefficients, representing the distribu-
tion of energy across different frequency components, effectively simplify the spatial
complexity and could be more amenable to learning. According to the energy cascade
theory, little whorls are slaved by big whorls and gain energy, a phenomenon associ-
ated with frequency rather than specific spatial locations. In addressing such small-scale
problems, the spectral PINN is deemed more suitable than classical PINN.

6 Supplementary information

Supplementary Video 1
Supplementary video for the case of 2D NS equations: A comprehensive depiction of
the full-scale, extracted large-scale and small-scale fields derived from the numerical
simulation at each time step, along with the predicted small-scale dynamics obtained
with the proposed method.
Supplementary Video 2
Supplementary video for the case of 3D NS equations: A comprehensive depiction of
the small-scale fields derived from the numerical simulation at each time step, along
with the predicted small-scale dynamics obtained with the proposed method.
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