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Abstract
Vector addition systems (VAS), also known as Petri nets, are a popular model of concurrent systems.
Many problems from many areas reduce to the reachability problem for VAS, which consists of
deciding whether a target configuration of a VAS is reachable from a given initial configuration. One
of the main approaches to solve the problem on practical instances is called flattening, intuitively
removing nested loops. This technique is known to terminate for semilinear VAS due to [21]. In this
paper, we prove that also for VAS with nested zero tests, called Priority VAS, flattening does in fact
terminate for all semilinear reachability relations. Furthermore, we prove that Priority VAS admit
semilinear inductive invariants. Both of these results are obtained by defining a well-quasi-order on
runs of Priority VAS which has good pumping properties.
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1 Introduction

Vector addition systems (VAS), also known as Petri nets, are a popular model of concurrent
systems. VAS have a very rich theory and have been intensely studied. In particular, the
reachability problem for VAS, which consists of deciding whether a target configuration of
a VAS is reachable from a given initial configuration, has been studied for over 50 years.
It was proved decidable in the 1980s [27, 15, 16], but its complexity (Ackermann-complete)
could only be determined recently [6, 7, 22].

In [18] and [21], Leroux proved two fundamental results about the reachability sets of
VAS. In [18], he showed that every configuration outside the reachability set R of a VAS is
separated from R by a semilinear inductive invariant (for basic facts on semilinear sets see e.g.
[10]). This immediately led to a very simple algorithm for the reachability problem consisting
of two semi-algorithms, one enumerating all possible paths to certify reachability, and one
enumerating all semilinear sets and checking if they are separating inductive invariants.

In [21], he proved that if the reachability set of a VAS is semilinear, then it is flattable.
Flattability states the existence of a finite sequence ρ1, . . . , ρr of transition sequences such
that every reachable vector can be reached via a sequence in ρ∗

1 . . . ρ∗
r , i.e., by means of a

“flat” expression without nested loops. Flattability leads to an algorithm for deciding whether
a semilinear set is included in or equal to the reachability set of a given VAS, i.e. whether a
VAS has the set of desired behaviours. If it is not included, guess the violating configuration
and check it is unreachable, otherwise guess a linear path scheme and verify it.

One major branch of ongoing research in the theory of VAS studies whether results
like the above extend to more general systems [29, 3, 4, 30, 1, 24, 26, 12, 17, 8, 25, 2]. In
particular, the reachability problem has been proved decidable for Priority VAS, an extension
of VAS in which counters can be tested for zero, albeit in restricted manner: there is a total
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134:2 Flattability of Priority Vector Addition Systems

order on the counters such that whenever a counter is tested for 0, all smaller counters are
simultaneously tested as well. In a famous but very technical paper, Reinhardt proved that
the reachability problem remains decidable for Priority VAS [29]. In [3] and later in his thesis
[4], Bonnet presented a more accessible proof which was obtained by extending the result of
[18], separability by inductive semilinear sets.

In this paper we extend the result of [21] to arbitrary Priority VAS, and on the way obtain
another proof that [18] extends. That is, we show that 1. Priority VAS admit semilinear
inductive invariants, and 2. semilinear Priority VAS are flattable. Notice that 2. was not
known even for the special case of one testable counter. Furthermore, as remarked in [25],
while two-dimensional vector addition systems with a zero test and a reset are effectively
semilinear [8], they are not flattable in general. Hence, our second result establishes a
theoretical limit of flattability.

These results are obtained via two technical contributions of independent interest.

Regular expressions for Priority VAS. We give a new characterization of the reachability
relations of Priority VAS. More precisely, we show that a relation is the reachability relation
of a Priority VAS if and only if it can be represented as a regular expression over the
reachability relations of standard VAS, with the restriction that the Kleene star operation
can only be applied to monotone relations. For example in case of the Priority VASS in
Figure 1 as V, we would consider the VASS without the zero test transition as V0, and
if we are interested in the reachability relation starting at qs, ending at qs and requiring
counter x to start and end at 0, formally →∗

V,qs→qs
∩{xin = xout = 0}, then we would rewrite

→∗
V,qs→qs

∩{xin = xout = 0} = (→∗
V0,qs→qt

∩{xin = xout = 0})∗. I.e., instead we consider
the inner normal VASS starting at qs, ending at qt and fixing x to 0 at start and end, then
taking the reflexive transitive closure of this relation. In general zero testing a coordinate
will generate an expression of the form E∗, where E fixes some coordinates to 0 at start
and end. One important aspect of this characterization is that all intersections with linear
relations (for example here with xin = xout = 0) can be pushed purely to the inner VASS
level, where they were dealt with in [21]. Hence in our arguments we only have to consider
how to deal with ◦ and ∗, not with intersections or projections.

qs q1 q2 qt
z + +

x + + x − −; y + +

x == 0

qs q1 q2 qt q′
s q′

1 q′
2 q′

t

z + +

x + + x − −; y + +

z + +

x == 0

x == 0

Figure 1 Example of a PVASS and an equivalent (for xin = 0) flattened version.

Characterizations of complicated relations using RegEx over simpler relations have already
proven useful in other contexts [28, 11].

A well-quasi-order (wqo) on the set of runs of Priority VAS. A wqo on a set is a partial
order such that every subset has finitely many minimal elements. There exist wqos on many
kinds of objects: vectors, sequences, trees, or graphs. A wqo on the set of runs of a PVAS
provides the following decomposition: Let src(ρ) denote the source of a run ρ, tgt(ρ) denote
its target and ends(ρ) = (src(ρ), tgt(ρ)) its pair of ends, i.e. source/target pair. Let Ωmin

be the finite set of minimal runs. Then the reachability relation →∗
V can be written as

→∗=
⋃

ρ∈Ωmin
{ends(ρ′) | ρ′ ≥ ρ}, i.e. we observe that every pair of configurations c, c′ such
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that c →∗ c′ is witnessed by some run, and then we split runs into one group for every
minimal run. Intuitively, this reduces the problem of proving flattability of a VAS to proving
flattability in each of the groups determined by the minimal runs. The proof that semilinear
VAS are flattable follows this scheme. More precisely, the proof, given in [21], takes the wqo
on the runs of a VAS introduced by Jancar in [14], proves that it satisfies certain pumping
properties, properties shown in [14, 19, 20] and new ones, and derives the result. We proceed
in the same way, starting from a wqo on the set of runs of a Priority VAS1.

Let us now cconsider the concrete case of pumping and flattening in the example in
Figure 1. Consider the run ρ : qs → q1 → q2 → qt which does not use any of the self-loops.
Intuitively, if we did not have the xin = xout = 0 restriction, both the x and y coordinates
can be pumped arbitrarily along this run. In order to pump the x coordinate simply add
one use of the self-loop on q1, and to increase the y coordinate add both self-loops once.
Observe that despite using a loop which is not non-negative in the second case, and hence
could not be arbitrarily often repeated by itself, this loop only decreases a coordinate which
was already pumped prior in the run, i.e. the sequence of loops can be pumped.

Using this basic image of pumping, we can now describe the idea of our proof. In the
example, define E :=→∗

V0,qs→qt
∩{xin = xout = 0}, then the target is E∗ as explained above.

One first determines by induction hypothesis a decomposition of E into groups of runs. In
this case there is one group, as the run above is the unique minimal run.

Now we proceed to describe runs of E∗ as sequences of which group of E was used. I.e.
we performed one important mental step here: A run of E∗ is now viewed as a sequence
C0 →E C1 →E · · · →E Cr of steps in E, i.e. every step is now one application of the outer
loop, and we abstract away the information of how precisely these steps look, in particular
how often the inner self-loops were taken. This leads to pumping a vector into a run having
two cases: Either add more outer loops/transitions, the same as for VASSs, or increase one
of the already existing loops. For example for the run qs(0, 0, 0) →E qt(0, 0, 1) described
above, with respect to E∗, we can pump both the y and z coordinates arbitrarily. Pumping
y is an instance of increasing an existing loop: Change the existing loop by taking the inner
self-loops. On the other hand, pumping z is the other type: We simply add more instances
of the outer loop. The resulting PVASS without any nested loops is depicted in the right of
Figure 1. Observe in particular that for pumping those vectors it was not necessary to add
arbitrarily many repetitions of the outer loop which take the inner loops arbitrarily often.

Structure of the paper. In Section 2 we define a few preliminaries. Section 3 introduces
VAS and Priority VAS. Our first result, the characterization of the reachability relations
of Priority VAS in terms of regular expressions, is proved in Section 4. In Section 5 we
define well-quasi-orders, and in particular our novel wqo on runs of Priority VAS. Section
5.4 introduces geometric preliminaries and previous results about VAS needed to state and
prove our results. Section 6 defines flattability, and proves our main result.

2 Preliminaries

We let N,Z,Q,Q≥0 denote the sets of natural numbers containing 0, integers, and (non-
negative) rational numbers. We use uppercase letters for sets/relations and boldface for
vectors and sets/relations of vectors. For the i-th entry of a vector x ∈ Qd we write x(i).

1 The wqo for VAS does not respect the zero tests and hence does not work, a new ordering is necessary.

ICALP 2024



134:4 Flattability of Priority Vector Addition Systems

Given sets X, Y ⊆ Qd, Z ⊆ Q, we write X + Y := {x + y | x ∈ X, y ∈ Y} for the
Minkowski sum and Z · X := {λ · x | λ ∈ Z, x ∈ X}. By identifying elements x ∈ Qd with
{x}, we define x + X := {x} + X, and similarly λ · X := {λ} · X for λ ∈ Q.

A set L ⊆ Nd is linear if L = b + Np1 + · · · + Npr with b, p1, . . . , pr ∈ Nd. A relation
L ⊆ Nd′ × Nd′′ is linear if it is linear when viewed as a set. A set/relation S is semilinear if
it is a finite union of linear sets/relations. The semilinear sets/relations coincide with the
sets/relations definable via formulas φ ∈ FO(N, +), also called Presburger Arithmetic.

Given relations R1 ⊆ Nd′ × Ndmid and R2 ⊆ Ndmid × Nd′′ , we write R1 ◦ R2 = {(v, w) ∈
Nd′ × Nd′′ | ∃x ∈ Ndmid : (v, x) ∈ R1, (x, w) ∈ R2} for composition. Given R ⊆ Nd′ × Nd′ ,
we write R∗ for the reflexive and transitive closure (w.r.t. ◦).

Let j, d′, d′′ ∈ N with j ≤ d′, d′′. A relation R ⊆ Nd′ × Nd′′ is monotone in the j-th last
coordinate if for every (x, y) ∈ R we also have (x + ed′+1−j , y + ed′′+1−j) ∈ R, where ek is
the k-th unit vector2. A relation R ⊆ Nd′ × Nd′′ is monotone if d′ = d′′ and R is monotone
in every coordinate.

3 Vector Addition Systems and Priority Vector Addition Systems

A priority vector addition system with states (PVASS) V of dimension d ∈ N is a finite
directed multigraph (Q, E), whose edges e are labelled with a pair of a vector f(e) ∈ Zd and
a number g(e) ∈ {0, . . . , d}. The set of configurations of V is Q × Nd. An edge e = (p, p′)
with label (f(e), g(e)) induces a relation →e on configurations via c = (q, x) →e c′ = (q′, x′)
if and only if q = p, q′ = p′, x(j) = 0 for all 1 ≤ j ≤ g(e) and x′ = x + f(e). Intuitively,
the edge can only be used in state p to move to state p′ and adds the vector f(e) to the
current configuration. However, two conditions have to be fulfilled: We have to again arrive
at a configuration c′ (i.e. x′ has to stay non-negative), and x must be 0 on the first g(e)
coordinates. We say that these coordinates are tested for 0. Observe that contrary to Minsky
machines, if a counter i is tested for 0, also all smaller counters j ≤ i are tested for 0.

We write →V=
⋃

e∈E →e and let →∗
V denote its reflexive and transitive closure. A

run of V is a finite sequence ρ = (c0, c1, . . . , ck) of configurations such that ci →V ci+1
for all 0 ≤ i ≤ k − 1. The source of the run ρ is the configuration src(ρ) := c0, and the
target is tgt(ρ) := ck. The pair of ends of ρ is ends(ρ) = (src(ρ), tgt(ρ)). A configuration
tgt is reachable from src in V if src →∗

V tgt, or equivalently if there exists a run ρ with
ends(ρ) = (src, tgt).

A priority vector addition system (PVAS) V is a PVASS with only one state, a vector
addition system with states (VASS) is a PVASS where g(e) = 0 for every edge e, i.e. no
counter is ever tested for 0. A VAS is a PVAS which is also a VASS.

Since the class of reachability relations of PVASS is lacking some important closure
properties, and we do not want to distinguish between PVASS and PVAS all the time, we
instead consider a larger class of sets (which coincides for the two models). Intuitively, not
every run is accepting anymore, instead a run has to start in a given initial state p and end
in a given final state q, and certain counters have to start and/or end with fixed values. The
idea is to then view the relation as subset of Nd′ × Nd′′ where d′, d′′ are the number of input
and respectively output counters which are not fixed.

▶ Definition 1. [5] A relation X ⊆ Nd′ ×Nd′′ is a (P)VASS section if there exists a (P)VASS
V of dimension d ≥ d′, d′′, states p, q and vectors bs ∈ Nd−d′

, bt ∈ Nd−d′′ such that

2 The reason for starting to count coordinates from the end will be explained in the next section.
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X = {(x, y) ∈ Nd′ × Nd′′ | (p, (bs, x)) →∗
V (q, (bt, y))}.

This is the reason for defining monotonicity counting from the end: The same counter
has different indices as unit vector because of fixing a different number of coordinates.

We write the section defined by the PVASS V, the states p, q and the vectors bs, bt as(V,p,q
bs,bt

)
. If V is a PVAS, then we leave away the unique states and only write

( V
bs,bt

)
. The

reason for this notation is that PVASS sections should be viewed as an intersection of two
relations: The reachability relation with fixed source state and target state, and the linear
relation defined by the fixed coordinates. In the notation we like to split these parts.

We have three remarks on the definition of PVASS sections.
▶ Remark 2. We fix coordinates starting from the first, i.e. the most often zero tested
coordinates are fixed first. This does not restrict the class of PVAS sections.
▶ Remark 3. At the cost of increasing the dimension by 3, states are a special case of fixed
never-zero-tested coordinates [13], hence (P)VASS sections can equivalently be defined by
(P)VAS. Furthermore, similar to how zero tests in Minsky machines can be assumed to only
change the state, we will always require that f(e)(j) = 0 for all j ≤ g(e), i.e. any counter
which is being zero tested is not updated. To obtain this assumption, simply move to an
intermediate state from which you perform the additions afterwards.
▶ Remark 4. When using states, we can w.l.o.g. require bs = 0d−d′ and bt = 0d−d′′ , i.e.
fixed coordinates are fixed to 0. However, since it is sometimes preferable to not use states,
we allow general vectors bs, bt for the fixed coordinates.

4 Equivalence of PVASS and Regular Expressions over VASS

Next we define the grammar which we will then prove to be equivalent to PVASS sections.
Intuitively, one considers regular expressions where leaves/letters are VASS sections Y.
Intermediate relations might have different input and output dimensions, hence non-terminals
depend on the dimensions, and composition requires matching dimensions.

▶ Definition 5. Consider the following grammar with non-terminals Ed′,d′′ for d′, d′′ ∈ N:

Ed′,d′′ = Yd′,d′′ | Ed′,dmid
◦ Edmid,d′′ | Ed′,d′′ ∪ Ed′,d′′

Ed′,d′ = Yd′,d′ | Ed′,dmid
◦ Edmid,d′ | Ed′,d′ ∪ Ed′,d′ | E∗

d′,d′ ,

where the Yd′,d′′ are VASS sections ⊆ Nd′ × Nd′′ . An expression Ed′,d′′ defines in a
natural way a relation Rel(Ed′,d′′) ⊆ Nd′ ×Nd′′ , by interpreting ◦ as composition of relations,
∪ as union and ∗ as reflexive transitive closure. We usually write E instead of Ed′,d′′ when
the dimensions in(E) = d′ and out(E) = d′′ are clear.

Before we state the main theorem of this section, there are two things to note about this
definition of the semantics. 1) ∗ by definition adds reflexivity, however it only does so in
the non-fixed counters. This was one goal of the definition allowing different dimensions of
intermediate objects. 2) The semantics for composition however are not as intuitive as it
might seem, see the following example.

▶ Example 6. Let V be the 1-dimensional VAS with two transitions, incrementing x and
decrementing x. Then its reachability relation is →∗

V= N × N. Consider Rel(
( V

ϵ,0
)

◦
( V

1,ϵ

)
) ⊆

N×N. We have Rel(
( V

ϵ,0
)
) = N× {ϵ} and Rel(

( V
1,ϵ

)
) = {ϵ} ×N, where we write ϵ ∈ N0 for the

unique empty product. Despite the fixed coordinates 0, 1 ∈ N not matching up, we obtain
Rel(

( V
ϵ,0

)
◦

( V
1,ϵ

)
) = N × N by definition. This is due to the composition being only defined on

the remaining, i.e. non-fixed coordinates.

ICALP 2024



134:6 Flattability of Priority Vector Addition Systems

We can now state the main theorem of this section.

▶ Theorem 7. A relation X ⊆ Nd′ × Nd′′ is a PVASS section iff X = Rel(E) for some E.

Proof. “⇒”: Let X =
( V

bs,bt

)
⊆ Nd′ × Nd′′ for a d-dimensional PVAS V without states,

since they produce the same class of sections as in Remark 3. We will prove by induction
on k := maxe∈E g(e), i.e. the maximal zero-tested counter, that every PVAS section
Xk ⊆ Nd′ × Nd′′ has an equivalent expression Ek in the grammar. In the base case k = 0, V
is actually a VAS, and hence Y := Xk is an equivalent expression in the grammar.

Induction step: k − 1 → k: For j ∈ {k − 1, k} let Ej := {e ∈ E | g(e) ≤ j}, in particular
Zk := Ek \ Ek−1 are the edges with g(e) = k, i.e. testing counters 1, . . . , k. Let Vj be the
PVASS with edges Ej and the same labels f(e) and g(e) as V. By induction, for Vk−1 and
any vectors bs, bt there exists Ek−1,bs,bt

with Rel(Ek−1,bs,bt
) =

(Vk−1
bs,bt

)
.

Importantly, the semantics →e of a single action e ∈ E, even if e performs a zero test,
can be defined by a VASS. In particular for Zk we define the following d-dimensional VASS
VZk

with |Zk| + 2 states Q = {qin, qfin} ∪ Zk and 2|Zk| actions: For every e ∈ Zk, let
e′ = (qin, e) with label f(e′) = f(e) and e′′ = (e, qfin) with label f(e′′) = 0. Intuitively, we
non-deterministically choose an e ∈ Zk and execute its action, afterwards moving to qfin.
We do not perform the zero test, instead this will be done using the VASS section. Namely
we define EZk

:=
(VZk

,qin,qfin

0k,0k

)
, i.e. we require the first k counters to be 0 at the start and

end. That their values will still be 0k also at the end follows by the assumption in Remark 3,
that zero tests do not change the counters they are testing. Then we define

Ek,bs,bt := Ek−1,bs,bt ∪ Ek−1,bs,0k ◦
(
Ek−1,0k,0k ∪ EZk

)∗ ◦ Ek−1,0k,bt
.

Intuitively, the expression says the following: Either the zero testing actions in Zk are
never used, or we move from bs to a configuration with the first k counters fixed to 0, then
repeatedly either move to another configuration with those counters 0 without using Zk, or
we can use Zk. The computation ends using Vk−1 and reaching the given target bt.

Well-definedness: We have to prove that in this expression Ek the operations ◦, ∪, ∗ are
only used on matching dimensions. This follows since our specified targets and sources
coincide. For example in the union Ek−1,0k,0k ∪ EZk

, both parts fix 0k, 0k as required.
Correctness: It is clear that Rel(Ek,bs,bt

) ⊆
( Vk

bs,bt

)
, since the expression describes a

special form of runs from bs to bt. For the other direction, let (c0, . . . , cr) be a run of
Vk such that c0 ∈ {bs} × Nd−d′ and cr ∈ {bt} × Nd−d′′ . We have to show that (c0, cr) ∈
Rel(Ek,bs,bt

). Case 1: The run does not use actions in Zk. Then the run shows membership
in

(Vk−1
bs,bt

)
⊆ Rel(Ek−1,bs,bt

) ⊆ Rel(Ek,bs,bt
).

Case 2: The run does use Zk. Let πk : Nd → Nd−k be the projection to the last d − k

coordinates, i.e. it removes the anyways fixed coordinates. Let i1, . . . , is be the indices such
that cij

→ cij+1 uses an action aj ∈ Zk, i.e. (πk(cij
), πk(cij+1)) ∈ Rel(EZk

). Then the part
of the run (cij+1, . . . , cij+1) does not use any Zk transitions. Hence (πk(cij+1), πk(cij+1)) ∈(Vk−1

0k,0k

)
⊆ Rel(Ek−1,0k,0k ) for all j ∈ {1, . . . , s}. Hence we already obtain (πk(ci1), πk(cis+1)) ∈

Rel((Ek−1,0k,0k ∪EZk
)∗). Now similar to πk, let πd−d′ , πd−d′′ be the projections removing the

first d − d′, d − d′′ coordinates. Since (c0, . . . , ci1) does not use Zk and c0 ∈ {bs} ×Nd−d′ , we
obtain (πd−d′(c0), πk(ci1)) ∈

(Vk−1
bs,0k

)
⊆ Rel(Ek−1,bs,0k ) and similarly (πk(cis+1), πd−d′′(cr)) ∈(Vk−1

0k,bt

)
⊆ Rel(Ek−1,0k,bt

). Altogether we obtain (πd−d′(c0), πd−d′′(cr)) ∈ Rel(Ek,bs,bt
).

“⇐”: This follows by structural induction. The construction follows the standard
conversion RegEx to ε-NFA, while adding some obvious zero tests.

As our definition of Rel(Y) is representation independent, we choose to represent every
Rel(Y) using VASS of the same dimension d, and with bs = 0k and bt = 0l for some k, l ∈ N.
That every VASS section has a representation with bs = 0k and bt = 0l follows since one can
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simply add a new initial and final state qin, qfin, and add bs when leaving qin respectively
subtract bt when entering qfin. To guarantee that all VASS have the same dimension d,
add unused counters. We will prove by induction that every subexpression E′ of the given
starting expression E has an equivalent PVASS section, where the PVASS has dimension d

and bs = 0d−in(E), bt = 0d−out(E). In the base case E = Y we have required this above.
E ∪ E′: By induction hypothesis, we can write Rel(E) =

( V,p,q

0d′ ,0d′′

)
and Rel(E′) =

(V′,p′,q′

0d′ ,0d′′

)
using d dimensional PVASS V, V ′. That both sections use the same d′ and d′′ follows by the
restriction on expressions. Our new PVASS simply has a new initial and final state, and
performs a non-deterministic choice whether to move to p and simulate V or move to state
p′ and simulate V ′.

Formally, write V = (Q, E) and V = (Q′, E′). We define the new PVASS V ′′ as (Q ∪ Q′ ∪
{qin, qout}, E ∪ E′ ∪ {(qin, p), (qin, p′), (q, qout), (q′, qout)}. All copied edges keep their labels,
the four new edges get the label g(e) = 0, i.e. they do not zero test, and f(e) = 0d, i.e. they
do not change the counters. It is easy to see that Rel(E ∪ E′) =

(V′′,qin,qout

0d′ ,0d′′

)
.

E◦E′: By induction hypothesis, we can write E =
( V,p,q

0d−d′ ,0d−dmid

)
and E′ =

( V′,p′,q′

0d−dmid ,0d−d′′

)
using d dimensional PVASS V, V ′. Our new PVASS first simulates V, then checks that the
first dmid counters are 0, before simulating V ′. Checking the intermediate configuration will
be done using a zero test.

Formally, write V = (Q, E) and V ′ = (Q′, E′). We define the PVASS V ′′ as (Q ∪ Q′, E ∪
E′ ∪ {(q, p′)}, where prior edges keep their labels, and f(q, p′) = 0d and g(q, p′) = d − dmid,
i.e. we zero test the first d − dmid counters. It is easy to see that Rel(E ◦ E′) =

( V′′,p,q′

0d−d′ ,0d−d′′

)
.

E∗: By induction hypothesis, we can write E =
( V,p,q

0d−d′ ,0d−d′

)
, where both vectors have

the same number of fixed coordinates by the restriction on the grammar. We now simply
add a new initial state and an edge from q to this new initial state which performs zero tests
on the first d − d′ coordinates.

Formally, write V = (Q, E) and define V ′ = (Q ∪ {qin}, E ∪ {(qin, p), (q, qin)}), where
edges e ∈ E keep their labels, and f(qin, p) = f(q, qin) = 0d, i.e. counters are not changed,
and g(qin, p) = g(q, qin) = d − d′, i.e. the first d − d′ counters are zero tested. It is easy to
see that Rel(E∗) =

( V′,qin,p

0d−d′ ,0d−d′

)
. ◀

The “⇒” direction breaks down for a Minsky machine. Namely for k = 2, one subexpres-
sion is (

( V1
02,02

)
∪ EZ2)∗. The parts we take the union of do not have the same dimension, as

the first coordinate should be free in EZ2 for a Minsky machine.
In future sections we will require expressions where ∗ is only used on relations X which

are monotone. Surprisingly, we can without loss of generality require this. Before we prove
this, let us first provide an example of a valid expression in the grammar where this fails.

▶ Example 8. Let V be the PVAS of dimension 2 without any transitions. Consider
the expression (

( V
ϵ,01

)
◦

( V
01,ϵ

)
)∗. The expression below the ∗ says that you start with any

configuration, fix the first counter to 0 and end with any configuration. Since the PVASS V
does not have any transitions, in order for the composition to be possible, you have to have
already started with the first counter equal to 0, and also end with such a configuration.

Hence the better expression would be (
( V

01,01

)
◦

( V
01,01

)
)∗. This expression fulfills the

property that if E′ is a subexpression of E∗, then in(E′) ≥ in(E) and out(E′) ≥ out(E), i.e.
interior nodes have fewer fixed coordinates. This will suffice for monotonicity.

▶ Lemma 9. Let d′ ∈ N and E expression such that every subexpression E′ fulfills in(E′) ≥ d′

and out(E′) ≥ d′. Then Rel(E) is monotone in the j-th last coordinate for all j ≤ d′.
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Proof. By structural induction. In the base case, Y =
(V,p,q

bs,bt

)
for a VASS V. Since VAS

reachability relations are monotone in every coordinate, when the last d′ coordinates are
neither fixed in the input nor output then Y is monotone in these coordinates.

E ∪ E′: Relations monotone in the j-last coordinate are clearly stable under union.
E ◦ E′: Let j ≤ d′, d1 = in(E), d2 = out(E), d3 = out(E′). Since the subexpression E

fulfills in(E) ≥ d′ and out(E) ≥ d′ by assumption, Rel(E) is by induction monotone in the
j-th last coordinate. Same for Rel(E′). Let (x1, x2) ∈ Rel(E) and (x2, x3) ∈ Rel(E′). By
monotonicity in the j-th last coordinate we obtain (x1 +ed1+1−j , x2 +ed2+1−j) ∈ Rel(E) and
(x2 + ed2+1−j , x3 + ed3+1−j) ∈ Rel(E′). Hence (x1 + ed1+1−j , x3 + ed3+1−j) ∈ Rel(E ◦ E′).

E∗: Let j ≤ d′. By repeatedly applying the case of ◦, we obtain for all n ∈ N that En is
monotone in the j-th last coordinate. Again by stability of such relations under union, the
relation E∗ =

⋃
n∈N En is monotone in the j-th last coordinate. ◀

▶ Corollary 10. For every expression E, there is another expression E′ with Rel(E) = Rel(E′),
where ∗ is only applied on monotone relations.

Proof. Let E be an expression. Apply first ⇐ and then ⇒ of Theorem 7. The constructed
expression fulfills for every subexpression E∗ and subsubexpression E′ of E∗ that in(E′) ≥
in(E) and out(E′) ≥ out(E). Then by Lemma 9, Rel(E) is monotone in every one of the last
in(E) = out(E) coordinates, i.e. in every coordinate. Hence Rel(E) is monotone. ◀

5 A Well-Quasi-Order on Runs of Priority VAS

Starting from this section, we also use ∗ for repeated concatenation, not only transitive
closure ∗ of repeated composition. To distinguish them, we write ∗concat for concatenation ∗.

A partial order (X, ≤) is a reflexive, transitive and antisymmetric relation ≤⊆ X×X. A set
U ⊆ X is upward-closed if for all x ∈ U and all x′ ≥ x we have x′ ∈ U. Every subset X′ ⊆ X
is contained in a unique minimal upward-closed set ⌈X′⌉ := {x′ ∈ X | ∃x ∈ X′ : x ≤ x′}. A
basis of an upward-closed set U is a subset F ⊆ U such that ⌈F⌉ = U.

A partial order is a well-quasi-order if every upward closed set U ⊆ X has a finite basis
F. Or equivalently, for every infinite sequence x1, x2, · · · ⊆ X there are indices i < j with
xi ≤ xj , or equivalently there are indices (im)m∈N such that xim ≤ xik

for all m ≤ k.
Most well-quasi-orders, in particular the ones we will need, are constructed from the

following basic ordering by applying standard closure properties stated afterwards:

▶ Example 11. Let F be finite. Then the equality relation = is a well-quasi-order on F.

▶ Lemma 12. Let (X1, ≤1), (X2, ≤2) be wqo’s. Then ((X1 ∪ X2, ≤1 ∪ ≤2) is a wqo.

▶ Lemma 13 (Dickson’s Lemma). (X1, ≤1), (X2, ≤2) wqo’s ⇒ (X1 × X2, ≤1 × ≤2) wqo.

▶ Lemma 14 (Higman’s Lemma). Let (Σ, ≤) be a well-quasi-order. Then (Σ∗concat , ≤∗concat)
is a well-quasi-order, where ≤∗concat is the scattered subword ordering defined via w =
(x1, . . . , xr) ≤ w′ = (y1, . . . , ys) ⇐⇒ there exists an injective order preserving function
f : {1, . . . , r} → {1, . . . , s} such that xi ≤ yf(i) for all i ∈ {1, . . . , r}.

5.1 Well-Quasi-Order for VAS
In order to explain the wqo for expressions, we start by defining Jancar’s wqo ordering for
runs of a VAS V. A run is no longer viewed as a sequence of configurations, but instead
as element of Ω(V) = Nd × (Nd × E)∗concat × Nd, where E is the set of edges of the VAS.
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The first part is src(ρ), the last part is tgt(ρ) and the middle parts are the steps of the run.
One can extend this to states by replacing Nd by Q × Nd everywhere and requiring states to
coincide. Ω(V) is well-quasi-ordered by Lemma 13 and Lemma 14.

This wqo is carefully engineered to ensure that the relation {ends(ρ′) | ρ′ ≥ ρ} =:
ends(ρ) + Pρ has good properties. Pρ is called the transformer relation of the run. A vector
(v, w) is pumpable into ρ if (v, w) ∈ Pρ. The minimal property we want Pρ to fulfill is closure
under addition, i.e. if a vector can be pumped once, then it can be pumped arbitrarily often.
To understand why exactly the above expression ensures this, consider Figure 2.

q p

(0, 1, −1) (0, −1, 2)
(1, 0, 0)

Figure 2 Typical example of a non-semilinear VAS [13]. Edges e are only labelled with their
update f(e), since this is a VASS, i.e. every edge fulfills g(e) = 0.

If we were to replace the middle part of the Jancar ordering with (Nd)∗ instead, then the
run q(0, 1, 1) → p(1, 1, 1) would be smaller than the run q(0, 1, 1) → q(0, 2, 0) → p(1, 2, 0) →
p(1, 1, 2). Hence pumping properties would tell us that p(1, 1, n) should be reachable for
every n ≥ 1, which is obviously wrong. One might also consider the ordering without
explicitly remembering the start and end configurations, but then some vectors with negative
components might be claimed to be pumpable, since Higman might insert the smaller run in
the middle. Pumping negative vectors is however trivially impossible.

Above we provided one way to define the transformer relation Pρ. As shown in [19, Lemma
7.5], there is an important equivalent characterization. Given a configuration c, one defines
the transformer relation Pc for this configuration via (x, y) ∈ Pc ⇐⇒ c + x →∗

V c + y.
Intuitively, you utilize the existence of configuration c to transform x into y. Another
intuition is that c is a capacity which allows us to slightly enter the negative (up to c). This
relation is a generalization of “pumping possible via self-loop on a state”. The equivalent
characterization of Pρ is: Write ρ = (c0, . . . , cr), then Pρ = Pc0 ◦ · · · ◦ Pcr

.
Consider the example in Figure 1 in the introduction. At any configuration c1 in state q1,

we have Pc1 = {(x, y, z), (x′, y, z) | x′ ≥ x}, i.e. one can “transform x into a larger number”
and at a configuration c2 in state q2, we have Pc2 = {(x, y, z), (x′, y′, z) | x + y = x′ + y′, x ≥
x′}, i.e. one can “transform any number of x into the same number of y”. This leads any run
ρ through states qs → q1 → q2 → qt to be able to arbitrarily increase x and y, as mentioned
in the introduction. Beware though that if a VASS has a complicated nested loop structure,
then Pc can be non-semilinear.

5.2 Well-Quasi-Order for Expressions
We will now define for every expression E a well-quasi-ordered set of runs Ω(E). We want
the different segments of the runs to be labelled with which subexpression of E they belong
to. Hence let Tag be a set containing unique start and end labels λs(E′) and λt(E′) for
every node E′ in the syntax tree of E. The set Ω(E) will be modelled after the Jancar
ordering, though configurations might now have different dimensions. It is important to
understand why (Nd × E)∗concat has to be used for the Jancar ordering to lead to nice
properties. The answer: It is equivalent to using (Nd × E ×Nd)∗concat : When thinking of →∗

V
as {→e1 ∪ · · · ∪ →em}∗, this means every letter is supposed to be a run of the expression E
inside the ∗. For a VASS, this means (src, tgt) ∈→e tagged with the choice of e.
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▶ Definition 15. If Y ⊆ Nd′ ×Nd′′ is a VAS section represented by VAS V, bs, bt, let πin, πout

be the projections projecting away fixed coordinates of in- and output. Let Ωbs,bt
be the set of

runs ρ ∈ Ω(V), whose source and target have the correct values on fixed coordinates. We define
Ω(Y) = {(πin(src(ρ)), λs(Y)wλt(Y), πout(tgt(ρ))) | ρ = (src(ρ), w, tgt(ρ)) ∈ Ωbs,bt(V)}. I.e.
we consider runs of V with source and target adhering to the fixed coordinates, add markers
in the word w, and instead of storing the full source and target, we only store the non-fixed
coordinates. For ρ ∈ Ω(Y), we refer to the projected configurations as src(ρ) and tgt(ρ).

We define Ω(E1 ∪ E2) = Ω(E1) ∪ Ω(E2), i.e. we simply take unions of the sets of runs.
We define Ω(E1 ◦ E2) = {λs(E1)ρ1λt(E1)λs(E2)ρ2λt(E2) | tgt(ρ1) = src(ρ2)} ⊆ Tag ×

Ω(E1) × Tag2 × Ω(E2) × Tag. I.e. we concatenate the runs if possible and use markers.
We define Ω(E∗) = {λs(E)ρ1λt(E) . . . λs(E)ρnλt(E) | n ∈ N, ρ1, . . . , ρn ∈ Ω(E), tgt(ρi) =

src(ρi+1)} ⊆ Nin(E∗) × (Ω(E) ∪ Tag)∗concat × Nout(E∗). I.e. we consider all concatenations
of any length n ∈ N and add tags splitting the different parts ρi.

▶ Definition 16. We define a wqo ≤Ω(E) on Ω(E) recursively. For VAS sections Y we use
the Jancar ordering, observing that fixed coordinates coincide for every run, and can hence
be ignored. For the recursive definition we use Lemmas 12, 13 and 14.

Whenever we concatenate runs, we do not write the tags, because they can be inferred.
Their existence is however important, as we can see for example for E1 ◦ E2: We have
ρ ≤Ω(E1◦E2) ρ′ if and only if ρ = ρ1ρ2, ρ′ = ρ′

1ρ′
2 with ρ1, ρ′

1 ∈ Ω(E1), ρ2, ρ′
2 ∈ Ω(E2) such

that ρ1 ≤Ω(E1) ρ′
1 and ρ2 ≤Ω(E2) ρ′

2. This is where the tags will become important: From
the tags, we can infer how ρ is supposed to be split into ρ1 and ρ2, and similarly for ρ′. Let
us give a different example for why we need the tags for every subexpression. Imagine we
consider the expression Y ∪ Y′, where Rel(Y) = N · (2, 1) and Rel(Y′) = N · (1, 2). If we
wrote the empty run ρ as (0, ϵ, 0), i.e. did not label it, it would not be clear whether it can
pump N · (2, 1) or N · (1, 2), this depends on which subexpression it belongs to.

5.3 Comparison with other Well-Quasi-Orders
In prior literature, some wqos for Priority VAS [3, 4] and even for the more general model of
Grammar VAS [23] were introduced. In this subsection we compare our wqo to theirs.

In a grammar VAS paths are restricted to a given context-free grammar G, and it is
known that Priority VAS correspond to the subclass of Grammar VAS, where the grammar
is thin/finite index. In a thin grammar, every non-terminal has a rank (called index)
which can only decrease and for every production X → Y Z, either rank(Y ) < rank(X) or
rank(Z) < rank(X), i.e. only one of the produced non-terminals can have the same rank.

The equivalence of PVASS with these grammars can in fact be seen via our RegEx
characterization: One can implement E∗ via S → XS, where X implements E. Similarly
composition E ◦ E′ can be implemented via S → XX ′ where X implements E, and X ′

implements E′. In [23] a wqo on runs based on Kruskal’s tree ordering on syntax trees
is defined. It can be shown that their ordering for the grammar obtained from a RegEx
coincides with our ordering. In fact this is another motivation for the markers we use for
splitting runs: Syntax trees naturally distinguish between being in the left or right branch of
the RegEx. In [23] however they did not manage to show some of the pumping properties of
the well-quasi-order which we require, and will be able to prove using our RegEx.

Another example are Bonnet’s works [3, 4]. His well-quasi-order is based on a repeated
application of Higman’s Lemma, similar to our ordering. The only difference is that in [4]
the finest split of any run is chosen. In our terminology, if the expression is E∗, where E
requires the first coordinate to be 0, then a run ρ = ρ1ρ2 is always split as ρ1, ρ2 ∈ Ω(E) in
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[4], i.e. ρ ∈ Ω(E2). While in our case also ρ ∈ Ω(E) is possible, this is determined by the
markers. When limitting ourselves to runs with the finest split the orderings coincide.

5.4 Geometric Preliminaries
In this section we repeat some definitions from the VASS literature, pertaining to the pumping
properties the relations Pρ fulfill. Readers familiar with the notions can skip this section.
For a visual representation of the geometric definitions see e.g. [9]. We state definitions for
sets, they apply to relations R ⊆ Qd′ × Qd′′ by viewing them as set R ⊆ Qd′+d′′ .

Cones and periodic sets. A set C ⊆ Qd is a cone if 0 ∈ C, C + C ⊆ C and Q>0C ⊆ C.
Given a set F ⊆ Qd, the cone generated by F is the smallest cone containing F.

A cone C is definable if it is definable in FO(Q, +, ≥).
A set P ⊆ Nd is a periodic set if P + P ⊆ P and 0 ∈ P. For any set F ⊆ Nd, the periodic

set F∗ generated by F is the smallest periodic set containing F. A periodic set P is finitely
generated if P = F∗ for some finite set F.

Finitely generated periodic sets provide an equivalent way to define linear sets as sets of
the form b + P, where b ∈ Nd and P ⊆ Nd is a finitely generated periodic set.

Smooth Periodic Sets. The periodic relation Pρ for a run ρ of a VASS is rarely finitely
generated, but it is smooth, a class introduced by Leroux in [21]. In order to define smooth,
we first reintroduce the set of directions of a periodic set.

▶ Definition 17. [21, 9] Let P be a periodic set. A vector v ∈ Qd is a direction of P if
there exists m ∈ N>0 and a point x such that x + N · mv ⊆ P, i.e. some line in direction v
is fully contained in P. The set of directions of P is denoted dir(P).

We can now define smooth periodic sets.

▶ Definition 18. [21, 9] Let P be a periodic set.
P is asymptotically definable if dir(P) is a definable cone.
P is well-directed if every sequence (pm)m∈N of vectors pm ∈ P has an infinite subsequence
(pmk

)k∈N such that pmj
+ N(pmk

− pmj
) ⊆ P for all k ≥ j.

P is smooth if it is asymptotically definable and well-directed.

▶ Example 19. Examples of smooth periodic sets are P1 = {(0, 0)} ∪ (1, 1) + N2 and
P2 = {(x, y) ∈ N2 | y ≤ x2}. We have dir(P2) \ {(0, 0)} = {(x, y) ∈ Q≥0 | x > 0}. I.e. except
pure north, every vector in Q2

≥0 is a direction of P2. On the other hand dir(P1) = Q2
≥0.

P2 is a very typical example: One idea with dir(P) is to store the asymptotic steepness
of the upper function, and ignore whether it is exponential or quadratic if it is superlinear.

▶ Example 20. Examples of non-smooth sets are P′
1 = {(x, y) | x ≥

√
2y} and P′

2 =
({(0, 1)}∪{(2m, 1) | m ∈ N})∗ = {(x, n) ∈ N2 | x has at most n bits set to 1 in the binary representation.}.
P′

1 is not asymptotically definable, because defining dir(P′
1) requires irrationals, while P′

2 is
not well-directed (see observation 2 below).

We make a few observations:
1. The set dir(P) is a cone. It is by definition closed under non-negative scalar multiplication

(due to the m in the definition). Furthermore, if two lines in different directions v and v′

are contained in P, then by periodicity P also contains a v, v′ plane, and so P contains a
line in every direction between v and v′. For more details see [21, Lemma V.7]. dir(P)
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should be viewed as a kind of “limit cone” containing P, it is however only one possible
definition for a “limit cone” of P, other cones were considered in prior papers [19, 20].

2. The definition of well-directed is stated this way to relate to wqo’s, but the most important
case of definition 18 is when the pm are all on the same infinite line x + v · N. Then
the definition equivalently states that v ∈ dir(P), i.e. some infinite line in direction v is
contained in P. This makes sets where points are “too scarce” non-smooth. For instance,
the set P2 of Example 19 contains infinitely many points on a horizontal line, but no full
horizontal line, which would correspond to an arithmetic progression.

Almost semilinear relations. We reintroduce almost-semilinear sets, introduced by Leroux
in [19, 20, 21]. Intuitively, they generalize semilinear sets by replacing finitely generated
periodic sets with smooth periodic sets.

▶ Definition 21. [20, 21] A set X is almost linear if X = b + P, where b ∈ Nd and P is a
smooth periodic set, and almost semilinear if it is a finite union of almost linear sets.

It was shown in [20, 21] that VAS reachability sets/relations are almost semilinear.
However, it is easy to find almost semilinear sets that are not reachability sets of any VAS.
One reason is that the definition of a smooth periodic set only restricts the “asymptotic
behavior” of the set, which can be “simple” even if the set itself is very “complex”.

▶ Example 22. Let X ⊆ N>0 be any set, for example X := {m ∈ N | m is Gödel-number of non-halting TM}.
Then P := {(0, 0)} ∪ ({1} × X) ∪ N2

>1 is a smooth periodic set. Indeed, it contains a line in
every direction, and is thus well-directed and asymptotically definable.

To eliminate these types of sets Leroux required that every intersection of the set with
a semilinear set is still almost semilinear. For instance, the intersection of the set X in
Example 22 and the linear set (1, 0) + (0, 1) · N is not almost semilinear. This leads to the
following main theorems of [21], which we want to extend to Priority VAS:

▶ Theorem 23. [21, Theorem IX.1] For every semilinear relation S and reachability relation
R of a VAS, R ∩ S is a finite union of relations b + P, where P is smooth periodic and for
every linear relation L ⊆ b + P there exists a p ∈ P such that p + L is flattable.

Since projecting away fixed coordinates preserves almost semilinearity, namely the periodic
sets are anyways 0 on fixed coordinates, this theorem also holds for VAS sections.

As mentioned in the introduction, the same paper proceeded to prove the following:

▶ Theorem 24. [21, Theorem XI.2] The reachability relation of a VAS is flattable if and
only if it is semilinear.

The hard part is of course to prove that semilinear implies flattable. Let us quickly recap
how to obtain Theorem 24 from Theorem 23 as our main proof will not repeat this step, we
will stop at obtaining Theorem 23 for Priority VAS.

Leroux in [21] defines a dimension dim(S) ∈ N of semilinear sets S. The important aspect
of the dimension is that for every linear set L, we have dim(L \ (p + L)) < dim(L). For
example N2 \ [(x, y) + N2] for any x, y ∈ N is a finite union of lines, and hence 1-dimensional.
The proof then proceeds by induction on the dimension of X := R ∩ S.

Base k = 0: Since 0-dimensional implies finite, such sets are flattable.
Step k → k + 1: Let X = R ∩ S semilinear with dim(X) = k + 1. We have to show that

X is flattable. Since flattable relations are closed under union, we can assume that X is not
only semilinear but even linear. Using X as L in Theorem 23 (this requires combining almost
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linear components correctly, and hence some fiddling) there exists a vector p such that p + X
is flattable. Since dim(X \ (p + X)) < dim(X), X \ (p + X) is flattable by induction. Since
flattable relations are closed under union, X = [X \ (p + X)] ∪ [p + X] is flattable.

With a similar induction on the dimension, Leroux obtained the following:

▶ Theorem 25. [19, Theorem 9.2] Let R be reflexive, transitive and such that for every
semilinear S, R ∩ S is almost semilinear. Then R admits semilinear inductive invariants.

As a corollary of Theorem 25 and the PVAS version of Theorem 23, namely Theorem 31
of the next section, we obtain the following.

▶ Corollary 26. Let V be a PVASS, and Cs, Ct two configurations such that Cs ̸→∗ Ct.
Then there exists a semilinear inductive invariant S such that Cs ∈ S, Ct ̸∈ S.

Proof. Let R be the reachability relation of V. Clearly R is reflexive and transitive. By
Theorem 31, every intersection R∩S with a semilinear S is a finite union of b+P, where P is
smooth periodic, i.e. R ∩ S is almost semilinear. Hence R fulfills all assumptions of Theorem
25, whose conclusion is the existence of a separating inductive invariant S as claimed. ◀

6 Semilinear Priority VAS are Flattable

In this section we define flattability and prove that Theorem 23 holds also for PVAS. We
work on expressions E, and hence define flattability for expressions E by structural induction,
instead of defining flattability on PVAS directly.

▶ Definition 27. Base case: R ⊆ Rel(Y) is flattable w.r.t. Y if and only if R is semilinear.
For E1 ∪ E2, a relation R ⊆ Rel(E1 ∪ E2) is flattable w.r.t. E1 ∪ E2 if and only if there

exist relations Ri ⊆ Rel(Ei) flattable w.r.t. Ei such that R ⊆ R1 ∪ R2.
For E1 ◦ E2, a relation R ⊆ Rel(E1 ◦ E2) is flattable w.r.t. E1 ◦ E2 if and only if there

exist relations Ri ⊆ Rel(Ei) flattable w.r.t. Ei such that R ⊆ R1 ◦ R2.
For E∗, remember that by Corollary 10 we can assume that Rel(E) is monotone. Let

in(E) = d′. We first make a preliminary definition: Given a vector v = (src, tgt) ∈ Rel(E),
its closure under monotonicity is m(v) = {v}+N(e1, e1)+ · · ·+N(ed′ , ed′), where ei ∈ Nd′ is
the i-th unit vector. We define the monotone transitive closure of v as mtc(v) = m(v)∗, i.e.
it is the relation of source and target configurations, such that the target can be reached by
repeatedly applying only v, potentially at a larger configuration. A linear path scheme S is a
relation which can be written as mtc(src1, tgt1)◦· · ·◦mtc(srcr, tgtr) with (srci, tgti) ∈ Rel(E).
This has to be defined using mtc since for expressions we do not have a finite set E of “edges”
anymore. But we want to express that the same edge sequences are taken.

A relation R ⊆ Rel(E∗) is flattable w.r.t. E∗ if and only if there exist finitely many
relations R1, . . . , Rk ⊆ Rel(E) flattable w.r.t. E and linear path schemes S0, . . . , Sk such
that R ⊆ S0 ◦ R1 ◦ S1 ◦ R2 ◦ · · · ◦ Rk ◦ Sk. I.e., in terms of the ideas in the introduction, we
have k loops where we are allowed to adapt the “inner” transitions, those are reflected by Ri.
In between those loops, we are allowed to use linear path schemes of the outer loop.

Let us mention some basic properties of this definition, proved in Appendix A. In
particular, we compare this definition with the transition word definition of flattable.

▶ Definition 28. Let V = (Q, E) be a PVAS. For w = (e1, . . . , ek) ∈ E∗ define
→w:=→e1 ◦ · · · ◦ →ek

. Let →∗
w denote the reflexive and transitive closure of →w.

A relation R is transition word flattable w.r.t. V if there exist transition sequences
w1, . . . , wr ∈ E∗ such that R ⊆→∗

w1
◦ · · · ◦ →∗

wr
.
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▶ Lemma 29. Let E be an expression.

1. If ρ′ ≥Ω(E) ρ are runs, then dir(ρ) + N(dir(ρ′) − dir(ρ)) is flattable w.r.t. E, and all the
corresponding runs are ≥Ω(E) ρ.

2. If R, R′ ⊆ Rel(E) are flattable w.r.t. E, then also R ∪ R′ is.
3. Let V be a PVAS such that E is its expression in Theorem 7. If a relation R ⊆ Rel(E) is

flattable in our sense, then R ⊆→∗
V is transition word flattable.

In our proofs we will need to distribute + over ◦.

▶ Lemma 30. Let (Ri)r
i=1 ⊆ Nd′ × Ndmid and (R′

i)r
i=1 ⊆ Ndmid × Nd′′ be relations. Then∑r

i=1(Ri ◦ R′
i) ⊆ (

∑r
i=1 Ri) ◦ (

∑r
i=1 R′

i).

6.1 Proof Outline for Theorem 31
In this subsection we provide a proof outline for Theorem 31. As remarked in Section 5.4,
Theorem 31 suffices to obtain semilinear inductive invariants and flattability.

▶ Theorem 31. For every semilinear relation S and reachability relation R of a PVAS,
R ∩ S is a finite union of relations b + P, where P is smooth periodic and for every linear
relation L ⊆ b + P there exists a p ∈ P such that p + L is flattable.

The starting point is to extend the definition of the transformer relation to expressions.
Let E be an expression, and ρ ∈ Ω(E) a run. Then we define the transformer relation of
ρ w.r.t. E via PE,ρ := {ends(ρ′) − ends(ρ) | ρ′ ≥ ρ}, exactly as in the VAS case. The
corresponding almost semilinear component is Comp(E, ρ) = ends(ρ) + PE,ρ.

The outline now consists of two parts: First we reduce Theorem 31 to Theorem 32 and
Lemma 33. The closure property of Lemma 33 is easy to see, we give a proof in Appendix A.
Hence afterwards the outline will focus on proving Theorem 32.

▶ Theorem 32. Let E be an expression, ρ ∈ Ω(E). Then PE,ρ is smooth, periodic and:

1. Let R1, R2 ⊆ Comp(E, ρ) flattable. Then R1 + R2 − ends(ρ) is flattable.
2. Every direction of Comp(E, ρ) is flattable, i.e. for every (e, f) ∈ dir(PE,ρ) there exists

(a, b) ∈ PE,ρ, n ∈ N such that ends(ρ) + (a, b) + Nn(e, f) is flattable w.r.t. E.

Property 2. is rather self-explanatory, important is property 1. The statement of property
1. is that if two relations are flattable using the same minimal run ρ, then not just the sum
is flattable, but even the sum ignoring the base point ends(ρ) is flattable.

▶ Lemma 33. Let S ⊆ Nd′ × Nd′′ be semilinear, and X ⊆ Nd′ × Nd′′ a PVAS section. Then
X ∩ S is a PVAS section, and hence has an equivalent expression Rel(E) by Theorem 7.

Proof of Theorem 31. Use Lemma 33 to obtain an expression E with Rel(E) = R ∩ S. We
write Rel(E) =

⋃
ρ∈Ω(E)min

ends(ρ) + PE,ρ as mentioned in the introduction. By Theorem
32, these periodic relations are smooth, hence only the flattability claim is left. Let L ⊆
ends(ρ)+PE,ρ linear, i.e. L = b+Np1 + · · ·+Npr. By property 2. in Theorem 32, there exist
ni ∈ N and (ai, bi) ∈ PE,ρ such that Ri := ends(ρ) + (ai, bi) + Nnipi is flattable for every i.
We define the finite set F := b + {0, . . . , n1} · p1 + · · · + {0, . . . , nr} · pr ⊆ L ⊆ Comp(E, ρ).
Since this set is finite, it is flattable. By property 1. in Theorem 32, the relation∑r

i=1 Ri + F − r · ends(ρ) = ends(ρ) +
∑r

i=1[(ai, bi) +Nnipi] + (F − ends(ρ)) is flattable.
Defining p :=

∑r
i=1(ai, bi) + (b − ends(ρ)) ∈ PE,ρ by periodicity, the theorem is proven. ◀
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Next we outline how to prove Theorem 32. The first step is an equivalent characterization
of the transformer relation via “self-loop on c” relations similar to V . Let us start by defining
these relations, which is similar to VAS.

Consider an expression E∗ and a configuration c ∈ Nd′ . We define the relation PE∗,c via
(x, y) ∈ PE∗,c ⇐⇒ ∃ρ ∈ Ω(E∗) : ends(ρ) = (x + c, y + c).

The equivalent characterization of PE,ρ via relations PE∗,c is as follows:

▶ Lemma 34. Let E be an expression, and ρ ∈ Ω(E). Then there exist subexpressions E∗
i of

E and configurations ci occurring along ρ such that PE,ρ = PE∗
1 ,c1 ◦ · · · ◦ PE∗

r ,cr .

This leaves us with three things to prove: Firstly, Lemma 34 itself. Secondly, that PE∗,c
is smooth and properties 1. and 2. of Theorem 32 hold for PE∗,c (actually a slightly stronger
version 2.’ of property 2.). Thirdly, that composition preserves the properties of Theorem 32.

We dedicate one subsection to every step, with the second coming last. This is because
steps 1 and 3 are new, while step 2 is based on [21]. Also, in order to understand why
PVAS are flattable, Lemma 34 and step 3 contain the essence: Similar to VAS, pumping is a
sequence of special self-loops, a very linear object. The fact that the different parts now use
different expressions E∗

i is irrelevant for our composition proof.

6.2 Proving Lemma 34, Equivalent Definition of Transformer Relation
Proof by structural induction. For simplicity, we call a relation PE,ρ decomposable if it has
an equivalent description as in the lemma. The base case of VAS sections is clear.

E1 ∪ E2: Let ρ ∈ Ω(E1 ∪ E2). W.l.o.g. ρ ∈ Ω(E1). By definition of the wqo on runs in
this case, we have PE1∪E2,ρ = PE1,ρ, which is decomposable by induction.

E1 ◦ E2: Let ρ ∈ Ω(E1 ◦ E2). Write ρ = ρ1ρ2 with ρ1 ∈ Ω(E1), ρ2 ∈ Ω(E2), which is a
unique split because of the tags on steps of the run. We claim that PE1◦E2,ρ = PE1,ρ1 ◦PE2,ρ2 .

Proof of claim: “⊆”: Let ρ′ ≥ ρ. Then ρ′ = ρ′
1ρ′

2 such that ρ′
1 ∈ Ω(E1), ρ′

2 ∈ Ω(E2), ρ′
1 ≥E1

ρ1, ρ′
2 ≥E2 ρ2. Then ends(ρ′) − ends(ρ) = (ends(ρ′

1) − ends(ρ1)) ◦ (ends(ρ′
2) − ends(ρ2)) ∈

PE1,ρ1 ◦ PE2,ρ2 , where composition is possible since tgt(ρ′
1) = src(ρ′

2), tgt(ρ1) = src(ρ2).
The other direction “⊇” is clear, namely concatenate ρ′

1 and ρ′
2.

Now simply use that both PE1,ρ1 and PE2,ρ2 are decomposable by induction.
This leaves the hardest case E∗: For configurations c, c′ ∈ Nd′ , we write c →E c′ if there

exists a run η ∈ Ω(E) such that ends(η) = (c, c′), and call η a generalized transition. We
want to emphasize the important fact that generalized transitions contain path information
in Ω(E), and are not only an element of Rel(E). We let →∗

E denote its reflexive and transitive
closure. A first decomposition in this case contains relations PE,ηi

, which correspond to
“increasing existing transitions” as mentioned in the introduction. This leads to writing PE∗,ρ

as a composition of alternating PE∗,ci
and PE,ηi

.

▶ Lemma 35. Let ρ = (src(ρ), η1 . . . ηr, tgt(ρ)) ∈ Ω(E∗). The following equality holds:
PE∗,ρ = PE∗,src(η1) ◦ PE,η1 ◦ PE∗,src(η2) ◦ · · · ◦ PE,ηr ◦ PE∗,tgt(ρ).

Proof. “⇒”: Let ρ′ ≥Ω(E∗) ρ. We have to prove ends(ρ′)−ends(ρ) ∈ the claimed composition.
Write ρ′ = η′

1 . . . η′
s according to the tags. By definition of the wqo, there exists an order-

preserving injective function f : {1, . . . , r} → {1, . . . , s} such that ηi ≤Ω(E) η′
f(i). In particular,

ends(η′
f(i)) ≥ ends(ηi). We define the sequence of vectors vi := src(η′

f(i)) − src(ηi) for
i ∈ {1, . . . , r}, and wi := tgt(η′

f(i)) − tgt(ηi) for i ∈ {1, . . . , r}. We also define w0 :=
src(ρ′) − src(ρ) and vr+1 := tgt(ρ′) − tgt(ρ). For every i ∈ {1, . . . , r}, the run η′

f(i) shows
that (vi, wi) ∈ PE,ηi . The runs ρi := ηf(i)+1 . . . ηf(i+1)−1 for i ∈ {1, . . . , r − 1} (these are
possibly empty runs) prove that tgt(ηi) + wi →∗

E src(ηi+1) + vi+1. Since tgt(ηi) = src(ηi+1),

ICALP 2024



134:16 Flattability of Priority Vector Addition Systems

we obtain (wi, vi+1) ∈ PE∗,tgt(ηi). A similar argument proves (w0, v1) ∈ PE∗,src(ρ) and
(wr, vr+1) ∈ PE∗,tgt(ρ). Hence ends(ρ′) − ends(ρ) = (w0, vr+1) is in the claimed composition.

“⇐”: Let (wi)r
i=0 and (vi)r+1

i=1 such that (wi, vi+1) ∈ PE,ηi
for i ∈ {1, . . . , r}, (vi, wi) ∈

PE∗,tgt(ηi) for i ∈ {1, . . . , r − 1}, (w0, v1) ∈ PE∗,src(ρ) and (wr, vr+1) ∈ PE∗,tgt(ρ). Let η′
i

be generalized transitions witnessing (wi, vi+1) ∈ PE,ηi
, let ρi for i ∈ {1, . . . , r − 1} be

runs witnessing (vi, wi) ∈ PE∗,tgt(ηi), let ρ0 witness (w0, v1) ∈ PE∗,src(ρ) and ρr+1 witness
(wr, vr+1) ∈ PE∗,tgt(ρ). Then ρ′ := ρ0η′

1ρ1 . . . ρr−1η′
rρr fulfills ρ′ ∈ Ω(E∗) because sources

and targets of the different parts coincide. In fact ρ′ ≥Ω(E∗) ρ, by choosing f(i) to point at
the index at which η′

i occurs in ρ′. ◀

This finishes proving Lemma 34 by observing that PE,ηi are decomposable by induction.
We remark that the proof does obtain an explicit description of which PE∗

i
,ci

to use, but
we stated Lemma 34 this way to stress that different E∗

i intertwine in the composition.

6.3 Preserving Smoothness and Flattability Under Composition
In this subsection we prove that if PE,c are smooth periodic relations fulfilling properties 1.
and 2. of Theorem 32, then also their composition fulfills these conditions. While periodic
relations are closed under composition (use e.g. Lemma 30), smooth periodic relations are
not. We already slightly changed the definition of well-directed to accomplish this goal
(compare with [21, 9]), but we still need to carefully choose the inductive statement. We
choose to replace condition 2. by 2.’ formulated as follows, which is similar to [21]:

2.’: For every well-directed periodic P ⊆ P there exists a definable cone R such that
dir(P ) ⊆ R and for every (e, f) ∈ R there exist (a, b) ∈ P, n ∈ N such that (a, b)+Nn(e, f) ⊆
P. In case of PE,ρ we require ends(ρ) + (a, b) + Nn(e, f) ⊆ Comp(E, ρ) to be flattable.

The idea of property 2.’ is to remove one basic difficulty of composition: Suddenly not all
runs of P1 are useful anymore, only those which can be continued into P2. We will see in
the proof how 2’ takes care of this problem. Formally, property 2’ says that even if P ⊆ P
is non-smooth, we can find a definable R with dir(P ) ⊆ R ⊆ dir(P), and it only contains
flattable directions. With the choice P = P this implies property 2. Important to notice
is that the choice R = dir(P) would always be best if not for the very crucial ∈ P part,
which we will use in the proof. Again, ∈ P is easy to motivate. Imagine one is interested
in the reachability set from a fixed point, i.e. in only pumping the target. Then choose
P := {0} × Nd. Property 2 would state existence of a line (a, b) + N(0, w) ⊆ PE,ρ. We
actually want a line (0, b) + N(0, w), i.e. with (a, b) ∈ P as in property 2’.

▶ Lemma 36. Let P1, P2 be smooth periodic relations fulfilling property 2.’. Then P1 ◦ P2 is
smooth periodic fulfilling property 2’. If P1 = PE1,ρ1 and P2 = PE2,ρ2 for ρ = ρ1ρ2, then in
addition the flattability claims of property 1. and 2.’ hold for PE1◦E2,ρ = PE1,ρ1 ◦ PE2,ρ2 .

Proof. Periodic: A composition of periodic relations is again periodic by Lemma 30.
Well-directed: Let (vn, wn)n ⊆ P1 ◦ P2 be a sequence. Then there exist intermediate

values xn such that (vn, xn) ∈ P1, (xn, wn) ∈ P2 for all n. Since P1 is well-directed, there
exists a subsequence such that (vnj , xnj ) + N(vnk

− vnj , xnk
− xnj ) ⊆ P1. Since P2 is

well-directed we obtain additionally (xnj
, wnj

) + N(xnk
− xnj

, wnk
− wnj

) ⊆ P2 for some
subsubsequence. Together we have (vnj

, wnj
) + N(vnk

− vnj
, wnk

− wnj
) ⊆ P1 ◦ P2.

Property 2.’: Let P ⊆ P1 ◦P2 be well-directed periodic. Define P ′ := {(v, x, w) | (v, w) ∈
P, (v, x) ∈ P1, (x, w) ∈ P2}. P ′ is well-directed by an argument as above, but this time we
even have to choose a subsubsubsequence. Consider the projections π12 and π23 to (v, x)
and (x, w) respectively. P1 := π12(P ′) ⊆ P1 and P2 := π23(P ′) ⊆ P2 are projections of a



Roland Guttenberg 134:17

well-directed periodic relation and therefore themselves well-directed periodic. Hence we can
apply property 2.’ for them to obtain definable cones R1 and R2 with dir(Pi) ⊆ Ri ⊆ dir(Pi).
We claim property 2’ holds with R = R1 ◦ R2.

First we have to show that dir(P ) ⊆ R1 ◦ R2. Let (v, w) ∈ dir(P ). By definition of the
set of directions, by potentially scaling with a positive integer, there exists (v0, w0) such that
(vn, wn) := (v0, w0) + n(v, w) ∈ P1 ◦ P2 for every n. Therefore there exist intermediate
values xn such that (vn, xn, wn) ∈ P ′ for all n. Since P ′ is well-directed, there exists a
subsequence such that (vnj

, xnj
, wnj

) + N(vnk
− vnj

, xnk
− xnj

, wnk
− wnj

) ⊆ P ′. Hence
(vnk

−vnj
, xnk

−xnj
) ∈ dir(P1) ⊆ R1 and (xnk

−xnj
, wnk

−wnj
) ∈ dir(P2) ⊆ R2. Therefore

(vnk
− vnj

, wnk
− wnj

) = (nk − nj)(v, w) ∈ R1 ◦ R2. This implies (v, w) ∈ R1 ◦ R2.
Now let (e, g) ∈ R. Then there exists f such that (e, f) ∈ R1 and (f , g) ∈ R2. By

definition of Ri, by potentially scaling, there exist (a1, b1) ∈ P1 and (b2, c2) ∈ P2 such
that (a1, b1) + N(e, f) ⊆ P1, and (b2, c2) + N(f , g) ⊆ P2. Since P1 and P2 are projections
of P ′, there exist c1 and a2 such that (ai, bi, ci) ∈ P ′ for i ∈ {1, 2}. Hence (a2, b2) ∈ P1
and (b1, c1) ∈ P2. By periodicity of P1, we have (a1 + a2, b1 + b2) + N(e, f) ⊆ P1 and
similarly by periodicity of P2 we have (b1 + b2, c1 + c2) + N(f , g) ⊆ P2. Altogether we have
(a1 + a2, c1 + c2) ∈ P and (a1 + a2, c1 + c2) + N(e, g) ⊆ P1 ◦ P2 as required. (a1, b1) ∈ P1
was crucial here such that we could obtain a fitting c1, and accordingly for (b2, c2) ∈ P2.

Asymptotically definable: Define P := P1 ◦ P2. By property 2’, we have dir(P1 ◦ P2) =
R1 ◦ R2, which as composition of definable cones is itself a definable cone.

Flattability claim in 2’: We proved 2’ and constructed the direction using well-directedness.
By Lemma 29(1.), relations obtained this way from the wqo. on runs are flattable.

Property 1.: Let R, R′ ⊆ ends(ρ) + PE1◦E2,ρ be flattable w.r.t. E1 ◦ E2. We have to
prove that R + R′ − ends(ρ) is flattable w.r.t. E1 ◦ E2. By definition of flattable, there exist
relations R1, R′

1 flattable w.r.t. E1 and R2, R′
2 flattable w.r.t. E2 such that R ⊆ R1 ◦ R2

and R′ ⊆ R′
1 ◦ R′

2. Hence R + R′ − ends(ρ) ⊆ (R1 ◦ R2) + (R′
1 ◦ R′

2) − (ends(ρ1) ◦ ends(ρ2)).
By Lemma 30 we obtain R + R′ − ends(ρ) ⊆ (R1 + R′

1 − ends(ρ1)) ◦ (R2 + R′
2 − ends(ρ2)).

Applying property 1. for the subexpressions E1 and E2, we obtain the claim. ◀

6.4 Transformer Relations are Smooth with Flattable Directions
In this subsection we prove that the transformer relation PE∗,c is a smooth periodic relation
fulfilling properties 1 and 2’ (see Section 6.3). We start with a reminder of the notation.

We write x →E y for (x, y) ∈ Rel(E) and denote its reflexive transitive closure as →∗
E.

Remember that (x, y) ∈ PE∗,c ⇐⇒ c + x →∗
E c + y. We first prove that PE∗,c is periodic.

▶ Lemma 37. Let c+x1 →∗
E c+y1 and c+x2 →∗

E c+y2. Then c+x1 +x2 →∗
E c+y1 +y2.

Proof. Since ∗ in expressions is only used on monotone relations Rel(E), →E is monotone.
Hence also →∗

E is monotone. By monotonicity, c+x1 +x2 →∗
E c+y1 +x2 →∗

E c+y1 +y2. ◀

That PE∗,c is well-directed follows from Lemma 29 (1.).
The proof of Property 1. is similar to the above proof of Lemma 37. Indeed, the lemma did

not duplicate c, so in different notation r1 →∗
E s1 and r2 →∗

E s2 imply r1+r2−c →∗
E s1+s2−c.

This leaves proving that PE∗,c fulfills property 2.’ and hence is asymptotically definable.
Since (0, 0) ∈ PE∗,c, monotonicity implies that PE∗,c is reflexive. In [21, Section VIII]

many lemmas were proven for reflexive periodic relations, we reuse many of them. This
leads to a long sequence of restating lemmas, we prefer to end this part of the main text by
sketching the idea, for the formal proof see Appendix A.1.
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Let P ⊆ PE∗,c periodic. In order to not confuse Ω(E) and Ω(E∗), we write η ∈ Ω(E)
and ρ ∈ Ω(E∗). We call η a generalized transition. Write γ = (E∗, c, P ) and denote by Ωγ

the set of runs ρ ∈ Ω(E∗) such that ends(ρ) ∈ (c, c) + P . The idea is to split counters into
bounded and unbounded counters for Ωγ . The bounded counters will all be stored in the
states of a graph, and this leads to pumping corresponding to cycles in the graph. Namely
any transition sequence will correspond to a path in the graph, and since bounded counters
cannot be pumped, any pumping sequence has to restore all the bounded counters, i.e. be
a cycle in the graph. The unbounded counters on the other hand will all be unbounded
simultaneously, at which point the condition that counters have to stay non-negative will
intuitively not influence possible behaviours anymore.

We hence define the graph of bounded counters. Let Qγ ⊆ Nd′ be the set of configurations
occurring on some run ρ ∈ Ωγ . We denote by Iγ the set of indices such that {q(i) | q ∈ Qγ}
is finite, i.e. the set of bounded counters. We consider the projection πγ : Nd′ → NIγ to the
bounded counters. We now define a finite directed multigraph Gγ with vertices Sγ := πγ(Qγ).
For edges (s, t), first consider the set Ωs,t of generalized transitions η with πγ(src(η)) = s

and πγ(tgt(η)) = t, which occur in some run ρ ∈ Ωγ . We add an edge (s, t) for every minimal
(w.r.t. ≤Ω(E)) element of Ωs,t. We let sγ = πγ(c) denote the “initial state” for this graph.

Clearly runs correspond to paths in Gγ , since the graph has projections of configurations
as states, and generalized transitions as edges. Regarding unbounded counters, the proof
that all of them are unbounded simultaneously is in Appendix A.1. Finally, we then obtain
a formula for a definable cone R overapproximating dir(P ) by first considering the finitely
many minimal cycles in Gγ . Every cycle η1 . . . ηm provides us with a smooth periodic
relation PE,η1 ◦ · · · ◦ PE,ηm

of pumping possible along this cycle. These relations are smooth
periodic by induction and Lemmas 34 and 36. We conclude using [21, Theorem VII.1], whose
statement is essentially the following: If P1, . . . , Pm are reflexive asymptotically definable
periodic relations, then (

⋃m
i=1 Pi)∗ is also asymptotically definable.

7 Conclusion

We have given a new characterization of PVAS sections as RegEx over VAS sections, and
extended the abstract properties of almost semilinear sets to PVAS sections. We have
concluded that therefore if the reachability relation of a PVAS is semilinear, then it is
flattable, and moreover if a configuration is not reachable, then it is separated by a semilinear
inductive invariant. This leaves two main unknowns for PVAS which are known for VAS: 1)
The decidability of the semilinearity problem, that is, given a PVAS, decide if its reachability
relation/set is semilinear. 2) The complexity of the reachability problem.

We leave these as future work. We believe that combining our characterization of PVAS
sections and wqo on runs with ideas from [9] might allow for progress on these open problems.

Furthermore, this research can also be viewed as progress towards the open question
whether the reachability problem for Pushdown/Grammar VASS is decidable, where Push-
down VASS have a stack in addition to the counters. Namely it is known [1] that Priority
VASS are equivalent to a subclass of Pushdown VASS.
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A Proofs of Section 6

In this section we prove the lemmas of Section 6 in the order they are enumerated.

▶ Lemma 29. Let E be an expression.

1. If ρ′ ≥Ω(E) ρ are runs, then dir(ρ) + N(dir(ρ′) − dir(ρ)) is flattable w.r.t. E, and all the
corresponding runs are ≥Ω(E) ρ.

2. If R, R′ ⊆ Rel(E) are flattable w.r.t. E, then also R ∪ R′ is.
3. Let V be a PVAS such that E is its expression in Theorem 7. If a relation R ⊆ Rel(E) is

flattable in our sense, then R ⊆→∗
V is transition word flattable.

Proof. We prove the properties one after the other, each by structural induction.
Property 1.: Base case: See [21, Lemma VI.3].
E1 ∪ E2 follows by induction, since ρ ≤Ω(E1∪E2) ρ′ implies w.l.o.g. ρ ≤Ω(E1) ρ′.
E1 ◦ E2: Write ρ′ = ρ′

1ρ′
2 and ρ = ρ1ρ2. Since ρ′

i ≥Ω(Ei) ρi for i ∈ {1, 2}, by induction,
ends(ρi)+N(ends(ρ′

i)−ends(ρi)) is flattable w.r.t. Ei. We have ends(ρ)+N(ends(ρ′)−ends(ρ))
⊆ [ends(ρ1) + N(ends(ρ′

1) − ends(ρ1))] ◦ [ends(ρ2) + N(ends(ρ′
2) − ends(ρ2))] by Lemma 30,

and hence flattable w.r.t. E1 ◦ E2.
E∗: Let ρ′ ≥Ω(E∗) ρ. Write ρ′ = η′

1 . . . η′
s and ρ = η1 . . . ηr according to the tags. By

definition of the wqo, there exists an order-preserving injective function f : {1, . . . , r} →
{1, . . . , s} such that ηi ≤Ω(E) ηf(i). We write ρ′ = ρ0η′

f(1)ρ1 . . . ρr−1η′
f(r)ρr. By induction, for

every i the relation Ri := ends(ηi)+N(ends(ηf(i))− ends(ηi)) is flattable w.r.t. E. We define
linear path schemes (Si)r

i=0 by Si := mtc(ρi). The relation ends(ρ)+N(ends(ρ′)−ends(ρ)) ⊆
S0 ◦ R1 ◦ · · · ◦ Rr ◦ Sr by arguments similar to the proof of Lemma 35. Hence this relation is
flattable w.r.t. E∗ by definition.

Property 2.: Base case: Follows from the closure properties of semilinear sets.
E1 ∪E2: Let R1, R′

1 flattable w.r.t. E1, R2, R′
2 flattable w.r.t. E2 such that R ⊆ R1 ∪R2

and R′ ⊆ R′
1 ∪ R′

2. Then R ∪ R′ ⊆ (R1 ∪ R′
1) ∪ (R2 ∪ R′

2), finish by induction.
E1 ◦ E2: By a similar exchanging of operations as Lemma 30 with ◦, ∪.
E∗: Let R ⊆ Flat := S0 ◦ R1 ◦ · · · ◦ Rr ◦ Sr and R′ ⊆ Flat′ := S′

0 ◦ R′
1 ◦ · · · ◦ R′

k ◦ S′
k with

linear path schemes Si, S′
i and Ri, R′

i flattable w.r.t. E. Since every subexpression E′ of
E fulfills in(E′), out(E′) ≥ in(E) (the assumption we guaranteed monotonicity with), every
subexpression E′ is monotone in the j-th last counter for every j ∈ {1, . . . , in(E)}. Therefore
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we can assume that the Ri, R′
i are monotone in the j-th last counter for all j ∈ {1, . . . , in(E)}.

By furthermore adding the point (0, 0) (single points are always flattable, and by induction
we can take the union), the Ri, R′

i are hence w.l.o.g. reflexive. Since moreover the linear
path schemes Si, S′

i are reflexive by definition and reflexive relations are closed under (same
dimension) composition, the relations Flat, F lat′ are reflexive. Hence Flat ◦ Flat′ contains
Flat and Flat′. In particular R ∪ R′ ⊆ Flat ◦ Flat′ is flattable w.r.t. E∗ by definition.

Property 3.: Base case: See [21, Theorem XI.2].
E1 ∪ E2: Let V = (Q, E) be the PVAS generating the expression. Let R ⊆ Rel(E1 ∪ E2)

be flattable. By definition R ⊆ R1 ∪ R2 where Ri is flattable w.r.t. Ei. By induction,
there exist words w1 . . . wr ∈ E∗ and w′

1 . . . w′
s ∈ E∗ such that R1 ⊆→∗

w1
◦ · · · ◦ →∗

wr
and

R2 ⊆→∗
w′

1
◦ · · · ◦ →∗

w′
s
. Then R1 ∪ R2 ⊆→∗

w1
◦ · · · ◦ →∗

wr
◦ →∗

w′
1

◦ · · · ◦ →∗
w′

s
is flat.

E1 ◦ E2: Use the same combination of words as above.
E∗: Let R ⊆ S0 ◦R1 ◦ . . . Rr ◦Sr be flattable w.r.t. E∗. Write Si = mtc(ends(ρi,1))◦ · · · ◦

mtc(ends(ρi,ri)). Let E(ρi,j) be the transition word of the run ρi,j . Define Flati :=→∗
E(ρi,1)

◦ · · · ◦ →∗
E(ρi,ri

). By induction, Ri ⊆ Flat′
i :=→∗

wi,1
◦ · · · ◦ →∗

wi,si
for some transition words

wi,1, . . . , wi,si ∈ E∗. Then R ⊆ Flat0 ◦ Flat′
1 ◦ · · · ◦ Flat′

r ◦ Flatr is transition word flattable
w.r.t. V. ◀

▶ Lemma 30. Let (Ri)r
i=1 ⊆ Nd′ × Ndmid and (R′

i)r
i=1 ⊆ Ndmid × Nd′′ be relations. Then∑r

i=1(Ri ◦ R′
i) ⊆ (

∑r
i=1 Ri) ◦ (

∑r
i=1 R′

i).

Proof. Let (vi, xi) ∈ Ri, (xi, wi) ∈ R′
i for i ∈ {1, . . . , r}. (

∑r
i=1 vi,

∑r
i=1 xi) ∈

∑r
i=1 Ri

and (
∑r

i=1 xi,
∑r

i=1 wi) ∈
∑r

i=1 R′
i imply

∑r
i=1(vi, wi) ∈ (

∑r
i=1 Ri) ◦ (

∑r
i=1 R′

i). ◀

▶ Lemma 33. Let S ⊆ Nd′ × Nd′′ be semilinear, and X ⊆ Nd′ × Nd′′ a PVAS section. Then
X ∩ S is a PVAS section, and hence has an equivalent expression Rel(E) by Theorem 7.

Proof. W.l.o.g. S is linear, since PVAS sections are clearly closed under union. Let X be
defined by a d-dimensional PVAS V. We give a 6d-dimensional PVASS V ′ defining X ∩ S
as follows. It has four states: In the first state, it writes (x, x) on its first 2d counters
for any vector x ∈ Nd. Then it non-deterministically moves to the next state, where it
applies V on the first d counters (we would want to use the second d counters because this
would express exactly →∗

V , but zero tests have to be on the frontmost counters). Then it
non-deterministically moves to state 3 while adding the base of S to the middle 2d counters.
In state 3 it adds any number of periods of S. It then non-deterministically moves to state 4.
In state 4 it checks that the first 2d and the middle 2d counters coincide, while copying them
to the last 2d counters. Usually such a check is done using transitions (−ei, −ei, +ei) for
unit vectors ei ∈ N2d, but here we have to be careful of possible necessary permutations (like
the first 2d counters being ordered the wrong way). ◀

A.1 Proofs of Section 6.4
Fix a pair γ = (E∗, c, P ), where P ⊆ Pc is a periodic relation. For convenience, we repeat
the definition of the graph Gγ and related objects here. Remember that the goal is to prove
property 2.′ for PE∗,c, i.e. to determine a definable cone relation Rγ containing dir(P ) and
such that for every (e, f) ∈ Rγ , there exists n ∈ N and (a, b) ∈ P (∈ P being crucial) such
that ends(ρ) + (a, b) + N(e, f) is flattable w.r.t. E.

We denote by Ωγ the set of runs ρ ∈ Ω(E∗) such that ends(ρ) ∈ (c, c) + P . Ωγ ̸= ∅ since
the run (c, ϵ, c) not performing any transitions is in Ωγ . The idea is to split counters into
bounded and unbounded counters for Ωγ . Hence let Qγ ⊆ Nd′ be the set of configurations
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obtained along some run ρ ∈ Ωγ . We denote by Iγ the set of indices such that {q(i) | q ∈ Qγ}
is finite, i.e. the set of bounded counters. We consider the projection πγ : Nd′ → NIγ to the
bounded counters. We define a finite directed multigraph Gγ with vertices Sγ := πγ(Qγ).
Consider the set Ωs,t of generalized transitions η with πγ(src(η)) = s and πγ(tgt(η)) = t,
and such that η occurs in some run ρ ∈ Ωγ . We add an edge (s, t) for every minimal (w.r.t.
≤Ω(E)) element of Ωs,t. We let sγ = πγ(c) denote the “initial state” for this graph.

Remember the outline: Prove that runs ρ ∈ Ω(E∗) correspond to cycles in Gγ , and that
unbounded counters are simultaneously unbounded. First we define “pumping vectors”.

An intraproduction for γ is a vector h ∈ Nd′ such that c + h ∈ Qγ . We denote by Hγ the
set of intraproductions for γ. This set is periodic by the following lemma, which is proven the
same way as in [21], but whose proof shows the power of monotonicity which the following
proofs also build on.

▶ Lemma 38. Qγ + Hγ ⊆ Qγ .

Proof. Let q ∈ Qγ , h ∈ Hγ . As q ∈ Qγ , there exists a pair (x, y) ∈ P such that c + x →∗
E

q →∗
E c+y. Since h ∈ Hγ there exists a pair (x′, y′) ∈ P such that c+x′ →∗

E c+h →∗
E c+y′.

Since →∗
E is monotone, we obtain c + (x + x′) →∗

E q + h →∗
E c + (y + y′). Since P is periodic,

we obtain q + h ∈ Qγ . ◀

Importantly, this implies that if for some intraproduction h and counter i we have
h(i) > 0, then {q(i) | q ∈ Qγ} is unbounded. I.e., if i ∈ Iγ , then h(i) = 0.

▶ Corollary 39. We have πγ(src(ρ)) = sγ = πγ(tgt(ρ)) for every run ρ ∈ Ωγ .

Proof. Since ρ ∈ Ωγ there exists (x, y) ∈ P such that ρ is a run from c + x to c + y. Hence
x, y are intraproductions, and x(i) = 0 = y(i) for every i ∈ Iγ . Therefore πγ(src(ρ)) =
πγ(c) = πγ(tgt(ρ)). ◀

In particular, runs ρ ∈ Ωγ induce loops in Gγ , and Gγ is hence strongly connected.
Next, we want to prove that in fact every loop on sγ is also induced by some run ρ ∈ Ωγ ,

as well as the claim about simultaneous unboundedness of all unbounded counters. This
requires multiple lemmas with again the same proof as in [21]:

▶ Lemma 40. [21, Lemma VIII.6] For every q ≤ q′ in Qγ there exists an intraproduction
h ∈ Hγ such that q′ ≤ q + h.

▶ Lemma 41. [21, Lemma VIII.7] There exists an intraproduction h ∈ Hγ such that
{i | h(i) = 0} = Iγ .

Observe that Lemma 41 proves the fact about “simultaneous unboundedness”: By repeat-
ing such an intraproduction every unbounded counter increases arbitrarily simultaneously.

The following lemma shows that for every cycle in Sγ , the lemma even states it for any
sequence of states, one can find a run visitting them in sequence.

▶ Lemma 42. [21, Lemma VIII.9] For every sequence s1, . . . , sk ∈ Sγ there exist (x, y) ∈ P

and q1, . . . , qk ∈ Qγ such that sj = πγ(qj) for every 1 ≤ j ≤ k and such that
c + x →∗

E q1 →∗
E · · · →∗

E qk →∗
E c + y.

Now we can start defining Rγ . The difficult (and new) part is how the dir(PE,ηi
) for the

different generalized transitions ηi influence Rγ . The by far most important observation
to answer this is that for every generalized transition η, in particular for every edge in the
graph Gγ , the corresponding transformer relation PE,η is reflexive: It clearly contains (0, 0),
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and since E and hence PE,η is monotone, it hence contains (x, x) for every x. Reflexivity
is useful because if Ri is reflexive for every i, it implies Ri ⊆ R1 ◦ · · · ◦ Rk. I.e. if some
edge can pump a vector (e, f), then also some cycle can. And if some cycle can, then also a
composition of minimal cycles can, which is non-trivial since not every cycle is a composition
of minimal cycles (cycles can be inserted in the middle of a minimal cycle). So we can truly
limit ourselves to single transitions.

Furthermore, PE,η is smooth periodic fulfilling properties 1 and 2’ since it can be written
as composition of PE∗

i
,ci by Lemma 34. Every one of these PE∗

i
,ci is smooth by induction,

and the composition is hence smooth by Lemma 36. Regarding (directions of) reflexive
smooth periodic relations, we have

▶ Theorem 43. [21, Theorem VII.1] Transitive closures of finite unions of reflexive definable
cone relations over Qd

≥0 are reflexive definable cone relations.

This leaves one last problem for defining Rγ : The above suggests taking dir(PE,η) for
every edge η, but this runs into a problem: Let η be an edge from state s to state t. For
(e, f) ∈ dir(PE,η), the larger run η′ ≥Ω(E) η where (e, f) is pumpable might fulfill η′ ̸∈ Ωs,t.
This should remind the reader of a problem we discussed (and resolved) when dealing with
composition of periodic relations in Section 6.3: The answer is property 2’.

Hence we define for every edge η the well-directed periodic relation Pη := {ends(η′) −
ends(η) | η′ ≥Ω(E) η, η′ ∈ Ωs,t} ⊆ PE,η. By property 2’ for PE,η we obtain a definable
cone relation Rη containing dir(Pη) and such that for every (e, f) ∈ Rη there exists a run
η′ ≥Ω(E) η with η′ ∈ Ωs,t such that in η′ we can pump (e, f), resolving our above problem.
▶ Remark 44. There is another perspective on Rη and its definition for readers familiar
with KLM decomposition. Similar to KLM decomposition, we require every object in the
graph to be unbounded, in particular transitions. The problem we ran into is that pumps
(e, f) ∈ dir(PE,η) might be bounded, even if their corresponding transition η is unbounded.
The definition of Rη indirectly removes pumps ∈ dir(PE,η) which are bounded.

▶ Definition 45. For every cycle ρcyc = η1 . . . ηk in Gγ , let ends(ρcyc) be the basic effect of
the cycle. We define Rγ,1 as the set of pairs (e, f) such that f − e is the basic effect of some
cycle in Gγ . This was used as Rγ in the case of normal VASS, and is clearly definable.

We define Rγ,2 :=
⋃

ηbase
Rηbase

, where ηbase ranges over edges of Gγ .
We define Rγ := (Rγ,1 ∪ Rγ,2)∗, which is definable by Theorem 43.

We have to prove that with this choice for Rγ , property 2’ is fulfilled. I.e. we need
dir(P ) ⊆ Rγ as well as the following lemma.

▶ Lemma 46. For every (e, f) ∈ Rγ there exists (a, b) ∈ P and n ∈ N such that (c, c) +
(a, b) + Nn(e, f) is flattable.

Proof. Let (e, f) ∈ Rγ . Then there exists k ∈ N and e0, e1, . . . , ek with e0 = e and
ek = f such that every (ei, ei+1) ∈ Rγ,1 ∪ Rγ,2. The idea is to create for every i a run
ρi : c + ai →∗

E c + bi with (ai, bi) ∈ P such that there exists ρ′
i ≥Ω(E∗) ρi fulfilling

ends(ρ′
i) − ends(ρi) = n(ei, ei+1) for some n. This would imply that ends(ρi) +N(ends(ρ′

i) −
ends(ρi)) = (c, c) + (ai, bi) + Nn(ei, ei+1) is flattable by Lemma 29(1.), and thereby the
statement by taking the run c +

∑k−1
i=0 ai →ρ0,...,ρk−1 c +

∑k−1
i=0 bi.

In other words, without loss of generality (e, f) ∈ Rγ,1 ∪ Rγ,2.
The case of Rγ,1 is the same as in [21, Lemma VIII.10]. Hence we assume (e, f) ∈ Rγ,2.
By definition of Rγ,2, there exist (a′, b′) ∈ Pη and n ∈ N such that (a′, b′) + Nn(e, f) ⊆

PE,η. By definition of Pη there exists a run η′ ∈ Ωs,t such that η′ ≥Ω(E) η. The above
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containment then shows n(e, f) ∈ Pη′ . By definition of Ωs,t, there exists a run ρ ∈ Ωγ from
c + a →ρ c + b for some vector (a, b) ∈ P such that ρ contains the step η′. Since the
relations PE,η of the other transitions η on this run are reflexive, vectors pumpable into η′

are pumpable into ρ, i.e. we obtain n(e, f) ∈ PE,η′ ⊆ PE∗,ρ. In fact this containment is
obtained via pumping a difference between runs and hence flattable by Lemma 29 (1.). ◀

Next we prove dir(P ) ⊆ Rγ . We need the following, which works the same as in [21].

▶ Lemma 47. [21, Lemma VIII.11] States in Sγ are incomparable.

Now we can prove that dir(P ) ⊆ Rγ .

▶ Lemma 48. dir(P ) ⊆ Rγ .

Proof. Let (e, f) ∈ dir(P ). By potentially rescaling, we obtain (x, y) ∈ P such that
(x, y)+N(e, f) ⊆ P . For every n, let ρn be a run with ends(ρn) = (c, c)+(x, y)+n(e, f). Since
≤Ω(E∗) is a wqo, there exist indices n, m such that ρn ≤Ω(E∗) ρm. Write ρn = η1 . . . ηk. Since
ρn ≤Ω(E∗) ρm, we can write ρm = ρ′

0η′
1ρ′

1 . . . η′
kρ′

k. Clearly we have ends(η′
i)−ends(ηi) ∈ Rγ,2,

since the run ρm ∈ Ωγ and hence ends(η′
i) − ends(ηi) ∈ Pηi ⊆ Rηbase,i

, where ηbase,i is a
minimal transition with ηbase,i ≤Ω(E) ηi. So we mainly have to deal with the ρ′

i. Let
vi := src(ρ′

i) for i ∈ {0, . . . , k}, and wi := tgt(ρ′
i). We claim that the ρ′

i are cycles.
Proof of claim: Since tgt(ηi) = src(ηi+1) ≤ src(η′

i+1), we have si := πγ(tgt(ηi)) ≤
πγ(src(η′

i+1)). By Lemma 47, we obtain πγ(tgt(ηi)) = πγ(src(η′
i+1)). Similarly, from tgt(ηi) ≤

tgt(η′
i) and again Lemma 47 we obtain πγ(tgt(ηi)) = πγ(tgt(η′

i)). Hence tgt(η′
i) = src(ρ′

i)
and tgt(ρ′

i) = src(η′
i+1) project to the same state si. It follows that ρ′

i is a cycle on si.
We claim that the effect of any cycle ρ′ which occurs along a run ρ ∈ Ωγ is in Rγ .
Proof of claim: Let ρ′ be a cycle which occurs along a run ρ. Write ρ′ = η′

1 . . . η′
k. Let

ηi ≤ η′
i be the corresponding minimal transitions (labels of the edges of Gγ). By definition

we have that the basic effect of η1 . . . ηk is in Rγ,1. It remains to deal with the non-basic
effect. Since ηi ≤Ω(E) η′

i and the transition η′
i occurs along a run in Ωγ , namely ρ, we have

ends(η′
i) − ends(ηi) ∈ Pηi

⊆ Rηi
. Hence the extra effect ends(η′

1 . . . η′
k) − ends(η1 . . . ηk) =

[ends(η′
1) − ends(η1)] ◦ · · · ◦ [ends(η′

k) − ends(ηk)] ∈ Rη1 ◦ · · · ◦ Rηk
⊆ Rγ . ◀
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