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Abstract— The prospect of future treatment warrants the
development of cost-effective screening for Alzheimer’s disease
(AD). A promising candidate in this regard is electroen-
cephalography (EEG), as it is one of the most economic imaging
modalities. Recent efforts in EEG analysis have shifted towards
leveraging spatial information, employing novel frameworks
such as graph signal processing or graph neural networks.
Here, we investigate the importance of spatial information
relative to spectral or temporal information by varying the
proportion of each dimension for AD classification. To do so, we
systematically test various dimension resolution configurations
on two routine EEG datasets. Our findings show that spatial
information is more important than temporal information and
equally valuable as spectral information. On the larger second
dataset, substituting spectral with spatial information even led
to an increase of 1.1 % in accuracy, which emphasises the
importance of spatial information for EEG-based AD classi-
fication. We argue that our resolution-based feature extraction
has the potential to improve AD classification specifically, and
multivariate signal classification generally.

Clinical relevance— This study proposes balancing the spec-
tral, temporal and spatial feature resolution to improve EEG-
based diagnosis of neurodegenerative diseases.

I. INTRODUCTION

The current clinical gold standard of Alzheimer’s disease
(AD) diagnosis integrates criteria derived from cognitive
testing and positron emission tomography biomarkers [1].
However, the associated costs prohibit a wider screening of
the general population, which would aid in diagnosing the
disease at an early stage. While patients can already benefit
from an early diagnosis by knowing about their disease
[2], its development is also crucial against the backdrop
of prospective future treatments [3]. Electroencephalography
(EEG) is an economic and mobile imaging modality touted
as a candidate for cost-effective screening of AD [4].

A recent trend has focused on incorporating the graph
structure into the data analysis, for example by using graph
signal processing [5] or graph neural networks [6]. In this
work, we explore the relevance of the spatial information
for AD classification by balancing it against spectral and
temporal information. To this end, we modify the feature
resolution along each dimension, while keeping the number
of overall features constant. In particular, the spatial resolu-
tion is modified using graph pooling techniques [7], which
allow to preserve graph clusters in the sample.

1Stephan Goerttler (goerttlers@uni.coventry.ac.uk) is supported by the
A*STAR Research Attachment Program (ARAP).

In our experiment, we carry out the resolution-based fea-
ture extraction on two routine EEG AD datasets [8], [9]. The
resulting feature tensors are classified using a support vector
machine (SVM). This yields the classification performance
in dependence on the resolution configuration, which enables
us to assess the optimal balance of the dimensions for AD
classification.

II. METHODOLOGY

A. Procedure Overview

The input EEG samples are multivariate signals with a
spatial and a temporal dimension. The goal is to extract
feature tensors with three dimensions from these samples,
namely the spectral, temporal and spatial dimension, which
are subsequently fed into a support vector machine (SVM)
classifier. The procedure is illustrated in Figure 1 (A). The
first step computes Nf,feat power spectral densities (PSDs)
for temporally and spatially located time segments. The sec-
ond and the third step involve pooling the data along the tem-
poral and the spatial dimension, respectively. Each transfor-
mation can be represented as a computationally inexpensive
matrix multiplication. The extent of the pooling defines the
resolution in terms of the number of features for the temporal
(Nt,feat) and the spatial (Ng,feat) dimension. While the
number of overall features Nfeat = Nf,featNt,featNg,feat

is held constant, the number of features for each of the three
dimensions can be varied, as illustrated in Figure 1 (B).
To allow for many resolution configurations, the number of
overall features is set to Nfeat = 60 = 22 · 3 · 5 for dataset I
and Nfeat = 180 = 22 · 32 · 5 for the larger dataset II.

B. Windowing and Power Spectral Density (PSD) Features

The extraction of the PSDs builds on Welch’s method [10].
The input is firstly separated into Nseg segments of length
Nt,seg along the time axis, with each segment overlapping
the next by a half. Specifically, the j-th segment covers the
time interval [j · ⌊Nt,seg/2⌋, j · ⌊Nt,seg/2⌋+Nt,seg). The
length Nt,seg of the segments depends both on the tar-
get maximum frequency fmax, the number of frequencies
Nf,feat as well as the EEG sampling rate fs:

Nt,seg =

[
Nf,feat

fs
fmax

]
, (1)

where [·] rounds the result to the nearest integer. We set
fmax = 45Hz in our experiments. The number of segments
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Fig. 1: Illustration of balancing spectral, temporal and spatial features for classification. (A) Firstly, spectral features are
extracted as the spectral density. Note that this step already compresses the temporal dimension. In a second step, the features
are pooled along the temporal dimension by averaging. The extent of the pooling determines the temporal resolution. Lastly,
the features are pooled spatially using graph pooling, which determines the spatial resolution, before being fed into a support
vector machine. (B) When the features are extracted, the resolution along any of the three domains can be varied, changing
the shape of the feature matrix as illustrated by the cuboids on the triangle. Importantly, the volume of the displayed cuboids,
representing the number of total features, remains constant.

Nseg depends on the number of time samples Nt of the
input. Shifting to tensor notation, the two dimensional input
matrix X is separated into Nseg segments X(j) with shape
Nc × Nt,seg , which we stack horizontally to form a three
dimensional tensor Xijk with shape Nc ×Nseg ×Nt,seg .

The next steps computes the PSD for each windowed
segment. Note that the PSDs are not yet averaged across
each window k. This transformation is mathematically given
as follows:

Xijk → 1

Tr(W 2
kh)

∣∣∣XijkWkhS
(DFT)
hn

∣∣∣2 =: X
(f)
ijn. (2)

Here, the matrix Wkh is a diagonal matrix with the Hanning
window along the diagonal,

(Wkh)i,i =
1

Nt,seg
sin

(
iπ

Nt,seg − 1

)2

, (3)

which windows the segments along time. The matrix S
(DFT)
hn

with shape Nt,seg×Nf,feat is the discrete Fourier transform
matrix limited to Nf,feat columns.

C. Temporal Pooling

The tensor X(f)
ijn, computed in (2), is subsequently pooled

along the temporal dimension. The number of pooling groups
Nt,feat, with 1 ≤ Nt,feat ≤ Nt,seg , defines the number of
temporal features and thereby the temporal resolution. To
form the groups with equal length, we can assign a group

index nt(j) to each temporally located segment j using the
floor function ⌊·⌋:

nt(j) =

⌊
j

⌊Nt,seg/Nt,feat⌋

⌋
. (4)

This allows us to define a group assignment matrix S
(time)
jm

as follows:(
S
(time)
jm

)
i,j

=

{
1/Nt,grp(j) if j = n(i)

0 else
(5)

Nt,grp(j) = #{nt(k) = j,∀k}, (6)

where Nt,grp(j) counts the number of elements in the
respective group. Multiplication with the group assignment
matrix essentially averages the windows belonging to each of
the groups across time. The tensor with the extracted spectral
and temporal features is then computed using the following
transformation:

X
(f)
ijn → X

(f)
ijnS

(time)
jm =: X

(ft)
imn. (7)

D. Spatial Pooling

We employ graph spectral clustering [7], or graph pooling,
to pool the feature tensor X(ft)

imn along the spatial dimension.
The goal of the graph pooling is to control the number of
spatial features Ng,feat, which define the spatial resolution.
To do so, we firstly retrieve the overall graph structure of
each training set data-driven using the functional connectiv-
ity. Specifically, we compute the graph’s adjacency matrix



A pairwise as the Pearson correlation between channels,
meaning that A is symmetric and zero on its diagonal.
Secondly, we compute the Laplacian matrix L = D − A
from the adjacency matrix, where D = diag(A · 1) denotes
the degree matrix. Thirdly, we compute the first Nc,feat

eigenvectors of L, stack the eigenvectors horizontally to
form the matrix U and read out the Nc rows as vectors
yi of length Nc,feat. The vectors yi define points which
are clustered using the k-means algorithm. This ultimately
yields a cluster, or group, index ng(i) for each channel i. In
analogy to equation (5), we can define a group assignment
matrix S

(graph)
il using the index mapping ng:(
S
(graph)
il

)
i,j

=

{
1/Ng,grp(j) if j = ng(i)

0 else
(8)

Ng,grp(j) = #{ng(k) = j,∀k}, (9)

yielding the final transformation:

X
(ft)
imn → X

(ft)
imnS

(graph)
il =: X

(ftg)
lmn . (10)

The resulting feature tensor X
(ftg)
lmn has shape Ng,feat ×

Nt,feat ×Nf,feat and is flattened before being fed into the
SVM classifier.

E. Support Vector Machine (SVM) Classification

We used a non-linear SVM with commonly used pa-
rameters to classify the extracted features. Specifically, the
radial basis function kernel coefficient is given by γ =
1/(Nf Var(X)), where X is the feature vector, and the
regularisation strength by C = 1. This study focuses on com-
paring feature extraction parameters, which is why we did
not perform hyperparameter optimisation. To test our model,
we used 10-fold cross validation. The multiple samples of
each patient were strictly kept in one fold for both datasets
to avoid data leakage.

III. EXPERIMENTS

A. Dataset I

The first EEG dataset used in this study was acquired from
20 Alzheimer’s disease patients and 20 healthy controls at a
sampling rate of 2048 Hz with a modified 10-20 placement
method [8]. Patients were instructed to close their eyes
during the measurement. For every patient, two or three
sections of 12 seconds were selected from the recording by
a clinician, resulting in 119 samples. To cancel out volume
conduction artifacts, a bipolar montage was used, resulting in
23 channels. The full description of the dataset can be found
in Blackburn et al. [8]. We further downsampled the samples
by a factor of 4 to a sampling rate of 512Hz to match the
sampling rate in dataset II. The final shape of each sample
is Nc ×Nt = 23× 6, 145.

B. Dataset II

The second, publicly available1 EEG dataset comprises 36
Alzheimer’s disease patients and 29 healthy controls [9]. It

1https://openneuro.org/datasets/ds004504/versions/1.0.6

was recorded at a sampling rate of 500Hz with 19 scalp
electrodes placed using the 10-20 system and two reference
electrodes. As in dataset I, patients were instructed to keep
their eyes closed during the 13-14 minute measurements.
The EEG samples were filtered and re-referenced using the
reference electrodes, and artefact detection methods were
employed. More details about the dataset and the prepro-
cessing are described in Miltiadous et al. [9]. We partitioned
the preprocessed EEG samples into 60 seconds-long samples,
excluding samples that contained artefacts. This resulted in
overall 656 EEG samples with shape Nc×Nt = 19×30, 000.

C. Results

Figure 2 shows the accuracy in dependence on the feature
configuration. While there are three variable parameters,
namely the number of features along each dimension, the
constraint that the overall number of features is constant
reduces the number of free parameters to two. We selected
the ratio of the number of graph features to the number of
time features as one variable, and the number of spectral
features as the second, while the accuracy is depicted in
colour as an interpolated contour plot. The results show
that maximising the number of time features yields the
lowest accuracy. Conversely, maximising spatial features
yields comparable accuracy to maximising spectral features,
and even an increase of 1.1 % on the larger dataset II. In-
terestingly, more balanced configurations result in markedly
different performances across the two datasets.

Figure 3 shows the accuracy along the edge of the trian-
gular configuration space, which includes all configurations
for which at least one of the three variables is minimal. The
accuracy curves of the two datasets are strikingly similar.
They both depict a large valley for a maximal number of time
features, and a small valley for configurations in between
maximal graph and maximal spectral features.

IV. DISCUSSION

We observed that high temporal feature resolution at the
expense of spectral or spatial resolution led to poorer perfor-
mance on two EEG-based AD classification tasks, possibly
because the dynamics are not synchronised in the experi-
ments. On the other hand, favouring spatial over spectral
resolution led to comparable or even higher performances,
suggesting that spatial information can offset the loss of
spectral information typically crucial for EEG. However, the
accuracy drop for in-between configurations, visible in both
datasets, indicates that balancing spectral and spatial features
is not trivial, but rather relies on a suitable combination
of frequency spacing and graph partition. The performance
of configurations that balance all three dimensions diverges
across the two datasets, which suggests that these configura-
tions are more susceptible to differences in the EEG setup.

In conclusion, this study introduced a feature extraction
tool that enables the arbitrary balancing of spatial, spectral,
and temporal information in the extracted features. Our
results highlight the potential benefits of leveraging spatial
information for multivariate signal classification. We argue

https://openneuro.org/datasets/ds004504/versions/1.0.6
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Fig. 2: Linearly interpolated accuracy in dependence on the feature resolution configuration for dataset I (A) and II (B). The
green crosses mark the experimentally tested configurations. The accuracy along the triangle edges is separately plotted in
Figure 3. Both datasets reveal similar levels of accuracy for maximal spectral and graph features, as well as poor accuracy
for maximal time features. They further both reveal an accuracy level between the maximal spectral and graph features. In
the centre of the available configuration space, corresponding to more balanced resolution configurations, the performance
diverges across the two datasets.
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Fig. 3: Accuracy along the triangle edges depicted in Figure
2. The colour of the curve allows to retrieve the feature
resolution configuration from Figure 2. The curve has a large
accuracy valley at maximal temporal information (yellow
section), but also a smaller accuracy valley between the
maximal spatial and spectral configuration (magenta section).

that while temporal information appeared redundant in our
experiment, it may similarly prove valuable for classification
tasks involving time-locked signals.
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