
CURSOR: Scalable Mixed-Order Hypergraph Matching with CUR
Decomposition

Qixuan Zheng1 Ming Zhang2* Hong Yan1

1City University of Hong Kong
2Hong Kong Applied Science and Technology Research Institute (ASTRI)
{qixuzheng2-c, mzhang367-c}@my.cityu.edu.hk, h.yan@cityu.edu.hk

Abstract

To achieve greater accuracy, hypergraph matching algo-
rithms require exponential increases in computational re-
sources. Recent kd-tree-based approximate nearest neigh-
bor (ANN) methods, despite the sparsity of their compati-
bility tensor, still require exhaustive calculations for large-
scale graph matching. This work utilizes CUR tensor de-
composition and introduces a novel cascaded second and
third-order hypergraph matching framework (CURSOR) for
efficient hypergraph matching. A CUR-based second-order
graph matching algorithm is used to provide a rough match,
and then the core of CURSOR, a fiber-CUR-based ten-
sor generation method, directly calculates entries of the
compatibility tensor by leveraging the initial second-order
match result. This significantly decreases the time complex-
ity and tensor density. A probability relaxation labeling
(PRL)-based matching algorithm, specifically suitable for
sparse tensors, is developed. Experiment results on large-
scale synthetic datasets and widely-adopted benchmark sets
demonstrate the superiority of CURSOR over existing meth-
ods. The tensor generation method in CURSOR can be inte-
grated seamlessly into existing hypergraph matching meth-
ods to improve their performance and lower their computa-
tional costs.

1. Introduction

Finding the correspondences between a pair of feature sets
by graph-matching has many applications in computer vi-
sion and pattern recognition tasks like feature tracking
[11, 23, 39], image classification [36], object detection [24],
and gene-drug association identification [5]. The second-
order graph matching (pairwise matching) problem is a
quadratic assignment problem (QAP), which is NP-hard
[18]. Efforts to find soft-constraint approximate solutions

*Corresponding author.

4

2

6 5

3
1

1
2

4

5
63

7

1

2

3
𝒢1

𝒢2

Sampling ANN
1 1

2 2

3 3

4 4

෩ℋ1,2,3

…

Matching
Result

Matching

Hyperedge
Zoom in

ℋ

෩ℋ1,2,3

(a) Traditional ANN-based hypergraph matching

1

2

3Sampling

ℋ

෩ℋ1,2,3

Fiber &
Selection

1 1

2 2

3 3

4 4

…

Matching
Result

PRL

2

3

1
1 1

3

7
3

2

5

4

2

…

CUR-based
second-order

matching

෩ℋ1,2,3Hyperedge

1
2

4

5
63

𝒢1

4
2

6 5

3
1

7
𝒢2

Zoom in

𝑘 nodes with the highest
matching similarities

(b) The proposed CURSOR with PRL-based matching

Figure 1. The comparison between the traditional ANN-based
framework and CURSOR. Instead of calculating the whole ten-
sor block (the light orange area in (a)) and extracting the highest
compatibilities in each block (the blue cubes), CURSOR only cal-
culates a small number of block fibers (the light orange area in
(b)) and retains fewer elements in these fibers, effectively reduc-
ing computational costs for large-scale hypergraph matching. The
method chooses the fibers based on the second-order matching re-
sult. CURSOR calculates fibers in all three tensor modes, and only
one is shown in (b) for clarity.

[7, 8, 21, 32] have been limited to the representation of pair-
wise compatibilities.

Higher-order graphs, known as hypergraphs [9, 12, 19,
20, 30], integrate better geometric information and handle
transformations like scaling and rotation better. The hy-
pergraph matching problem considers the compatibility be-
tween two hypergraphs as a high-order tensor. The objec-
tive function aims to find the maximization over all permu-
tations of the features. A kd-tree-based approximate near-

ar
X

iv
:2

40
2.

16
59

4v
4

 [
cs

.C
V

]
 3

0
A

pr
 2

02
4

est neighbor (ANN) method [9] to reduce the space and
time complexity of the hypergraph matching algorithm has
been used in many hypergraph matching algorithms (e.g.
RRWHM [20], BCAGM [30] and ADGM [19]). ANN-
based methods compute the sparse compatibility tensor by
searching for nearest neighbors between randomly sampled
hyperedges in the source graph and all the hyperedges in the
target graph. Large-scale kth-order hypergraph matching
with n2 points in the target graph has O(nk

2) time and space
complexity for the compatibilities of each source graph hy-
peredge. Achieving a higher matching accuracy requires as
many of the highest compatibilities as possible to increase
the probability of finding the ground truth paired hyper-
edges, resulting in a denser compatibility tensor.

To address the above scalability issue, this work pro-
poses a novel scalable hypergraph matching framework,
CURSOR, based on cascaded mixed-order models with
CUR decomposition. The comparison of CURSOR and tra-
ditional ANN-based methods is illustrated in Fig. 1. The
traditional ANN-based methods construct the compatibil-
ity tensor directly with the nearest neighbors between the
randomly sampled source hyperedges and all target ones.
CURSOR first computes a roughly intermediate result with
the proposed CUR-based second-order matching algorithm,
drastically reducing the memory footprint of the compat-
ibility matrices for large-scale graph matching. Subse-
quently, a small-scale target hyperedge subset, represented
as third-order fiber tensors, can be generated utilizing the
second-order results to calculate the compatibility tensor,
substantially decreasing the computation complexity. The
tensor generation method in CURSOR can integrate seam-
lessly into almost all existing state-of-the-art hypergraph
matching algorithms [9, 12, 19, 20, 30] and significantly in-
crease their matching performance at lower computational
cost.

The contributions of this work are:
• We propose a novel cascaded second and third-order

CUR-based hypergraph matching framework, CURSOR,
to deal with large-scale problems. Under the same mem-
ory limitations, CURSOR can handle a more than ten
times larger-scale hypergraph matching problem than cur-
rent state-of-the-art algorithms.

• CURSOR contains a fiber-CUR-based compatibility ten-
sor generation method using the rough matching result
from the CUR-based second-order graph matching al-
gorithm, which efficiently decreases the computational
complexity and selects the proper sparse tensor entries.

• A PRL-based tensor matching algorithm is developed to
significantly accelerate convergence during the matching
process and increase the accuracy of matching.

• Experiment results show that CURSOR provides state-of-
the-art matching accuracy by effectively finding the es-
sential non-zero entries in the compatibility tensor.

2. Related Works

2.1. Hypergraph Matching

Second-order graph-matching algorithms [7, 8, 10, 21, 32]
represented the geometric consistency between a pair of
features as the edges of a graph to avoid ambiguities like
repeated patterns and textures. These algorithms pursued
an approximate solution as the problem is known to be NP-
hard. Among them, Leordeanu and Herbert [21] and Cour
et al. [8] estimated the rank-1 approximation of the com-
patibility matrix with power iteration as the flattening of the
assignment matrix. Cho et al. [7] provided a novel ran-
dom walk view for graph matching with a reweighting jump
scheme and reduced the constraints in its iterative process.
Recently, Wang et al. [32] proposed a functional representa-
tion for graph matching with the additional goal of avoiding
the compatibility matrix construction. The performance of
second-order methods was limited with the restriction to the
normal graph embedding pairwise relationships.

In the past decade, to overcome the limitation of pair-
wise similarity, various hypergraph matching algorithms
[9, 12, 19, 20] were developed based on the structural com-
patibilities between the higher-order hyperedges of two hy-
pergraphs. In order to avoid the enormous computational
cost of a full compatibility tensor, Duchenne et al. [9],
extending the SM algorithm proposed by [21] to a higher
order, constructed the sparse compatibility tensor with an
ANN-based method, which is frequently used for gener-
ating compatibility tensors in later hypergraph matching
works. Lee et al. [20] introduced the method of [7] to
reweighted walk hypergraph matching problems, enforcing
the matching constraint with a bi-stochastic normalization
scheme. Lê-Huu and Paragios [19] decomposed the prob-
lem under different constraints and handled it with an al-
ternating direction method of multipliers. Khan et al. [16]
directly applied CUR decomposition to the full compatibil-
ity matrix and tensor at the cost of a higher space complex-
ity than the ANN-based method. Although the ANN-based
method can significantly decrease the time complexity dur-
ing the matching process, it still has an enormous computa-
tional cost to calculate the compatibility tensor.

With the rise of deep learning, various learning-based
graph-matching algorithms were proposed to learn the pa-
rameters as deep feature extraction hierarchies in a data-
driven way [3, 4, 15, 26, 31, 34, 38]. Inspired by Wang et
al. [33], Liao et al. [25] proposed the first unified hyper-
graph neural network, HNN-HM. Unlike the sparse com-
patibility tensor widely used in ANN-based algorithms, the
dense deep feature matrices or tensors require more com-
putation resources. Therefore, compared with ANN-based
algorithms, the learning-based hypergraph matching algo-
rithms can only handle much smaller-scale problems under
the same memory constraint.

2.2. CUR Matrix and Tensor Decomposition

CUR decomposition [27] is used to compute the low-
rank approximation of a matrix with the actual rows and
columns. Assume a matrix A ∈ Rm×n. By selecting c
columns and r rows from A as C ∈ Rm×c and R ∈ Rr×n,
the low-rank approximation of A can be formulated as
C(C†AR†)R, where † is the pseudoinverse and C†AR†

represents the matrix U. Cai et al. [2] showed that if
rank(A) < min{c, r}, U can be directly represented by the
intersection of C and R as its pseudoinverse. Xu et al. [37]
proposed CUR+ to calculate the matrix U with randomized
matrix entries instead of the whole matrix when the matrix
is not low rank. For tensor CUR decomposition, random-
ized fiber CUR decomposition can extend the CUR decom-
position to the tensor [1]. The method first samples cl fibers
on mode-l and expands the fibers as matrix Cl along mode-
l. The intersection of all samples forms tensor R and Ul is
the pseudoinverse of the mode-l expansion of R. The fiber
CUR decomposition of the tensorH can be represented as:

H ≈ R×k
l=1 (ClUl) (1)

where×l represents tensor times matrix along the lth mode.
The performance of the CUR decomposition is highly de-
pendent on the selection of C and R (or R in high order).
Key samples can result in an approximation with high ac-
curacy. Therefore, one of the most essential tasks of CUR
decomposition is to find the required samples with less com-
putation.

3. Method
3.1. Problem Setup

We follow the problem settings in [21]. Considering a pair
of matched graphs G1 = (V1, E1) and G2 = (V2, E2), the
correspondences between G1 and G2 can be represented
as a binary assignment matrix X ∈ {0, 1}n1×n2 where
n1 = |V1| and n2 = |V2|. To solve the NP-hard graph
matching problem, we denote the elements of the assign-
ment matrix with soft constraint as Xij ∈ [0, 1], where
Xij is the probability that the ith node in V1 matches the
jth node in V2. Following [9], we suppose every node in
G1 matches exactly one node in G2, and every node in G2
matches at most one node in G1, i.e., ∀i,

∑
j Xij = 1 and

∀j,
∑

i Xij ≤ 1. In the rest of the paper, we call G1 the
source graph and G2 target graph.

The compatibility matrix of second-order graph match-
ing, H ∈ Rn1n2×n1n2 , is the unfold of the fourth-order
tensor Ĥ ∈ Rn1×n2×n1×n2 where Ĥi1,j1,i2,j2 represents
the similarity between edges (i1, i2) and (j1, j2). The soft-
constraint assignment matrix is flattened as x. The second-
order graph-matching problem can be represented as the op-
timization of the function:

max
x

xTHx

s.t.
∑
j∈indi

xj = 1,∀i (2)

where indi = {(i − 1)n2 + 1, · · · , in2} represents the in-
dex set of the ith row of X. The compatibility matrix is
symmetric, which means the compatibility between (i1, i2)
and (j1, j2) is the same as that between (i2, i1) and (j2, j1).
Equation (2) can be cast into a classical Rayleigh quotient
problem, and x is proved to be associated with the main
eigenvector of H [9], which can be calculated with meth-
ods such as power iteration.

The kth-order hypergraph-matching problem can be ex-
tended to:

max
x

H⊗1 x⊗2 · · · ⊗k x

s.t.
∑
j∈indi

xj = 1,∀i (3)

where the kth-order supersymmetric tensorH represents the
compatibility between the hyperedges in the two graphs [9].
⊗l is the mode-l product of the tensor and vector, which is
calculated as:

(H⊗l x)i1,··· ,il−1,il+1,··· ,ik =
∑
il

Hi1,··· ,il,··· ,ikxil (4)

3.2. CUR-based Second-Order Graph Matching

Dealing with large-scale graph matching problems, with
thousands of paired nodes, is not feasible due to the ter-
abytes of computer memory required for the compatibility
matrix H. CURSOR estimates the low-rank approxima-
tion of the compatibility matrix with CUR decomposition.
Instead of directly generating the whole matrix with huge
memory usage, it calculates a small number of rows and
columns. Because of the symmetric property of the com-
patibility matrix, the column sampling is sufficient to de-
crease the computational complexity. By randomly select-
ing c columns from H as C, the second-order compatibility
matrix can be decomposed into two smaller-sized matrices
C ∈ Rn1n2×c and U∗ ∈ Rc×c. Following CUR+ [37], U∗
is calculated as:

U∗ = argmin
U
∥RΩ(H)−RΩ(CUCT)∥F (5)

where RΩ(·) is the symbol used in the original work of
CUR+ [37] to represent the matrix entries, including the
randomly selected entries and all the intersection elements
of C and CT . ∥ · ∥F represents the Frobenius norm of the
matrix. The multiplication of Hx to update x in every iter-
ation can be simplified as:

Hx ≈ CU∗(C
Tx) (6)

which reduces the time and space complexity in every it-
eration from O(n2

1n
2
2) to O(cn1n2). For large-scale graph

matching problems, c≪ n1n2.
The assignment matrix, X, is calculated with the CUR

decomposition of H by applying a soft-constraint second-
order graph-matching algorithm, like SM [21] or RRWM
[7]. For i ∈ {1, · · · , n1}, the k entries with highest prob-
abilities in Xi,: are found as the best k match set Pk

i =
{sij}kj=1, where sij represents the index of the jth high-
est probability in Xi,:. The detailed algorithm is shown in
Algorithm 1. The CUR-based method may lead to lower
matching accuracy with fewer sampled rows and columns
if only second-order matching is applied. However, it can
provide a rough result to follow with higher-order graph
matching, thereby avoiding the infeasible large-scale com-
putations.

Algorithm 1 CUR-based second-order graph matching

Input Point sets P1, P2 with size n1, n2, column indices
I , entry indices J ⊇ I , k
Output Best k match set Pk = set(Pk

1 , · · · ,Pk
n1
).

C← H(:, I) {calculate columns with P1, P2}
U∗ ← CUR(C,H(J, J)){Based on Eq. (5).}
x← Matching(CU∗C

T)
X← reshape(x)
for i = 1, · · · , n1 do
{Find k entries with highest probabilities for X(i, :)}
Pk
i ← {sij}kj=1

end for

3.3. Fiber-CUR-based Tensor Generation

The ANN-based method searches for the highest compat-
ibilities in all target hyperedges, which is time and space-
consuming for large-scale hypergraph matching. Based
on randomized fiber CUR decomposition, the third-order
compatibility tensor can be generated with the pairwise
graph-matching result to reduce the computational cost.
The second-order matching result from Algorithm 1 is Pk,
where k ≪ n2. The method does not need to compare
the hyperedge (i1, i2, i3) ∈ E1 with all the hyperedges in
the target hypergraph, but with the hyperedge set {(j1, j2, :
), (j1, :, j3), (:, j2, j3)} ∈ E2 where j1 ∈ Pk

i1
, j2 ∈ Pk

i2
,

and j3 ∈ Pk
i3

. The r highest entries from each hyperedge’s
calculated compatibilities in the source graph are sellected.
Since each hyperedge is compared with fewer target hyper-
edges, r is much smaller than the number of selected com-
patibilities r1 in [9].

The light blue areas in Fig. 1 illustrate the compari-
son between the prior ANN-based tensor generation meth-
ods and the proposed fiber-CUR-based method in terms
of the tensor structure. The compatibility between hyper-
edge (i1, i2, i3) in the source graph and all the hyperedges

in the target graph can be represented as the tensor block
H̃i1,i2,i3 = Hindi1 ,indi2 ,indi3 (orange cubes in Fig. 1). Tra-
ditional ANN-based methods first randomly select t tensor
blocks, then calculate each tensor block with n3

2 time and
space complexity and reserve the r1 highest entries in each
block. In CURSOR, with the second-order graph match-
ing result Pk, only the corresponding fibers of each ten-
sor block, C are estimated, and the r highest entries are se-
lected. Consequently, the algorithm’s complexity reduces
from O(tn3

2 + tr1) to O(tk2n2 + tr) where r ≪ r1. As
only the highest compatibilities matter, there is no need to
calculate the redundant U andR in Eq. (1). Compared with
the original randomized fiber CUR decomposition, the com-
patibility tensor requires less computation. The fibers in C
are selected based on Pk rather than by random sampling
and are closer to the key samples. Therefore, the ground
truth matching compatibility can be located with a higher
probability, resulting in higher matching accuracy. The to-
tal algorithm is given as Algorithm 2.

Algorithm 2 Fiber-CUR-based tensor generation

Input Point sets P1, P2 with size n1, n2, best k initial
guess set Pk = set(Pk

1 , · · · ,Pk
n1
)

Output Sparse tensorH
H ← empty tensor
I ← hyperedges randomly sampled from P1

for i = (i1, i2, i3) ∈ I do
e← computeHyperedgeFeature(i, P1)
F ← empty feature set
{Calculate corresponding fibers in all directions.}
J1 ← {(1 : n2, j2, j3)}, j2 ∈ Pk

i2
, j3 ∈ Pk

i3

J2 ← {(j1, 1 : n2, j3)}, j1 ∈ Pk
i1
, j3 ∈ Pk

i3

J3 ← {(j1, j2, 1 : n2))}, j1 ∈ Pk
i1
, j2 ∈ Pk

i2
J = set(J1,J2,J3)
for j ∈ J do

f ← computeHyperedgeFeature(j, P2)
F ← F

⋃
f

end for
S ← search for r highest similarities(F , e)
for s ∈ S do

ind(i, js)← index ofH(i, index(s))
H(ind(i, js))← compatibility(e, s)

end for
end for

3.4. PRL-based Matching Algorithm

To accelerate the convergence of the matching process, a
fast hypergraph matching algorithm was developed based
on probabilistic relaxation labeling (PRL) that takes advan-
tage of the high sparsity of the compatibility tensor. The
original PRL algorithm [13] updates the probability that a
label is assigned to an object with a set of specified com-

patibilities, and has been applied in several graph matching
problems [6, 28, 35]. For each i ∈ G1 and j ∈ G2, pi(j)
represents the probability that i is associated with j, which
can be updated according to the following equation:

p
(k+1)
i (j) =

p
(k)
i (j)[1 + q

(k)
i (j)]∑

m p
(k)
i (m)[1 + q

(k)
i (m)]

(7)

with

q
(k)
i (j) =

n1∑
l=1

dil[

n2∑
m=1

ril(j,m)p
(k)
l (m)] (8)

where dil is a weight factor representing the influence of l
on i and

∑
l dil = 1. The factor ril(j,m) ∈ [−1, 1] de-

notes the relationship between the pairwise feature of edge
(i, l) ∈ E1 and (j,m) ∈ E2.

In our work, define Ril(j,m) = 0.5(ril(j,m) + 1) ∈
[0, 1] and set dil = n−1

1 . By replacing the weighting factor
p
(k)
i (j) in Eq. (7) with updated probabilities, it gives

p
(k+1)
i (j) =

[
∑

l

∑
m Ril(j,m)p

(k)
l (m)]2∑

i[
∑

l

∑
m Ril(j,m)p

(k)
l (m)]2

(9)

which contributes to a more consistent result and faster con-
vergence. Define

Ri1i2(j1, j2) =

{
Mi1,j1 i1 = i2 and j1 = j2

Ĥi1,j1,i2,j2 otherwise
(10)

where Ĥi1,j1,i2,j2 is the corresponding value in the com-
patibility matrix H and Mi1,j1 is related to the first-order
compatibility between node i1 ∈ G1 and j1 ∈ G2. Since
Ĥi,j,i,j = 0 for all i, j, the numerator of Eq. (9) can be
updated as:

p̂
(k+1)
i (j) = (Mi,jp

(k)
i (j) +

∑
l

∑
m

Ĥi,j,l,mp
(k)
l (m))2

(11)
Denote δ as

∑
l

∑
m Ĥi,j,l,mp

(k)
l (m). To increase the cor-

responding true matching p
(k)
i0

(j0) consistently during every

iteration, p̂(k+1)
i0

(j0) must satisfy (Mi0,j0p
(k)
i0

(j0) + δ)2 ≥
p
(k)
i0

(j0), which leads to

δ ≥ 0.25M−1
i0,j0

(12)

If Eq. (12) is guaranteed, the probabilities can converge fast.
The detailed derivation of the PRL-based method can be
found in the supplement.

To extend the algorithm to third-order hypergraph
matching, replace the probability set p = {pi(j)} with the
vector x, the column-wise flattening of soft-constraint as-
signment matrix X. After normalization, rewrite Eq. (11)
as

x̂(k+1) = (αm̂⊙x(k)+(1−α)H⊗1 x
(k)⊗2 x

(k))2 (13)

where⊙ is the element-wise multiplication and α ∈ [0, 1] is
a balance weight between the first and third-order compati-
bilities. The square calculation in Eq. (13) is also element-
wise. The first-order compatibility vector m̂ is obtained by
column-wise flattening M̂. The steps are shown in Algo-
rithm 3. For a tensor with high sparsity, the non-zero entries
of H ⊗1 x(k) ⊗2 x(k))2 are concentrated. Therefore x(k)

has a fast convergence speed if the ground truth compati-
bility entries are selected in the sparse tensor. According
to Eq. (12), a lower α can be set for the tensor with high
sparsity to achieve faster convergence.

Algorithm 3 PRL-based hypergraph matching

Input Sparse compatibility tensor H, initial assignment
matrix X, first-order compatibility vector m̂, α
Output Soft-constraint assignment matrix X
repeat
x← flatten(X)
δ ← H⊗1 x⊗2 x
x← αm̂⊙ x+ (1− α)δ
x← x⊙ x
X← reshape(x)
X← norm(X) {Normalize across columns}

until X converges

4. Experiments

CURSOR was compared with four learning-free third-
order ANN-based hypergraph matching algorithms: Tensor
Matching (TM) [9], Hypergraph Matching via Reweighted
Random Walks (RRWHM) [20], BCAGM in third-order
(BCAGM3) [30], and Alternating Direction Graph Match-
ing (ADGM)[19]. The experiments were conducted
on the original implementations provided by their au-
thors. The proposed tensor generation method was inte-
grated into each of these algorithms, represented as CUR-
SOR+TM/RRWHM/BCAGM3/ADGM in the experiments.
The all-ones vector was set as the starting point, and the
Hungarian algorithm [17] turned the output into a proper
matching. CURSOR was also compared with the state-
of-the-art deep-learning-based algorithm HNN-HM [25] on
the House and Hotel dataset, which is relatively small-scale.
Since HNN-HM failed for datasets with n1 > 40 under the
same memory constraint, it was not compared with CUR-
SOR on other datasets. The hyperparameter α in Algo-
rithm 3 was set to 0.2 during the experiments. The exper-
iments were run on a computer with an Intel Core i7-9700
CPU @ 3.00 GHz and 16 GB of memory. All quantitative
results were obtained by 50 trials. Due to space limitations,
the ablation studies and parameter sensitivity analysis are
given in the supplement.

The compatibility features for each order and the param-

ADGM CURSOR
n1 n2 σ t r1 Memory (H) Accuracy c k r Memory (H+H) Accuracy
30 30 0.02 900 900 89.35MB 1 15 5 5 0.62MB 1
30 50 0.02 1500 2500 413.88MB 1 15 5 5 0.82MB 1
50 50 0.02 2500 2500 701.80MB 1 20 7 7 2.37MB 1
50 100 0.02 5000 10000 5.45GB 0.974 100 10 10 9.62MB 0.982

100 100 0.02 10000 10000 11.28GB 1 100 15 20 30.65MB 1
300 300 0.01 30000 -∗ - - 200 20 20 215.92MB 1
500 500 0.01 50000 - - - 300 25 30 783.85MB 0.969
800 800 0.005 80000 - - - 400 30 50 2.02GB 0.973

1000 1000 0.005 100000 - - - 500 50 80 5.03GB 0.992

Table 1. Results on the synthetic dataset with ADGM and CURSOR.

∗System runs out of memory.

eters for the experiments were set as:
First-order compatibility. The first-order compatibility
matrix M in Eq. (13) for all experiments was calculated as:

Mi,j = exp(−γ0∥fi − fj∥2) (14)

where fi and fj are the normalized coordinates of ith point
in P1 and jth point in P2, respectively. The coordinates are
normalized by subtracting the mean value of the coordinates
in each set. γ0 is the inverse of the mean value of all the
distances from points in P1 to the ones in P2. M is then
flattened column-wise as the first-order compatibility vector
m̂.
Second-order compatibility matrix. The pairwise com-
patibility feature calculation of CURSOR followed [16],
which found a balance between rotation and scale invari-
ance. c columns, as C, and another 3c2 entries of H were
randomly selected with a uniform distribution for the CUR
decomposition. The soft-constraint assignment matrix was
computed with the second-order PRL-based algorithm pre-
sented in Eq. (11).
Third-order compatibility tensor. Following [9], the
same third-order compatibility feature calculation for the
ANN-based and CURSOR methods was applied. The same
t randomly selected hyperedges in the source graph were
used for all the methods. The ANN-based and CURSOR
methods generated the tensor with r1 and r highest compat-
ibilities from the target graph, respectively.

4.1. Large-Scale Random Synthetic Dataset

One thousand two-dimensional points, P , were sampled
from a Gaussian distribution N (0, 1). Then, Gaussian de-
formation noise N (0, σ2) was added to P as point set Q.
During the experiments, n1 points from P were selected as
source graph G1, and n2 points containing the correspond-
ing matching of G1 and outliers from Q were chosen as tar-
get graph G2.

CURSOR was evaluated on synthetic datasets with in-
creasing problem scales. Results of the ADGM algorithm
based on ANN, whose accuracy was the highest among all
the prior state-of-the-art hypergraph matching algorithms,
were given. The parameter settings of ADGM, including t
and r1, strictly followed the original work [19]. CURSOR
can deal with large-scale scenarios and achieve privilege-
matching accuracy with much less memory usage (Table 1).
CURSOR was capable of solving 1000-vs-1000 matching
problems with high accuracy, while ADGM failed to gen-
erate the tensor when n1 > 100 under the same memory
constraint. A more detailed memory footprint analysis and
the potential bottleneck of CURSOR will be provided in the
supplement.

4.2. Templates with Specific Shapes

To analyze the robustness of CURSOR to different shape
deformations, middle-scale templates with specific shapes,
which have been commonly used in previous works [14, 16,
29, 32] were evaluated. Four 2D templates were chosen:
whale with 150 points, Chinese character with 105 points,
UCF fish with 98 points, and tropical fish with 91 points.
The target points were generated by rotation, scaling, with
noise and outliers added. For CURSOR, c = 100, k = 5,
r = 25 and for ANN-based methods, r1 = 300. For both
types of methods t = 0.3n1n2.

Different deformations were added on all the target
points. For the rotation case, the source points were rotated
with angle θ ∈ [−30◦, 30◦], then noise with σ = 0.02σ0,
where σ0 is the standard deviation of all the source point
coordinates, was added. For the scaling case, only the x-
coordinate of the 2D point was scaled with the scaling factor
s = 1.1β , where β ∈ [−5, 5], then noise with σ = 0.02σ0

was added. To evaluate variant noise level, we vary noise
with σ ranging from 0 to 0.1σ0 with step 0.01σ0. To add
outliers, assume the mean value of the source points is µ0

and randomly add nl outliers from a Gaussian distribution

-30 -20 -10 0 10 20 30

Rotation (in degree)

0.5

0.6

0.7

0.8

0.9

1

A
cc

u
ra

c
y

RRWHM

ADGM

BCAGM3

CURSOR+RRWHM

CURSOR+ADGM

CURSOR+BCAGM3

CURSOR (Ours)

(a) Rotation

-5 0 5
0

0.2

0.4

0.6

0.8

1

A
c
c
u
ra

c
y

RRWHM

ADGM

BCAGM3

CURSOR+RRWHM

CURSOR+ADGM

CURSOR+BCAGM3

CURSOR (Ours)

(b) Scaling

0 0.02 0.04 0.06 0.08 0.1

Noise Level (in
0
)

0

0.2

0.4

0.6

0.8

1

A
c
c
u
ra

c
y

RRWHM

ADGM

BCAGM3

CURSOR+RRWHM

CURSOR+ADGM

CURSOR+BCAGM3

CURSOR (Ours)

(c) Adding Noise

0 0.2 0.4 0.6 0.8 1

Outlier Ratio

0

0.2

0.4

0.6

0.8

1

A
c
c
u
ra

c
y

RRWHM

ADGM

BCAGM3

CURSOR+RRWHM

CURSOR+ADGM

CURSOR+BCAGM3

CURSOR (Ours)

(d) Adding Outliers

Figure 2. Matching result with deformation (a) rotation with angle [−30◦, 30◦], (b) scale on x-coordinate with scale factor 1.1β where
β ∈ [−5, 5], (c) adding noise with σ/σ0 = [0, 0.1], and (d) adding nl outliers where the outlier ratio= nl/n1.

20 40 60 80 100

Baseline

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

A
c
c
u

ra
c
y

RRWHM

ADGM

BCAGM3

HNN-HM

CURSOR+RRWHM

CURSOR+ADGM

CURSOR+BCAGM3

CURSOR (Ours)

(a) House: 20 pts vs 30 pts

20 40 60 80 100

Baseline

0.75

0.8

0.85

0.9

0.95

1

A
c
c
u

ra
c
y

RRWHM

ADGM

BCAGM3

HNN-HM

CURSOR+RRWHM

CURSOR+ADGM

CURSOR+BCAGM3

CURSOR (Ours)

(b) House: 30 pts vs 30 pts

20 40 60 80

Baseline

0

0.2

0.4

0.6

0.8

1

A
c
c
u

ra
c
y

RRWHM

ADGM

BCAGM3

HNN-HM

CURSOR+RRWHM

CURSOR+ADGM

CURSOR+BCAGM3

CURSOR (Ours)

(c) Hotel: 20 pts vs 30 pts

20 40 60 80

Baseline

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
c
c
u

ra
c
y

RRWHM

ADGM

BCAGM3

HNN-HM

CURSOR+RRWHM

CURSOR+ADGM

CURSOR+BCAGM3

CURSOR (Ours)

(d) Hotel: 30 pts vs 30 pts

Figure 3. Comparison results on the House and Hotel dataset with various matching algorithms. The dashed curves represent the matching
results on the compatibility tensors using ANN. The solid curves with the same color denote the matching accuracy on tensors generated
by CURSOR with the same hypergraph matching algorithms.

N (µ0, σ
2
0), where the outlier ratio nl/n1 ∈ [0, 1].

Due to the rotational invariance of hyperedge features,
almost all the algorithms show an average accuracy of
nearly 1 under a variant of rotation deformation whether
ANN or CURSOR (Fig. 2). The curves of other three cases
demonstrate that the matching algorithms with CURSOR
outperform ANN. For example, with scaling, the hyper-
edge features were substantially damaged because the scal-
ing process only scaled the x-coordinate of the target points.
As the scale factor increased, the matching results of the
ANN-based algorithms significantly decreased. In contrast,
CURSOR generated compatibility tensors with higher ro-
bustness. The performance of the ANN matching algo-
rithms was significantly improved and became competent
after integrating the CURSOR tensor generation method.
RRWHM performed much worse than other algorithms in
all the cases but with the assistance of the compatibility ten-
sor generated by CURSOR, its results became stable and
showed comparable results to the other algorithms.

4.3. CMU House and Hotel Dataset

Previous works used the CMU House and Hotel datasets to
evaluate the matching algorithms [9, 19, 20, 25, 30]. These
datasets have 30 manually labeled feature points on a ro-
tating 3D house or hotel model tracked over 111 and 101-
frame image sequences, respectively. The experiment set-

tings of [19] were followed by matching all possible pairs
with baseline (the separation between frames) varying from
10 to 100 in intervals of 10 for the House dataset and from
10 to 90 for the Hotel dataset. n1 points were randomly
selected in the first image to match all the points in the sec-
ond for both datasets, where n1 equaled 20 and 30 as two
separate experiments. t = n1n2 tuples were selected from
the first image. For ANN-based methods, r1 = 200 nearest
neighbors were chosen for each hyperedge. For CURSOR,
r was set to 25 and c = 300. For the learning-based HNN-
HM, the training process of [25] on the House dataset was
followed and the model was validated on both datasets.

The sequence-matching results are given in Fig. 3. All
the learning-free-based matching algorithms combined with
CURSOR surpassed the original ANN-based ones except
for the BCAGM3 algorithm. The BCAGM3 algorithm with
CURSOR frequently made descent errors during the ex-
periment as its matching accuracy heavily decreased when
the compatibility tensor was too sparse. CURSOR ob-
tained comparable matching accuracy to the state-of-the-art
learning-free algorithms when the outlier number was ten
and achieved the best matching accuracy under the 30-vs-
30 case on the House dataset. For the Hotel dataset, CUR-
SOR achieved a much higher matching accuracy than ANN,
but was less accurate than HNN-HM on 20-vs-30 problems
as HNN-HM was specifically trained on the House Dataset.

0 5 10 15 20 25 30

Number of Outliers

0

2

4

6

8

10

N
u
m

b
e
r

o
f
N

o
n
-Z

e
ro

s
 (

N
N

Z
)

106

ANN-based (Cars)

CURSOR (Cars)

ANN-based (Motorbikes)

CURSOR (Motorbikes)

(a) NNZ of Tensor

0 5 10 15 20 25 30

Number of Outliers

0

0.2

0.4

0.6

0.8

A
c
c
u
ra

c
y

(b) Motorbikes Dataset

0 5 10 15 20 25 30

Number of Outliers

0

0.2

0.4

0.6

0.8

A
c
c
u
ra

c
y

TM

RRWHM

ADGM

BCAGM3

CURSOR+TM

CURSOR+RRWHM

CURSOR+ADGM

CURSOR+BCAGM3

CURSOR (Ours)

(c) Cars Dataset

Figure 4. The Cars and Motorbikes datasets with CURSOR and state-of-the-art hypergraph matching algorithms. (a) The number of non-
zero compatibilities with ANN-based methods and CURSOR. The matching accuracy on the (b) Motorbikes and (c) Cars datasets.

(a) 30 pts vs 40 pts (10 outliers) (b) ADGM 3/30 (c) CURSOR+ADGM 25/30 (d) CURSOR (Ours) 30/30

(e) 52 pts vs 67 pts (15 outliers) (f) BCAGM3 36/52 (g) CURSOR+BCAGM3 50/52 (h) CURSOR (Ours) 52/52

Figure 5. Car and Motorbike matching examples. Top row Car dataset, bottom row Motorbike dataset. Each example shows the matched
results with the highest accuracy among trials. The green and red lines denote matches and mismatches, respectively.

It is noteworthy that CURSOR solved the matching prob-
lem with a unified model while HNN-HM must first train
separating models in different datasets to achieve a better
matching result. More detailed analysis will be provided in
the supplement to show the effectiveness of CURSOR.

4.4. Car and Motorbike Dataset

The Car and Motorbikes dataset [22] consists of 30 real-
life car image pairs and 20 motorbike image pairs, and was
used in previous works to evaluate matching algorithms
[19, 20, 30]. In this experiment, all inlier points in both
images were kept and labeled outlier points were randomly
chosen in the second image, with the number varying from
0 to 30 in step of 5. Every image pair in both datasets was
matched. t = n1n2 hyperedges were selected in the first
image. For ANN-based methods, r1 was set as 0.3n1n2.
CURSOR selected r = 50 highest compatibilities in each
tensor block. During experiments k = 10 and c = 300 .

Figure 4a reported the average number of non-zero el-
ements in the compatibility tensors generated by the two
types of methods. The average accuracy with the ANN-
based methods and CURSOR was shown in Fig. 4b and
Fig. 4c. All algorithms integrated with CURSOR consis-
tently improved their matching performance with a com-
patibility tensor more than ten times sparser than the ANN-
based methods. In most cases, the default PRL-based
matching algorithm achieved higher accuracy. Figure 5
shows matching examples. Combined with CURSOR,

other hypergraph matching algorithms showcased fewer
mismatches. CURSOR, with the PRL-based algorithm, ob-
tained the highest matching accuracy.

5. Conclusion
We propose CURSOR, a cascaded mixed-order hypergraph
matching framework based on CUR decomposition for scal-
able graph matching. The framework contains a CUR-
based second-order graph matching algorithm and a fiber-
CUR-based tensor generation method, which significantly
decreases the computational cost, and can be seamlessly in-
tegrated into existing state-of-the-art hypergraph matching
algorithms to enhance their performance. A PRL-based hy-
pergraph matching algorithm for sparse compatibility ten-
sors is developed to accelerate the convergence. Experiment
results demonstrated that CURSOR contributes to a higher
matching accuracy with a sparser tensor, which has more
potential utility in the big-data era. In future work, we plan
to develop a more principled adaptive scheme to optimize
the parameters of CURSOR so that it can perform better
with fewer computations on larger-scale tasks.

Acknowledgment
This work is supported by the Hong Kong Innovation and
Technology Commission (InnoHK Project CIMDA), the
Hong Kong Research Grants Council (Project 11204821),
and City University of Hong Kong (Project 9610034).

References
[1] HanQin Cai, Keaton Hamm, Longxiu Huang, and Deanna

Needell. Mode-wise tensor decompositions: Multi-
dimensional generalizations of cur decompositions. The
Journal of Machine Learning Research, 22(1):8321–8356,
2021. 3

[2] HanQin Cai, Keaton Hamm, Longxiu Huang, and Deanna
Needell. Robust cur decomposition: Theory and imaging ap-
plications. SIAM Journal on Imaging Sciences, 14(4):1472–
1503, 2021. 3

[3] Youcheng Cai, Lin Li, Dong Wang, Xinjie Li, and Xiaoping
Liu. Htmatch: An efficient hybrid transformer based graph
neural network for local feature matching. Signal Process-
ing, 204:108859, 2023. 2

[4] Hongkai Chen, Zixin Luo, Jiahui Zhang, Lei Zhou, Xuyang
Bai, Zeyu Hu, Chiew-Lan Tai, and Long Quan. Learning
to match features with seeded graph matching network. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), pages 6301–6310, 2021. 2

[5] Jiazhou Chen, Hong Peng, Guoqiang Han, Hongmin Cai,
and Jiulun Cai. Hogmmnc: a higher order graph matching
with multiple network constraints model for gene–drug reg-
ulatory modules identification. Bioinformatics, 35(4):602–
610, 2019. 1

[6] Long Chen, Zhongying Zhao, and Hong Yan. A probabilis-
tic relaxation labeling (prl) based method for c. elegans cell
tracking in microscopic image sequences. IEEE Journal of
Selected Topics in Signal Processing, 10(1):185–192, 2015.
5

[7] Minsu Cho, Jungmin Lee, and Kyoung Mu Lee. Reweighted
random walks for graph matching. In Computer Vision–
ECCV 2010: 11th European Conference on Computer Vi-
sion, Heraklion, Crete, Greece, September 5-11, 2010, Pro-
ceedings, Part V 11, pages 492–505. Springer, 2010. 1, 2,
4

[8] Timothee Cour, Praveen Srinivasan, and Jianbo Shi. Bal-
anced graph matching. Advances in neural information pro-
cessing systems, 19, 2006. 1, 2

[9] Olivier Duchenne, Francis Bach, In-So Kweon, and Jean
Ponce. A tensor-based algorithm for high-order graph
matching. IEEE transactions on pattern analysis and ma-
chine intelligence, 33(12):2383–2395, 2011. 1, 2, 3, 4, 5, 6,
7, 11, 13

[10] François-Xavier Dupé, Rohit Yadav, Guillaume Auzias, and
Sylvain Takerkart. Kernelized multi-graph matching. In
Asian Conference on Machine Learning, pages 311–326.
PMLR, 2023. 2

[11] Jiawei He, Zehao Huang, Naiyan Wang, and Zhaoxiang
Zhang. Learnable graph matching: Incorporating graph
partitioning with deep feature learning for multiple object
tracking. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 5299–5309,
2021. 1

[12] Jian Hou, Huaqiang Yuan, and Marcello Pelillo. Game-
theoretic hypergraph matching with density enhancement.
Pattern Recognition, 133:109035, 2023. 1, 2

[13] Robert A Hummel and Steven W Zucker. On the foundations
of relaxation labeling processes. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, (3):267–287, 1983.
4, 11

[14] Bing Jian and Baba C Vemuri. Robust point set registra-
tion using gaussian mixture models. IEEE transactions on
pattern analysis and machine intelligence, 33(8):1633–1645,
2010. 6

[15] Zheheng Jiang, Hossein Rahmani, Plamen Angelov, Sue
Black, and Bryan M Williams. Graph-context attention net-
works for size-varied deep graph matching. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 2343–2352, 2022. 2

[16] Sheheryar Khan, Mehmood Nawaz, Xu Guoxia, and Hong
Yan. Image correspondence with cur decomposition-based
graph completion and matching. IEEE Transactions on Cir-
cuits and Systems for Video Technology, 30(9):3054–3067,
2019. 2, 6

[17] Harold W Kuhn. The hungarian method for the assignment
problem. Naval research logistics quarterly, 2(1-2):83–97,
1955. 5

[18] Eugene L Lawler. The quadratic assignment problem. Man-
agement science, 9(4):586–599, 1963. 1

[19] D Khuê Lê-Huu and Nikos Paragios. Alternating direction
graph matching. In 2017 IEEE conference on computer
vision and pattern recognition (CVPR), pages 4914–4922.
IEEE, 2017. 1, 2, 5, 6, 7, 8, 13

[20] Jungmin Lee, Minsu Cho, and Kyoung Mu Lee. Hyper-graph
matching via reweighted random walks. In CVPR 2011,
pages 1633–1640. IEEE, 2011. 1, 2, 5, 7, 8, 13

[21] Marius Leordeanu and Martial Hebert. A spectral technique
for correspondence problems using pairwise constraints. In
Tenth IEEE International Conference on Computer Vision
(ICCV’05) Volume 1, pages 1482–1489. IEEE, 2005. 1, 2,
3, 4, 11

[22] Marius Leordeanu, Rahul Sukthankar, and Martial Hebert.
Unsupervised learning for graph matching. International
journal of computer vision, 96:28–45, 2012. 8

[23] Guchong Li, Gang Li, and You He. Distributed multiple re-
solvable group targets tracking based on hypergraph match-
ing. IEEE Sensors Journal, 2023. 1

[24] Wuyang Li, Xinyu Liu, and Yixuan Yuan. Sigma: Semantic-
complete graph matching for domain adaptive object detec-
tion. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 5291–5300,
2022. 1

[25] Xiaowei Liao, Yong Xu, and Haibin Ling. Hypergraph neu-
ral networks for hypergraph matching. In Proceedings of
the IEEE/CVF International Conference on Computer Vi-
sion, pages 1266–1275, 2021. 2, 5, 7

[26] Chuanju Liu, Dongmei Niu, Xinghai Yang, and Xiuyang
Zhao. Graph matching based on feature and spatial location
information. The Visual Computer, 39(2):711–722, 2023. 2

[27] Michael W Mahoney and Petros Drineas. Cur matrix de-
compositions for improved data analysis. Proceedings of the
National Academy of Sciences, 106(3):697–702, 2009. 3

[28] Biao Min, Ray CC Cheung, and Hong Yan. A flexible and
customizable architecture for the relaxation labeling algo-
rithm. IEEE Transactions on Circuits and Systems II: Ex-
press Briefs, 60(2):106–110, 2013. 5

[29] Andriy Myronenko and Xubo Song. Point set registration:
Coherent point drift. IEEE transactions on pattern analysis
and machine intelligence, 32(12):2262–2275, 2010. 6

[30] Quynh Nguyen, Antoine Gautier, and Matthias Hein. A
flexible tensor block coordinate ascent scheme for hyper-
graph matching. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 5270–
5278, 2015. 1, 2, 5, 7, 8

[31] Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz,
and Andrew Rabinovich. Superglue: Learning feature
matching with graph neural networks. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 4938–4947, 2020. 2

[32] Fu-Dong Wang, Nan Xue, Yipeng Zhang, Gui-Song Xia,
and Marcello Pelillo. A functional representation for graph
matching. IEEE transactions on pattern analysis and ma-
chine intelligence, 42(11):2737–2754, 2019. 1, 2, 6

[33] Runzhong Wang, Junchi Yan, and Xiaokang Yang. Learning
combinatorial embedding networks for deep graph matching.
In Proceedings of the IEEE/CVF international conference on
computer vision, pages 3056–3065, 2019. 2

[34] Tao Wang, He Liu, Yidong Li, Yi Jin, Xiaohui Hou, and
Haibin Ling. Learning combinatorial solver for graph match-
ing. In Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, pages 7568–7577,
2020. 2

[35] Meng-Yun Wu, Dao-Qing Dai, and Hong Yan. Prl-dock:
Protein-ligand docking based on hydrogen bond matching
and probabilistic relaxation labeling. Proteins: Structure,
Function, and Bioinformatics, 80(9):2137–2153, 2012. 5

[36] Yanan Wu, He Liu, Songhe Feng, Yi Jin, Gengyu Lyu,
and Zizhang Wu. Gm-mlic: graph matching based multi-
label image classification. arXiv preprint arXiv:2104.14762,
2021. 1

[37] Miao Xu, Rong Jin, and Zhi-Hua Zhou. Cur algorithm for
partially observed matrices. In International Conference on
Machine Learning, pages 1412–1421. PMLR, 2015. 3

[38] Andrei Zanfir and Cristian Sminchisescu. Deep learning of
graph matching. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 2684–2693,
2018. 2

[39] Zongwei Zhou, Junliang Xing, Mengdan Zhang, and Weim-
ing Hu. Online multi-target tracking with tensor-based high-
order graph matching. In 2018 24th International Con-
ference on Pattern Recognition (ICPR), pages 1809–1814.
IEEE, 2018. 1

CURSOR: Scalable Mixed-Order Hypergraph Matching with CUR
Decomposition

Supplementary Material

6. PRL-based Method Derivation
Consider source graph G1 = {V1, E1} and target graph
G2 = {V2, E2}. Since the compatibility matrices/tensors are
non-negative in graph matching, the original compatibility
coefficient between (i, l) ∈ E1 and (j,m) ∈ E2, denoted
as ril(j,m) ∈ [−1, 1] in [13], is updated to Ril(j,m) =
0.5(ril(j,m) + 1). The original PRL-based updating be-
comes

p
(k+1)
i (j) =

p
(k)
i (j)

∑n1

l=1

∑n2

m=1 Ril(j,m)p
(k)
l (m)∑

m p
(k)
i (m)

∑n1

l=1

∑n2

m=1 Ril(j,m)p
(k)
l (m)

(15)
where pi(j) represents the probability that ith node of V1
matches jth node of V2. As discussed in the main paper,
p
(k)
i (j) in the numerator plays the role of weight factor.

Specifically, if we ignore the effect of p(k)i (j), Eq. (15) be-
comes the power-iteration-like linear updating scheme com-
monly used in SM [21] and TM [9].

Assume the highest probability for i0 ∈ V1 is pi0(j0).
Hummel and Zucker proved that p(k)i0

(j0) consistently sat-

isfies
∑n1

l=1

∑n2

m=1 Ri0l(j0,m)p
(k)
l (m) ≥ p

(k)
i0

(j0) during
the updating if R, the matrix form of Ri1i2(j1, j2) for all
(i1, i2) and (j1, j2), is symmetric [13]. To further acceler-
ate the convergence, the weighting factor is replaced from
p
(k)
i (j) to

∑n1

l=1

∑n2

m=1 Ril(j,m)p
(k)
l (m), which leads to

p
(k+1)
i (j) =

[
∑

l

∑
m Ril(j,m)p

(k)
l (m)]2∑

j [
∑

l

∑
m Ril(j,m)p

(k)
l (m)]2

(16)

Define the compatibility coefficients as:

Ri1i2(j1, j2) =

{
Mi1,j1 i1 = i2 and j1 = j2

Ĥi1,j1,i2,j2 otherwise
(17)

where Mi,j is the first-order compatibility between ith node
of V1 and jth node of V2. Ĥi1,j1,i2,j2 denotes the compati-
bility between (i1, i2) ∈ E1 and (j1, j2) ∈ E2. The numera-
tor of Eq. (16) becomes:

p̂
(k+1)
i (j) = (Mi,jp

(k)
i (j) +

∑
l

∑
m

Ĥi,l,j,mp
(k)
l (m))2

(18)
p̂
(k+1)
i (j) is updated with the combination of first

and second-order compatibilities. The main pa-
per shows that for a consistent updating scheme,∑

l

∑
m Ĥi,l,j,mp

(k)
l (m))2 ≥ 0.25M−1

i0,j0
. By replac-

ing the probability set p = {pi(j)} with the vector x,

the column-wise flattening of soft-constraint assignment
matrix X, Eq. (18) can be updated as

x̂(k+1) = (m̂⊙ x(k) +Hx(k))2 (19)

where ⊙ is the element-wise multiplication and the first-
order compatibility vector m̂ is obtained by column-wise
flattening M̂. The square calculation in Eq. (19) is also
element-wise. H is the second-order compatibility matrix.
Since both H and m̂ are dense, with the all-ones vector as
x(0), Eq. (19) converges consistently.

In our work, the updating scheme for PRL-based hyper-
graph matching is extended to

x̂(k+1) = (αm̂⊙x(k)+(1−α)H⊗1 x
(k)⊗2 x

(k))2 (20)

where ⊗l is the mode-l product of the tensor and vector
and α ∈ [0, 1] is a balance weight between the first and
third-order compatibilities. Since the third-order compati-
bility tensor H is highly sparse, the high value of x̂(k+1)

in Eq. (20) is concentrated if the sparse tensor is reliable.
In our work, a reliable tensor means most ground truth hy-
peredge pair compatibilities are successfully selected in the
tensor blocks.

7. Detailed Analysis in Sec. 4

Due to the space limitation of the main paper, we provide
a more detailed experiment analysis based on the results of
Sec. 4 to discuss the superiority and bottleneck of CUR-
SOR.

7.1. Memory Footprint Analysis in Sec. 4.1

Table 2 shows the detailed memory footprint of the exper-
iment result with CURSOR in Sec. 4.1 of the main paper.
Theoretically, the CUR decomposition of the matrix H, re-
quires O(cn1n2) space complexity. The tensor H, on the
other hand, only needs O(tr). For small-scale problems, the
sparse tensor occupies most memory footprint with a small-
size matrix. As the graph scale grows, with more columns
selected from the compatibility matrices for higher match-
ing accuracy, the main space occupation comes from H, and
the second-order CUR-based matching becomes the bottle-
neck for the graph matching problem. Although CURSOR
can deal with larger-scale tasks compared to ANN, its ca-
pability to solve scalable problems is limited to the second-
order matrix.

(a) Source (b) ANN (r1 = 900) (c) ANN (r1 = 50) (d) CURSOR (r = 25)

Figure 6. The detailed hyperedge correspondences between one sampled hyperedge from the source (yellow triangle in (a)) and target
images with ANN ((b) and (c)) and CURSOR (d). The white triangles in the target images denote all the hyperedges compared with the
source hyperedge, and the blue triangles are the hyperedges with the highest compatibilities (r1 for ANN and r for CURSOR). The green
dashed triangles represent the matched hyperedges, and the red one represents the mismatch.

Table 2. Detailed memory footprint of CURSOR in Tab. 1 of the
main paper.

Problem Parameter Memory Footprint
n1 vs n2 t c r H/(H+H)
30 vs 30 900 15 5 0.11MB/0.62MB
30 vs 50 1500 15 5 0.20MB/0.82MB
50 vs 50 2500 20 7 0.40MB/2.37MB

50 vs 100 5000 100 10 3.97MB/9.62MB
100 vs 100 10000 100 20 8.02MB/30.65MB
300 vs 300 30000 200 20 0.14GB/0.21GB
500 vs 500 50000 300 30 0.59GB/0.76GB
800 vs 800 80000 400 50 1.95GB/2.02GB

1000 vs 1000 100000 500 80 4.88GB/5.03GB

7.2. Visualization analysis in Sec. 4.3

We provide a more detailed analysis of the experiment
results from Sec. 4.3 to demonstrate the superiority of
CURSOR, as is shown in Fig. 6. Traditional ANN-based
methods compute the compatibilities between the sampled
source hyperedges (yellow triangle in Fig. 6a) and all the
target ones (fully connected white triangles in Figs. 6b-6c).
With the intermediate second-order result, CURSOR com-
putes fewer compatibilities, as is shown in Fig. 6d. To
find the corresponding hyperedge (green dashed triangles
in Fig. 6), a large amount (the hyperparameter r1 = 900
in Fig. 6b) of the highest compatibilities (blue triangles
in Figs. 6b-6d) should be selected for ANN. If we de-
crease r1 to 50, some correct ones will be missed (red tri-
angle in Fig. 6c). CURSOR can effectively find the hy-
peredges with the 25 highest compatibilities (green triangle
in Fig. 6d). Compared to the traditional tensor generation
methods, CURSOR can effectively increase the matching
performance with less computational complexity.

0 0.05 0.1 0.15 0.2

Noise Level

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
cc

ur
ac

y

Full Matrix
c=10
c=30
c=100

(a)

0.02 0.06 0.1 0.14 0.18

Noise Level

0

0.2

0.4

0.6

0.8

1

A
c
cu

ra
cy

CURSOR-R (k
1
=10)

CURSOR-R (k
1
=20)

CURSOR-R (k
1
=30)

CURSOR-R (k
1
=50)

CURSOR (k=10)

(b)

Figure 7. (a) CUR-based second-order graph matching accu-
racy with various c. (b) The average accuracy using CURSOR
with CUR-based pairwise matching result and CURSOR with ran-
domly sampled indices (CURSOR-R).

8. Ablation Studies

To further analyze the effectiveness of several design
choices in CURSOR, ablation studies were conducted on
the 100-vs-110 random synthetic dataset introduced in
Sec. 4.1 of the main paper.

8.1. CUR-based Pairwise Matching

We first studied the effectiveness of the CUR-based second-
order graph matching. Two experiments were designed
to analyze the performance of the pairwise matching with
the CUR decomposition of the second-order compatibility
matrix H and the rough intermediate matching result, re-
spectively. The dataset’s noise level σ varied in the range
[0, 0.2].

The CUR-based second-order graph matching was first
evaluated on the dataset with various c, i.e., the number
of randomly selected columns from H. During the experi-
ment, only the second-order graph-matching result was an-
alyzed. We compared the proposed method with a PRL-
based pairwise matching using the full compatibility ma-

Table 3. Average time consumption for second-order graph match-
ing (in seconds)

Method Time (s)
Computing H Matching

Full Matrix 6.311 0.491
c = 10 0.018 0.016
c = 30 0.031 0.016
c = 100 0.109 0.043

trix. The matching accuracy is shown in Fig. 7a. Due to
the low-rank estimation, the CUR-based method decreased
the matching performance. Specifically, as the columns
were randomly chosen, the result was quite poor when c
was relatively small. However, with less than 1% (100 out
of 100×110) of columns selected, the CUR-based pairwise
matching algorithm achieved a comparable result to the al-
gorithm using the whole matrix. Table 3 reports the aver-
age time consumption of the compatibility matrix genera-
tion and graph matching. With only a few columns cal-
culated, the CUR-based second-order algorithm effectively
accelerated the matching process.

The effectiveness of the intermediate second-order
matching result was further studied. As discussed in
the main paper, the second-order matching result Pk =
{Pk

1 , · · · ,Pk
n1
} consists k best-matching target nodes for

each source node, where n1 denotes the number of the
source nodes. The hypergraph matching result with Pk

was compared to the result with k1 randomly sampled in-
dices in all three tensor modes (denoted as CURSOR-R).
The parameter c and k from Pk for CURSOR with the pair-
wise matching result was set as 100 and 10 respectively.
For CURSOR-R, k1 varied from 10 to 50. For both meth-
ods, the number of randomly selected hyperedges from the
source hyperedges t = 3000, the number of highest com-
patibilities in each tensor block r = 100, and the balance
factor of PRL-based algorithm α was set to 0.2. As shown
in Fig. 7b, CURSOR-R had a lower matching accuracy even
for k1 = 50. Assuming the number of nodes is n2 in the
target graph, theoretically, only 3 out of 3n2

2 fibers for each
tensor block, i.e., key fibers in our work, contain the entry
of the ground truth hyperedge pair. Due to the random sam-
pling, the probability of selecting the key fiber is (k1/n2)

2,
around 20.7% when k1 = 50 and n2 = 110. Therefore, the
sparse compatibility tensor generated by CURSOR-R was
highly unreliable. CURSOR with the CUR-based pairwise
matching result selected the key fiber in each tensor block
with a high probability, effectively increasing the final ac-
curacy.

8.2. CURSOR vs ANN-based Tensor Generation

Experiment results in Sec. 4 of the main paper have al-
ready shown that the proposed PRL-based algorithm with

CURSOR achieved higher matching accuracy than other al-
gorithms in most cases. One may wonder how the ANN-
based tensor generation performs with the same hypergraph
matching algorithm. In this experiment, we further compare
CURSOR with the ANN-based tensor generation method
applying PRL-based algorithm on the 100-vs-110 random
synthetic dataset. During experiment, c = 100, k = 10
and r = 100 for CURSOR. For ANN-based tensor genera-
tion, r1 was set as 100 for the same tensor density. For both
methods, t = 3000 and α = 0.2. The stopping criterion
of the PRL-based algorithm was set as ∥x(k+1) − x(k)∥2 ≤
10−8 and the maximum number of iteration was 100.

The average matching accuracy is reported in Fig. 8a.
The ANN method shows an unstable performance with high
σ since the compatibility tensor was too sparse. When α
was low, since the PRL-based algorithm focused on the
third-order compatibilities, the ANN method did not gen-
erate a reliable compatibility tensor. To make the algorithm
focus more on first-order compatibilities, α was further in-
creased to 0.8 for the ANN case, which significantly im-
proved the accuracy. The average number of iterations to
converge is shown in Fig. 8b. When σ > 0.02, the ANN
method did not converge within 100 iterations. With the
same tensor sparsity, CURSOR successfully converged in
all the cases. The decay of x(k) per iteration for the ANN
method and CURSOR with σ = 0.1 was further analyzed,
as shown in Fig. 8c. The ANN method did not converge
due to few ground truth hyperedge compatibilities selected
from the whole tensor. However, CURSOR chose the non-
zero compatibilities from a smaller reliable searching re-
gion. Therefore, it is capable of converging fast with the
same tensor sparsity.

9. Parameter Sensitivity Analysis
Experiments below are provided to investigate how the hy-
perparameters in CURSOR affect the final results. Since the
hyperparameter t, the number of randomly selected hyper-
edges, was thoroughly studied in previous works [9, 19, 20],
we do not redundantly analyze it here. The method was
evaluated on the random 100-vs-110 synthetic dataset in-
troduced in Sec. 4.1 of the main paper as well.

9.1. Parameter in Second-order Graph Matching

The sensitivity of parameter c to the whole framework was
first analyzed. During the experiment, the whole com-
patibility matrix was calculated directly with noise level
σ = 0.02. CUR decomposition was evaluated on the matrix
with various c for the pairwise graph matching. To analyze
the influence of c on the second-order matching result, we
define hit rate, calculated as

∑n1

i=1 δi/n1, where

δi =

{
1 The true match j ∈ Pk

i

0 Otherwise
(21)

0.02 0.06 0.1 0.14 0.18

Noise Level

0

0.2

0.4

0.6

0.8

1

A
c
cu

ra
cy

ANN (=0.2)

ANN (=0.8)

CURSOR

(a)

0.02 0.06 0.1 0.14 0.18

Noise Level

0

20

40

60

80

100

C
o
n
ve

rg
e
n
ce

It
e
ra

tio
n
s

ANN (=0.2)

ANN (=0.8)

CURSOR

(b)

0 10 20 30 40 50

Iteration

10-5

100

D
e
ca

y
/
It
e
ra

tio
n

ANN (=0.2)

ANN (=0.8)

CURSOR

(c)

Figure 8. Results on 100-vs-110 synthetic dataset comparing CURSOR with ANN, α = 0.2 for CURSOR. (a) The average matching
accuracy using CURSOR and ANN with different α. (b) The average iterations for convergence using CURSOR and ANN with different
α. (c) The decay ∥x(k+1) − x(k)∥2 per iteration with different α using CURSOR and ANN. The noise level σ = 0.1.

0 20 40 60 80 100

k

0

0.2

0.4

0.6

0.8

1

H
it

R
a
te

c=10

c=20

c=30

c=50

c=80

c=100

(a) Hit rate over increasing k

0 0.05 0.1 0.15 0.2

Noise Level

0

0.2

0.4

0.6

0.8

1

A
cc

u
ra

c
y

c=10

c=20

c=30

c=50

c=80

c=100

(b) Accuracy with varying c

Figure 9. (a) The average hit rate over increasing k on a 100-vs-
110 synthetic dataset with σ = 0.02 from the CUR-based second-
order graph matching results. (b) The average accuracy on the
100-vs-110 synthetic dataset with σ ∈ [0, 0.2] and c ∈ [10, 100].

The average hit rate was computed over the increasing
number of selected highest compatibilities k, as shown in
Fig. 9a. Each curve represents the hit rate with c during
CUR decomposition. To achieve the same hit rate and set
k as small as possible, theoretically, the number of selected
columns needed to be as large as possible. However, when
increasing c from 50 to 100, the gain on hit rate is mi-
nor, with a relatively small k to reach a promising hit rate
like 0.9. Therefore, to balance the time consumption and
the matching performance, a relatively small proportion of
columns is sufficient for the rough pairwise matching result.

The influence of c on the final matching result was fur-
ther analyzed. During the experiment, we set k = 10,
r = 100, and α = 0.2. The noise level of the dataset was
assigned as σ ∈ [0, 0.2]. The result is reported in Fig. 9b.
Since the columns of the compatibility matrices were ran-
domly selected, the matching result was unstable when c
was less than 20. The performance gradually saturated with
over 50 columns (around 0.5% of the total columns). The
experiment results in Fig. 9a show that 50-100 columns can

already provide a reliable second-order matching result for
the following higher-order process, effectively decreasing
the computation cost.

9.2. Parameters During Tensor Generation

0.02 0.06 0.1 0.14 0.18

Noise Level

0

0.2

0.4

0.6

0.8

1

A
cc

u
ra

c
y

k=1

k=3

k=5

k=10

k=15

k=20

(a) Accuracy with varying k

0.02 0.06 0.1 0.14 0.18

Noise Level

0.2

0.4

0.6

0.8

1

A
cc

u
ra

c
y

r=40

r=80

r=120

r=160

r=200

(b) Accuracy with varying r

Figure 10. Results on 100-vs-110 synthetic dataset with σ ∈
[0, 0.2] using CURSOR. (a) The matching accuracy with increas-
ing k. (b) The matching accuracy with increasing r.

The sensitivity of k and r to the final matching accuracy
was further studied. During the experiment, c was set as
100 and α = 0.2.

To figure out the influence of k, the parameter r was set
as 100, and k varied from 1 to 20. The result is shown in
Fig. 10a. It is obvious that a higher k can achieve higher ro-
bustness for target points with high noise impact. However,
with a polynomial O(tk2n2) computation cost for tensor
generation, the matching performance gradually reached its
peak. For instance, the matching accuracy increased more
than 35% from k = 1 to k = 5 when σ = 0.08, but less
than 2% from k = 15 to k = 20. For each tensor block, if
the entry of the ground truth paired hyperedge compatibil-
ity was included in r non-zero elements, the corresponding
nodes would be matched with a high probability. Therefore,
an appropriate k needs to be set to balance the computation

0.02 0.06 0.1 0.14 0.18

Noise Level

0.4

0.5

0.6

0.7

0.8

0.9

1

A
c
c
u
ra

c
y

=0.2

=0.4

=0.6

=0.8

(a)

0.02 0.06 0.1 0.14 0.18

Noise Level

10

20

30

40

50

60

70

80

C
o
n
v
e
rg

e
n
c
e
 I
te

ra
ti
o
n
s

=0.2

=0.4

=0.6

=0.8

(b)

0 10 20 30 40 50

Iteration

10
-6

10
0

D
e

c
a

y
 /

 I
te

ra
ti
o

n

=0.2

=0.4

=0.6

=0.8

(c)

Figure 11. Results on 100-vs-110 synthetic dataset with PRL-based matching algorithm. (a) The average matching accuracy using CUR-
SOR with different α. (b) The average iterations for convergence using CURSOR with different α. (c) The decay ∥x(k+1) − x(k)∥2 per
iteration with different α settings using CURSOR. The noise level σ = 0.1.

cost and the performance in practical use.
The effect of r was further analyzed by setting k as 10

and varying r from 20 to 200, as shown in Fig. 10b. Unlike
the results in Fig. 10a, CURSOR with the highest r per-
formed the worst. The reason may be that when the ground
truth hyperedge pair is already included in the non-zero
compatibilities, more redundant compatibilities can cause
lower matching performance.

9.3. Parameters of PRL-based Matching Algorithm

To study the sensitivity of α, the matching accuracy and
convergence speed using CURSOR were further analyzed.
During the experiment, c = 100, k = 10, and r was set
as 100. The stopping criteria of the PRL-based algorithm
was assigned as ∥x(k+1) − x(k)∥2 ≤ 10−8. The matching
accuracy with various α is shown in Fig. 11a. With a re-
liable compatibility tensor, the PRL-based matching algo-
rithm achieved almost the same performance regardless of
α. We further analyzed their convergence speeds, as shown
in Figs. 11b and 11c. As the noise level increased, more it-
erations were required to satisfy the stopping criteria, and
a lower α achieved faster convergence. As discussed in
the previous sections, the parameter α is a balanced factor
between first and third-order compatibilities. Although the
method converged faster with α = 0, the first-order compat-
ibilities stabilized the matching process and increased the
matching performance under some extreme circumstances.

