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Abstract. Deep learning-based methods have achieved prestigious per-
formance for magnetic resonance imaging (MRI) reconstruction, enabling
fast imaging for many clinical applications. Previous methods employ
convolutional networks to learn the image prior as the regularization
term. In quantitative MRI, the physical model of nuclear magnetic reso-
nance relaxometry is known, providing additional prior knowledge for im-
age reconstruction. However, traditional reconstruction networks are lim-
ited to learning the spatial domain prior knowledge, ignoring the relax-
ometry prior. Therefore, we propose a relaxometry-guided quantitative
MRI reconstruction framework to learn the spatial prior from data and
the relaxometry prior from MRI physics. Additionally, we also evaluated
the performance of two popular reconstruction backbones, namely, recur-
rent variational networks (RVN) and variational networks (VN) with U-
Net. Experiments demonstrate that the proposed method achieves highly
promising results in quantitative MRI reconstruction. Our code can be
found at https://github.com/pandafriedlich/relax qmri recon.git.

Keywords: Caridac MRI · Quantitative mapping · Relaxometry · Image
reconstruction.

1 Introduction

Quantitative Magnetic Resonance Image (qMRI) has emerged as an indispens-
able imaging modality in research and clinical applications thanks to its quan-
titative measurements of tissue properties, such as T1 and T2 relaxation times
[23]. A common approach for qMRI typically involves a two-step process. Firstly,
multiple k-space data of a subject are acquired and reconstructed into a series
of weighted images with varying imaging parameters (such as echo times and
diffusion weights). Subsequently, the underlying tissue properties are estimated
by fitting a signal model to the images [24]. However, acquiring fully sampled
k-space data, adhering to the Nyquist criterion, for multiple measurements in
qMRI requires a time-consuming endeavor [6]. This extended acquisition process
introduces the potential for motion artifacts and leads to patient discomfort due
to prolonged scan duration.

Motivated by reducing the acquisition time in qMRI while keeping the recon-
struction and estimation quality, accelarated qMRI has become one of the central
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research topics in qMRI. The methods in accelerated qMRI can be divided into
two categories according to whether the method includes an intermediate step
of image reconstruction from k-space data: If so, the method is categorized as
indirect reconstruction; Otherwise, the method is categorized as direct recon-
struction where only the parameter mapping estimations are gained [24]. This
paper will focus on indirect reconstruction methods since the goals require both
reconstructing images and estimating the mapping parameters. However, our
proposed method is flexible yet novel, taking self-supervised quantitative map-
ping as auxiliary constraints to guide the reconstruction.

In conventional qMRI, the acceleration can be achieved by parallel imaging
(PI) [9,12] or compressed sensing (CS) [2]. With specific undersampling patterns,
PI utilizes multiple radio-frequency (RF) coils simultaneously with individual
coil sensitivity maps to reduce the aliasing artifacts. The applications of PI
include SENSE [20], which is the original implementation, and GRAPPA [5],
which allows auto-calibration when sensitivity maps are missing. Meanwhile,
CS-based methods achieve acceleration by using partial sampling in k-space,
which loosens the requirement of the Nyquist criterion with sparsity assumption
in true signals. Though the CS-based methods are well-established, they still
struggle with the design of regularizer functions, which varies across different
tissues [17].

Accelerated qMRI reconstruction benefits from recent rapid development in
deep learning on both computer vision and inference learning since MRI recon-
struction can be formulated as an inverse problem: Given a (partial) measure-
ment in k-space, the target is to recover the image signal as close as possible.
Deep learning-based methods for MRI reconstruction can be categorized into
iterative methods [29,8,16,25,30] and one-step methods [31,11]. One-step meth-
ods aim to predict the refined reconstructed images from images reconstructed
from corrupted k-space [11] or partially sampled k-space measurements directly
[31]. Iterative methods leverage neural networks to learn an incremental refining
process, analogous to a conventional optimization process. As a first attempt,
Yang et al. [29] proposed ADMM-Net: a neural network to parameterize the
alternating direction method of multipliers (ADMM), thus solving the inverse
problem of MRI reconstruction in combination with CS. Similarly, Hammernik et
al. proposed a variational network [8] in an unrolled gradient descent scheme for
generalized CS reconstruction. Inspired by a more general idea in meta-learning,
recurrent inference machines (RIM) [21] were designed to find a maximum-a-
posteriori (MAP) estimation to solve inverse problems when the corresponding
forward model is known. This is then applied in MRI reconstruction [16], where
in the RIM framework, the parameters are shared across the iterations with
internal hidden states instead of individual units for each iteration in previous
works. A more recent work, RecurrentVarNet [30], combines variational networks
and RIM with a hybrid domain-learning strategy using convolutional neural net-
works (CNN) to guide the optimization in k-space.

Unlike naive MRI reconstruction, in qMRI reconstruction, the involvement of
physical signal models in methodological design can further improve the quality
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of both reconstruction and parameter mapping estimation since an anatomi-
cal correspondence across images is often assumed when designing the acqui-
sition pipeline [10]. Apart from conventional least-square methods, parameter
mappings can be estimated by dictionary matching [7,19,24]. Given the recon-
structed images or raw k-space measurements, there are several methods utilizing
self-supervised learning to estimate parameter mappings [14,1,15]. However, few
existing works using [3] address the joint tasks of reconstruction and parameter
estimation, while none lie in the deep learning paradigm.

1.1 Contributions

In this work, we tackle the quantitative mapping problem in the CMRxRecon
challenge and make the following contributions:

– We introduce a novel quantitative mapping network that learns to mimic
MR physics in an unsupervised fashion.

– We evaluate two different CNN architectures for image prior learning in the
variational reconstruction network.

– We leverage the quantitative mapping network to guide the reconstruction
process, ensuring that the output signal conforms to the MR relaxometry.

2 Methods

2.1 Parallel Imaging

Accelerated MRI In this paper, we focus on the reconstruction of kt qMRI
baseline images x ∈ Ckx×ky×kt1, given their corresponding k-space measure-
ments y ∈ Cnc×kx×ky×kt of nc coils, where kx and ky are image shapes along
the frequency and phase encoding axes, respectively. The cth coil measurement
yc is formulated as

yc = UFScx+ ϵc, (1)

where F is the 2D Fourier transform operator, Sc denotes the sensitivity map, U
characterises the Cartesian under-sampling pattern and ϵc represents the mea-
surement noise. The overall forward operator and its adjoint operator in acceler-
ated parallel imaging can be formulated as A = U ◦F ◦E and A∗ = R◦F◦U [30],
where

E(x) = [S1x, S2x, · · · , Snc
x] , (2)

R(y) =

nc∑
c=1

S∗
cyc. (3)

1 We use x for both complex and magnitude image for simplicity.
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Fig. 1. The reconstruction backbone consists of unrolled gradient descent layers, and
the image prior is learned during training by Gθ. A pre-trained mapping network M is
introduced to predict the quantitative parameters p and guide the reconstruction with
MR relaxometry.

Sensitivity Estimation The sensitivity maps are estimated using the auto-
calibration region UAC in k-space which is always sampled in the low-frequency
band. The initial sensitivity maps can be estimated as

Ŝ0
c =

F−1UACyc

RSS ({F−1UACyl}nc

l=1)
, (4)

where RSS denotes the root-sum-of-square operator defined in [13]

RSS(x1,x2, · · · ,xnc
) =

√√√√ nc∑
c=1

|xc|2. (5)

2.2 Relaxometry Guided Reconstruction

Dual-domain Reconstruction Network Reconstruction of an image x given
its under-sampled parallel imaging measurements y can be formulated as opti-
mizing the Lagrangian L(x) defined as

argmin
x̂

L(x) = ∥Ax̂− y∥22 +R(x̂), (6)
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where the first term constrains the data fidelity via a 2−norm operator and the
latter term R(·) is a regularizer to stabilize the solution space. The update rule
of gradient-descent for optimization of Eqn. 6 is

x̂t+1 = x̂t − αt
∂L
∂x̂∗

= x̂t − αtA∗ (Ax̂t − y)− Gθt(x̂t), (7)

where Gθt is a convolutional network that learns the scaled Wirtinger derivatives
∂R
∂x̂∗

t
of the regularizer w.r.t. the current reconstruction, and αt is a trainable step

scalar. Applying Fourier transform on both sides of Eqn. 7 yields

ŷt+1 = ŷt − αtU(ŷt − y)−F ◦ E ◦ Gθt(R ◦ F−1ŷt), (8)

in which the data fidelity part is updated in k-space and the regularization is
performed in the spatial domain. In this work, we follow [8,30] and use the
variational network based on the unrolled update rule defined in Eqn. 8 for im-
age construction. Specifically, we investigate and compare two different types of
CNNs to learn the regularizer Gθt : U-Net [22] and convolutional Gated Recurrent
Unit (GRU) blocks as in [30]. Additionally, we employ another U-Net S to refine
the initial sensitivity map estimated in Eqn. 4 Ŝc = S(Ŝ0

c ). The reconstruction
network is trained with a combination of L1 loss and structural similarity index
measure (SSIM) [28]:

lrecon(x̂) = γ1∥x̂− x∥1 + γ2SSIM(x̂,x), (9)

where x̂ and x denote the predicted image and the fully sampled image, respec-
tively. The architecture of reconstruction backbone layers is shown on the upper
left panel in Fig. 1.

Quantitative Mapping Network Given reconstructed magnitude image x ∈
Rkx×ky×kt , quantitative mapping is usually treated as a parameter fitting prob-
lem and solved by least squares or dictionary matching [7,19,24]. Voxels in a
reconstructed image of good quality should conform to the MR relaxometry and
thus have a relatively lower level of fitting error since tissue anatomies are as-
sumed to be spatially aligned. Inspired by this, we propose using the parameter
fitting error to guide the reconstruction procedure. However, both least squares
and dictionary matching are not differentiable and thus cannot be integrated
into the computational graph. To make the mapping procedure differentiable,
we propose using a U-Net M to predict the parameters given the image x and
the inversion time or echo time trelax. With the MR relaxation physics known,
the network M is trained in a purely unsupervised fashion, and the physics-
informed training loss lrelax is defined as:

lrelax(x) = ∥s (M (x, trelax) , trelax)− x∥1 , (10)
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where s(·) can be either sT1
or sT2

which characterises the signal intensity models
for T1 or T2 relaxation:

sT1(A,B, T ∗
1 , trelax) =

∣∣∣∣A−B exp

(
− trelax

T ∗
1

)∣∣∣∣ , (11)

sT2
(A, T2, trelax) = A exp

(
− trelax

T2

)
. (12)

Note that from Eqn. 11, the parameter of interest T1 is derived by T1 = (B/A−
1)T ∗

1 .

Joint Reconstruction and Quantitative Mapping The mapping network
M is pre-trained with the fully sampled images only and is frozen during the
reconstruction network training process. The physics-informed loss lrelax can
then be used to enforce a relaxation physics-informed reconstruction. We also
penalize the difference between the mapping prediction on fully sampled image
M(x) and on the predicted image M(x̂), such that the reconstructed image has
a consistent parameter map as the fully sampled image. The total training loss
is then formulated as:

l(x̂) = lrecon(x̂) + γ3lrelax(x̂) + γ4∥M(x̂)−M(x)∥1. (13)

An overview of the proposed method is illustrated in Fig. 1.

3 Experiments

3.1 Dataset

We conduct the experiments on the CMRxRecon challenge data2 [27], consist-
ing of 120 subjects for training. Imaging was performed on a Siemens 3T MRI
scanner (MAGNETOM Vida) and the multi-coil images were compressed to 10
virtual coils, with acceleration factors 4, 8, and 10. More details on the image
acquisition protocol are described in [26]. Data of each subject comprise two dif-
ferent qMRI sequences: the modified-look-locker (MOLLI) [18] sequence with 9
baseline images for T1-mapping and the T2-prepared (T2prep)-FLASH sequence
with 3 baseline images for T2-mapping. The validation set contains 59 subjects,
and the results are evaluated on the official platform.

3.2 Training Configuration

We first train the mapping network M, a U-Net with 256 base filters and 1
pooling layer, by Adam optimizer with an initial learning rate of η0 = 10−4 for
200 epochs. And then we freeze M for training the reconstruction backbone. We

2 https://cmrxrecon.github.io/

https://cmrxrecon.github.io/
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studied two different architectures for the reconstruction: the recurrent varia-
tional network (RVN) [30] using GRU units for regularizer and the variational
network [8] with U-Net as the regularizer (VN-UNet). The number of unrolled
layers was set as 10 for both configurations. The loss function weighting was
set as γ1 = 0.2, γ2 = 0.8. For VN-UNet, we also study the performance with
relaxometry guidance, setting γ3 = 0.01, γ4 = 0.1 (VN-UNet-relax). During
training, the network is trained by the Adam optimizer with an initial learning
rate η0 = 10−3 for 400 epochs.

Data augmentation was performed on each individual coil image as in [4],
with random rotation [−45◦, 45◦], translation [−10%, 10%], shearing [−20◦, 20◦]
and vertical/horizontal flip. Additionally, we contaminate the k-space by additive
Gaussian noise with a random signal-to-noise-ratio (SNR) in [6.67,+∞]. The
augmentation was performed with a probability of 40%.

4 Results

4.1 Evaluation Results

We evaluate the three aforementioned configurations: RVN, VN-UNet, and VN-
UNet-relax on the validation set. For simplicity, we only list the results on T1

mapping with acceleration factor R = 4 in Table 1. The best performance was
achieved by VM-UNet-relax with a PSNR of 42.59 dB. The evaluation results
on all acceleration factors of both T1 and T2 mapping are shown in Table 2.

Table 1. Ablation of model architecture settings on the T1 mapping validation set
(R = 4). The relaxometry guided variational network with U-Nets achieved the best
performance.

Model Settings PSNR (dB) ↑ NMSE (×10−3) ↓ SSIM (%) ↑

RVN 41.55 3.4 97.53
VN-UNet 42.50 2.6 97.91
VN-UNet-relax 42.59 2.6 97.93

4.2 Qualitative Results

We show a few exemplar reconstructed images and their corresponding quantita-
tive maps in Fig. 2. The baseline images with the shortest and longest inversion
or echo times are listed.

5 Discussion and Conclusion

Table 1 shows that the VN-UNet achieved better performance than RVN, and
the performance is slightly improved by introducing relaxometry guidance. How-
ever, only image-based metrics like SSIM are provided during the validation
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Table 2. Evaluation results of VN-UNet-relax on the validation set. A higher acceler-
ation factor causes a performance drop.

Dataset PSNR (dB) NMSE (×10−3) SSIM (%)

T1-R = 4 43.1 2 98.1
T1-R = 8 37.8 7 95.6
T1-R = 10 36.6 9 95.1

T2-R = 4 38.9 3 97.1
T2-R = 8 35.2 6 94.9
T2-R = 10 34.4 7 94.6
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Fig. 2. Qualitative results for T1 and T2 mapping sequences. The baseline images
with the shortest and longest inversion/echo times are shown. The proposed method
can generate both images and quantitative maps simultaneously. Perceptually, the re-
constructed images of all acceleration factors are of good quality.
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phase. Therefore, the effect of introducing MR relaxometry-related terms in the
loss function needs further investigation because the discrepancy between the
predicted and the ground truth quantitative maps can not be evaluated. From
Table 2, we observe a performance drop with the increase of acceleration factor.
However, it can barely be perceived from the qualitative results shown in Fig. 2.

In conclusion, we proposed a learning-based framework for qMRI reconstruc-
tion with a variational network as the reconstruction backbone and introduced
an additional mapping network. The proposed framework can output both the
baseline images and the mapping result simultaneously. Choosing U-Net as the
regularizer achieved better performance, which is further improved by introduc-
ing MR relaxometry.
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