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Abstract

This paper examines knapsack auctions as a method to solve the knapsack
problem with incomplete information, where object values are private and sizes
are public. We analyze three auction types—uniform price (UP), discrimina-
tory price (DP), and generalized second price (GSP)—to determine efficient
resource allocation in these settings. Using a Greedy algorithm for allocating
objects, we analyze bidding behavior, revenue and efficiency of these three auc-
tions using theory, lab experiments, and AI-enriched simulations. Our results
suggest that the uniform-price auction has the highest level of truthful bidding
and efficiency while the discriminatory price and the generalized second-price
auctions are superior in terms of revenue generation. This study not only deep-
ens the understanding of auction-based approaches to NP-hard problems but
also provides practical insights for market design.
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1 Introduction

Auctions play a pivotal role in allocating goods and services in various markets. In
particular, multi-unit auctions are instrumental in discovering prices and allocating
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resources in environments where demands are diverse and quantities of goods vary.
In most multi-unit auctions, buyers demand bundles of goods, which are typically
divisible. However, there are many instances where the demand is inflexible, and the
buyer would only derive positive utility from acquiring the entire bundle, receiving
zero utility otherwise. In such situations, the principal is essentially dealing with
the problem of allocating a fixed supply of goods (or space) to a group of agents
with varying and non-adjustable demands (sizes). A decision problem following this
general structure is referred to as the knapsack problem (Kellerer et al., 2004).1 In
this paper, our focus is on knapsack auctions : scenarios where the decision about
which objects to fit into the knapsack is determined through an auction mechanism.
Knapsack auctions have a variety of potential applications in real-world markets,
including advertising spot allocation, spectrum allocation, cloud computing resource
allocation, electricity market grid capacity allocation, event ticketing and seating,
and container or freight space allocation, to name a few.2

In this paper, we investigate the use of practical knapsack auctions to tackle the
knapsack problem with incomplete information. Our analysis features a ‘seller’ of
scarce space in the knapsack and ‘buyers’ aiming to secure a spot within it, effectively
translating the knapsack problem into a market design problem. We assume that the
values of the objects are known exclusively to their owners, while the sizes are public
information.3 In particular, we look at three multi-unit auctions for selling knapsack
space to buyers: first, the uniform price (UP) auction, where buyers pay amounts
based on the per-unit bid of the highest losing bidder; second, the discriminatory
price (DP) auction, where buyers pay their own bid for getting their object included
in the knapsack; and third, the generalized second price (GSP) auction, where a
buyer pays an amount based on the per-unit bid of the next highest bidder.4 Our

1The intuition behind this decision problem is often couched in the context of an individual,
say a mountaineer, seeking to fill a knapsack with a set of useful objects. The mountaineer places
some value on carrying each object, and would ideally like to carry the entire set. However the
mountaineer faces a capacity constraint, such as the total volume of objects that can be fit in
the knapsack, or the total weight that the mountaineer can carry; the allowable volume or weight
represents the scarce resource. Kellerer et al. (2004) present an in-depth discussion of the knapsack
problem variations; see Bartholdi (2008) for an intuitive introduction.

2More recently, the knapsack problem has found considerable use in blockchains, where trans-
actions of different sizes generating fees of different amounts are selected for inclusion into a block
of fixed capacity (Mohan and Khezr, 2024).

3Indeed, it is intuitive to think that decisions about filling the knapsack cannot be made if the
sizes of objects cannot be observed, as the feasible alternatives cannot be known with certainty.
Consequently, in many realistic and tractable situations, private information exists only for a single
parameter: the values.

4The primary reason for selecting these three auction types is their widespread application in real-
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analysis explores this from three different perspectives: first, theoretical; second,
experimental, with human participants as buyers in laboratory experiments; and
third, simulations using buyers with artificial intelligence (AI).

Our key results show that the uniform price auction is the unique dominant
strategy incentive compatible mechanism in knapsack auctions. However, it gener-
ates significantly lower revenue than the discriminatory and generalized second-price
auctions. The latter two yield similar revenues, with the generalized second-price
auction performing best overall in terms of both revenue and efficiency. These re-
sults are borne out in both the lab experiments with human bidders and in our AI
simulations. The simulations allow us to examine a much larger strategy space and
number of repetitions than is feasible in the lab.

This paper contributes to several strands of literature, including auctions, market
mechanisms, and practical solutions for addressing NP-hard problems. Our exper-
imental methodology is augmented by AI-enriched simulations to explore economic
behavior evolution in complex settings characterized by large strategy sets and several
agents. Utilizing AI simulations enables us to circumvent experimental constraints,
facilitating extended learning across more episodes than is feasible with human par-
ticipants. The applicability of this innovative method extends beyond this paper and
can be adopted in other contexts with similar attributes.

The knapsack problem has a direct solution when objects are divisible: fill the
knapsack prioritizing objects by their value per unit size until full. This method
known as the Greedy algorithm (Dantzig, 1957), results in the maximum value sum.
However, with indivisible objects, the complexity increases significantly, rendering it
an NP-hard problem without a polynomial-time solution (Kellerer et al., 2004). To
see how the Greedy algorithm can fail, consider a knapsack with a 10-pound capacity
and two items: one weighing 1 pound worth $1, and another weighing 9.9 pounds
worth $9. Using the greedy algorithm, which selects items based on value per pound,
the 1-pound item is chosen, leaving the knapsack nearly empty with $1 in value. In
contrast, choosing the second item would nearly fill the knapsack, showcasing $9 in
value, despite its lower value per pound, illustrating the algorithm’s limitations in
this scenario. Nevertheless, the Greedy algorithm serves as a useful heuristic, and
the inefficiency arising from employing the Greedy algorithm has known and well-
understood bounds that we elaborate upon presently. As such, in this paper, we
examine the interesting case of indivisible objects and employ the Greedy algorithm
as the allocation rule to simplify the computational problem.

world markets. Uniform-price and discriminatory auctions are extensively utilized by governments
to allocate Treasury bills and emission permits. Similarly, the generalized second-price auction is
employed by search engines for advertisement spot allocation.
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While there is some literature on knapsack auctions, by and large the focus has
been on a broad mechanism design approach that seeks a truthful equilibrium (Ag-
garwal and Hartline, 2006). In computationally complex problems such as knapsack
auctions or combinatorial auctions, when the optimal outcome is replaced with a
more tractable approximation algorithm, the VCG mechanism is no longer neces-
sarily truthful (Lehmann et al., 2002; Mu’Alem and Nisan, 2008; Nisan and Ronen,
2007; Akbarpour et al., 2023). As the social optimum is computationally difficult
to solve, so too is the corresponding VCG payments; in other words, calculating the
VCG payments for the socially optimum allocation is computationally hard. Given
that the optimal selection of bids in a knapsack auction is NP-hard, in this paper we
use an approximation algorithm – the Greedy algorithm – which yields a sub-optimal
outcome. So, one of the first questions that arises is: given a Greedy allocation, is
there an auction that implements a truthful equilibrium? The answer is yes; in single
parameter domains, if the allocation rule is monotone, there exists a unique pricing
rule that is dominant strategy incentive compatible (Myerson, 1981; Nisan et al.,
2007; Roughgarden, 2016). In our paper, each agent i receives a private value, vi,
from winning the auction and securing space in the knapsack, and 0 otherwise. In
other words, the single parameter vi describes the agent’s value in all winning al-
ternatives. Moreover, it is readily verified that the Greedy algorithm is monotone.
Consequently, every winning bidder i pays a price that equals a critical value below
which i loses and above which i wins (Nisan et al., 2007; Roughgarden, 2016).

Knapsack auctions have also been examined in the context of advertising on
internet search engines (Aggarwal and Hartline, 2006). As it happens, internet search
engines like Google utilize neither the UP nor the DP auction; rather, advertisements
in internet searches are sold through generalised second price (GSP) auctions, which
do no not have a truthful equilibrium (Edelman et al., 2007). We show that the
absence of a truth-telling equilibrium for GSP holds true in the context of a knapsack
auction as well.

There are various studies that have run experiments to see how human subjects
can solve complex problems like the knapsack problem (Bossaerts et al., 2020; Mu-
rawski and Bossaerts, 2016). For example, Murawski and Bossaerts (2016) suggest
that there is a counter-intuitive trend in problem-solving efforts: although partici-
pants generally invested more effort into tasks that demanded higher computational
resources, their efficacy in solving these tasks was inversely affected, showing a de-
crease in success rates. While to our knowledge there is no study that investigates
a knapsack auction experimentally, there are several that examine, in different con-
texts, the payment rules we focus on in this paper. For instance, Bae and Kagel
(2019) study GSP auctions in the context of advertising positions. They examine
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two distinct click-through rates (CTRs) within both static complete and dynamic
incomplete information frameworks. In contrast to the equilibrium suggested by the
VCG mechanism, they find that subjects’ bids were consistently higher. Sade et al.
(2006) is another example of an experimental study that compares the DP and the
UP auctions, using treasury auctions as the setting. They find that DP auctions are
more vulnerable to collusion compared the UP auction, unlike what theory predicts.5

More recently there have been a few papers that have investigated the use of
artificial intelligence in auction design. For example, Banchio and Skrzypacz (2022)
utilizes a Q-learning algorithm to simulate the first-price and second-price single unit
auctions. They show in a repeated auction environment that the first-price auction
may result in tacit-collusive outcomes, unlike the second-price auction. Calvano et al.
(2020) is another example where authors used Q-learning algorithms to study price
competition between oligopolies in a repeated game. As outlined in Section 4, we
employ a more advanced Q-learning algorithm to address the complexities that arise
due to the larger strategy set available to each agent and the possibility of multiple
winners in each auction, each with different rewards.

2 Theoretical Model

An owner (the seller) of a knapsack space with a capacity K > 0 would like to
sell the space of its knapsack to a set of N = {1, 2, ..., n} potential buyers. Each
buyer i owns an object that would occupy ki < K space in the knapsack. We assume
all objects’ sizes are public information and to avoid trivial cases, we presume that∑
i∈N

ki > K.

Each buyer i would realize a value vi if their object is packed in the knapsack and
would otherwise receive zero. Suppose vi is privately known by buyer i, however, it is
commonly known that values are distributed according to some distribution function
F (.) which is continuous and twice differentiable with f <∞.

Bidding in a knapsack auction starts with each bidder i submitting a bid Bi for
their object with size ki. The auctioneer uses the Greedy algorithm to pack the
knapsack, which involves ranking objects based on the per unit bid from the highest
to the lowest. We denote per unit bid of bidder i as bi, and without loss of generality
assume that b1 > b2 > ... > bn. The auctioneer fills the knapsack starting from the

5For a comprehensive literature review of multi-unit auctions with homogeneous goods see Khezr
and Cumpston (2022). For spectrum auctions see Bichler and Goeree (2017).
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highest per unit bid until there is no more space for the next object in the line.6 The
next step in the auction is the payment transfer for those objects that are packed.
In this paper, we consider three possible payment rules: the uniform-price (UP), the
discriminatory price (DP) and the generalized second-price (GSP).

In the DP auction, every bidder i whose object is packed paysBi to the auctioneer.
In the GSP auction, each bidder i whose object is packed (following a bid Bi) will
pay an amount that is based on the per unit bid submitted by the next bidder, that
is, i will pay kibi+1. Finally, in the UP auction every bidder whose object is packed
pays the per unit bid submitted by the first person in line whose object has not been
packed. Formally if we denote the highest per unit bid that has not been packed by
bj, every bidder i with packed objects would pay kibj.

2.1 The Uniform-Price (UP) auction

We begin with the uniform-price auction as the benchmark case in this study.
The uniform-price auction is known for untruthful bids and demand reduction in
the literature of multi-unit auctions (Krishna, 2009). However, for our setting, we
demonstrate that it is the unique dominant-strategy incentive-compatible (DSIC)
payment rule of the knapsack auction game. In the uniform-price format all packed
bidders pay the same per unit price equal to the highest per unit bid which is not
packed. The expected payoff of a bidder i becomes,

πi = (vi − kibj)Pro(ki being packed) (1)

Proposition 1. The UP auction has the unique dominant-strategy incentive-compatible
equilibrium of the knapsack auction game.

Proof. We first show the incentive compatible property of the UP auction. Denote
b∗ as the vector of equilibrium bids that is incentive compatible. We first show this

6There are two technical points worth noting. First, this assumes that the auctioneer stops as
soon as the next per unit bid corresponds to an object that cannot be packed into the knapsack.
There may be subsequent (even lower) per unit bids that involve smaller objects that could have
been packed into the knapsack. This leads to some ambiguity as to what the highest losing bid is for
a uniform price auction, so we assume that the auctioneer prefers not to deal with added complexity
that arises from this ambiguity. Second, the Introduction provided an example of a perverse case
where the Greedy algorithm fails. To rule out such cases, the auctioneer would need to pick either
the solution from the Greedy algorithm or the highest bidder, whichever yields a better outcome.
In this paper, the experiments and AI simulations reported in Section 4 and 5 are based on values
and sizes where this problem does not occur. Consequently, we focus on the outcome of the Greedy
algorithm.
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equilibrium exists in dominant strategies. If bidder i follows any strategy b′i >
vi
ki

there are three possibilities. First their bid is among the winners and their per unit
value is higher than the highest losing bid. In this case they would receive the same
payoff as the case where the bid is bi = vi

ki
. Second their bid is among the winners

and their per unit value is less than the highest losing bid. In this case the would
receive a negative payoff while bidding bi = vi

ki
results in zero payoff. Finally if their

bid is among the losers they would receive zero similar to a bid equal to bi =
vi
ki

.
Therefore bi = vi

ki
weakly dominates b′i >

vi
ki

.
If bidder i follows any strategy b′′i <

vi
ki

, as long as they are among the winners,
the payoff would be the same as the one for a bid equal to bi =

vi
ki

. However, in
one situation where the per unit bid of the last winner is between b′′i and vi

ki
and the

knapsack capacity allows i to be packed, bi = vi
ki

would result in a positive payoff
while b′′i <

vi
ki

results in zero payoff. Therefore bi = vi
ki

weakly dominates b′′i <
vi
ki

.
Next we prove the uniqueness. First note from Myerson’s Lemma for a single-

parameter environment we have the following (see Roughgarden (2016)):
(A) An allocation rule x is dominant-strategy incentive-compatible (DSIC) iff it

is monotone.
(B) If x is monotone, then there is a unique payment rule such that the sealed-bid

mechanism (x, p) is DSIC [assuming the normalization that bi = 0 implies pi(b) = 0].
(C) For every bidder i, bid bi, and bids b−i by others, the payment rule in (B)

is: pi(bi, b−i) =
∑l

j=1 zj· (jump in xi at zj), where z1, z2, ..., zl are jumps in the
allocation function at break points in the range [0, bi].

For the knapsack auction game the following is true:
(1) The greedy allocation rule is monotonic, since allocation xi(zi, b−i) is non-

decreasing in bid zi. So from (A), it is implementable, that is, there exists a payment
rule p such that (x,p) is DSIC.

(2) From (B), we know that the DSIC payment rule is unique.
(3) In (C), since this is a 0-1 allocation, there exists only one critical bid ẑ such

that for agent i: bi < ẑ yields xi = 0 and bi ≥ ẑ yields xi = 1. The question is: what
is ẑ?

Consider a bid profile b where b1 > b2 > ...bn. Given the Greedy algorithm,
suppose that the set of winning bidders be W = {1, 2, ...,m} and the winning bids
be b1 > b2 > ...bm, where m < n. From the Greedy algorithm, this implies that (I)
and (II) below are true:

(I)
∑

j∈W kj ≤ K and
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(II)
∑

j∈W kj + km+1 > K

Consider an arbitrary winner i; the set W\i is the winning set of agents excluding
i. There are two possibilities:

(i)
∑

j∈W\i kj + km+1 > K. In this case the critical bid is trivial: ẑ = bm+1, as for
bi < bm+1 we have that xi = 0 due to Greedy algorithm, but for bi ≥ bm+1, xi = 1 is
feasible given (I) above. So the price paid by i equals bm+1.

(ii)
∑

j∈W\i kj + km+1 ≤ K. Without loss of generality, suppose the removal of i
allows agents {m+ 1,m+ 2, ...m+ l} to fit their objects in knapsack. In that case,
from the Greedy algorithm, we have that

∑
j∈W\i kj + km+1 + km+2 + ...km+l ≤ K,

but that
∑

j∈W\i kj + km+1 + km+2 + ...km+l + km+l+1 > K. Now suppose we start
with the lowest bid to size ratio, bm+l. This cannot be a critical bid for i, because
even if bi > bm+l, from (II) above we have that

∑
j∈W kj + km+1 > K, and therefore

i’s object cannot fit in knapsack. This holds for all bids up to bm+2. It is only when
bi ≥ bm+1 that i’s object can fit into knapsack and satisfy the feasibility condition
(I). Consequently in this case also ẑ = bm+1.

Since i was arbitrarily chosen from set W , the above holds for all agents in W .
So, all agents pay ẑ = bm+1, which implies that the uniform price auction is DSIC.

From Myerson’s Lemma, we know that this is unique. So the UP auction is the
unique dominant strategy incentive compatible auction.

The above proposition suggests that UP has the only dominant-strategy and
incentive-compatible equilibrium of the knapsack auction game. Upon examining
the VCG payment, one can observe situations within the VCG framework where
bidders could benefit from overbidding; consequently, we can conclude that VCG is
not truthful in this setting. For instance, consider a scenario where a bidder is the
highest losing bidder and the last winning bidder has a low capacity. If the highest
losing bidder overbids the last winning bidder, they would only pay more than their
per unit value for a small fraction of their capacity, thereby still achieving a positive
payoff through overbidding. However, this strategy is not feasible in the UP auction,
as the payment for all units would be the same. In this case, it would be equal to
the per unit bid of the lowest winning bidder (which will become the highest losing
bidder after overbidding), leading to a negative payoff for the overbidding bidder.
As we proved the uniqueness of the UP in Proposition 1, the following corollary is
immediate.

Corollary 1. In the knapsack auction, the VCG payment rule is not truthful.
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Proof. In the proof of proposition 1 we show the uniqueness of the DSIC and also
showed UP is DSIC. What remains to show is that UP is not the same as VCG. It
is straightforward to verify that the two payment rules are not the same. Formally
denote the value and the size of the highest losing bidder as v′i and k′i. Also denote
the set of winning bidders as W = {1, 2, ...,m}. If there is at least one kj > k′i for
j ∈ m, then the VCG payment rule would become,

V CG payment =


v′i
k′i

for k′i units

v′′i
k′′i

for kj − k′i units
(2)

where v′′i
k′′i

is the per unit value of the second highest loser. Of course we assumed
that the sum of the sized of the first and the second highest loser exceeds the size
of the winner. Otherwise we move to the consecutive losing bidders until the sum of
the sizes reaches the size of the winning bidder. Therefore the VCG payment rule is
not necessarily uniform.

It is important to note that despite UP having a DSIC equilibrium, it is not
necessarily efficient. This can be intuitively understood due to the binary (0-1) nature
of packing in the knapsack auction. For instance, recall that the Greedy algorithm
stops the allocation when the next object cannot be packed. This essentially means if
there is still an object next in the line which has a size less or equal to the remaining
knapsack space, it would not be packed. Therefore the truthful nature of the payment
rule cannot address the inefficient allocation of the Greedy algorithm. The following
proposition formally states the inefficiency of the UP.

Remark 1. The UP auction is not efficient.

The above remark follows from the fact that since the allocation mechanism is
not efficient, even an incentive compatible payment rule cannot achieve efficiency.
It suffices to show an example where UP results in an inefficient allocation of the
knapsack space. Suppose the lowest winning bidder’s capacity is such that there are
k̂ > 0 space left in the knapsack. Denote the lowest winning bidder’s per unit value
as vi

ki
. Based on the incentive compatible equilibrium, it must be that this per unit

value is greater than the highest losing bidder, say v′i
k′i

. If k̂ + ki ≥ k′i, then the UP is
inefficient as long as vi < v′i.

As mentioned at the beginning of this section, UP constructs a very good bench-
mark for our study as it is the only DSIC auction among the three auctions that we
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investigate. Next we are going to study the equilibrium bidding behavior of the DP
auction.

2.2 The Discriminatory Price (DP) auction

For the DP payment rule it is clear that bidding ones value, that is, bidding
Bi = vi, is a weakly dominated strategy as it guarantees zero payoff. However we
would like to further investigate if there is any monotone bidding function β(vi) that
would characterize a Bayesian-Nash equilibrium of this auction. Each bidder i who
submits Bi has the following expected payoff,

πi = (vi −Bi)Pro(ki being packed) (3)

To compute the probability of being packed we need to introduce further notation.
Denote K−i as the set of all other bidders’ capacities excluding bidder i. Within this
set denote S as a representative subset of K−i with j elements such that there is still
space for i to be packed. Formally this can be shown as follows.

K −
∑
j∈S

kj + ki < min
−j∈K−i\S

k−j (4)

The probability that bidder i is packed along with all bidders in a subset S is
equal to the probability that all bidder js and bidder i submit the j + 1 highest per
unit bids among all n bidders. Of course this is not the only event that bidder i has
a positive probability of being packed and this is only for a given subset S. Thus
the probability that ki is being packed is equal to the sum of the probabilities of all
those events where it can be packed.

Pro(ki; packed) =
∑
S⊆K−i

Pro

(
β(vi)

ki
> max

t∈K−i\S

β(vt)

kt

)
· Pro(S) (5)

Here, Pro(S) is the probability that the objects of the bidders in subset S can
be packed along with bidder i’s object in the knapsack. This probably is equal to
the probability that all bid to size ratios of j members of S is larger than the bid to
size ratio of other t members that have not been packed.

Pro(S) =
∑
j∈S

Pro

(
β(vj)

kj
> max

t∈K−i\S

β(vt)

kt

)
(6)
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Next we focus on a possible symmetric Bayesian Nash equilibrium β∗. First note
that if such equilibrium exists then it must have two characteristics. First, fixing the
size of bidder i’s object, a larger value would result in a larger per unit bid. Second,
the bid function must be a non-decreasing function of the size, that is, increasing the
size of a given bidder’s object, their bid Bi should not decline, ceteris paribus. The
first point would help us computing the above probabilities using order statistics of
the distribution of values. Therefore in a symmetric BNE the probability that i’s
item is packed with a given subset S is equal to:

Pro(ki; packed)|S = Pro

(
Bi

ki
> max

t∈K−i\S

Bt

kt

)
·
∑
j∈S

Pro

(
Bj

kj
> max

t∈K−i\S

Bt

kt

)
(7)

Denote ψ(vi, ki) as the probability that bidder i with value vi and ki is being
packed. The next proposition characterizes the optimal bidding function for this
BNE.

Proposition 2. The DP auction has a BNE where each bidder chooses a bid equal to,

B∗
i = vi −

ψ(Bi, ki)
∂ψ(Bi,ki)

∂Bi

(8)

Proof. Suppose each bidder i would choose their bid Bi to maximize their expected
payoff:

max
Bi

πi = (vi −Bi)ψ(Bi, ki) (9)

Differentiating the above term with respect to Bi gives the following first-order con-
dition:

∂πi
∂Bi

= (vi −Bi)
∂ψ(Bi, ki)

∂Bi

− ψ(Bi, ki) = 0 (10)

This implies:

ψ(vi, ki) = (vi −Bi)
∂ψ(Bi, ki)

∂Bi

(11)

By rearranging, we can express the optimal bid as an implicit function of firm i’s
bid, Bi, the size ki, and the derivative of the probability of being packed with respect
to the bid:

11



B∗
i = vi −

ψ(Bi, ki)
∂ψ(Bi,ki)

∂Bi

(12)

Also it is routine to check that Equation 7 is increasing in Bi and the above is
increasing in vi.

Based on the above proposition in the BNE of the DP auction each bidder submits
a bid that is strictly lower than their value. Note that the ψ(., .) function is increasing
in the bid value Bi as larger bids result in higher probability of being packed, ceteris
paribus. Therefore the second term of 8 is strictly positive. The above result is not
surprising as in most of the similar setup the DP auction results in equilibrium with
bids strictly below the values and dependent on probability of winning. However, as
expounded above the complexity of the knapsack auction is that the probability of
winning, which is equivalent to probability of being packed, is very hard to compute
due to nature of the problem.

2.3 The Generalized second-price (GSP) auction

As outlined earier, in the GSP auction format each bidder whose item is packed,
pays the per unit bid of the next bidder. Therefore, the expected payoff of a bidder
i is as follows.

πi = (vi − kibi+1)Pro(ki being packed) (13)

Remark 2. In the GSP, truth-telling is not an equilibrium.

To understand the intuition behind the above remark first note that bidders do
not pay their own bid; instead, their payment is computed based on the per-unit
bid of the subsequent bidder. Therefore, if a bidder has a high per-unit value, there
is an incentive for them to underreport their value to pay less, while ensuring that
they remain among the winners. Note that while the above remark suggests that
bidding equal to one’s value is not an equilibrium in the GSP, it does not comment
on the extent of untruthful bidding. According to Edelman et al. (2007), one could
explore a similar type of envy-free equilibrium for the GSP auction that could achieve
results akin to those of the VCG mechanism. However, given that the VCG is neither
truthful nor efficient in our setup, we refrain from exploring such equilibria. In fact,
our primary interest is in understanding, in the absence of such outcomes, what the
strategic behavior of bidders in a GSP knapsack auction would be.
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3 Experiment

Following the theoretical model, we design a laboratory experiment to test the
performance of the three proposed auctions. Our first treatment investigates a DP
auction where each bidder pays his or her own bid. The second treatment tests the
GSP auction where bidders pay based on the bid-to-size ratio of the next bidder.
Finally our last treatment tests the UP auction where all bidders pay based on the
highest losing bid-to-size ratio. The last treatment not only represents an ideal
alternative for a possible knapsack auction but also plays the role of a benchmark
as based on the theoretical findings we expect this to be the only strategy proof
mechanism among the three. Table 1 presents some details regarding the participants
in each treatment.

Table 1: Treatments summary

Cond. 1 (DP) Cond. 2 (GSP) Cond. 3 (UP) Total

Participants per group 7 7 7

No. of groups 9 8 8 25

No. of participants 63 56 56 175

No. of rounds 20 20 20

Sum auction obs. 180 160 160 500

Sum Ind. obs. 1,260 1,120 1,120 3,500

Our experiments were run in groups of seven participants who played the auction
game for 20 rounds. The knapsack size was fixed to 36 for all the auctions. The
size of objects that buyers had were randomly drawn (without replacement) in each
round from a set [4, 5, 6, 7, 8, 9, 10], which sums to 49. Therefore, at least two bidders
and at most three bidders cannot fit their objects into the knapsack, depending on
the bids. Each buyer received an integer value from [1, 10], which was distributed
uniformly.

Our experiments were conducted at RMIT’s Behavioural Business Lab in Mel-
bourne, Australia. Each session began with subjects being randomly allocated into
groups of seven. The duration of each session ranged between 50 to 90 minutes on
average, including the time allocated for payments. At the beginning of the session,
detailed instructions were provided electronically to the subjects. There were a total
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of six quiz questions that the subjects needed to answer, which were embedded in the
instructions (Figure 13). Subjects earned 1 Australian dollar (AUD) for each correct
answer. If their answer was incorrect, a pop-up window would appear displaying the
correct answer (Figure 14). Once they had read the instructions and answered the
quizzes, they could proceed to the auction stage. They had the option to access the
instructions at any time during the experiment by clicking on a tab at the top of the
window.

The auction rounds commenced with each round displaying the knapsack size,
the size of the object owned by the bidder, and the size of the objects owned by other
bidders, including the sum (Figure 15). Subsequently, participants were required to
place their bids for the item. Participants could view their bid-to-size ratio below
their bid entries, which ultimately determines their winning status. After all subjects
submitted their bids, they were redirected to a subsequent page. This page revealed
whether they emerged as winners or not, their respective payoffs, the calculation
process for these payoffs, and the bids submitted by other bidders (Figure 16).

Subjects accrued experimental points during the auction stage, which were con-
verted to dollars at an exchange rate of 2 points to 1 AUD. Their earnings from
the auction stage was the sum of their payoffs from each round. In the event of a
negative payoff in a given round, this amount was deducted from the total. Subjects
were informed that if the cumulative earnings from the auction stage were negative,
it would be normalized to zero. However, no instances of total negative earnings
were recorded. In addition to this, subjects also received a 10 AUD participation fee
and 2 AUD for completing a post-experiment survey, which included two questions
evaluating their risk preferences. On average, subjects earned 35.24 AUD (approx-
imately USD 24.66), with a range from a minimum of 16 to a maximum of 52.50
AUD.

3.1 Experimental results

There are three major variables of interest in each auction: bids placed by bidders,
revenue and efficiency of the auction. To be able to to provide a comprehensive
analysis of each auction we have introduced three measurements for each of these
variables as follows.

Learning ratio is the difference between per unit value and per unit bid. Formally
one can define learning ratio as,

R =
vi
ki

− Bi

ki
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This variable aims to capture how close bids are to the value of the bidder. We
use the same variable in the next section to measure the learning patterns of AI
agents.

Revenue is the sum of payments by all those who had successful bids. In case of
DP this is simply the sum of all the winning bids. In case of GSP it is the sum of
the payments of all successful bidders, where every winner pays the bid-to-size ratio
submitted by the next highest bidder times their item size. And for the UP is the
bid to size ratio of the highest losing bidder times the size of every winner. As we
already have this information to compute the payoff of each player, we only need
to sum the payments for all the successful bidders to compute the revenue of each
auction.

Efficiency (surplus): To compute the efficiency, we first need to calculate the
value-to-size ratio for all bidders in each auction. Then, starting from the highest
value-to-size ratio, we fill the knapsack until it is full. We then compute the sum
of the total values of those who were packed (denote this sum as S). This sum
represents the solution given by the Greedy algorithm in the case of full information.
The next step is to compute the sum of the values of those who are packed based
on the bidding in the auction, that is, the sum of the total values of successful
bidders (denote this sum as C). The efficiency of each auction is represented by the
magnitude of S − C. The closer C is to S, the more efficient the auction is. For
instance, for the UP auction, we expect to have a very small (or zero) S − C as
bidders are incentivized to truthfully reveal their values.

Our main goal is to test how the three auctions perform in terms of truthfulness
of the bids, revenue and efficiency.

Our secondary hypothesis:

• In the UP auction bidders bid truthfully, that is, their bids are equal to their
value.

• In the GSP auctions bidder submit untruthful bids, that is, bids are strictly
below their value.

• The magnitude of Bidders’ bids are ranked as follows: UP results in the highest
bids, then GSP and then DP in the lowest bids submitted by bidders. (note
this is irrespective of the revenue generated by each auction)

Figure 1 depicts the performance of the three auctions regarding the bids. We
used the learning ratio R = vi

ki
− Bi

ki
described above to represent the truthfulness of
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Figure 1: Mean individual observations in a round.

bids in the auction. Obviously the smaller the R the more truthful the auction. As
shown in Figure 1 UP results in the most truthful bids followed by GSP and DP.

Next we investigate the efficiency of each auction, Efficiency, as described before
is formulated as E = S − C where S is the achievable surplus with full information
Greedy algorithm and, C is the achieved surplus via the implemented auction. As
shown in Figure 2 UP and GSP result in the highest level of efficiency follow by DP.
In some instances the E was zero, indicating that the auctions have allocated the
objects fully efficiently.

Finally we compare the revenue obtained by each of the three auctions. As
shown in Figure 3 GSP resulted in the highest level of revenue followed by DP and
UP. While the revenue generated by GSP is very close to the DP, but UP resulted
in a significantly lower revenue compared to the other two auctions.
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Figure 2: 7 players in each auction, played for 20 rounds.

3.2 Regression results

In this subsection we present the analysis of the experimental data. First, we
start by the linear regression of the three conditions, considering DP as the control.
We run two regressions one for the revenue and one for the efficiency of each auction.
For the analysis of bidding behavior we used individual data for each of the auctions.
However for the revenue and efficiency, since the analysis is at auction level, the data
is clustered to 25 clusters where each of these cluster represents a given group of
participant observed over 20 rounds of auction.

Table 2 shows the result of a linear regression for the learning ratio of the three
auctions, where DP is the dependent variable. As the results show, GSP and UP
have significantly higher truthful bids compared to DP.

Table 3 and 4 show the results for the linear regressions where the round efficiency
and revenue for DP are the dependent variables.

As shown in Table 3 both GSP and UP have significantly higher levels of efficiency
compared to the UP. Negative coefficients for efficiency essentially means lower index
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Figure 3: 7 players in each auction, played for 20 rounds.

Learning ratio Coef. Robust SE t p-value
Condition
GSP -0.152 0.036 -4.17 0.000
UP -0.209 0.035 -5.95 0.000
Cons 0.344 0.026 6.23 0.000
Number of obs 3,482
R-squared 0.051

Table 2: Linear regression: Learning ratio. Data: total number of individual ob-
servations excluding R < −2. Note: Excluded 18 observations where some bidders
significantly overbid in the UP auction.

level E for those two auctions which is equivalent to a higher surplus in each auction.
Comparing the coefficients of the GSP and UP shows that UP results in higher
efficiency compared to GSP, however for a very small and negligible amount.

Table 4 shows the result of regressions for the revenue of each auction. As shown
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Round Efficiency Coef. Robust SE t p-value
Condition
GSP -2.011 0.536 -3.75 0.001
UP -2.186 0.520 -4.20 0.000
Cons 3.161 .507 6.23 0.000
Number of obs 500
R-squared 0.108

Table 3: Linear regression: Efficiency. Data: 500 auctions (25 groups participating
in 20 rounds of auctions). Standard errors clustered by group.

Round Revenue Coef. Robust SE t p-value
Condition
GSP 0.261 0.888 0.29 0.771
UP -4.634 1.084 -4.27 0.000
Cons 19.502 .788 24.75 0.000
Number of obs 500
R-squared 0.206

Table 4: Linear regression: Revenue. Data: 500 auctions (25 groups participating in
20 rounds of auctions). Standard errors clustered by group.

in this table, UP has a significantly lower revenue compared to the DP. However, the
difference between the revenue generated by GSP and UP is not significant. When
we exclude the first 10 rounds and only consider the second 10 rounds then the
coefficient for GPS becomes positive and significant indicating that GSP results in a
higher revenue than DP when subjects completed 10 rounds and learned more about
the bidding (Table 5). This result demonstrates that GSP has the overall highest
revenue and efficiency between the three auctions.
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Round Revenue Coef. Robust SE t p-value
Condition
GSP 2.092 0.818 2.56 0.017
UP -3.550 0.969 -3.66 0.001
Cons 18.41 0.615 29.93 0.000
Number of obs 250
R-squared 0.238

Table 5: Linear regression: Revenue. Data: 250 auctions (25 groups for the last 10
rounds of auctions). Standard errors clustered by group.

4 AI Simulations

In this section, we use simulation methods featuring artificially intelligent agents
who bid and learn in the aforementioned three auctions. The aim is to complement
the outcomes from these simulations with those from the experiments and to inves-
tigate how simulation outcomes might address the shortcomings of the experiments.
For our simulations, we used a Q-learning algorithm to enable agents to learn in an
environment that closely resembles our experimental setup.

Q-learning algorithms have increasingly been utilized to simulate human behav-
ior in auction environments, offering insights into complex decision-making processes
(Banchio and Skrzypacz, 2022). These algorithms, rooted in the field of reinforce-
ment learning, are adept at handling situations where agents interact under un-
certainty and incomplete information – conditions typical of auction markets. By
iteratively updating their strategy based on rewards or punishments received from
the environment (in this case, the auction outcomes), Q-learning agents can learn
how to bid optimally in auctions.7 They adapt their bidding strategies based on
past experiences and perceived patterns, reflecting the dynamic nature of human
decision-making. This approach allows us to explore various auction formats and
bidding behaviors, providing valuable perspectives on how individuals might act in
competitive bidding scenarios.

Q-learning is a model-free, off-policy reinforcement learning approach. Utilizing
the widely adopted Q-Learning algorithm, our method is designed to learn a bidding
strategy through a sequence of episodes (auctions), each comprising a single auction
with multiple agents (bidders). Learning takes place in a decentralized environment,

7Khezr and Taylor (2024) is a recent study that summarizes various reinforcement learning
algorithms. It suggests that, despite its simplicity, Q-learning performs relatively well compared to
more advanced reinforcement learning algorithms in simulating bidding in multi-unit auctions.
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where each agent learns independently, relying solely on observations from their
private states, actions, and rewards. A state (s) represents an agent’s current auction
‘environment’, including the value and size of their item, assigned at the start of each
episode. An action (a) is the agent’s bid, determined by their current state, aiming
to secure their item in the knapsack while maximizing their payoff. The reward (r)
is derived from the combination of state and action < s, a >. Agents whose actions
result in their item being included in the knapsack receive their payoff as a reward.
Conversely, if an agent’s action does not secure a place in the knapsack for their
item, they receive a negative reward.

Over a series of n episodes, each agent populates a Q-table, recording rewards
from various state/action pairs. Initially, actions are taken randomly over several
episodes to start populating the table and to explore the state/action space. Actions
taken during this phase are ‘exploratory’, while ‘exploitative’ actions later involve
selecting bids from the agent’s Q-table that yield the highest reward given the current
state. After the initial exploratory period, a monotonically decreasing ‘exploration
rate’ governs the balance between ‘exploration’ and ‘exploitation’, culminating in
pure exploitation at the end of the n episodes.

An agent’s Q-table is updated at the end of each episode e1, based on the reward
r1 observed from taking action a1 in state s1. The update uses a modified Bell-
man Optimality Equation, excluding the discount factor (γ). The discount factor
typically balances immediate versus future rewards in a learning task. However, as
each auction in our simulations is independent, comprising only a single state/action
decision per agent, the discount factor is irrelevant in this context.

In our simulations seven Q-learning agents play each auction for 100,000 episodes.
All other parameters such as the distributions and the knapsack size are similar to the
experimental parameters. The first 1,000 rounds were pure learning and exploitation
started afterwards.

Figure 4 shows the results of the learning ratio as defined in the previous section.
The importance of the learning ratio is mostly obvious in this figure as one expects
if agents learn properly the learning ration must not have a high variance after a
given episode. Based on Figure 4 there is a high and in some sense natural rate of
fluctuation in the learning ratio in the first 40,000 episodes. In these episodes agents
are exploring to learn their optimal strategy. However once we pass the 50,000
episodes the change in the learning ratio becomes very small which indicates that
the agents have now learned enough about their optimal strategy in the auction.

As shown in Figure 4 the DP auction results in the highest ratio followed by GSP
and UP. This indicates that in the UP auction Q-learning agents’ bids were closest
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Figure 4: 7 agents in each auction, played for 100,000 episodes.

to their values compared to the other two auctions.
Figure 5 shows the efficiency levels of each auction in the Q-learning simulations.

As demonstrated, UP exhibits the highest level of efficiency, followed closely by GSP,
while DP has the lowest efficiency among the three auctions.

Finally, Figure 6 displays the revenue generated in each auction across all episodes.
As illustrated in this figure, DP yields the highest revenue level, followed closely by
GSP. However, UP generates significantly lower revenue compared to the other two
auctions. While similar results were observed in the lab experiment, the difference
in revenue between UP and the other auctions is much more pronounced in the AI
simulations relative to the experimental data.

One advantage of AI simulations over lab experiments is that, once a suitable
algorithm is developed, it can easily run various scenarios with different parame-
ters. In Appendix 6, we present several comparative statics analyses, altering all
parameters to examine the robustness of our results to these changes. Overall, the
results demonstrate minimal to no changes in terms of revenue ranking and effi-
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Figure 5: 7 agents in each auction, played for 100,000 episodes.

ciency when parameters such as knapsack size and the number of agents are varied.
This indicates that our findings are robust and can be extrapolated beyond just the
parameters employed in the experiments.
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Figure 6: 7 agents in each auction, played for 100,000 episodes.

5 Conclusions

In this paper, we study the well-known knapsack problem in a setting where the
knapsack owner and object owners are distinct parties. Object owners possess private
information about the value they derive if their object is packed in the knapsack.
Focusing on the Greedy algorithm as the allocation mechanism, we examine three
auctions for the payment rules governing the transfer between the knapsack owner
and the object owners. Two of these auctions, namely the discriminatory price
and the generalized second-price auctions, have been widely used in practice for
various applications. The uniform price auction was chosen as a benchmark, as
we demonstrate it to be the unique truthful mechanism for the knapsack auction
problem with incomplete information.

We used three distinct methodologies to compare the three auctions. Starting
with a theoretical model, we demonstrate that the DP auction has a Bayesian Nash
Equilibrium (BNE) that is challenging to compute, even with simple parameters.
We then show that the GSP auction is not truthful, even though bidders do not pay
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their own bid. Finally, we establish that the UP auction is incentive compatible but
inefficient, as the allocation mechanism itself is not efficient.

We also conduct a series of lab experiments with human subjects to test the
performance of these auctions. Based on the lab results, the UP auction is the most
truthful and efficient among the three, yet it generates the lowest revenue. The DP
auction performs well in terms of revenue but is significantly less efficient compared
to the other two. The GSP auction closely matches the UP auction in terms of
efficiency and resembles the DP auction in revenue, indicating it may be one of the
best auctions to use in practice.

Finally, we utilize AI simulations where our agents are trained using a Q-learning
algorithm. The AI results mostly align with the lab experiments, with one major
difference: the UP auction’s revenue is significantly lower than the other two auctions
in the AI simulations, in contrast to the lab experiment where the difference, though
still notable, is less pronounced.
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6 Appendix: Comparative statics

Table 6: Agent learning ratios: Randomly selected run (100,000 rounds)

Auction All agents Worst performing agent Best performing agent
type Median Mean SD Median Mean SD Median Mean SD

DP 0.288 0.421 0.409 0.165 0.410 0.393 0.166 0.433 0.427
GSP 0.206 0.325 0.337 0.163 0.323 0.336 0.165 0.337 0.338
UP 0.107 0.185 0.238 0.164 0.205 0.281 0.165 0.171 0.249

Table 7: Agent payoff (points): Randomly selected run (100,000 rounds)

Auction All agents Worst performing agent Best performing agent
type Median Mean SD Median Mean SD Median Mean SD

DP 1.520 2.113 2.169 1.710 2.052 2.108 1.708 2.183 2.235
GSP 1.800 2.219 2.154 1.707 2.194 2.161 1.710 2.254 2.158
UP 2.704 3.087 2.854 1.700 3.065 2.860 1.710 3.110 2.855

Table 8: Auction performance: Randomly selected run (100,000 rounds)

Auction Revenue (points) Efficiency (ratio)
type Median Mean SD Median Mean SD

DP 17.400 17.280 3.055 100 97.959 5.617
GSP 16.643 16.766 3.760 100 98.744 4.484
UP 9.581 10.923 6.418 100 99.337 3.480
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(c) Learning ratio: Average of 7 Q-learning agents

Figure 7: 7 Agents, Knapsack capacity of 30, item values in the range [1,10] and
item sizes in the range of [4,10]
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Figure 8: 7 Agents, Knapsack capacity of 36, item values in the range [1,10] and
item sizes in the range of [4,10]
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Figure 9: 7 Agents, Knapsack capacity of 40, item values in the range [1,10] and
item sizes in the range of [4,10]
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(c) Learning ratio: Average of 10 Q-learning agents

Figure 10: 10 Agents, Knapsack capacity of 30, item values in the range [1,10] and
item sizes in the range of [1,10]
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Figure 11: 10 Agents, Knapsack capacity of 36, item values in the range [1,10] and
item sizes in the range of [1,10]
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Figure 12: 10 Agents, Knapsack capacity of 40, item values in the range [1,10] and
item sizes in the range of [1,10]
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7 Appendix A: Details of the experiment

Figure 13: Instructions and quiz questions
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Figure 14: Incorrect quiz questions
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Figure 15: Bidding stage in each round
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Figure 16: Payoffs in each round. The example is for the GSP treatment.
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