
Tuning for the Unknown: Revisiting Evaluation Strategies for Lifelong RL

Golnaz Mesbahi * 1 Olya Mastikhina * 1 Parham Mohammad Panahi 1 Martha White 1 Adam White 1

Abstract
In continual or lifelong reinforcement learning
access to the environment should be limited. If
we aspire to design algorithms that can run for
long-periods of time, continually adapting to new,
unexpected situations then we must be willing
to deploy our agents without tuning their hyper-
parameters over the agent’s entire lifetime. The
standard practice in deep RL—and even contin-
ual RL—is to assume unfettered access to deploy-
ment environment for the full lifetime of the agent.
This paper explores the notion that progress in
lifelong RL research has been held back by inap-
propriate empirical methodologies. In this paper
we propose a new approach for tuning and evaluat-
ing lifelong RL agents where only one percent of
the experiment data can be used for hyperparam-
eter tuning. We then conduct an empirical study
of DQN and Soft Actor Critic across a variety
of continuing and non-stationary domains. We
find both methods generally perform poorly when
restricted to one-percent tuning, whereas several
algorithmic mitigations designed to maintain net-
work plasticity perform surprising well. In addi-
tion, we find that properties designed to measure
the network’s ability to learn continually indeed
correlate with performance under one-percent tun-
ing.

1. Introduction
Continual or lifelong reinforcement learning (RL) arises in
many applications.1 In HVAC control, agents learn to adapt
the set-points daily, with deployment lasting for weeks, or

*Equal contribution 1Department of Computing Science, Uni-
versity of Alberta, Alberta, Canada. Correspondence to: Gol-
naz Mesbahi <mesbahi@ualberta.ca>, Olya Mastikhina <mas-
tikhi@ualberta.ca>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

1In this paper we use the term lifelong learning because (1) this
avoids the confusing terminology clash with continuing MDPs and
(2) the name reflects the fact that agent-environment interaction
will eventually end we just don’t know precisely when.

months, but the agent does not exploit knowledge of length
of the deployment (Luo et al., 2022). Similar situations
arise in data-center cooling (Lazic et al., 2018), water treat-
ment (Janjua et al., 2023), and many other industrial control
settings. Even our popular deep RL benchmarks could nat-
urally be treated as lifelong learning tasks: Atari agents
could play games forever, switching to a new game when
they die or completed each game (similar to the Switching
ALE benchmark (Abbas et al., 2023)). Mujoco tasks are
naturally continuing, but common practice is to truncate
experiments after a fixed number of interactions, reseting
to some initial configuration. In lifelong learning tasks, we
should design, tune, and test our agents with limited access
to the environment and then deploy the learning system as-is
without further tuning of its hyperparameters during the rest
of its lifetime.

The vast majority of algorithmic progress in deep RL has
focused on the non-continual setting. Agent designers test
algorithmic variations and hyperparameter combinations
in the deployment environment for the the full lifetime of
the agent and then report the best performance across these
deployments. For example, if one were to develop a new ex-
ploration algorithm for Atari, then this new algorithm would
be extensively tested over 200 million frames, tuning any
new hyperparameters introduced by evaluating each over
200 million frames. In this sense the standard methodology
is to design and tune our agents given access to the full
lifetime of the agent.

There has been increased focus on extending or modifying
existing deep RL agents for lifelong RL, with limited suc-
cess. With the goal of enabling extended learning, these
approaches can be roughly categorized into three groups:
1) resetting, 2) regularization, and 3) normalization. In
the first, parts of the agent’s network are reset to random
initial values, causing large drops in performance, but even-
tually leading to improved final performance (Nikishin et al.,
2022; 2023; D’Oro et al., 2022). Regularization balances
error reduction with keeping the agent’s network parameters
close to initialization (Kumar et al., 2023); this helps be-
cause the random initial parameters help the network learn
quickly. Finally, recent work has found that layer normal-
ization can help maintain the ability to learn (Lyle et al.,
2023). All these approaches are mitigations: algorithmic
fixes applied to a base agent that is not designed for life-

1

ar
X

iv
:2

40
4.

02
11

3v
2

 [
cs

.L
G

]
 3

0
A

pr
 2

02
4

Revisiting Evaluation Strategies for Lifelong RL

long learning. In addition, in all these works the ultimate
empirical demonstrations were conducted in non-continual
testbeds like Atari and Mujoco, where the proposed new
lifelong learning agents were tuned for the agent’s entire
lifetime—there is no sense in which it is continual. Many
of these approaches are promoted to address loss of plas-
ticity, which although important for the success of lifelong
RL agents, also arises in standard episodic non-continual
benchmarks like Mujoco and Atari (Nikishin et al., 2023;
D’Oro et al., 2022).

There are several algorithms designed from first principles
for lifelong RL. Continual backprop (Dohare et al., 2021),
for example, was designed for and tested in never-ending
regression and RL control tasks. This algorithm randomly
re-initializes neurons in the network to promote continual
adaption in the face of non-stationarity. Similarly inspired,
Permanent-transient networks (Anand & Precup, 2023) use
a pair of neural-networks to ensure a deep Q-learning agent
is able to distill key information from a sequence of tasks,
while adapting to new ones.

This paper explores the notion that progress in lifelong
RL research has been held back by inappropriate empirical
methodologies. Inspired by the constraints of real-world ap-
plications of RL, we propose a new methodology for tuning
and evaluating lifelong RL agents. The framework is based
on a simple idea: lifelong RL agents may be deployed for an
unknown amount of time and thus agent designers should
not be allowed to tune their agents for their entire lifetime.
Instead, we introduce a tuning phase: one percent of the to-
tal lifetime. Only one percent of the experiment data can be
used for hyperparameter tuning, after that the hyperparam-
eters must be fixed and deployed for the remainder of the
agent’s lifetime. This setup closely matches real-world de-
ployment scenarios where (a) we cannot tune for the agent’s
full lifetime, and (b) we may have limited knowledge and
experience with the dynamics and state distribution of the
deployment environment.

In our first set of experiments, we verify that popular and
performant deep RL agents like DQN and Soft Actor-critic
perform poorly across a suite continual RL task irrespective
of what metric is used to select the best hyperparameters
during the one-percent tuning phase.

We then use our new lifelong RL evaluation protocol to
revisit recent findings from the lifelong RL literature. In
particular, we investigate several mitigation strategies, in-
cluding regularizing to the initial weights, Concatinated
ReLu, and weight normalization, under one-percent tuning
finding most actually improve performance compared to the
base algorithms. However, in all cases as the deployment
lifetime is extended, performance eventually drops. We also
revisit many metrics proposed in the literature as potentially
predictive of catastrophic performance collapse in lifelong

RL, such as stable rank (Kumar et al., 2020), dormant (Sokar
et al., 2023) or dead neurons (Dohare et al., 2021; Abbas
et al., 2023; Lyle et al., 2022), and weight norms (Nikishin
et al., 2022). Under one-percent tuning we see that some
of these metrics actually correlate well with performance,
disagreeing with recent results that found no correlations
(Lyle et al., 2023). Finally, we find that Permanent-transient
networks (PT-DQN) are the robust and compatible with
one-percent tuning.

2. Background and Problem Formulation
In this paper we consider lifelong problems formulated as
Markov Decision Processes (MDPs). On each discrete time
step, t = 1, 2, 3, ... the agent selects an action At from a
finite set of actions A based, in part, on the current state
of the environment St ∈ S. In response the environment
transition to a new state St+1 ∈ S and emits a scalar reward
Rt+1 ∈ R. The agent’s action selection are determined
by its policy At ∼ π(·|St). Episodic problems are ones
where the agent-environment interaction naturally breaks up
into sub-sequences where the agent reaches a terminal and
then is teleported to a start state S0 ∼ µ(S). A continuing
problem is one where the agent-environment interaction
never end.

The agent’s task is to find a policy π that maximizes the ex-
pected discounted sum of rewards: Eπ[Gt|St = s,At = a]
where Gt

.
= Rt+1 + γt+1Gt+1. We use transition-based

discounting to unify episodic and continuing problems
where γt+1 = γ(St, At, St+1) ∈ [0, 1]—see White (2017)
for further details. A lifelong RL problem is one where the
agent-environment interaction, either one long episode as in
a continuing task or many episodes as in an episodic task,
is eventually truncated at time T but neither the agent nor
the agent designer can exploit this information because it is
unknown. This appears similar to how the Atari benchmark
is used: at the beginning of a trial the agent is initialized and
interacts with the environment for a fixed number of steps
T (200 million frames) and T is unrelated to the agent’s
performance in the game and the agent does not make use
of T (i.e., the underlying learning algorithm is not designed
for finite-horizon MDPs). The key difference, as outlined in
the next section, is that in lifelong RL the agent designer
does not exploit knowledge of T in the design or evaluation
of the agent.

In most interesting tasks the underlying state cannot
be directly observed by the agent, instead only an obser-
vation, xt of St is available to the agent. In the case of
discrete action, the policy is constructed using a neural
network, outputting estimates of the value of each action:
q̂θ(St, At) ≈ Eπ[Gt|St = s,At = a], where θ are the
learnable parameters of a neural network. In this work

2

Revisiting Evaluation Strategies for Lifelong RL

we use the DQN algorithm (Mnih et al., 2015) to learn
q̂θ and select actions. In the case of continuous actions,
we learn a parameterized policy πw where w are the
parameters of a network which are adapted to maximized
the expected discounted return from the start state, using an
update derived from the policy gradient theorem (Sutton
et al., 1999). One such algorithm is Soft Actor-critic
(SAC) which is widely used in complex, continuous action
environments—see Haarnoja et al. (2018) for details.

3. One-percent Tuning
The common agent development-evaluation loop in RL is
artificial and not particularly reflective of biological systems
nor applications. In RL research, we conduct experiments
on computer simulations or robots, running for a predeter-
mined number of steps. Naturally, as agent designers we
want our agents to perform well and we want to report the
performance of an agent that is well engineered for the task
at hand. The typical process is to fix the total budget of
experience or lifetime of the agent and then begin design
and tuning iterations: tweak the algorithm and the hyper-
parameter settings (e.g., step-size, exploration rate, replay
parameters, etc.) and run the agent for lifetime and record
the performance. The process is iterated until their perfor-
mance plateaus or the designer is happy with the outcome.

Hyperparameters have a dramatic impact on both the per-
formance and learning dynamics of deep RL agents. DQN
is one of the simplest such agents and it contains over 14
hyperparameters controlling size of the replay buffer, tar-
get network updated rate, averaging constants in the Adam
optimizer and exploration over time, to name a few. These
hyperparameters allows us to instantiate variants of DQN
that learn incredibly slowly to mitigate noise and off-policy
instability, to fast online learners that can track stationary
targets. The proliferation of hyperparameters in modern
Deep RL agents effectively allow the agent designer to se-
lect which algorithm they want to use ahead of time for
a given task. This is even more important in lifelong RL,
as recent work has shown that the default hyperparameter
settings of popular agents must be significantly adjusted to
deal with long-running non-stationary learning tasks (Lyle
et al., 2023).

The design iteration described above seems at odds with
the goals of lifelong learning. In lifelong RL, we aspire to
build agents that will run for long-periods of time, continu-
ally adapting to unpredictable changes in the environment
and continually revealing new regions of the state space.
Using hyperparameters to effectively select the algorithm
that works best over the entire lifetime of the agent is only
possible in simulators. If your MDP is basically stationary
you can set the hyperparameters to exploit this knowledge.

Imagine deploying our agents to control a water treatment
plant or to interact with customers on the internet. It is
totally unclear how these imagined deployment settings
even match the standard agent development-evaluation loop
described above. In these examples, it is much more natural
to imagine that the designer has access to the deployment
scenario for limited amount of time. During this time she
can try out different hyperparameters and agent designs, but
eventually deployment time beckons. This empirical setup
would not only be a better match for many applications,
but also motivate the development of algorithms with fewer
critically sensitive hyperparamters. In other words, agents
capable of adapting their learning online, forever plastic,
adapting to the nature of task non-stationarities—a lifelong
learning agent.

Our proposed one-percent tuning methodology mechanizes
these goals. The name describes the relatively simple idea:
we propose to tune the agent only for 1% of its lifetime.
Though the agent cannot know it’s lifetime, as experi-
menters, we know how long we will run our experiment
and can constrain ourselves to tune only over a small win-
dow. If we know the agent will run for n steps, then we
tune the agent for ⌊0.01n⌋ steps. In other words, for every
hyperparameter setting, we run the agent for ⌊0.01n⌋ steps
to obtain the performance metric after this short learning
time. We then chose the best hyperparameter configuration,
for example according to the best performance in the final
10% of the tuning phase. The agent is then deployed with
these hyperparameters for the full n steps, for multiple runs,
to get the performance of that lifelong learning agent.

4. Failure of standard algorithms under
one-percent tuning

In this section, we evaluate our proposed methodology for
tuning lifelong RL agents. We contrast the one-percent-
tuned agent with an agent with either default hyperparam-
eters from the literature, or hyperparameters chosen based
on tuning for the whole lifetime in environments for which
there are obvjous default hyperparameters. We perform the
experiments with DQN in two discrete action environments
and SAC in five different continuous control environments.

Failures of DQN under one-percent tuning: We consider
a large set of hyperparameters for DQN, each over a wide
range, including exploration (epsilon), learning rate, batch
size, buffer size, minimum number of steps before the first
update, and the values of β2 and ϵ in the Adam optimizer.
The ranges and chosen hyperparameters are outlined in Ap-
pendix A.1. We test three different criteria to choose the best
hyperparameter configuration, primarily to see if any allow
for DQN to perform well under one-percent-tuning. These
metrics include area under the learning curve (AUC) which
corresponds to overall performance in this one-percent tun-

3

Revisiting Evaluation Strategies for Lifelong RL

Figure 1. Tuning on one-percent of a lifetime leads to poor performance for DQN in Non-stationary Catch and Continuing Cart-pole.
Each row of plots corresponds to a different environment, and each column corresponds to a different hyperparameter selection strategy.
Lines are averaged over ten seeds and the shaded regions are 95% bootstrap confidence interval.

ing phase, best performance in the final 10% of the tuning
phase, and finally the best worst-case performance across
seeds, to select hyperparameters that are robust across seeds,
which we call best-worst. The agents are run for 10 million
steps, with 100, 000 steps for the one-percent-tuning.

We test DQN in two environments: Non-stationary Catch
and Continuing Cart-pole. Non-stationary Catch (Google-
Deepmind, 2022) is a visual control domain from the Deep-
Mind C-suite library of continuing environments. The agent
controls a paddle on the bottom of a 10 by 5 board, and the
goal is to collect as many falling objects as the agent can,
with new objects spawned with probability 0.1—making
this a continuing MDP. There are three actions, {left, right,
stay-still}. If the paddle successfully catches a ball, a reward
of +1 is received. If it fails to catch a ball, a reward of −1
is received. Otherwise, a reward of 0 is given. The non-
stationarity is induced by randomly swapping two entries in
the observation every 10, 000 steps. The agent goes through
10 non-stationary transitions during tuning for the 100,000
steps. The performance measure is catch rate which is de-
fined as the moving average of the ratio of the balls caught.
An optimal agent (without exploration) would achieve a
catch rate of 1 while a random agent would get 0.2.

Continuing Cart-pole (Barto et al., 1983) is a simple classic
control task, with completely stationary dynamics. The
agent’s observations are the position and velocity of the cart

and its pole. At each step the agent takes one of two actions:
push the cart toward left or right with goal of keeping the
pole balanced on top of the cart. The reward is +1 for every
step that the pole is balanced. Once the pole falls more than
24 degrees from its upright position, the agent receives a
reward of 0 and the pole is teleport to the position, but the
agent is not reset. The agent’s performance is measured as
an exponential moving average (0.99 averaging constant) of
the ratio of recent time steps that the pole was successfully
balanced. Under this performance measure a perfect agent
that keeps the pole balanced indefinitely would attain a score
of 1. This environment provides a non-stable equilibrium
requiring constant learning and adjustment.

The results are shown in Figure 1, and are as expected. The
lifetime-tuned DQN is stable across its lifetime. The one-
percent-tuned DQN, on the other hand, performs equally
well or better in the beginning of learning, but then its
performance collapses soon after the first 100, 000 steps.
None of the three criteria prevent this collapse, and result in
relatively similar performance. Best-Worst is less effective
than Final 10% and AUC in Non-stationary Catch, and all
three are similar in Continuing Cart-pole.

Scaling up: continuing continuous control: We ran a
similar experiment with SAC in several environments from
the DeepMind Control Suite (Tassa et al., 2018). The Deep-
Mind Control Suite environments are large-scale continuous

4

Revisiting Evaluation Strategies for Lifelong RL

Figure 2. One-percent tuning performance of SAC in four Deep-
Mind Control Suite environments compared with SAC using de-
fault hyperparameters. The results are averaged over ten runs and
plotted with standard error shading.

control environments commonly used in deep RL research.
The environments are physical simulations, making them
useful for investigating tuning on semi real-world settings.
The quadruped-escape environment is also partially non-
stationary; the agent encounters a different bumpy terrain
that it must escape in each episode.

We again consider a large set of hyperparameters for SAC,
including the learning rate, batch size, buffer size and the
values of β2 and ϵ in the Adam optimizer. The ranges
and chosen hyperparameters are outlined in Appendix A.2.
We compare the one-percent-tuned values with the default
hyperparameters previously reported for the DeepMind Con-
trol Suite (Haarnoja et al., 2018). For this setting, the agents
are run for 1 million steps, with 10, 000 exploration steps
followed by training over 10, 000 steps.

In Figure 2, we see similar results to our previous experi-
ment, although with even worse performance for the agents
using one-percent-tuning. The same values were picked for
AUC as for final 10% performance for one-percent-tuning,
so we report only one set of value in these plots. For cheetah-
run, the one-percent-tuning agent does outperform SAC with
default hyperparameters in early learning but then quickly
plateaus. In the other environments, the one-percent-tuning
agents exhibit almost no learning, with a nearly flat return
across the steps.

We also investigated how SAC performs with one-percent-
tuning in a lifelong learning setting where the environment
switches from quadruped-walk to quadruped-run halfway
through the experiment. The agent is tuned for one-percent
of the experiment in quadruped-walk. In Figure 3, we see a
more noticeable improvement over SAC with default hyper-

Figure 3. Tuning on one-percent of a run similarly leads to poor
performance for SAC in a task-switching setting. The results are
averaged over ten runs with standard error.

parameters in early learning for quadruped-walk, but again
we see a performance drop and then almost no learning in
quadruped-run.

5. Mitigations help under one-percent tuning
In this section we investigate if mitigation strategies de-
signed for lifelong learning improve performance under our
one-percent tuning methodology. We revisit the same envi-
ronments and base algorithms as in the last section, but now
include new algorithms using several mitigation strategies
layered on-top of the base learner.

We consider the following mitigations, where most are used
for both DQN and SAC and otherwise is used only for one.
They do not perfectly share the same mitigations, because
for example the PT-DQN algorithm (Anand & Precup, 2023)
is designed only for action-values methods, so we included
an additional different mitigation for SAC.

W0Regularization (Kumar et al., 2023): The ℓ2 loss be-
tween the weights and the initial weights is added to the
loss function, to encourage the weights to stay near the
initialization.

L2Regularization (Dohare et al., 2023; van Laarhoven,
2017): In this method, a term proportional to the ℓ2 norm
of the weights of the network is added to the loss function.
This will result in keeping the weight magnitude smaller in
the network.

CReLU (Abbas et al., 2023): The concatenated ReLU acti-
vation function limits the number of inactive units by con-
catenating the output of ReLU(x) with ReLU(−x). This
mitigation should reduce the percentage of dead neurons
since CReLU maintains 50% of the neurons in an active
state.

5

Revisiting Evaluation Strategies for Lifelong RL

Figure 4. The effect of incorporating mitigations into DQN under one-percent tuning in Non-stationary Catch and Continuing Cart-pole.
Each of the plots shows a different approach for choosing the hyper-parameters during one-percent tuning. Results are averaged over ten
seeds and shaded regions reflects the 95% bootstrap confidence intervals.

PT-DQN (Anand & Precup, 2023): The value function is
decomposed into two separate networks: permanent, and
transient. The transient is updated toward the residue er-
ror from combining both networks predictions and is reset
periodically. The permanent network is only updated by
distilling the transient network’s predictions.

Weight normalization (Salimans & Kingma, 2016):
weights matrices are split into the weight magnitudes and
weight directions, with separate gradients for each.

One-percent-tuning for DQN with mitigations: Fig-
ure 4 summarizes the performance of DQN with mitiga-
tion under one-percent tuning in Non-stationary Catch and
Continuing Cart-pole. All mitigations perform well in Non-
stationary Catch, although W0Regularization is slightly less
effective under AUC and Final 10% tuning. In Continuing
Cart-pole performance is much more mixed. PT-DQN per-
forms well under all the tuning strategies. CReLU performs
well when the hyperparameters are chosen according to
the best-worst performance, and otherwise performs poorly,
though it does degrade less quickly than other mitigations.
L2Regularization and W0Regularization help reduce the
performance collapse, but steadily degrade over time.

One-percent-tuning for SAC with mitigations: Figure
5 shows the performance of SAC with different mitiga-

tions under one-percent tuning in the switching Quadruped-
walk-run environment. Most mitigation strategies im-
prove performance over SAC with one-percent tuning, ex-
cept for W0regularization which further decreases perfor-
mance. CReLU improves performance the most on its own,
and combining CReLU with weight normalization has the
strongest effect. Interestingly, weight normalization on its
own is the least effective when moving from walk to run.

In contrast, none of the mitigation strategies help with one-
percent-tuning for quadruped-escape in Figure 6. Of note,
the learning rate chosen by one-percent tuning in quadruped-
escape is 1 · 10−5. This is below the default learning rate of
3·10−4, and above in one-percent-tuned quadruped-walk the
learning rate is higher at 1·10−2. As normalization has been
shown to allow for the use of larger learning rates (Bjorck
et al., 2018; Salimans & Kingma, 2016; Ba et al., 2016),
that may be why weight normalization leads to effective mit-
igation for Quadruped-walk-run but not Quadruped-escape.
Although l2 regularization has previously been shown to
increase the effective learning rate (van Laarhoven, 2017),
it does not appear to be sufficient here.

In summary, the performance collapse in the one-percent
tuning setting is improved significantly by using mitigation
techniques. However, different tuning strategies and envi-

6

Revisiting Evaluation Strategies for Lifelong RL

Figure 5. Multiple mitigation strategies do improve the perfor-
mance of quadruped-walk-to-run with the sub-optimal hyperpa-
rameters obtained from tuning on one-percent of quadruped-walk.
l2 is weight decay = 1 · 10−5, w0 is with penalization of weights
moving away from their initialization values, and wn is weight
normalization. There are ten seeds per run, and the shading is the
standard error.

ronmental factors determine how beneficial they can be. In
particular, mitigation methods that are more robust under
one-percent tuning are more desirable. PT-DQN shows con-
sistently strong performance under different tuning strate-
gies in the two environments it was tested.

6. Revisiting network properties
In this section we measure properties of the one-percent
tuned agents during learning, to examine if they correlate
with performance. Previous works have advocated mea-
suring different properties as a strategy for diagnosing and
rectifying loss of plasticity and failures in lifelong learn-
ing (Kumar et al., 2020; Sokar et al., 2023; Dohare et al.,
2021; Abbas et al., 2023; Lyle et al., 2022; Nikishin et al.,
2022). Interestingly, a recent empirical study found that
many of these properties where not correlated with good
or bad performance (Lyle et al., 2023). In the one-percent
tuning setting, however, we are more faithfully evaluating
lifelong learning agents. Those that succeed under one-
percent tuning are likely better lifelong learners, whereas
those that fail are likely able to learn in early learning—
they are in at least one sense an effective agent—but are
not effective lifelong learners. Under lifetime tuning, an
agent that fails is potentially simply a bad learner and its
properties are largely meaningless, polluting the correlation
measures. In this section, we investigate whether properties
are more meaningfully correlated with performance in the
one-percent tuning setting.

We investigate five properties, and measure properties for

Figure 6. Multiple mitigation strategies do not improve the perfor-
mance of quadruped-escape with the sub-optimal hyperparameters
obtained from tuning on one-percent of a run. Results are averaged
over ten runs and shaded regions depict standard error.

DQN in the two environments. We measure these properties
in the Q-network, rather than the target network.

1. Percentage of dead neurons (Abbas et al., 2023). A
hidden unit with an output of zero is a dead neuron.
The percentage of dead neurons is measured online
through the experiments.

2. Normalized stable rank of the weights (Kumar et al.,
2020). A higher value of stable rank means that the
layer’s weight matrix carries more information (Hos-
seini et al., 2022). See Appendix B for details. The
stable rank is normalized to be between 0 and 1.

3. The l0 norm of the gradient, which corresponds to the
number of non-zero values in the gradient.

4. The l2 norm of the gradient, which reflects the magni-
tude of the gradient not just the active elements.

5. The l2 norm of the weight matrices, averaged across
layers. Keeping the spectral norm of weight matrices
closer to one reduces vanishing and exploding gradi-
ents, leading to more training stability, additionally
allowing for better generalization (Yoshida & Miyato,
2017; Lin et al., 2021).

We examine the DQN agents with mitigations, and omit
DQN under one-percent tuning which largely fails in both
environments. Note that for the percentage of dead neu-
rons, CReLU always has exactly 50% active neurons by
design. We omit PT-DQN because it is not clear how to
appropriately measure properties for a constantly changing
fast network.

In Non-stationary Catch we can see some clear correlations
in Figure 7. There is a negative correlation with the per-
centage of dead neurons, a negative correlation with the l0
norm of the gradient, a positive correlation with the l2 norm
of the gradient and a negative correlation with the l2 norm

7

Revisiting Evaluation Strategies for Lifelong RL

Figure 7. The correlations between properties for DQN with mitigations under one-percent tuning and final returns in Non-stationary
Catch and Continuing Cart-pole. Each color represents one mitigation combination, and there are 30 dots per color corresponding to the
three ways to select hyperparameters during one-percent tuning and the ten seeds used per selected hyperparameter.

of the weight matrices. There is no clear correlation with
stable rank. Particularly interesting is how much variabil-
ity there is amongst different variants of CReLU. Each dot
corresponds to a different way to select the hyperparame-
ters during one-percent tuning a different seed (3 selection
methods times 10 seeds for a total of 30 dots). The behavior
of CReLU provides some of the clearest correlations, where
groupings of CReLU behave well and have a very differ-
ent property measure from the other the grouping of less
performant CReLU.

In Continuing Cart-pole the mitigations were less effective,
and in our correlation plots only some of the CReLU group-
ings correspond to good performance with the remaining
dots for all agents generally being relatively poor perfor-
mance. The correlations are different from Non-stationary
Catch in some cases due to this. For example, there is a pos-
itive correlation with percentage of dead neurons, but that is
likely because even at its highest level it is still lower than
the best performing agents in Non-stationary Catch. The
correlation is also opposite for the l2 norm of the gradient,
but that is because the smallest values in Cartpole—where
performance is good—match the magnitudes of good per-
formance in Catch. But the poor performing agents have
very small magnitude l2 gradient norms in Catch, whereas
the poor performing ones in Cart-pole have very big gradi-
ent norms. There is similar minimal correlation to stable

rank and a negative correlation between the l2 norm of the
weights and performance. This consistency in the l2 norm
of the weights across environments makes sense, as we
typically want the weights to stay smaller in magnitude;
keeping the weights closer to 1, should promote stable (non-
vanishing and non-exploding) gradients.

7. Conclusion
In this paper we introduced the one-percent tuning methodol-
ogy to better evaluate lifelong reinforcement learning agents.
This setting better matches realistic restrictions on lifelong
learning agents and can help us appropriately assess the true
lifelong learning capabilities of an algorithm. We showed
that agents tuned for the first one-percent of interaction can
learn faster than an agent tuned for the entire lifetime, but
that these agents quickly degrade as learning progresses.
Such a strict tuning setting may seem challenging, making
it seem potentially obvious that these learners should fail,
but we found that several simple mitigations introduced for
lifelong learning were actually able to perform well in this
regime. Our results highlight that one-percent-tuning can
be a powerful methodology for identifying good and bad
continual learning algorithms. We found that the separation
between good and bad learners given by one-percent tun-
ing also led to more meaningful correlations to properties
than reported in previous work, specifically the ℓ2 norm

8

Revisiting Evaluation Strategies for Lifelong RL

commonly used to assess agents.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Abbas, Z., Zhao, R., Modayil, J., White, A., and Machado,

M. C. Loss of plasticity in continual deep reinforcement
learning. arXiv preprint arXiv:2303.07507v1, 3 2023.

Anand, N. and Precup, D. Prediction and control
in continual reinforcement learning. arXiv preprint
arXiv:2312.11669, 2023.

Ba, J. L., Kiros, J. R., and Hinton, G. E. Layer Normaliza-
tion, July 2016.

Barto, A. G., Sutton, R. S., and Anderson, C. W. Neuronlike
adaptive elements that can solve difficult learning control
problems. IEEE Transactions on Systems, Man, and
Cybernetics, SMC-13(5):834–846, 1983.

Bjorck, N., Gomes, C. P., Selman, B., and Weinberger,
K. Q. Understanding Batch Normalization. In Advances
in Neural Information Processing Systems, volume 31.
Curran Associates, Inc., 2018.

Dohare, S., Sutton, R. S., and Mahmood, A. R. Continual
backprop: Stochastic gradient descent with persistent
randomness. arXiv preprint arXiv:2108.06325v3, 8 2021.

Dohare, S., Hernandez-Garcia, J. F., Rahman, P., Sutton,
R. S., and Mahmood, A. R. Loss of plasticity in deep
continual learning. arXiv preprint arXiv:2306.13812v2,
6 2023.

D’Oro, P., Schwarzer, M., Nikishin, E., Bacon, P.-L., Belle-
mare, M. G., and Courville, A. Sample-efficient rein-
forcement learning by breaking the replay ratio barrier. In
Deep Reinforcement Learning Workshop NeurIPS 2022,
2022.

Google-Deepmind. GitHub - google-deepmind/csuite, 2022.

Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha,
S., Tan, J., Kumar, V., Zhu, H., Gupta, A., Abbeel, P.,
et al. Soft actor-critic algorithms and applications. arXiv
preprint arXiv:1812.05905, 2018.

Hosseini, M. S., Tuli, M., and Plataniotis, K. N. Exploiting
explainable metrics for augmented sgd. Proceedings of
the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, 2022-June:10286–10296,
3 2022. ISSN 10636919.

Janjua, M. K., Shah, H., White, M., Miahi, E., Machado,
M. C., and White, A. Gvfs in the real world: Making
predictions online for water treatment. arXiv preprint
arXiv:2312.01624v1, 12 2023.

Kumar, A., Agarwal, R., Ghosh, D., and Levine, S. Implicit
under-parameterization inhibits data-efficient deep rein-
forcement learning. arXiv preprint arXiv:2010.14498v2,
10 2020.

Kumar, S., Marklund, H., and Van Roy, B. Maintaining
plasticity via regenerative regularization. arXiv preprint
arXiv:2308.11958, 2023.

Lazic, N., Lu, T., Boutilier, C., Research, R. G., Wong,
E., Roy, B., Imwalle, G., and Cloud, G. Data center
cooling using model-predictive control. Advances in
Neural Information Processing Systems, 31, 2018.

Lin, Z., Sekar, V., and Fanti, G. Why Spectral Normaliza-
tion Stabilizes GANs: Analysis and Improvements. In
Advances in Neural Information Processing Systems, vol-
ume 34, pp. 9625–9638. Curran Associates, Inc., 2021.

Luo, J., Paduraru, C., Voicu, O., Chervonyi, Y., Munns, S.,
Li, J., Qian, C., Dutta, P., Davis, J. Q., Wu, N., et al. Con-
trolling commercial cooling systems using reinforcement
learning. arXiv preprint arXiv:2211.07357, 2022.

Lyle, C., Rowland, M., and Dabney, W. Understanding and
preventing capacity loss in reinforcement learning. In
International Conference on Learning Representations,
2022.

Lyle, C., Zheng, Z., Nikishin, E., Pires, B. A., Pascanu,
R., and Dabney, W. Understanding plasticity in neural
networks. Proceedings of Machine Learning Research,
202:23190–23211, 3 2023. ISSN 26403498.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., Petersen, S., Beattie, C., Sadik,
A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D.,
Legg, S., and Hassabis, D. Human-level control through
deep reinforcement learning. Nature 2015 518:7540, 518:
529–533, 2 2015. ISSN 1476-4687.

Nikishin, E., Schwarzer, M., D’Oro, P., Bacon, P.-L., and
Courville, A. The primacy bias in deep reinforcement
learning. arXiv preprint arXiv:2205.07802v1, 5 2022.

Nikishin, E., Oh, J., Ostrovski, G., Lyle, C., Pascanu,
R., Dabney, W., and Barreto, A. Deep reinforce-
ment learning with plasticity injection. arXiv preprint
arXiv:2305.15555, 2023.

Salimans, T. and Kingma, D. P. Weight Normalization:
A Simple Reparameterization to Accelerate Training of

9

Revisiting Evaluation Strategies for Lifelong RL

Deep Neural Networks. In Advances in Neural Informa-
tion Processing Systems, volume 29. Curran Associates,
Inc., 2016.

Sokar, G., Agarwal, R., Castro, P. S., and Evci, U. The dor-
mant neuron phenomenon in deep reinforcement learning.
Proceedings of Machine Learning Research, 202:32145–
32168, 2 2023. ISSN 26403498.

Sutton, R. S., McAllester, D., Singh, S., and Mansour, Y.
Policy gradient methods for reinforcement learning with
function approximation. Advances in neural information
processing systems, 12, 1999.

Tassa, Y., Doron, Y., Muldal, A., Erez, T., Li, Y., Casas, D.
d. L., Budden, D., Abdolmaleki, A., Merel, J., Lefrancq,
A., Lillicrap, T., and Riedmiller, M. DeepMind Control
Suite, January 2018. arXiv:1801.00690 [cs].

van Laarhoven, T. L2 Regularization versus Batch and
Weight Normalization, June 2017.

White, M. Unifying task specification in reinforcement
learning. In International Conference on Machine Learn-
ing, pp. 3742–3750. PMLR, 2017.

Yoshida, Y. and Miyato, T. Spectral Norm Regularization for
Improving the Generalizability of Deep Learning, May
2017.

10

Revisiting Evaluation Strategies for Lifelong RL

A. Appendix: Tuning Details
A.1. DQN tuning

For tuning the DQN agent, we sweep over the hyperparameters mentioned in table 3. The DQN agent’s q-network and
target network consist of a two-layer network with ReLU activations, each layer with 32 hidden units. We use orthogonal
initialization, and we use 10 seeds for each hyperparameter setting for tuning. The hyperparameters chosen for one-percent
tuning is shown in table 2, and the lifelong tuned agent’s hyperparameters are shown in table 1. (The same process of
hyperparameter selection was done for continuing cartpole.)

Default DQN values on dancing catch
Learning rate 1 · 10−4

Batch size 256
Buffer size 10, 000

Initial buffer fill 1000
Exploration ϵ 0.1

Adam optimizer β2 0.999
Adam optimizer ϵ 1 · 10−8

Table 1. Default hyperparameters values for DQN on dancing catch

DQN
AUC 10% Best Worst

LR 10−3 10−3 10−3

batch 256 256 256
buffer 10, 000 10, 000 10, 000

warmup 256 1000 256
ϵ 0.01 0.01 0.1
β2 0.999 0.999 0.9
ϵ 10−8 10−8 10−8

Table 2. Values for DQN on dancing catch from 1% tuning, selected by AUC and by final 10% performance and best worst performance

1%-tuning values for DQN and mitigations on dancing catch
Learning rate 1 · 10−1, 1 · 10−2, 1 · 10−3, 1 · 10−4, 1 · 10−5

Batch size 1, 4, 32, 256
Buffer size 1000, 10, 000, 100, 000

Initial buffer fill batch size, 1000
Exploration ϵ 0.01, 0.1

Adam optimizer β2 0.9, 0.999
Adam optimizer ϵ 1 · 10−8, 0.1

Table 3. Hyperparameter ranges for one-percent-tuning on DQN and mitigations on dancing catch

A.2. SAC tuning

The architecture as well as the default hyperparameter values are as previously described for the DeepMind Control
Suite (Haarnoja et al., 2018), and we use orthogonal initialization. We use 3 random seeds for tuning SAC agents. The
hyperparameter tuning ranges can be seen in Table 6, and the default hyperparameters and the tuning results in 8. The tuning
curves can be seen in Figure 8 to 12.

For one-percent-tuning, the agent performs random exploration for 10, 000 iterations, followed by training for 10, 000
iterations. The top hyperparameters are picked based on the biggest Area Under the curve (AUC) for the 10, 000 training
iterations, or for the 10% final return for those iterations.

For final training, we use 10 random seeds. The online return is used in all cases to simulate an agent learning while
performing real-world tasks.

11

Revisiting Evaluation Strategies for Lifelong RL

1%-tuning values for PT DQN on dancing catch
Learning rate θ 3 · 10−2, 2 · 10−2, 1 · 10−2, 1 · 10−3, 1 · 10−4, 1 · 10−5, 1 · 10−6

Learning rate w 2 · 10−2, 1 · 10−2, 1 · 10−3, 1 · 10−4

Batch size 64
Buffer size 100, 000

Initial buffer fill 64, 1000
Exploration ϵ 0.01, 0.1

Adam optimizer β2 0.9, 0.999
Adam optimizer ϵ 1 · 10−8, 0.1

Table 4. Hyperparameter ranges for one-percent-tuning on PT-DQN on dancing catch

AUC final 10% best-worst
Learning rate θ 1 · 10−3 2 · 10−2 2 · 10−2

Learning rate w 1 · 10−2 1 · 10−2 1 · 10−2

Batch size 64 64 64
Buffer size 100, 000 100, 000 100, 000

Initial buffer fill 64 1000 64
Exploration ϵ 0.01 0.01 0.01

Adam optimizer β2 0.9 0.999 0.999
Adam optimizer ϵ 1 · 10−8 1 · 10−8 1 · 10−8

Table 5. PT-DQN values on dancing catch from one-percent-tuning, selected by AUC, by final 10% performance, and by best-worst
performance. Tuning was done with 3 seeds. Batch size is at a default value of 64, and buffer size at a default value of 100, 000

1%-tuning SAC parameter values
Learning rate 2 · 10−2, 1 · 10−2, 1 · 10−3, 1 · 10−4, 1 · 10−5, 1 · 10−6, 1 · 10−7

Batch size 16, 32, 128, 256, 512
Buffer size 512, 1000, 10000

Adam optimizer β2 0.9, 0.999
Adam optimizer ϵ 1 · 10−8, 0.1

Table 6. Hyperparameter ranges for one-percent-tuning on SAC on DeepMind Control Suite environments

default quadruped-run quadruped-walk quadruped-escape cheetah-run hopper-hop
Learning rate 3 · 10−4 1 · 10−6 1 · 10−3 1 · 10−5 1 · 10−2 1 · 10−2

Batch size 256 32 512 128 128 512
Buffer size 1, 000, 000 512 10, 000 10, 000 1, 000 512

Adam optimizer β2 0.999 0.9 0.9 0.999 0.999 0.999
Adam optimizer ϵ 1 · 10−8 0.1 1 · 10−8 0.1 1 · 10−8 1 · 10−8

Table 7. Default hyperparameter values and values selected from one-percent-tuning for SAC for each of the DeepMind Control Suite
environments in this paper. Tuning was done with three seeds. The values were the same for selection via AUC as for final 10% return

B. Definition of Stable Rank
The normalized stable rank for a layer’s weight matrix, wl with dimensions n ∗m is defined as

R(wl) =
1

n

∥wl∥∗
∥wl∥2

=
1

n σ2
1(wl)

n′∑
i = 1

σ2
i (wl)

where, σ1 ≥ σ2 ≥ · · · ≥ σn′ are the singular values in descending order and ∥ · ∥∗ stands for nuclear norm.

To get the stable rank for an entire network, we use the average of the normalized stable ranks for all weights in the network.

12

Revisiting Evaluation Strategies for Lifelong RL

default quadruped-run quadruped-walk quadruped-escape cheetah-run hopper-hop
Learning rate 3 · 10−4 1 · 10−6 1 · 10−3 1 · 10−5 1 · 10−2 1 · 10−2

Batch size 256 32 512 128 128 512
Buffer size 1, 000, 000 512 10, 000 10, 000 1, 000 512

Adam optimizer β2 0.999 0.9 0.9 0.999 0.999 0.999
Adam optimizer ϵ 1 · 10−8 0.1 1 · 10−8 0.1 1 · 10−8 1 · 10−8

Table 8. Default hyperparameter values and values selected from 1% tuning for SAC for each of the DeepMind Control Suite environments
in this paper. Tuning was done with three seeds. The values were the same for selection via AUC as for final 10% return

Figure 8. Hyperparameter values for one-percent tuning of SAC on quadruped-run. There are three seeds per point. The shading is the
standard deviation.

13

Revisiting Evaluation Strategies for Lifelong RL

Figure 9. Hyperparameter values for one-percent tuning of SAC on quadruped-walk. There are three seeds per point. The shading is the
standard deviation.

Figure 10. Hyperparameter values for one-percent tuning of SAC on quadruped-escape. There are three seeds per point. The shading is
the standard deviation.

14

Revisiting Evaluation Strategies for Lifelong RL

Figure 11. Hyperparameter values for one-percent tuning of SAC on cheetah-run. There are three seeds per point. The shading is the
standard deviation.

Figure 12. Hyperparameter values for one-percent tuning of SAC on hopper-hop. There are three seeds per point. The shading is the
standard deviation.

15

