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Abstract— As a safety critical task, autonomous driving
requires accurate predictions of road users’ future trajectories
for safe motion planning, particularly under challenging con-
ditions. Yet, many recent deep learning methods suffer from
a degraded performance on the challenging scenarios, mainly
because these scenarios appear less frequently in the training
data. To address such a long-tail issue, existing methods force
challenging scenarios closer together in the feature space during
training to trigger information sharing among them for more
robust learning. These methods, however, primarily rely on
the motion patterns to characterize scenarios, omitting more
informative contextual information, such as interactions and
scene layout. We argue that exploiting such information not
only improves prediction accuracy but also scene compliance
of the generated trajectories. In this paper, we propose to incor-
porate richer training dynamics information into a prototypical
contrastive learning framework. More specifically, we propose
a two-stage process. First, we generate rich contextual features
using a baseline encoder-decoder framework. These features
are split into clusters based on the model’s output errors,
using the training dynamics information, and a prototype is
computed within each cluster. Second, we retrain the model
using the prototypes in a contrastive learning framework.
We conduct empirical evaluations of our approach using two
large-scale naturalistic datasets and show that our method
achieves state-of-the-art performance by improving accuracy
and scene compliance on the long-tail samples. Furthermore,
we perform experiments on a subset of the clusters to highlight
the additional benefit of our approach in reducing training bias.

I. INTRODUCTION

In autonomous driving (AD), future trajectory predic-
tion requires a comprehensive understanding of the driving
context, including the agent’s history observation and the
interactions between the agent and its surroundings. Re-
cent prediction methods [1], [2] rely on such information
and show promising results on the existing AD benchmark
datasets [3]–[5]. The performance of these models, however,
is not consistent across all scenarios and generally degrades
on more challenging ones. One of the reasons for such
degradation is the inherent biases of the AD datasets towards
simpler scenarios, i.e., lack of challenging cases [6]. As an
ill effect, the long-tail issue can pose a safety risk for the
development of practical AD systems.

One way to tackle the long-tail problem is to collect more
samples of the challenging scenarios that are infrequent in
the dataset. However, this approach is not feasible since such
scenarios are generally rare in real-world and mimicking
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Fig. 1: A dataset map constructed using the training dynamics information
of the baseline model on nuScenes. variance measures the variance of the
samples’ errors across all training epochs, and error measures the samples’
errors on the last epoch. The dataset is divided into four clusters, namely
easy, hard, con f using, or trained, based on a variance threshold and an
error threshold. Each sample receives one cluster assignment based on their
training behaviors. Only 20% of the data is plotted on the log-scale axis for
better visibility.

them can pose safety risks. Alternatively, recent approaches
[7], [8] attempt to solve the long-tail problem during training
phase by disentangling the long-tail samples from the rest
in the feature space using contrastive learning methods [9].
These works, however, only rely on the motion patterns of
the agents, omitting rich contextual information, such as in-
teractions between the agents and their surroundings as well
as the scene layout. Such an approach limits the ability of
these models to separate features of the challenging samples,
hence diminishing their potentials on long-tail predictions.

In this paper, we propose a training dynamics aware
contrastive learning framework, termed TrACT, in which we
cluster the model’s output errors by exploiting the training
dynamics information (see Figure 1), namely the prediction
errors of the samples at the last epoch and the variance of
samples’ errors across all training epochs (see Figure 2). For
a more comprehensive representation of the driving scenario,
we use latent features of an encoder-decoder framework that
encodes map layout, agents’ dynamics, and their interactions
with their surroundings. The features are assigned to the
clusters based on their output errors’ cluster assignments,
and are averaged within each cluster to form prototypes.
In the next stage, the prototypes are directly passed to
the prototypical contrastive learning (PCL) framework for
training the final model.

In summary, our main contributions are as follows: 1)
We propose TrACT, a Training dynamics Aware ContrasTive
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learning framework, which utilizes the training dynamics
information to form data sample clusters with different levels
of difficulty on a constructed dataset map. These clusters
in conjunction with the feature embeddings of a backbone
model form prototypes that are used in a contrastive learning
framework to generate robust trajectories. 2) We conduct
extensive experimentation on two benchmark datasets for
trajectory prediction, namely nuScenes [3] and ETH-UCY
[10], [11], to highlight the effectiveness of TrACT on the
top 1-5% challenging scenarios. 3) We conduct additional
studies using safety metrics to show the effect of TrACT on
improving scene compliance of the generated trajectories.
4) Lastly, we demonstrate additional benefits of using the
dataset map to reduce training bias on the long-tail scenarios.

II. RELATED WORKS

A. Trajectory Prediction

Trajectory prediction is a fundamental problem in au-
tonomous driving. Accurate forecasting requires an under-
standing of the surrounding agents and the interactions
among them as well as the scene configuration. To effectively
process such multimodal information, existing methods rely
on various architectures, including recurrent networks [8],
[12], [13], CNNs [14], [15], GNNs [16]–[22], and more
recently transformers [2], [23]–[25]. One of the key chal-
lenges in prediction is the uncertainty of future behaviors. To
address this problem, models resort to generating a diverse
set of trajectories using different approaches [26]–[29], one
of which is CVAE [17], [30]–[32]. We use [7], which is a
variant of a CAVE-based model [17] as the backbone.

B. Long-tail Learning

Trajectory prediction models are often evaluated on large-
scale datasets [3]–[5], [11] and the performance is averaged
over all samples in the data. Despite achieving promising
results on the benchmarks, models trained on these datasets
underperform on challenging scenarios [7], [8], [22]. Such
an issue is largely due to the long-tail nature of these datasets
as they are more biased towards the common scenarios and
contain much smaller number of challenging cases [6].

The long-tail phenomenon is incurred by the imbalanced
number of more frequent samples and less frequent samples
in the dataset. There are many studies on improving the long-
tail learning on classification tasks offering techniques, such
as data resampling [33]–[35], loss reweighting [36]–[38],
boundary adjustment [39], [40], and more recently feature
and label distribution smoothing [41].

Some recent works address the long-term problem in tra-
jectory prediction [7], [8]. The authors of [7] learn long-tail
samples by reshaping the feature space to better distinguish
the head and tail samples through contrastive learning. The
work in [8] includes an additional step of offline clustering
to obtain the pseudo labels for the prototypical contrastive
learning framework. However, in [7], [8], the authors argue
that tail samples contain more evasive maneuvers, resulting
in more complicated trajectory shapes. Therefore the learn-
ing is purely based on the motion patterns of individual
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Fig. 2: Error evolution during training for one sample from each one of the
hard, con f using, easy, and trained clusters on nuScenes.

agents. Here, however, crucial contextual information, such
as interactions and scene layouts that are necessary for
characterizing motions are omitted. Moreover, for contrastive
learning, these approaches use heuristic methods for cluster-
ing challenging scenarios using the shape of the observed
trajectories. These methods are not effective as they do not
examine sample difficulty on the scenario level. In this work,
we examine the model learning capability of each sample
to determine the sample difficulty by exploiting the training
dynamics information and building a dataset map similar to
[42] to classify data samples into four different clusters for
the prototypical contrastive learning.

III. METHOD

A. Problem Formulation

The task of trajectory prediction is to predict agents’
future states given their observed history. Mathematically,
for the i-th agent at time step t, let consider the past
trajectory of the i-th agent as a set of 2D coordinates in
bird’s eye view over some observation horizon L time steps
Xi = {(xi,yi)

t−L, · · · ,(xi,yi)
t−1}. Then, the goal is to predict

future trajectories Yi = {(xi,yi)
t+1, · · · ,(xi,yi)

t+T}, where T
is the prediction horizon. Additionally, the driving map
configuration is provided in the form of an HD map.

B. Overview

As shown in Figure 3, we propose a training dynamics
aware contrastive learning framework, which consists of
an offline clustering module using the training dynamics
information and a prototypical contrastive learning module.
We first train the model to obtain the training dynamics
information from sample errors, and then construct the
dataset map accordingly. Next, we segment the dataset map
into clusters containing samples with similar difficulties and
compute the prototypes by averaging the features belonging
to the same clusters. Lastly, with the prototypes, we train the
model with PCL to generate the final predictions.

C. Constructing Dataset Map

To construct the dataset map, we train the model on the
whole training dataset and record the error evolution during
training of each individual sample. In general, there are
four types of training behaviors and for each sample i such
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Fig. 3: An overview of the training dynamics-aware contrastive learning framework. The orange module represents the first training phase to construct the
dataset map and performs the cluster assignment of each sample for prototype computation. The green module represents the second training phase with
the prototypical contrastive loss.

behaviors can be described effectively by two variables: the
last epoch error denoted as errori, and the variance of the
errors across all training epochs E denoted as variancei.
Here, errori informs the predictability of each sample of
the converged model and variancei informs the learning
difficulty of each sample since the change in the error
during training reflects the model knowledge gain, i.e. good-
fit or underfit. Therefore both metrics can be used for
the assessment of the sample’s difficulty. Subsequently, we
define the training dynamics information of each sample to
be the coordinates on the dataset map, with x coordinate
corresponding to variancei and y coordinate corresponding
to errori. The dataset map provides a proper segmentation for
forming clusters of samples with different levels of difficulty.

D. Clustering

By analyzing the training behavior of each individual
sample, we discover that in a dataset, samples that have low
errors may have different variances which shows whether
the model parameters are being updated correctly during
training in order to learn these samples. This also holds for
high errors, hence taking both dimensions into consideration,
we propose a 4-Quarter clustering method.

4-Quarter. Based on different training behaviors, we first
segment the dataset map into four quarters with different
levels of difficulty using an error threshold θe and a variance
threshold θvar. Accordingly, the samples from the same
quarter form a cluster. The four different training behaviors
for the clusters, as shown in Figure 2, are as follows: the hard
cluster (a high error but a low variance) indicates that the
model achieves a small improvement over the training period;
The con f using cluster (a high error and a high variance)
indicates that the model’s performance is highly fluctuating
during training, thus the model is confused; The easy cluster

(a low error and a low variance) indicates that the model
consistently predicts well during training; And the trained
cluster (a low error and a high variance) indicates that the
model is improving over time.

E. Prototype Computation

After clustering, we compute one single prototype for
each cluster for the PCL learning. We first extract all the
unassigned features from the encoder feature space and based
on the dataset map cluster assignments, we take the average
of all features in the same cluster to form the prototype.
Afterwards, we pass the prototypes to the prototypical con-
trastive learning module to better organize the feature space
for the encoder.

F. Single Level Prototypical Contrastive Learning

The original PCL is an estimation-expectation (EM) algo-
rithm which re-estimates the cluster label at each iteration
[43]. We replace the estimation step with the offline cluster-
ing to obtain the prototypes. Following [8], we apply the PCL
loss to the bottleneck of the encoder-decoder architecture
but with a single level of clusters. In the feature space, the
PCL loss will group the same cluster samples together to
encourage the model to distinguish between samples with
different levels of difficulties. The loss consists of two terms:

LProtoNCE = Lins +Lproto, (1)

where Lins is the instance-wise term that penalizes large
distances of the same cluster samples in the feature space
and Lproto is the instance-prototype term that penalizes large
distances between the sample and its cluster prototype in the
feature space.

Instance-wise term. The instance-wise loss term Lins in
Equation 1 is designed to speed up convergence by attracting



instances belonging to the same cluster:

Lins =−
r

∑
i=1

1
Npoi

Npoi

∑
i+=1

log
exp(vi · vi+/τ)

Σr
j=1exp(vi · v j/τ)

, (2)

where r denotes the batch size, Npoi is the number of
same-cluster samples i+s of an arbitrary sample i, and v is
the feature embedding. j ∈ [1, ...,r] represents all available
samples in the batch and τ is the contrastive temperature.

Instance-prototype term. In our method, we put more
emphasis on the overall difficulty of each training sample
instead of solely the motion patterns. Hence, we do not need
a hierarchy of clusters to accommodate for granularity. Here,
unlike the original PCL loss [43], our implementation of the
Lproto term in Equation 1 only has one level of cluster:

Lproto =−
r

∑
i=1

log
exp(vi · ci/φi)

∑
4
j=1 exp(vi · c j/φ j)

, (3)

where for an arbitrary sample i, c is the cluster prototype,
φ is the cluster density, and j ∈ [1, ...,4] represents all four
clusters. The density φ of the cluster is given by,

φ =
∑

Z
z=1 ||vz − cz||2
Zlog(Z +α)

, (4)

where Z is the number of samples belonging to the cluster, z
is an arbitrary sample from the cluster, and α is a smoothing
term, which is set to 10 following [43].

In the end, our final training objective is described as,

L = Lreg +λLProtoNCE , (5)

where λ is the control weight of the prototypical loss.

IV. EXPERIMENTS

A. Setup

Datasets. We evaluate TrACT on two benchmark trajec-
tory prediction datasets: nuScenes [3] and ETH-UCY [10],
[11]. nuScenes is a large-scale autonomous driving dataset
containing 1000 scenes, which are split into 850 and 150
scenes for training-validation and testing, respectively. In
our experiments, we used the preprocessed Trajectron++
nuScenes dataset, which excludes 3 scenes from the training-
validation split and further divides the split into 697 scenes
for training and 150 scenes for validation. In other words, on
this dataset, we conduct all our evaluations on the validation
set. In nuScenes, each scene contains a 20-second driving
scenario with corresponding HD maps. Following [7], [8]
we focus on the vehicles in nuScenes.

ETH and UCY are pedestrian datasets with five subsets,
including ETH, Hotel, Univ, Zara1, and Zara2, all containing
different number of scenes for training and testing. Each
scene contains a recording of pedestrians interacting scenario
with varying time length. Following [7], [8], [24], we per-
form 5-fold cross validation on the five subsets.

Metrics. We use common evaluation metrics [8], [17],
[24]: Average Displacement Error (ADE), which is the aver-
age L2 distance between all predicted states and the ground
truth and Final Displacement error (FDE), which is the L2

distance between the last predicted state and the ground
truth. Following [17], we also report on Kernel Density
Estimate-based Negative Log Likelihood (KDE-NLL) which
is the average negative log of the ground truth probability
density under the distribution created by fitting a kernel
density estimate on top K predicted candidates. For distance-
based metrics, we report the results on best-of-20 denoted by
minADE/minFDE, and for KDE-NLL K = 20 as well.

To evaluate the map compliance of the predicted trajecto-
ries, we also report on two safety metrics adopted from [44]:
Hard Off-Road Rate (HOR) which is the percentage of test
samples that have at least one predicted point appearing off-
Road; Soft Off-road Rate (SOR) which is the percentage of
off-road predicted points with respect to all predicted points.

Models. We use Trajectron++ EWTA (Traj++ EWTA)
[7] as our baseline, which is an improved variation of
Trajectron++ [17]. Traj++ EWTA replaces the conditional
variational autoencoder in the original model with a multi-
hypothese decoder following an evolving-winner-takes-all
(EWTA) training schedule. We also compare TrACT with
state-of-the-art FEND (ICCV2023) [8] and Traj++ EWTA
+contrastive (ICCV2021) [7] methods, which, similar to
TrACT, are specifically designed to address the long-tail
problem in trajectory prediction.

Long-tail samples selection. To evaluate TrACT’s perfor-
mance on long-tail samples, following [8], we first evaluate
baseline Traj++ EWTA model on test sets and then select the
top 1-5% challenging samples with the largest minFDEs as
the five challenging subsets. minFDE is an effective metric
for long-tail samples because it focuses on the accuracy
of endpoint (target) prediction, which is more crucial for
planning tasks. We also use minFDE for the measurement
of error to collect the training dynamics information.

Implementation details. For learning training dynamics
information, we followed the training schedule method in [7],
trained on Traj++ EWTA with a batch size of 256 and an
EWTA schedule of top{20,10,5,2,1} with 5 and 100 epochs for
each EWTA stage for nuScenes and ETH-UCY, respectively.

To track the training behaviors, we saved the minFDEs
of each sample at every epoch on nuScenes and every 20
epoch on ETH-UCY, as well as the feature embeddings vi
of each sample at the final epoch. The feature embeddings
by default have a size of 232 for pedestrians and a size of
264 for vehicles [7]. Same as [17], we set (L,T ) to (8,6)
and (7,12) for nuScenes and ETH-UCY, respectively. The
duration for each timestep is set to be 0.5s for nuScenes and
0.4s for ETH-UCY.

For the contrastive learning step, we used the same training
schedule as in [7] but trained with 10 and 100 epochs for
each EWTA stage for nuScenes and ETH-UCY, respectively.
For the single cluster PCL loss, we empirically set λ = 0.01,
τ = 0.1 for nuScenes, and λ = 10, τ = 0.5 for ETH-UCY.
Finally, we set thresholds {θerr = 0.70, θvar = 0.20} for
nuScenes, and {θerr = 0.70, θvar = 0.15} for ETH-UCY. To
avoid numerical overflow, we scaled the cluster density φi
for each sample i by 100 for ETH-UCY.



TABLE I: The results (minADE minFDE KDE-NLL) on the nuScenes and ETH-UCY datasets. For all values, lower is better. The ”*” represents the
reported results from FEND [8] on nuScenes.

Dataset Method Top 1% Top 2% Top 3% Top 4% Top 5% All

nuScenes

Traj++ EWTA∗ 1.33 3.09 - 1.02 2.35 - 0.87 2.00 - 0.80 1.80 - 0.74 1.64 - 0.19 0.32 -
+contrastive∗ 1.28 2.85 - 0.97 2.15 - 0.83 1.83 - 0.76 1.64 - 0.70 1.48 - 0.18 0.30 -
+FEND∗ 1.21 2.50 - 0.92 1.88 - 0.79 1.61 - 0.72 1.43 - 0.66 1.31 - 0.17 0.26 -
Traj++ EWTA 1.73 4.43 11.72 1.36 3.54 10.02 1.17 3.03 8.80 1.04 2.68 7.83 0.95 2.41 7.21 0.19 0.32 -0.14
+contrastive 1.33 3.09 8.91 1.04 2.44 7.81 0.90 2.08 7.05 0.81 1.85 6.37 0.75 1.68 5.96 0.18 0.30 -0.11
+TrACT (ours) 1.23 2.65 7.22 0.98 2.11 6.27 0.85 1.82 5.54 0.78 1.64 4.98 0.72 1.49 4.62 0.19 0.31 -0.21

ETH-UCY
Traj++ EWTA 0.98 2.54 8.71 0.79 2.07 5.45 0.71 1.81 4.89 0.65 1.63 4.10 0.60 1.50 3.53 0.17 0.32 -0.42
+contrastive 0.92 2.33 7.85 0.74 1.91 5.02 0.67 1.71 4.54 0.60 1.48 3.71 0.55 1.32 3.13 0.17 0.32 -0.22
+FEND 0.84 2.13 - 0.68 1.68 - 0.61 1.46 - 0.56 1.30 - 0.52 1.19 - 0.17 0.32 -
+TrACT (ours) 0.80 2.00 3.39 0.65 1.63 2.52 0.61 1.46 2.34 0.56 1.31 2.11 0.52 1.18 1.93 0.17 0.32 -0.25

TABLE II: The results (HOR SOR) in percentage (%) on nuScenes for scene compliance analysis. For all values, lower is better.

Method Top Top Top Top Top All
1% 2% 3% 4% 5%

Traj++ EWTA 6.52 1.22 5.75 1.05 4.24 0.76 3.80 0.61 3.17 0.49 0.22 0.03
+contrastive 4.65 0.72 3.42 0.65 2.69 0.50 2.17 0.38 1.93 0.33 0.18 0.02
+TrACT (ours) 4.04 0.56 3.26 0.56 2.59 0.42 2.41 0.36 1.99 0.29 0.23 0.03

B. Comparison to SOTA

We compare TrACT against baseline Traj++ EWTA,
Traj++ EWTA + contrastive, [7] and state-of-the-art FEND
[8] methods on nuScenes and ETH-UCY and report the
results in Table I. Note that, on nuScenes, two sets of
baseline results are reported: the original ones from FEND
[8] (∗) and the ones we reproduced following instructions in
FEND. While we reproduced the same baseline results on
ETH-UCY following instructions in FEND, we observed a
large discrepancy on the baseline results on nuScenes. As
a result, we primarily compare to the reproduced baseline
performance on nuScenes and report results from FEND as
a reference. FEND does not report results on NLL-KDE and
in the absence of publicly available code, we were not able to
evaluate FEND on this metric. As shown in Table I, TrACT
achieves state-of-the-art performance on all metrics on all
challenging subsets, significantly improving performance by
up to 22.48% on KDE-NLL on the top 5% challenging subset
compared to Traj++ EWTA + constrastive. On distance-based
metrics, the largest improvement is achieved on the top 1%
challenging subset with 7.52% on minADE and 14.24% on
minFDE. On all samples, TrACT performs the second best
with a very small margin on distance-based metrics while
maintaining the best performance on KDE-NLL.

Similarly, on the ETH-UCY dataset, TrACT achieves
state-of-the-art performance on most metrics on all chal-
lenging subsets and achieves the second best minADE on
the top 4% most challenging subset with a small margin.
Here, once again TrACT achieves the largest improvement
of 4.76% for minADE, and 6.10% for minFDE on the
top 1% challenging subset compared to FEND. Contrary
to nuScenes, the best improvement of 56.82% for KDE-
NLL is achieved on the top 1% challenging subset compared

to Traj++ EWTA +contrastive. For all samples, TrACT
maintains the best performance for distance-based metrics
but performs second best on KDE-NLL. Such a difference
on performance can be attributed to the differences between
the two datasets. In the absence of scene layout information,
on ETH-UCY, the model relies more on the motion and
interaction information.

C. Scene Compliance Predictions on Challenging Scenarios

We evaluate TrACT’s ability to generate scene compliant
trajectories. We use HOR and SOR metrics to compare
TrACT with the baseline and its variation with contrastive
learning on nuScenes. As shown in Table II, TrACT exhibits
a significant improvement across most challenging subsets
on both metrics by up to 13.11% and 22.22% on HOR and
SOR, respectively while achieving a close second on SOR
on the top 4% and top 5% challenging subsets. Although the
performance on all samples for SOR and HOR are slightly
affected by a small drop, which can be attributed to the trade-
off introduced by the contrasting learning, the improvements
on the challenging subsets highlight the advantage of TrACT,
which exploits rich contextual information for clustering as
part of the contrastive learning.

D. Qualitative Results

In Figure 4, we present the qualitative examples of TrACT
in comparison to the baseline. The left plot shows TrACT’s
ability to reason through challenging map layouts, such as
roundabouts, producing a more compliant prediction that
does not go off-road, whereas Traj++ EWTA + contrastive
failed to do so. The right plot shows that TrACT can
determine the correct lane direction and avoid generating
trajectory that turns into the opposite lane while the baseline
method fails to do so. In both cases, the motion pattern is



TABLE III: Ablation study on θe and θvar showing the percentage of each cluster and the results in the format of (minADE minFDE KDE-NLL) of top
1% and top 5% challenging samples as well as all samples

{θe,θvar} Easy (%) Confusing (%) Hard (%) Trained (%) Top 1% Top 5% All
{0.50, 0.10} 55.72 20.54 4.43 19.30 1.30 2.50 7.35 0.84 1.51 4.56 0.26 0.39 0.82
{0.70, 0.20} 65.53 11.06 3.68 19.71 1.23 2.65 7.22 0.72 1.49 4.62 0.19 0.31 -0.21
{0.90, 0.10} 59.16 8.01 1.00 31.83 1.25 2.54 7.16 0.76 1.46 4.21 0.22 0.35 0.27

TABLE IV: Traj++ EWTA results (minADE minFDE NLL-KDE) on the full nuScenes dataset and nuScenes with 20% of the easy samples removed

Training Dataset (size%) Top 1% Top 2% Top 3% Top 4% Top 5% All
Full Dataset (100%) 1.73 4.43 11.72 1.36 3.54 10.02 1.17 3.03 8.80 1.04 2.68 7.83 0.95 2.41 7.21 0.19 0.32 -0.14
Removed easy (≈ 80%) 1.37 3.10 9.11 1.06 2.42 8.05 0.92 2.08 7.27 0.83 1.83 6.63 0.76 1.65 6.26 0.19 0.32 0.18

Fig. 4: Qualitative results on the nuScenes dataset: left shows a complicated
scene layout in which the baseline produces an off-road prediction, whereas
TrACT does not; Right shows TrACT producing lane compliance predictions
compared to the baseline.

simple but the contextual information is more complicated,
requiring the model to rely more on the map information to
make safe and scene compliant predictions.

E. Ablation Studies

Control of the contrastive loss. In Equation 5, we
introduced λ to control the contrastive loss term. For this
study, we examine parameter sensitivity with respect to λ and
illustrate the results on log-scale in Figure 5. As λ increases,
the overall loss is more dominated by the contrastive loss,
causing a decrease in minFDE for the top 1-5% challenging
subsets. However, there is a trade-off between the perfor-
mance on the tail samples and the head, i.e., the rest of the
samples (shown as ’Rest’). The increasing trend of minFDE
on the head samples indicates a declining performance as λ

increases.
Choice of θe and θvar. In the clustering step, θe and

θvar thresholds determine the size of each cluster. To study
the impact of these thresholds, we conducted a grid search
with different θe and θvar values. Based on the statistics of
the errors and variances, we empirically chose the search
range for both thresholds: θe ∈ [0.30,0.50,0.70,0.90] and
θvar ∈ [0.05,0.10,0.15,0.20] to cover a variety of different
cluster compositions. We discovered that when the easy
cluster is in range 55%-65% the model achieves the best per-
formance. Therefore, in Table III, we show the performance
change on three metrics minADE, minFDE, and KDE-NLL
on nuScenes, with different combinations of the thresholds,
including 55%, 60%, 65% of the easy cluster.

The combination {θe = 0.70,θvar = 0.20} maintains the
best balance between the performance on the top 1% and top
5% challenging subsets, and all samples. This combination
emphasizes more on the non-easy clusters. Similarly, we
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Fig. 5: Parameter sensitivity of λ on minFDE, plotted for the top 1-5%
challenging subsets and the rest 95% of the data.

made the choice of {θe = 0.70,θvar = 0.15} for ETH-UCY.

F. Dataset Map for Reducing Training Bias

In this study, we aim to show the benefit of the proposed
dataset map for achieving better performance without con-
trastive learning. For this purpose, we conducted experiments
on the baseline model, Traj++ EWTA. We train the model
on the full 100% dataset and also on 80% of the data by
randomly removing 20% of the data that belong to the easy
cluster. Our intuition is that by removing a portion of the easy
samples, we reduce the overall data bias, as the easy samples
are more frequent in the dataset. Hence, the model would
focus more on challenging scenarios, and as a result, achieves
a more balanced performance without the use of an explicit
contrastive objective. As our findings in Table IV suggest,
improvements of up to 31.72% on distanced-based metrics
and 22.27% on KDE-NLL are achieved across all challeng-
ing subsets while the overall performance is unchanged on
distance-based metrics. The decline in KDE-NLL metric on
all samples can be primarily due to the reduced size of the
dataset making the model unsure about the true distributions
of the samples.

V. CONCLUSIONS

In this work, we proposed a novel framework for learning
long-tail scenarios in the context of trajectory prediction
for autonomous driving. Our approach, TrACT, exploits
the training dynamics information of the model to cluster
samples into groups of different levels of difficulty. The
clusters, combined with the model feature embeddings, form



prototypes to be used in a prototypical contrastive learning
framework.

We conducted empirical studies on two trajectory predic-
tion benchmark datasets and showed that TrACT achieved
state-of-the-art performance by significantly improving over
past arts across the challenging subsets. Besides achieving
improved performance on common metrics, TrACT gener-
ates significantly more map compliant trajectories, making it
more suitable for practical applications. At the end, we illus-
trated the benefit of the proposed dataset map construction
technique for improving performance on challenging scenar-
ios without explicit use of a contrastive learning objective.
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