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ON MONOIDS OF METRIC PRESERVING

FUNCTIONS

VIKTORIIA BILET AND OLEKSIY DOVGOSHEY

Abstract. Let X be a class of metric spaces and let PX be the
set of all f : [0,∞) → [0,∞) preserving X, (Y, f ◦ρ) ∈ X whenever
(Y, ρ) ∈ X. For arbitrary subsetA of the set of all metric preserving
functions we show that the equality PX = A has a solution iff A

is a monoid with respect to the operation of function composition.
In particular, for the set SI of all amenable subadditive increasing
functions there is a class X of metric spaces such that PX = SI

holds, which gives a positive answer to the question of paper [1].

1. Introduction

The following is a particular case of the concept introduced by Jacek
Jachymski and Filip Turoboś in [2].

Definition 1. Let A be a class of metric spaces. Let us denote by PA

the set of all functions f : [0,∞) → [0,∞) such that the implication

((X, d) ∈ A) ⇒ ((X, f ◦ d) ∈ A)

is valid for every metric space (X, d).

For mappings F : X → Y and Φ : Y → Z we use the symbol F ◦ Φ
to denote the mapping

X
F
−→ Y

Φ
−→ Z.

We also use the following notation:
F, set of functions f : [0,∞) → [0,∞);
F0, set of functions f ∈ F with f(0) = 0;
Am, set of amenable f ∈ F;
SI, set of subadditive increasing f ∈ Am;
M, class of metric spaces;
U, class of ultrametric spaces;
Dis, class of discrete metric spaces;
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M2, class of two-points metric spaces;
M1, class of one-point metric spaces.
The main purpose of this paper is to give a solution of the following

problems.

Problem 2. Let A ⊆ PM. Find conditions under which the equation

(1) PX = A

has a solution X ⊆ M.

Problem 3. Let A ⊆ PU. Find conditions under which equation (1)
has a solution X ⊆ U.

In addition, we find all solutions to equation (1) for A equal to F,

F0, or Am and answer the following question.

Question 4. Is there a subclass X of the class M such that

PX = SI?

This question was asked in [1] in a different but equivalent form and
it was the original motivation for our research.
The paper is organized as follows. The next section contains some

necessary definitions and facts from the theories of metric spaces and
metric preserving functions.
In Section 3 we recall some definitions from the semigroup theory

and describe solutions to equation (1), for the cases when A is F, F0

or Am. In addition, we show that PX is always a submonoid of (F, ◦).
See Theorems 20, 22, 23 and Proposition 26, respectively.
Solutions to Problems 2 and 3 are given, respectively, in Theorems 29

and 31 of Section 4. Theorem 30 gives a positive answer to Question 4.

2. Preliminaries on metrics and metric preserving

functions

Let X be nonempty set. A function d : X × X → [0,∞) is said to
be a metric on the set X if for all x, y, z ∈ X we have:

(i) d(x, y) > 0 with equality if and only if x = y, the positivity

property ;
(ii) d(x, y) = d(y, x), the symmetry property ;
(iii) d(x, y) 6 d(x, z) + d(z, y), the triangle inequality.

A metric space (X, d) is ultrametric if the strong triangle inequality

d(x, y) 6 max{d(x, z), d(z, y)}

holds for all x, y, z ∈ X .
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Example 5. Let us denote by R+

0 the set (0,∞). Then the mapping
d+ : R+

0 × R+

0 → [0,∞),

d+(p, q) :=

{

0 if p = q,

max{p, q} otherwise.

is the ultrametric on R+

0 introduced by C. Delhommé, C. Laflamme,
M. Pouzet, and N. Sauer in [3].

Definition 6. Let (X, d) be a metric space. The metric d is discrete

if there is k ∈ (0,∞) such that

d(x, y) = k

for all distinct x, y ∈ X.

In what follows we will say that a metric space (X, d) is discrete if d
is a discrete metric on X. We will denote by Dis the class of all discrete
metric space. In addition, for given nonempty set X1, we will denote
by DisX1

the subclass of Dis consisting of all metric spaces (X1, d)
with discrete d.

Example 7. Let Mk, for k = 1, 2, be the class of all metric spaces
(X, d) satisfying the equality

card(X) = k.

Then all metric spaces belonging to M1 ∪M2 are discrete.

Proposition 8. The following statements are equivalent for each met-

ric space (X, d) ∈ M.

(i) (X, d) is discrete.
(ii) Every three-point subspace of (X, d) is discrete.

Proof. The implication (i) ⇒ (ii) is evidently valid.
Suppose that (ii) holds but (X, d) 6∈ Dis. Then there are some dif-

ferent points i, j, k, l ∈ X such that

(2) d(i, j) 6= d(k, l).

Write X1 := {i, j, k} and X2 := {j, k, l}. Then the spaces (X1, d|X1×X1
)

and (X2, d|X2×X2
) are discrete subspaces of (X, d) by statement (ii).

Consequently we have

(3) d(i, j) = d(j, k)

and

(4) d(j, k) = d(k, l)

by definition of the class Dis. Now (3) and (4) give us

d(i, j) = d(k, l),
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which contradicts (2). �

Remark 9. The standard definition of discrete metric can be formu-
lated as: “The metric on X is discrete if the distance from each point
of X to every other point of X is one.” (See, for example, [4, p. 14].)

Let F be the set of all functions f : [0,∞) → [0,∞).

Definition 10. A function f ∈ F is metric preserving (ultrametric

preserving) iff f ∈ PM (f ∈ PU).

Remark 11. The concept of metric preserving functions can be traced
back to Wilson [5]. Similar problems were considered by Blumenthal
in [6]. The theory of metric preserving functions was developed by
Borśık, Doboš, Piotrowski, Vallin and other mathematicians [7, 8, 9,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19]. See also lectures by Doboš [20],
and the introductory paper by Corazza [21]. The study of ultrametric
preserving functions begun by P. Pongsriiam and I. Termwuttipong in
2014 [22] and was continued in [23, 24].

We will say that f ∈ F is amenable iff

f−1(0) = {0}

holds and will denote by Am the set of all amenable functions from F.

Let us denote by F0 the set of all functions f ∈ F satisfying the equality
f(0) = 0. It follows directly from the definition that Am ( F0 ( F.

Moreover, a function f ∈ F is increasing iff the implication

(x 6 y) ⇒ (f(x) 6 f(y))

is valid for all x, y ∈ [0,∞).
The following theorem was proved in [22].

Theorem 12. A function f ∈ F is ultrametric preserving if and only

if f is increasing and amenable.

Remark 13. Theorem 12 was generalized in [25] to the special case
of the so-called ultrametric distances. These distances were introduced
by S. Priess-Crampe and P. Ribenboim in 1993 [26] and studied in
[27, 28, 29, 30].

Recall that a function f ∈ F is said to be subadditive if

f(x+ y) 6 f(x) + f(y)

holds for all x, y ∈ [0,∞). Let us denote by SI the set of all subadditive
increasing functions f ∈ Am.

Corollary 36 of [1] implies the following result.
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Proposition 14. The equality

SI = PU ∩PM

holds.

Remark 15. The metric preserving functions can be considered as a
special case of metric products (= metric preserving functions of several
variables). See, for example, [31, 32, 33, 34, 35, 36]. An important
special class of ultrametric preserving functions of two variables was
first considered in 2009 [37].

3. Preliminaries on semigroups. Solutions to FX = A for

A = F, F0,Am

Let us recall some basic concepts of semigroup theory, see, for exam-
ple, “Fundamentals of Semigroup Theory” by John M. Howie [38].
A semigroup is a pair (S, ∗) consisting of a nonempty set S and an

associative operation ∗ : S × S → S which is called the multiplication

on S. A semigroup S = (S, ∗) is a monoid if there is e ∈ S such that

e ∗ s = s ∗ e = s

for every s ∈ S.

Definition 16. Let (S, ∗) be a semigroup and ∅ 6= T ⊆ S. Then T is
a subsemigroup of S if a, b ∈ T ⇒ a ∗ b ∈ T. If (S, ∗) is a monoid with
the identity e, then T is a submonoid of S if T is a subsemigroup of S
and e ∈ T.

Example 17. The semigroups (F, ◦), (Am, ◦), (PM, ◦) and (PU, ◦)
are monoids and the identical mapping id : [0,∞) → [0,∞), id(x) = x

for every x ∈ [0,∞), is the identity of these monoids.

The following simple lemmas are well known.

Lemma 18. Let T be a submonoid of a monoid (S, ∗) and let V ⊆ T.

Then V is a submonoid of (S, ∗) if and only if V is a submonoid of T.

Lemma 19. Let T1 and T2 be submonoids of a monoid (S, ∗). Then
the intersection T1 ∩ T2 also is a submonoid of (S, ∗).

The next theorem describes all solutions to the equation PX = F.

Theorem 20. The following statements are equivalent for everyX ⊆ M.

(i) X is the empty subclass of M.

(ii) The equality

(5) PX = F

holds.
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Proof. (i) ⇒ (ii). Let X be the empty subclass of M. Definition 1
implies the inclusion F ⊇ PX. Let us consider an arbitrary f ∈ F. To
prove equality (5) it suffices to show that f ∈ PX. Let us do it. Since X
is empty, the membership relation (X, d) ∈ X is false for every metric
space (X, d). Consequently, the implication

((X, d) ∈ X) ⇒ ((X, f ◦ d) ∈ X)

is valid for every (X, d) ∈ M. It implies f ∈ PX by Definition 1.
Equality (5) follows.
(ii) ⇒ (i). Let (ii) hold. We must show that X is empty. Suppose

contrary that there is a metric space (X, d) ∈ X. Since, by definition,
we have X 6= ∅, there is a point x0 ∈ X. Consequently, d(x0, x0) = 0
holds. Let c ∈ (0,∞) and let f : [0,∞) → [0,∞) be a constant
function,

f(t) = c

for every t ∈ [0,∞). In particular, we have

(6) f(0) = c > 0.

Equality (5) implies that f ◦ d is a metric on X. Thus, we have

0 = f(d(x0, x0)) = f(0),

which contradicts (6). Statement (i) follows. �

Remark 21. Theorem 20 becomes invalid if we allow the empty metric
space to be considered. The equality

PX = F

holds if the nonempty class X contains only the empty metric space.

Let us describe now all possible solutions to PX = F0.

Theorem 22. The equality

(7) PX = F0

holds if and only if X is a nonempty subclass of M1.

Proof. Let X ⊆ M1 be nonempty. Equality (7) holds iff

(8) PX ⊇ F0

and

(9) PX ⊆ F0.

Let us prove the validity of (8). Let f ∈ F0 be arbitrary. Since
every (X, d) ∈ X is an one-point metric space, we have f ◦ d = d for
all (X, d) ∈ X by positivity property of metric spaces, Inclusion (8)
follows.
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Let us prove (9). The inclusion PX ⊆ F follows from Definition 1.
Thus, if (9) does not hold, then there is f0 ∈ F such that f0 ∈ PX,

(10) f0(0) = k and k > 0.

Since X is nonempty, there is (X0, d0) ∈ X. Let x0 be a (unique) point
of X0. Since f0 belongs to PX, the function f0 ◦ d0 is a metric on X0.

Now, using (10), we obtain

f0(d0(x0, x0)) = f0(0) = k > 0,

which contradicts the positivity property of metric spaces. Inclusion
(9) follows.
Let (7) hold. We must show that X is a nonempty subclass of M1.

If X is empty, then

(11) PX = F

holds by Theorem 20. Equality (11) contradicts equality (7). Hence,
X is nonempty. To complete the proof we must show that

(12) X ⊆ M1.

Let us consider the constant function f0 : [0,∞) → [0,∞) such that

(13) f0(t) = 0

for every t ∈ [0,∞).Then f0 belongs to F0. Hence, for every (X, d) ∈ X,
the mapping d0 := f0◦d is a metric on X. Now (13) implies d0(x, y) = 0
for all x, y ∈ X and (X, d) ∈ X. Hence, card(X) = 1 holds, because
the metric space (X, d0) is one-point by positivity property. Inclusion
(12) follows. The proof is completed. �

The next theorem gives us all solutions to the equation PX = Am.

Theorem 23. The following statements are equivalent for everyX ⊆ M.

(i) The inclusion

(14) X ⊆ Dis

holds, and there is (Y, ρ) ∈ X with

(15) card(Y ) > 2,

and we have

(16) DisX1
⊆ X

for every (X1, d1) ∈ X.

(ii) The equality

(17) PX = Am

holds.
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Proof. (i) ⇒ (ii). Let (i) hold. Equality (17) holds iff

(18) PX ⊇ Dis

and

(19) PX ⊆ Dis.

Let us prove (18). Inclusion (18) holds iff we have

(20) (X1, f ◦ d1) ∈ X

for all f ∈ Am and (X1, d1) ∈ X. Relation (20) follows from Theo-
rem 22 if (X1, d1) ∈ M1. To see it we only note that Am ⊆ F0. Let us
consider the case when

card(X1) > 2.

Since (X1, d1) is discrete by (14), Definition 6 implies that there is
k1 ∈ (0,∞) satisfying

d1(x, y) = k1

for all distinct x, y ∈ X1. Let f ∈ Am be arbitrary. Then f(k1) is
strictly positive and

f(d1(x, y)) = f(k1)

holds for all distinct x, y ∈ X1. Thus, f ◦ d1 is discrete metric on X1,

i.e. we have

(21) (X1, f ◦ d1) ∈ DisX1
.

Now, (20) follows from (16) and (21).
Let us prove (19). To do it we must show that every f ∈ PX is

amenable.
Suppose contrary that f belongs to PX but the equality

(22) f(t1) = 0

holds with some t1 ∈ (0,∞). By statement (i) we can find (Y, ρ) ∈ X

such that (15) and
ρ(x, y) = t1

hold for all distinct x, y ∈ Y. Now f ∈ PX and (Y, ρ) ∈ X imply that
f ◦ ρ is a metric on Y. Consequently, for all distinct x, y ∈ Y, we have

f(ρ(x, y)) = f(t1) > 0,

which contradicts (22). The validity of (19) follows.
(ii) ⇒ (i). Let X satisfy equality (4). Since Am 6= F holds, the

class X is nonempty by Theorem 20. Moreover, using Theorem 22 we
see that X contains a metric space (X, d) with card(X) > 2, because
Am 6= F0.

If the inequality
card(Y ) 6 2
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holds for every (Y, ρ) ∈ X, then all metric spaces belonging to X are
discrete (see Example 7). Using the definitions of Dis and Am, it is
easy to prove that for each (X1, d1) ∈ Dis and every (X1, d) ∈ DisX1

there exists f ∈ Am such that d = f ◦ d1. Hence to complete the proof
it suffices to show that every (X, d) ∈ X is discrete when

(23) card(X) > 3.

Let us consider arbitrary (X, d) ∈ X satisfying (23). Suppose that
(X, d) 6∈ Dis. Then by Proposition 8 there are distinct a, b, c,∈ X such
that

(24) d(a, b) 6= d(b, c) 6= d(c, a).

Let c1 and c2 be points of (0,∞) such that

(25) c2 > 2c1.

Now we can define f ∈ Am as

(26) f(t) :=







0 if t = 0,
c2 if t = d(b, c),
c1 otherwise.

Equality (17) implies that f ◦ d is a metric on X . Consequently, we
have

(27) f(d(b, c)) 6 f(d(b, a)) + f(d(b, c))

by triangle inequality. Now using (24) and (26) we can rewrite (27) as

c2 6 c1 + c1,

which contradicts (15). It implies (X, d) ∈ Dis. The proof is completed.
�

Corollary 24. The equalities

PDis = PM2
= Am

hold.

Remark 25. The equality

PM2
= Am

is known, see, for example, Remark 1.2 in paper [13]. This paper
contains also “constructive” characterizations of the smallest bilateral
ideal and the largest subgroup of the monoid PM.

Proposition 26. Let X be a subclass of M. Then PX is a submonoid

of (F, ◦).
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Proof. It follows directly from Definition 1 that

PX ⊆ F

holds and that the identity mapping id : [0,∞) → [0,∞) belongs to
PX. Hence, by Lemma 18, it is suffices to prove

(28) f ◦ g ∈ PX

for all f, g ∈ PX.

Let us consider arbitrary f ∈ PX and g ∈ PX. Then, using Def-
inition 1, we see that (X, g ◦ d) belongs to X for every (X, d) ∈ X.

Consequently,

(29) (X, f ◦ (g ◦ d)) ∈ X

holds. Since the composition of functions is always associative, the
equality

(30) (f ◦ g) ◦ d = f ◦ (g ◦ d)

holds for every (X, d) ∈ X. Now (28) follows from (29) and (30). �

The above proposition implies the following corollary.

Corollary 27. If the equation

PX = A

has a solution, then A is a submonoid of F.

The following example shows that the converse of Corollary 27 is,
generally speaking, false.

Example 28. Let us define A1 ⊆ F as

A1 = {f1, id},

where f1 ∈ F is defined such that

(31) f1(t) :=







1 if t = 0,
0 if t = 1,
t otherwise

and id is the identical mapping of [0,∞). The equalities f1 ◦ f1 = id,
f1 ◦ id = f1 = id ◦f1 show that A1 is a submonoid of (F, ◦). Suppose
that there is X1 ⊆ M satisfying the equality

(32) PX1
= A1.

Then using Theorem 20, we see that X1 is nonempty because A1 6= F

holds. Let (X1, d1) be an arbitrary metric space from A1. Since X1 is
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nonempty, we can find x1 ∈ X1. Then (32) implies that f1◦d1 is metric
on X1. Consequently, we have

f1(d1(x1, x1)) = f1(0) = 0,

which contradicts (31).

4. Submonoids of monoids PM and PU

The following theorem gives a solution to Problem 2.

Theorem 29. Let A be a nonempty subset of the set PM of all metric

preserving functions. Then the following statements are equivalent.

(i) The equality

(33) PX = A

has a solution X ⊆ M.

(ii) A is a submonoid of (F, ◦).
(iii) A is a submonoid of (PM, ◦).

Proof. (i) ⇒ (ii). Suppose that there is X ⊆ M such that (33) holds.
Then A is a submonoid of (F, ◦) by Proposition 26.
(ii) ⇒ (iii). Let A be a submonoid of (F, ◦). By Proposition 26, the

monoid (PM, ◦) also is a submonoid of (F, ◦). Then using the inclusion
A ⊆ PM we obtain that A is a submonoid of (PM, ◦) by Lemma 18.
(iii) ⇒ (i). Let A be a submonoid of (PM, ◦). We must prove that

(33) has a solution X ⊆ M.

Let (X, d) be a metric space such that

(34) {d(x, y) : x, y ∈ X} = [0,∞).

Write

(35) X := {(X, f ◦ d) : f ∈ A}.

We claim that (33) holds if X is defined by (35). To prove it we note
that (33) holds iff

(36) A ⊆ PX

and

(37) A ⊇ PX.

Let us prove (36). This inclusion holds if for every f ∈ A and each
(Y, ρ) ∈ X we have (Y, f ◦ ρ) ∈ X. Let us consider arbitrary (Y, ρ) ∈ X

and f ∈ A. Then, using (35), we can find g ∈ A such that

(38) X = Y and ρ = g ◦ d.
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Since A is a monoid, the membership relations f ∈ A and g ∈ A imply
g ◦ f ∈ A. Hence, we have

(39) (X, g ◦ f ◦ d) ∈ X

by (35). Now (Y, f ◦ ρ) ∈ X follows from (38) and (39).
Let us prove (37). Let g1 belong to PX and let (X, d) be the same

as in (35). Then (X, g1 ◦ d) belongs to X and, using (35), we can find
f1 ∈ A such that

(40) (X, g1 ◦ d) = (X, f1 ◦ d).

The last equality implies

(41) g1(d(x, y)) = f1(d(x, y))

for all x, y ∈ X. Consequently, g1(t) = f1(t) holds for every t ∈ [0,∞)
by (34). Thus, we have g1 = f1. That implies g1 ∈ A. Inclusion (37)
follows. The proof is completed. �

Let us turn now to Question 4. Proposition 14 and Lemma 19 give
us the following result.

Theorem 30. There is X ⊆ M such that

(42) PX = SI.

Proof. By Proposition 26, the monoids (PM, ◦) and (PU, ◦) are sub-
monoids of (F, ◦). The equality

(43) SI = PM ∩PU

holds by Proposition 14. Using (43) and Lemma 19 with T1 = PM, T2 =
PU and S = F we see that SI also is a submonoid of F. Consequently,
Theorem 29 with A = SI implies that there is X ⊆ M such that (42)
holds. �

The next theorem is an ultrametric analog of Theorem 29 and it
gives us a solution to Problem 3.

Theorem 31. Let A be a nonempty subset of the set PU of all ultra-

metric preserving functions. Then the following statements are equiv-

alent.

(i) The equality PX = A has a solution X ⊆ U.

(ii) A is a submonoid of (F, ◦).
(iii) A is a submonoid of (PU, ◦).

A proof of Theorem 31 can be obtained by a simple modification
of the proof of Theorem 29. We only note that the ultrametric space
defined in Example 5 satisfies the equality (34) with X = R+

0 and
d = d+.
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5. Two conjectures

Conjecture 32. The equality

PX = A

has a solution X ⊆ M for every submonoid A of the monoid Am.

Example 28 shows that we cannot replace Am with F in Conjec-
ture 32, but we hope that the following is valid.

Conjecture 33. For every submonoid A of the monoid F there exists

X ⊆ M such that PX and A are isomorphic submonoids.
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