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Abstract: New research has highlighted a shortfall in the Standard Model (SM) be-

cause it predicts neutrinos to have zero mass. However, recent experiments on neutrino

oscillation have revealed that the majority of neutrino parameters indeed indicate their

significant mass. In response, scientists are increasingly incorporating discrete symme-

tries alongside continuous ones for better justification of observed patterns of neutrino

mixing. In this study, we have examined a model within A4 × Z3 × Z10 symmetry to

estimate the neutrino masses using particle swarm optimization technique for both mass

hierarchy of neutrino. This model employed a hybrid seesaw mechanism, a combination

of seesaw mechanism of type-I and type-II, to establish the effective Majorana neutrino

mass matrix. After calculating the mass eigenvalues and lepton mixing matrix upto sec-

ond order perturbation theory in this framework, this study seeks to investigate the scalar

potential for vacuum expectation values (VEVs), optimize the parameters, UPMNS ma-

trix, neutrino masses: |m′
1
N | = 0.0292794 − 0.0435082 eV , |m′

2
N | = 1.78893 × 10−18 −

0.0293509 eV , —m′
3
N | = 0.0307414 − 0.0471467 eV , |m′

1
I | = 0.00982013 − 0.0453623 eV ,

|m′
2
I
| = 0.0379702−0.0471197 eV , and |m′

3
I | = 0.0122063−0.027544 eV , effective neutrino

mass parameters: ⟨mee⟩N = (0.170− 3.93)× 10−2 eV , ⟨mβ⟩N = (0.471− 1.39)× 10−2 eV ,

⟨mee⟩I = (1.85− 4.55)× 10−2 eV and ⟨mβ⟩I = (2.26− 4.56)× 10−2 eV , are predicted for

both mass hierarchy through particle swarm optimization (PSO), showing strong agreement

with recent experimental findings.

Keywords: Discrete symmetry, Neutrino mixing, Particle swarm optimization

ar
X

iv
:2

40
4.

14
91

7v
2 

 [
he

p-
ph

] 
 1

 M
ay

 2
02

4

mailto:waheed10aslam@gmail.com, waheed-979531@pu.edu.pk


Contents

1 Introduction 1

2 The A4 based Model 3

2.1 Mass matrices of charged lepton and neutrino 3

3 Numerical Analysis 6

3.1 Effective neutrino mass parameters 10

4 Vacuum alignment studies 10

5 Conclusion 12

A A4 group 14

1 Introduction

Known as the ”ghost particles” of the universe, neutrinos have long intrigued the interest of

cosmologists and physicists alike. Despite being among the most prevalent particles in the

universe, these elementary particles (which are electrically neutral and almost massless)

interact with matter very weakly, which makes them notoriously difficult to detect. In

1930, Wolfgang Pauli postulated the existence of neutrinos as a possible explanation for

the violation of energy conservation observed in beta decay, they were only ever considered

theoretical particles. Frederick Reines and Clyde Cowan eventually detected neutrinos in

1956 [1]. Neutrinos, in spite of their spectral appearance, are essential to the understanding

of fundamental physics and the universe’s evolution. Many astrophysical processes, such

as nuclear fusion in stars [2], supernova explosions [3–7], and even the Big Bang itself

[8, 9], produce them. Neutrinos are also essential for solving some of the most significant

mysteries in cosmology and particle physics, including the properties of the elusive Higgs

boson [10], the nature of dark matter [11–15], and the universe’s imbalance between matter

and antimatter [16]. One of the central puzzles surrounding neutrinos is their masses [17].

Neutrinos were originally thought to be massless in accordance with the SM of particle

physics [18]. However, experiments in the late 20th and early 21st centuries, such as those

conducted by the Super-Kamiokande [19], KamLAND [20], K2K [21], Fermilab-MINOS

[22], Sudbury Neutrino Observatory collaborations [19] and CERN-OPERA [23] provided

irrefutable evidence that neutrinos oscillate between different flavors (electron, muon, and

tau), a phenomenon that can only occur if they possess non-zero masses. This discovery

fundamentally challenged our understanding of neutrinos and underscored the need for new

theoretical frameworks beyond the SM.
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Researcher are looking in detail into seesaw frameworks, particularly type-I [24–28] and

type-II [29–31], aside from several other methods to explain small neutrino masses. Majo-

rana and Dirac mass terms derive from the introduction of extra right-handed neutrinos in

SM in type I. Majorana mass terms derive from the introduction of heavy SU(2)L triplet

in SM in type-II. A hybrid seesaw mechanism [24, 32, 33] has been proposed for improved

mass suppression and new mixing patterns by combining type-I and type-II. With this

hybrid technique, one may explore various lepton mixing scenarios and generate effective

Majorana neutrino mass matrices.

Considering the recent discovery of non-zero, small neutrino masses in multiple neu-

trino oscillation experiments, numerous models for neutrino mass have been developed.

These models are constructed based on different discrete symmetries such as S3, S4, A4,

A5, ∆(27), T7, T13 etc [34–52]. In the majority of cases, these models extend the Stan-

dard Model (SM) by incorporating the desired symmetries through the addition of specific

field contents with their corresponding charges. These models postulate specific symme-

tries within the neutrino sector, leading to distinctive predictions for neutrino masses and

mixing patterns. However, deriving expressions from these models often entails intricate

mathematical formulations, posing challenges in their analytical solutions.

In these models, one of the prominent complications arises from the complexity of the

equations. These equations typically involve nonlinear terms among the neutrino mass

eigenstates. Solving such type of expressions analytically can be daunting, requiring so-

phisticated mathematical techniques and computational resources. In addressing these

challenges, researchers have turned to computational methods to tackle the intricate ex-

pressions. Among these methods, One particularly effective method for handling challeng-

ing optimization problems is particle swarm optimization (PSO). The collective actions

of fish and birds serve as the model for this population-based algorithm and metaheuris-

tic approach. PSO is used for approximating parameters in different types of research

problems [53, 54]. In 1995, Russell Eberhart and James Kennedy introduced the concept

of PSO. [55–57], drawing inspiration from genetic algorithms (GAs) to refine its design

[55]. PSO is commonly used to find optimal solutions to optimization problems, where

the aim is to minimize or maximize a particular fitness function. PSO is versatile and

has been utilized in diverse optimization scenarios, including engineering design [58–60],

image processing [61–63], financial modeling [64–67] and neural network training [68, 69].

Its efficacy is further underscored by its widespread use in diverse optimization challenges,

encompassing high-dimensional data clustering [70, 71], parameter estimation for chaotic

maps [72, 73], optimization of core loading models in nuclear reactors [74], optimization of

nonlinear reference frames [75], attainment of optimal reactive power distribution [76], as

well as problem-solving in domains such as optical properties of multilayer thin films [77–

80] and autoregressive models with moving average [81–83]. Additionally, PSO has proven

effective in addressing challenges related to parameter estimation in electromagnetic plane

waves [84]. Its simplicity, ease of implementation, and ability to handle non-linear and

complex objective functions make it a popular choice for solving optimization problems.

PSO stands out in particular for having an easy-to-implement architecture and requiring

less memory [85, 86].
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After calculating the mass eigenvalues and lepton mixing matrix upto second order

perturbation theory in the framework [87] based on A4 symmetry, this study seeks to

investigate the minimization of the scalar potential for VEVs and optimize the parameters

for UPMNS matrix, neutrino masses and effective neutrino mass parameters: ⟨mee⟩, mβ,

for both mass hierarchy through particle swarm optimization (PSO). The format of this

article is as follows: The A4 model is presented in the next section 2. In addition to

describe the superpotential terms for charged leptons and neutrinos, subsection 2.1 provide

the explanation for the mass eigenvalues and mixing matrix upto second order perturbation

theory. Section 3 focuses on the utilization of PSO to determine optimal parameter values

for computing neutrino masses. Section 4 presents the scalar potential invariant under

SU(2)L × A4 × Z3 × Z10, along with conditions for its minimization and explores the

utilization of PSO in determining optimal parameter values for VEVs of the scalars. At

the end, in section 5, we provide a conclusion of our research. We provide an explanation

of the A4 group in appendix A.

2 The A4 based Model

In [87], they extended the SM group with A4 symmetry with three right handed heavy

singlet neutrino fields (νeR , νµR , ντR) and with seven scalars ϕ, Φ, η, κ, ∆, ξ, ξ′. The

SU(2)L doublets ϕ, Φ and SU(2)L triplet ∆ are taken as A4 triplet. Four SU(2)L singlets

η, κ, ξ and ξ′ are taken as the singlets of A4 as 1′′, 1′, 1 and 1 respectively. Two additional

symmetries, namely Z3 and Z10 are also introduced to incorporate the undesired terms,

where, Z10 refers to the symmetry of integers modulo 10. A summary of all the fields under

SU(2)L, A4, Z3 and Z10 are shown in table 1.

Fields DlL lR νlR ϕ Φ η κ ∆ ξ ξ′

SU(2)L 2 1 1 2 2 1 1 3 1 1

A4 3 (1, 1′′, 1′) (1, 1′′, 1′) 3 3 1′′ 1′ 3 1 1

Z3 1 (ω, ω, ω) (1, 1, 1) ω2 1 1 1 1 1 1

Z10 0 0 (0, 4, 6) 0 0 2 8 0 6 4

Table 1. The properties of transformation under SU(2)L ×A4 × Z3 × Z10.

2.1 Mass matrices of charged lepton and neutrino

The Lagrangian serves as a cornerstone in describing the interactions and behaviors of

particles within the context of physics of particles. The superpotential term for charged

leptons, Dirac neutrinos and right handed Majorana neutrinos is given as

−LY =ye(DlLϕ)eR + yµ(DlLϕ)µR + yτ (DlLϕ)τR + y1(DlLΦ)νeR +
y2
Λ
(DlLΦ)νµRξ

+
y3
Λ
(DlLΦ)ντRξ

′ +
1

2
M [(νceRνeR) + (νcµR

ντR) + (νcτRνµR)]

+
1

2
yR[(νcµR

νµR)η + (νcτRντR)κ] + y(DlLD
c
lL
)iτ2∆+ h.c,

(2.1)
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in this context, ye, yµ and yτ represent Yukawa couplings. Due to the VEVs (see section

4), one can generate mass matrices for charged leptons (Ml), Dirac neutrinos (MD) and

right handed Majorana neutrinos as

Ml = v

ye 0 0

0 yµ 0

0 0 yτ

 , MD = u

 0 y2vϵ
Λ

y3vϵ
Λ

y1 0 y3vϵ
Λ

y1
y2vϵ
Λ 0

, (2.2)

MR =

M 0 0

0 yRvm M

0 M yRvm

 , M ′′ =
yω

3

 0 1 −1

1 2 0

−1 0 −2

 . (2.3)

Here, seesaw frameworks, particularly type-I [24–28] and type-II [29–31], used besides

several other methods to explain small neutrino masses. Majorana and Dirac mass terms

derived from the introduction of extra right-handed neutrinos in SM in type I. Majorana

mass terms (M ′′) derived from the introduction of heavy SU(2)L triplet in SM in type-

II. In other words, a hybrid seesaw mechanism [24, 32, 33] proposed for improved mass

suppression and new mixing patterns by combining type-I and type-II. With this hybrid

technique, one may explore various lepton mixing scenarios and generate effective Majorana

neutrino mass matrices (Mν) as

Mν = M ′ +M ′′ = −mDM
−1
R mT

D +M ′′ (2.4)

with

M ′ =

P Q Q

Q R S

Q S R

 , M ′′ =

 0 p −p

p q 0

−p 0 −q

 ,

p =
yω

3
, q = 2p, P =

u2v2ϵ
((
y22 + y23

)
vmyR − 2My2y3

)
Λ2
(
M2 − v2my2R

) ,

Q =
u2y3v

2
ϵ (y3vmyR −My2)

Λ2
(
M2 − v2my2R

) , R = u2

(
y23vmyRv

2
ϵ

Λ2
(
M2 − v2my2R

) − y21
M

)
,

S = − Mu2y2y3v
2
ϵ

Λ2
(
M2 − v2my2R

) − u2y21
M

.

(2.5)

The first matrix of effective Majorana is diagonalized by the subsequent mixing matrix,

U0 =

 c s 0

−s/
√
2 c/

√
2 1/

√
2

−s/
√
2 c/

√
2 −1/

√
2

 , (2.6)

such as diag(m1, m2, m3) = U0
TM1 U0, where, c = cos θ, s = sin θ and θ = Cos−1( k√

k2+2
)

with,

k =
P −R− S −

√
P 2 − 2PR− 2PS + 8Q2 +R2 + 2RS + S2

2Q
, (2.7)

and

m1,2 =
1

2
(P +R+ S ∓

√
(−P +R+ S)2 + 8Q2), m3 = R− S. (2.8)
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In the context of three-neutrino physics, the mixing matrix of lepton (UPMNS) may be

represented as [88]

UPMNS =

 c12c13 s12c13 s13e
iδ

−s12c23 − c12s13s23e
iδ c12c23 − s12s13s23e

iδ c13s23
s12s23 − c12c23s13e

iδ −c12s23 − s12s13c23e
iδ c13c23

P12 (2.9)

where, P12 = diag(1, eiβ1 , eiβ2) which contains two Majorana phases that do not influ-

ence neutrino oscillations. The matrix U0 in equation 2.6 suggests θ23 = π/4, θ13 = 0

and θ12 = θ, Recent data contradicts this claim. However, the inclusion of the second

matrix in equation 2.4 is expected to ameliorate this discrepancy. In first-order pertur-

bation corrections, the second matrix in equation 2.4 doesn’t affect the eigenvalues but it

does influence the eigenvectors. Moving to second-order perturbation theory,This matrix

contributes to the determination of both eigenvalues and eigenvectors. Consequently, the

masses of neutrino upto the second order perturbation corrections can be expressed as:

m′
1 = m1 +

p2Γ1
2

m1 −m3
, m′

2 = m2 +
p2Γ2

2

m2 −m3
, m′

3 = m3 + p2
(

2Γ3
2

m3 −m1
+

Γ2
2

m3 −m2

)
,

(2.10)

where the parameters p, q, and m1,2,3 are defined in equations 2.5 and 2.8, respectively.

Subsequently, the resulting lepton mixing matrix is as follows:

U = U0 +∆U +∆U ′ (2.11)

where U0 is given by in equation 2.6, ∆U represents the mixing matrix corresponding to

first-order corrections, and ∆U ′ represents the mixing matrix corresponding to second-

order corrections. They have the following entries:

(∆U)11 = (∆U)12 = 0,

(∆U)13 = p

(
Γ1 cos θ

m3 −m1
+

Γ2 sin θ

m3 −m2

)
,

(∆U)21 = −(∆U)31 =
pΓ3

m3 −m1
, (∆U)32 = −(∆U)22 =

√
2Γ2p

2(m3 −m2)
,

(∆U)23 = (∆U)33 =
p ((m1 −m2)Γ4 + 2(m1 +m2 − 2m3))

2
√
2(m3 −m1)(m2 −m3)

,

(∆U ′)11 =
p2Γ1

2(m1 −m3)2

[
− cos θΓ1 +

2 sin θ(m1 −m3)Γ2

m1 −m2

]
,

(∆U ′)12 =
p2Γ2

2(m2 −m3)2

[
− sin θΓ2 −

2 cos θ(m2 −m3)Γ1

m1 −m2

]
, (δU ′)13 = 0,

(∆U ′)21 = (∆U ′)31 = p2Γ1

[
Γ5(3m1 −m2 − 2m3) +m1 +m2 − 2m3)

2
√
2(m1 −m2)(m1 −m3)2

]
,

(∆U ′)22 = (∆U ′)32 = −p2Γ2

[
Γ5(m1 − 3m2 + 2m3) +m1 +m2 − 2m3

2
√
2(m1 −m2)(m2 −m3)2

]
,
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(∆U ′)23 =− (∆U ′)33 =
−p2

2
√
2

[
Γ1

2

(m1 −m3)2
+

Γ2
2

(m2 −m3)2

]
,

with, Γ1 = −2 sin θ+
√
2 cos θ, Γ2 =

√
2 sin θ+2 cos θ, Γ3 =

√
2 sin θ−cos θ, Γ4 =

√
2 sin 2θ+

2 cos 2θ and Γ5 = cos 2θ+
√
2 sin θ cos θ. The lepton mixing angles can be determined from

equations 2.11 and 2.9, which define the mixing matrix of neutrino:

t12 =
|U12|
|U11|

, t23 =
|U23|
|U33|

, s13 = |U13|, (2.12)

with, sij = sin θij , cij = cos θij and tij = tan θij .

3 Numerical Analysis

Taking into consideration the latest experimental data [26], the mixing angles are mea-

sured as follows: The solar neutrino mixing angle, θ12, is determined to be 34◦ ± 1◦, the

atmospheric neutrino mixing angle, θ23, is found to be 42◦± 3◦, and the reactor angle, θ13,

is measured to be 8.5◦ ± 0.5◦. Additionally, the squared mass differences are determined

as ∆m2
sol = m′2

2 − m′2
1 ≈ 7.53 × 10−5 eV2 and ∆m2

atm = m′2
3 − m′2

2 ≈ 2.453 × 10−3 eV2

(∆m2
atm = m′2

3 − m′2
2 ≈ −2.536 × 10−3 eV2) for normal (inverted) neutrino mass order-

ing [89]. The lower and upper bounds of Σm are constrained to 0.06 eV and 0.12 eV,

respectively [90]. Utilizing equations 2.11 and 2.12, the objective or fitness function (ϵ)

corresponding to these experimental constraints can be expressed as follows.

ϵ = ϵ1 + ϵ2 + ϵ3 + ϵ4 + ϵ5 + ϵ6, (3.1)

with,

ϵ1 =

[
m′

2
2 −m′2

1 −∆m2
sol

]2
, ϵ2 =

[
m′

3
2 −m′2

2 −∆m2
atm

]2
, ϵ3 =

[
|U12|
|U11|

− t12

]2
,

ϵ4 =

[
|U23|
|U33|

− t23

]2
, ϵ5 =

[
U13e

iδ − s13

]2
,

ϵ6 =

[
|m′

1|+ |m′
2|+ |m′

3| −

(
0.12 eV, for upper bound limit

0.06 eV, for lower bound limit

)]2
,

(3.2)

where, m′
1,2,3, U11, U12, U23, U33, U13 are given in equations 2.10 and 2.11.

We use PSO algorithm to optimize the objective or fitness functions ϵ for optimal

values of parameters. In the usual way of doing particle swarm optimization (PSO), we

treat each possible solution to a problem is represented as a moving point within the search

space. These points form a group called a ’swarm’, and they work together to check out

the whole search area. Each point is assigned a unique score based on its efficacy in solving

the problem. Initially, these points are randomly selected. Throughout each iteration,

the positions and velocities of the points are updated based on their previous performance
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based on its local P x−1
LB and global P x−1

GB positions. The basic rules for updating position

and velocity of a point are given as,

vxi = wvt−1
i + c1r1(P

x−1
LB −Xx−1

i ) + c2r2(P
x−1
GB −Xx−1

i ), (3.3)

Xx
i = Xx−1

i + vx−1
i . (3.4)

In these rules, i goes from 1 to p, where p is just a integer telling us how many points there

are. The weight ’w’ and c1 and c2 are also integers that help to control how the points

move. Also, the velocity gradually gets smaller as we keep looking around (between 0 and

1). The random numbers r1 and r2 are just there to add a bit of randomness. Finally, the

velocity of the points is kept within certain limits so they don’t go too fast or too slow.

The points traverse the search space by adapting their positions and velocities, draw-

ing from their individual experiences and insights gained from neighboring points. The

algorithm involves the following key steps:

1. Initialization: Commence by populating a set of points, assigning them random po-

sitions and velocities distributed throughout the exploration area.

2. Objective Assessment: Assess the fitness or objective function value for each point

according to its present position.

3. Update Personal and Global Bests: Update the personal best position (Pbest) for

each point based on its current fitness. Update the global best position (Gbest)

considering the best position among all points.

4. Update Velocities and Positions: Adjust the velocity and position of each point using

its current velocity, personal best, and global best positions.

5. Iteration: Continue steps 2 through 4 for a predetermined number of iterations or

until reaching a convergence criterion.

The generic flow chart PSO is given in figure 1.

To inspire the development of meta-heuristic optimization algorithms, we employed

PSO technique to minimize the objective function for both mass hierarchy and for upper

and lower bound limits of Σm. The objective function is minimized through PSO with 500

iteration are presented in figure 2 and corresponding values of p, θ, m1, m2 and m3 are

given in table 2, 3, 4 and 5.

Parameters Optimal values Parameters Optimal values

p −0.00379512 θ −2.55067 rad

m1 0.0435296 m2 −0.0281861

m3 0.0459604

Table 2. The optimal values of parameters p, θ, m1, m2, m3, through PSO for upper bound limit

of Σm = 0.12 eV and normal mass hierarchy.
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Figure 1. Generic flow chart of PSO

Parameters Optimal values Parameters Optimal values

p −0.00152511 θ −5.69226 rad

m1 0.029288 m2 0.000468082

m3 0.0302647

Table 3. The optimal values of parameters p, θ, m1, m2, m3, through PSO for lower bound limit

of Σm = 0.06 eV and normal mass hierarchy.

Parameters Optimal values Parameters Optimal values

p 0.00290448 θ 2.54093 rad

m1 −0.0447439 m2 0.0468078

m3 0.0272375

Table 4. The optimal values of parameters p, θ, m1, m2, m3, through PSO for inverted mass

hierarchy and for upper bound limit of Σm = 0.12 eV .

Parameters Optimal values Parameters Optimal values

p 0.00248929 θ 0.590928 rad

m1 −0.00983418 m2 0.0372062

m3 −0.0114283

Table 5. The optimal values of parameters p, θ, m1, m2, m3, through PSO for lower bound limit

of Σm = 0.06 eV and inverted mass hierarchy.
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Figure 2. Fitness function versus number of iterations

The lepton mixing matrices upto second order perturbation theory for both mass

hierarchy and for upper (0.12 eV ) and lower (0.06 eV ) bound limits of Σm are given as:

|U (N)upper
PMNS | =

 0.819986 0.553082 0.14781

0.332956 0.671058 0.661831

0.465758 0.493805 0.735039

 (3.5)

|U (N)lower

PMNS | =

 0.819985 0.553085 0.14781

0.332958 0.671056 0.661831

0.465759 0.493804 0.735039

 (3.6)

|U (I)upper
PMNS | =

 0.820004 0.553096 0.147814

0.333852 0.671631 0.661835

0.464931 0.493097 0.735035

 (3.7)

|U (I)lower

PMNS | =

 0.819983 0.553087 0.147809

0.332959 0.671055 0.661832

0.46576 0.493803 0.735038

 (3.8)

On the behalf of the values of p, θ, m1, m2 and m3, the mass corrections upto second

order perturbation theory for both mass hierarchy and for upper (0.12 eV ) and lower
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(0.06 eV ) bound limits of Σm are given as: |m′
1
(N)upper | = 0.0435082 eV , |m′

2
(N)upper | =

0.0293509 eV , |m′
3
(N)upper | = 0.0471467 eV , |m′

1
(N)lower | = 0.0292794 eV , |m′

2
(N)lower | =

1.78893×10−18 eV , |m′
3
(N)lower | = 0.0307414 eV , |m′

1
(I)upper | = 0.0453623 eV , |m′

2
(I)upper | =

0.0471197 eV , |m′
3
(I)upper | = 0.027544 eV , |m′

1
(I)lower | = 0.00982013 eV , |m′

2
(I)lower | =

0.0379702 eV and |m′
3
(I)lower | = 0.0122063 eV .

3.1 Effective neutrino mass parameters

The expressions for the effective neutrino masses [91–95] associated with neutrinoless dou-

ble beta decay (⟨mee⟩) and beta decay (mβ) are structured as follows:

mβ =

√√√√ 3∑
i=1

|Uei|2m′2
i , ⟨mee⟩ =

∣∣∣∣∣
3∑

i=1

U2
eim

′
i

∣∣∣∣∣, (3.9)

Considering the leptonic mixing matrix elements Uei with i ranging from 1 to 3, representing

the masses m′
i of three neutrinos, the effective neutrino masses associated with neutrino-

less double beta decay (⟨mee⟩) and beta decay (mβ) are computed using the parameters

obtained in section 3. This calculation is performed for both mass hierarchy of neutrino,

yielding the following results: ⟨mee⟩(N)upper = 3.93 × 10−2 eV , ⟨mβ⟩(N)upper = 1.39 ×
10−2 eV , ⟨mee⟩(N)lower = 1.70× 10−3 eV , ⟨mβ⟩(N)lower = 4.71× 10−3 eV , ⟨mee⟩(I)upper =

4.55 × 10−2 eV , ⟨mβ⟩(I)Upper = 4.56 × 10−2 eV , ⟨mee⟩(I)lower = 1.85 × 10−2 eV and

⟨mβ⟩(I)lower = 2.26× 10−2 eV .

4 Vacuum alignment studies

In particle physics, the dynamics of scalar fields are encapsulated by an invariant scalar

potential within the symmetry group. The following equation 4.1 describes the invariant

scalar potential within the symmetry group SU(2)L × A4 × Z3 × Z10. It plays a cru-

cial role in understanding spontaneous symmetry breaking and the generation of particle

masses. While A4, Z3, and Z10 are discrete symmetries that add to the rich structure of
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the potential, the SU(2)L symmetry describes weak isospin.

V =− µ2
ϕ[ϕ

†ϕ] + λϕ
1 [ϕ

†ϕ][ϕ†ϕ] + λϕ
2 [ϕ

†ϕ]1′ [ϕ
†ϕ]1′′ + λϕ

3 [ϕ
†ϕ]3s [ϕ

†ϕ]3s + λϕ
4 [ϕ

†ϕ]3s

[ϕ†ϕ]3a + λϕ
5 [ϕ

†ϕ]3a [ϕ
†ϕ]3a − µ2

Φ[Φ
†Φ] + λΦ

1 [Φ
†Φ][Φ†Φ] + λΦ

2 [Φ
†Φ]1′ [Φ

†Φ]1′′

+ λΦ
3 [Φ

†Φ]3s [Φ
†Φ]3s + λΦ

4 [Φ
†Φ]3s [Φ

†Φ]3a + λΦ
5 [Φ

†Φ]3a [Φ
†Φ]3a − µ2

∆[∆
†∆]

+ λ∆
1 [∆

†∆][∆†∆] + λ∆
2 [∆

†∆]1′ [∆
†∆]1′′ + λ∆

3 [∆
†∆]3s [∆

†∆]3s + λ∆
4 [∆

†∆]3s

[∆†∆]3a + λ∆
5 [∆

†∆]3a [∆
†∆]3a + λϕΦ

1 [ϕ†ϕ][Φ†Φ] + λϕΦ
2 [[ϕ†ϕ]1′ [Φ

†Φ]1′′ + [ϕ†ϕ]1′′

[Φ†Φ]1′ ] + λϕΦ
3 [ϕ†ϕ]3s [Φ

†Φ]3s + λϕΦ
4 [[ϕ†ϕ]3s [Φ

†Φ]3a + [ϕ†ϕ]3a [Φ
†Φ]3s ]

+ λϕΦ
5 [ϕ†ϕ]3a [Φ

†Φ]3a + λϕ∆
1 [ϕ†ϕ][∆†∆] + λϕ∆

2 [[ϕ†ϕ]1′ [∆
†∆]1′′ + [ϕ†ϕ]1′′ [∆

†∆]1′ ]

+ λϕ∆
3 [ϕ†ϕ]3s [∆

†∆]3s + λϕ∆
4 [[ϕ†ϕ]3s [∆

†∆]3a + [ϕ†ϕ]3a [∆
†∆]3s ] + λϕ∆

5 [ϕ†ϕ]3a

[∆†∆]3a + λΦ∆
1 [Φ†Φ][∆†∆] + λΦ∆

2 [[Φ†Φ]1′ [∆
†∆]1′′ + [Φ†Φ]1′′ [∆

†∆]1′)

+ λΦ∆
3 [Φ†Φ]3s [∆

†∆]3s + λΦ∆
4 [[Φ†Φ]3s [∆

†∆]3a + [Φ†Φ]3a [∆
†∆]3s ] + λΦ∆

5 [Φ†Φ]3a

[∆†∆]3a − µ2
1[[η

†κ] + [κ†η]]− µ2
2[[ηκ] + [κ†η†]] + ληκ

1 [η†η][κ†κ]− µ2
3[[ξ

†ξ′]

+ [ξ′
†
ξ]]− µ2

4[[ξξ
′] + [ξ′

†
ξ†]] + λξξ′

1 [ξ†ξ][ξ′
†
ξ′].

(4.1)

The minimization conditions (VEVs) of this potential can result in the extreme solutions

detailed in 4.2. These VEVs provide information about the stable configurations of the

system since they represent crucial places where potential energy is minimized.

⟨ϕ⟩ = v(1, 0, 0), ⟨∆⟩ = w(0,−1, 1), ⟨Φ⟩ = u(0, 1, 1),

⟨η⟩ = ⟨κ⟩ = vm, ⟨ξ⟩ =
〈
ξ′
〉
= vϵ,

(4.2)

with the conditions
2

3
u2wλΦ∆

4 +
2

3
w3λ∆

4 = 0, (4.3)

v3mληκ
1 − µ2

1v
3
m − µ2

2v
3
m = 0, (4.4)

λξξ′

1 v3ϵ − µ2
3vϵ − µ2

4vϵ = 0, (4.5)

2u3λΦ
2 − 8

9
u3λΦ

3 + 2uw2λΦ∆
2 − 4

9
uw2λΦ∆

3 = 0, (4.6)

2u2vλϕΦ
1 − 4

9
u2vλϕΦ

3 + 2v3λϕ
1 +

8

9
v3λϕ

3 − vµ2
ϕ − 2vw2λϕ∆

1 +
4

9
vw2λϕ∆

3 = 0, (4.7)

u2vλϕΦ
2 − 2

9
u2vλϕΦ

3 +
1

3
u2vλϕΦ

4 + vw2λϕ∆
2 − 2

9
vw2λϕ∆

3 +
1

3
vw2λϕ∆

4 = 0, (4.8)

u2vλϕΦ
2 − 2

9
u2vλϕΦ

3 − 1

3
u2vλϕΦ

4 + vw2λϕ∆
2 − 2

9
vw2λϕ∆

3 − 1

3
vw2λϕ∆

4 = 0, (4.9)

4u3λΦ
1 + u3λΦ

2 +
4

3
u3λΦ

3 +
1

3
u3λΦ

4 − uµ2
Φ + uv2λϕΦ

1 − 2

9
uv2λϕΦ

3 − 1

3
uv2λϕΦ

4

− 2uw2λΦ∆
1 + uw2λΦ∆

2 +
2

9
uw2λΦ∆

3 − 1

3
uw2λΦ∆

4 = 0,

(4.10)

4u3λΦ
1 + u3λΦ

2 +
4

3
u3λΦ

3 − 1

3
u3λΦ

4 − uµ2
Φ + uv2λϕΦ

1 − 2

9
uv2λϕΦ

3 +
1

3
uv2λϕΦ

4

− 2uw2λΦ∆
1 + uw2λΦ∆

2 +
2

9
uw2λΦ∆

3 +
1

3
uw2λΦ∆

4 = 0,

(4.11)
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2u2wλΦ∆
1 − u2wλΦ∆

2 − 2

9
u2wλΦ∆

3 +
1

3
u2wλΦ∆

4 + v2wλϕ∆
1 − 2

9
v2wλϕ∆

3 − 1

3
v2wλϕ∆

4

− 4w3λ∆
1 − w3λ∆

2 − 4

3
w3λ∆

3 − 1

3
w3λ∆

4 − wµ2
∆ = 0,

(4.12)

− 2u2wλΦ∆
1 + u2wλΦ∆

2 +
2

9
u2wλΦ∆

3 +
1

3
u2wλΦ∆

4 − v2wλϕ∆
1 +

2

9
v2wλϕ∆

3 − 1

3
v2wλϕ∆

4

+ 4w3λ∆
1 + w3λ∆

2 +
4

3
w3λ∆

3 − 1

3
w3λ∆

4 + wµ2
∆ = 0,

(4.13)

PSO Treatment for Scalar Potential:

Due to VEVs 4.2 and multiplication rules for A4 symmetry given in A, equation 4.1

become as

V =− µ2
ϕv

2 + λϕ
1v

4 +
4

9
λϕ
3v

4 − 2µ2
Φu

2 + 4λΦ
1 u

4 + λΦ
2 u

4 +
12

9
λΦ
3 u

4 + 2µ2
∆w

2 + 4λ∆
1 w

4

+ λ∆
2 w

4 +
12

9
λ∆
3 w

4 + 2λϕΦ
1 v2u2 − 4

9
λϕΦ
3 v2u2 − 2λϕ∆

1 v2w2 +
4

9
λϕ∆
3 v2w2 − 4λΦ∆

1 u2w2

+ 2λΦ∆
2 u2w2 +

4

9
λΦ∆
3 u2w2 − 2µ2

1v
2
m − 2µ2

2v
2
m + ληκ

1 v4m − 2µ2
3v

2
ϵ − 2µ2

4v
2
ϵ + λξξ′

1 v4ϵ ,

(4.14)

and the fitness function (ϵ′) for 4.14 is expressed as follows.

ϵ′ =

[
− µ2

ϕv
2 + λϕ

1v
4 +

4

9
λϕ
3v

4 − 2µ2
Φu

2 + 4λΦ
1 u

4 + λΦ
2 u

4 +
12

9
λΦ
3 u

4 + 2µ2
∆w

2 + 4λ∆
1 w

4

+ λ∆
2 w

4 +
12

9
λ∆
3 w

4 + 2λϕΦ
1 v2u2 − 4

9
λϕΦ
3 v2u2 − 2λϕ∆

1 v2w2 +
4

9
λϕ∆
3 v2w2 − 4λΦ∆

1 u2w2

+ 2λΦ∆
2 u2w2 +

4

9
λΦ∆
3 u2w2 − 2µ2

1v
2
m − 2µ2

2v
2
m + ληκ

1 v4m − 2µ2
3v

2
ϵ − 2µ2

4v
2
ϵ + λξξ′

1 v4ϵ

]2
,

(4.15)

To stimulate the advancement of meta-heuristic optimization algorithms, we again uti-

lized PSO technique to minimize the scalar potential. The objective function is minimized

through PSO for scalar potential with 500 iteration is presented in figure 3. This figure

demonstrates that the objective function converges to zero with each iteration when em-

ploying the VEVs provided in 4.2. The optimal parameter values, as measured within the

objective function of the scalar potential using PSO technique, are listed in 6. The scalar

potential is minimized from these optimal values.

5 Conclusion

In this study, we have examined a model within A4 × Z3 × Z10 to estimate the neu-

trino masses using particle swarm optimization technique for both neutrino hierarchy.

In this model, a hybrid seesaw mechanism proposed for improved mass suppression and

new mixing patterns by combining type-I and type-II and generate effective Majorana

neutrino mass matrices. After calculating the mass eigenvalues and lepton mixing ma-

trix upto second order perturbation theory in the framework based on A4 symmetry,

we investigated the minimization of the scalar potential for VEVs through PSO. The

utilization of PSO in determining optimal parameters for computing UPMNS matrices,
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Figure 3. Fitness function of scalar potential versus number of iterations

Parameters Optimal values Parameters Optimal values

µϕ 0.47937 µΦ 4.0982

µ∆ 1.59123 µ1 −2.06518

µ2 −5.15994 µ3 −1.86719

µ4 −0.0301591 λϕ
1 −0.494641

λϕ
3 0.965018 λΦ

1 3.54296

λΦ
2 −0.677823 λΦ

3 3.07826

λ∆
1 4.33307 λ∆

2 −6.61388

λ∆
3 1.96668 λϕΦ

1 4.87709

λϕΦ
3 −0.379146 λϕ∆

1 1.46855

λϕ∆
3 −1.76377 λΦ∆

1 4.33631

λΦ∆
2 2.62704 λΦ∆

3 4.08727

ληκ
1 4.82545 λξξ′

1 −0.412121

v −2.42962 u −0.913621

w −1.19017 vm 0.564846

vϵ −0.363201

Table 6. The optimal values of parameters given in 4.1 through PSO.
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neutrino masses as: |m′
1
N | = 0.0292794 − 0.0435082 eV , |m′

2
N | = 1.78893 × 10−18 −

0.0293509 eV , |m′
3
N | = 0.0307414 − 0.0471467 eV , |m′

1
I | = 0.00982013 − 0.0453623 eV ,

|m′
2
I
| = 0.0379702−0.0471197 eV , and |m′

3
I | = 0.0122063−0.027544 eV , effective neutrino

mass parameters as: ⟨mee⟩N = (0.170−3.93)×10−2 eV , ⟨mβ⟩N = (0.471−1.39)×10−2 eV ,

⟨mee⟩I = (1.85− 4.55)× 10−2 eV and ⟨mβ⟩I = (2.26− 4.56)× 10−2 eV for both mass hi-

erarchy are illustrated as well.

A A4 group

The group A4 [96] comprises all even permutations of S4, resulting in an order of (4!)/2 =

12, with 12 different elements. A4 is a tetrahedron symmetry group. A4 notably exhibits

isomorphism with ∆(12) ≃ (Z2 × Z2) ⋊ Z3. There are four irreducible representations as

there are four conjugacy classes. A4 contains three singlets designated as 1, 1′, 1′′ and one

triplet, designated as 3.

The multiplication of triplets are given asj1
j2
k3


3

⊗

k1
k2
k3


3

=(j1k1 + j2k3 + j3k2)1 ⊕ (j3k3 + j1k2 + j2k1)1′

⊕ (j2k2 + j1k3 + j3k1)1′′

⊕ 1

3

2j1k1 − j2k3 − j3k2
2j3k3 − j1k2 − j2k1
2j2k2 − j1k3 − j3k1


3s

⊕ 1

2

j2k3 − j3k2
j1k2 − j2k1
j1k3 − j3k1


3a

.

(A.1)
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