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The 4D compact U(1) gauge theory has a well-established phase transition between a confining and
a Coulomb phase. In this paper, we revisit this model using state-of-the-art Monte Carlo simulations
on anisotropic lattices. We map out the coupling-temperature phase diagram, and determine the
location of the tricritical point, T/K0 ≃ 0.19, below which the first-order transition is observed. We
find the critical exponents of the high-temperature second-order transition to be compatible with
those of the 3-dimensional O(2) model. Our results at higher temperatures can be compared with
literature results and are consistent with them. Surprisingly, below T/K0 ≃ 0.05 we find strong
indications of a second tricritical point where the first-order transition becomes continuous. These
results suggest an unexpected second-order phase transition extending down to zero temperature,
contrary to the prevailing consensus. If confirmed, these findings reopen the question of the detailed
characterization of the transition including a suitable field theory description.

I. INTRODUCTION

Gauge theories formulated on the lattice [1] are central to
our understanding of various nonperturbative phenomena
such as confinement of color charges in quantum chromo-
dynamics. They are also important in condensed matter
physics as emergent low energy theories of interacting spins
or electrons in crystalline solids or in quantum simulators.
Pure U(1) gauge theory has a long history as a relatively
simple example of a theory exhibiting charge confinement
at least at strong coupling [2–10]. In three dimensions,
Polyakov observed that the theory is confining at all cou-
plings as a consequence of monopole condensation where
the existence of monopole charges is a consequence of the
compactness of the gauge group [11, 12]. In 4D, the analo-
gous excitations can be interpreted as monopole worldlines.
Polyakov [12] conjectured and Alan Guth proved [13] that
there is a phase transition between a strong coupling con-
fined phase and a weak coupling Coulomb phase with prop-
agating photon excitations.

Evidence for this phase transition was found already in
Monte Carlo simulations of the lattice action from the 1980s
[13–21] and corroborated by later studies [8–10, 22–25]. An
early controversy over the nature of the phase transition at
zero temperature was eventually settled in favor of a weak
first order transition [5, 9, 10, 17–32].

Monte Carlo results are extracted from finite size scal-
ing of simulations performed on lattices of fixed temporal
size Nt and spatial extent Ns. Finite temperatures in this
theory have been partially explored by simulating lattices
with fixed Nt while varying Ns [23–25]. For Nt = 1, the
4D U(1) lattice gauge theory (LGT) is decoupled into a
3D U(1) LGT and a 3D XY model. While the 3D U(1)
LGT is known to remain in the confining phase through-
out the parameter space, the 3D XY model has a second
order phase transition at a finite value of the coupling. As
such, one expects a phase boundary connecting the sec-
ond order transition at Nt = 1 to the first order transition
at Nt → ∞, along which there must be a tricritical point
where the order of the phase transition changes. Evidence
for this feature of the phase boundary at finite temperature
has been seen numerically [25].

Further studies considered corrections to the action in
the form of the leading higher harmonic of the plaquette

term [28, 29, 33]. These corrections make it possible to shift
the position of this tricritical point [28, 29]. By tuning the
ratio of couplings it is possible to shift the tricritical point
to T = 0, recovering a second order transition down to zero
temperature [33].

In this paper, we revisit both the nature of the low tem-
perature transition and the location of tricritical points by
providing a unified phase diagram as a function of coupling
and temperature for the original Wilson action. It is nat-
ural to approach this problem from the perspective of a
Hamiltonian formulation of the theory. However, it is the
lattice action that can be simulated efficiently using quan-
tum Monte Carlo. Furthermore, the standard lattice action
for attainable system sizes provides access only to a very
coarse-grained set of temperatures. We provide a system-
atic Monte Carlo study of the 4D pure U(1) gauge theory
addressing both of these issues.

The problem of sweeping in temperature is solved by in-
troducing a continuous anisotropy parameter between the
spatial and temporal directions on the lattice. Technically
the parallel between the action and the Hamiltonian for-
mulation can be drawn by making use of a Villain approx-
imation at the expense of introducing a renormalization of
couplings. To fix this issue, we express all Hamiltonian
quantities in terms of the critical coupling at zero temper-
ature. In this way, we are able to systematically relate
various anisotropic lattice sizes and couplings of the simu-
lated action to the Hamiltonian couplings and temperature.
Using these technical innovations in tandem, we were able
to access the finite temperature phase diagram over a wider
region of parameter space than hitherto explored. We find
direct evidence for a second order transition at higher tem-
peratures with criticality consistent with the expected 3D
XY universality class. As the temperature is lowered and
the transition moves to stronger coupling, we pinpoint the
location of the tricritical point hinted at in previous stud-
ies. At lower temperatures still the first order transition be-
comes weaker and in the zero temperature limit our results
are compatible both with a continuous and a very weakly
first order transition. Although our results are not precise
enough, they suggest a scenario where the zero-temperature
transition is continuous concomitant with the existence of
an additional tricritical point at low temperature.

The paper is organised as follows. In section II A, we
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introduce the model and observables, the simulation proce-
dure and lattice anisotropy parameter and the connection
to temperature. Then, in section II C, we outline how we
identify the phase transition and present the complete fi-
nite temperature phase diagram of the 4D U(1) LGT. In
section III B, we describe how to determine the order of
the transition and present our results revealing a tricritical
point. We discuss critical exponents in section III C and
summarize all our findings in section IV.

II. U(1) LATTICE GAUGE THEORY

A. Gauge Action

We consider a hypercubic lattice with spacetime coordi-
nates labelled as n = (τ, r), where r labels points on the
spatial lattice, and τ the time slice. Directions are labelled
as µ, ν = (0, 1, 2, 3) with µ = 0 for the temporal direction.
The canonical U(1) lattice gauge theory action may be writ-
ten in terms of angles ϕν(n) ∈ [0, 2π), parameterising U(1)
group elements Uν(n) = eiϕν (n) on links of the lattice. The
lattice action is

S[ϕ] = −β
∑

n,µ<ν

cos Θµν(n) , (1)

where Θµν(n) = ϕµ(n) + ϕν(n + µ̂) − ϕµ(n + ν̂) − ϕν(n)
are terms living on plaquettes. The corresponding quan-
tum theory is defined through the generating function
Z =

∫
Dϕ e−S[ϕ]. The theory has a U(1) gauge invari-

ance under Uν(n) → η(n)Uν(n)η†(n + ν) where η(n) are
local phases.

We define the theory on a lattice with Ns sites along
each of the three spatial dimensions, and Nt sites along
the temporal direction. Periodic boundary conditions are
imposed in all directions.

In the following, it will be convenient to generalise the
action in Eq.(9) to anisotropic lattices with different spa-
tial as, and temporal, at lattice constants. Defining the
anisotropy parameter ξ = as/at, spatial and temporal lat-
tice directions have to be treated differently at the level of
the action, yielding [34],

S[ϕ] = −β

ξ

∑
n,l<l′

cos Θll′(n) − βξ
∑
n,l

cos Θl0(n) , (2)

with l, l′ = 1, 2, 3 denoting the spatial directions.

B. Observables

In a pure U(1) LGT all observables, i.e. gauge-invariant
quantities, can be constructed as the trace of the product of
link variables across closed loops [35]. Of particular interest
for this work is the Polyakov loop at the site r,

P (r) =
NT −1∏

j=0
U0(r, j) , (3)

obtained as the product of temporal link variables along
the full extent of the temporal lattice. It corresponds to
a closed loop for the considered periodic boundary condi-
tions. The average Polyakov loop,

P = 1
N3

s

∑
r

P (r) , (4)

can be interpreted as the probability of observing a single
static charge [35] over the probability that no charge is
observed.

Therefore, this observable distinguishes confined and de-
confined phases. At large values of the coupling constant
(small β) we expect the theory to be confined, so that no
free charges are observed, i.e. P = 0 at the thermodynamic
limit. At small values of the coupling constant (large β),
we expect the theory to be deconfined, so that free static
charges can be observed, i.e. P ̸= 0. Therefore, the average
Polyakov loop can be taken as the order parameter for the
confined/deconfined transition. In the following, we use P
to determine the value critical value βc at which the phase
transition occurs.

For a finite size lattice this translates to the behavior
illustrated in the upper panel of Fig. 1. For large values
of β we observe log ⟨P ⟩ ∝ −Nt whereas for small β the
asymptotic value reaches an Nt independent constant.
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FIG. 1. Logarithm of the average value of the Polyakov loop
(top) and Polyakov loop susceptibility (bottom) as a function
of β for Nt = 6, 8, 10, 12 and Ns = 24, for an anisotropic lattice
with ξ = 1.5. The average Polyakov loop is P = 0 in the
confining phase, and changes to a non-zero value in the Coulomb
phase. The peak in the susceptibility identifies the location of
the phase transition.

In order to better identify the phase transition, we study
the susceptibility of the Polyakov loop, defined as

χP = NtN
3
s (⟨P 2⟩ − ⟨P ⟩2) , (5)

which peaks at the critical value of β for which the phase
transition occurs, as shown in the lower panel of Fig. 1.

C. Simulating the U(1) LGT

To determine the average value of the Polyakov loop
and its susceptibility, we carried out GPU accelerated
Metropolis-Hastings Monte Carlo [36–41]. We generated
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Niter = 105 Markov Chain iterations and dropped the first
5000, in order to consider only iterations generated after the
thermalization of the system. We further calculated the au-
tocorrelation time, τ , between the configurations, and kept
only configurations separated by 3τ . In order to decrease
the autocorrelation between two sequential configurations,
three over-relaxation steps were implemented [42]. Auto-
correlation times between τ = 1.4 and τ = 15 were obtained
in different regions of the parameter space, resulting in a
final number of configurations between Nconfig = 22.6×104

and Nconfig = 2.1 × 103. The variance of the observables
was calculated with the Jackknife method [43, 44].

From these simulations taken for different values of Nt

and ξ, we obtain the critical value of β(Nt, ξ) for which the
confinement/deconfinement phase transition occurs by per-
forming a Lorentzian fit to the Polyakov loop susceptibility.
We have checked that results do not change significantly
with Ns for Ns sufficiently large.

D. Effective Hamiltonian

To link the coupling constants of the lattice gauge the-
ory defined in the previous section to physical parameters
we shall assume that there is a Hamiltonian for the gauge
theory with couplings U and K that are to be determined
from the lattice action results [45],

H = U

2
∑
r,l

(nl(r))2 − K
∑

r,l<l′

cos [Θll′(r)] , (6)

where nl(r) an integer-valued operator conjugated to ϕl(r).

E. Parameter Matching

Starting from the Hamiltonian of Eq.(6), the standard
derivation of the partition function Z = Tr[e−H/T ] by Trot-
ter slicing, that we sketch in appendix A for completeness,
relies on the Villain approximation to integrate the con-
jugated variables, nµ(r). A naive identification of the re-
sulting action, valid for large values of TNt/U , and that of
Eq.(2) yields

K

TNt
= β

ξ
, (7)

TNt

U
= βξ. (8)

However, at small Nt, there are important corrections at
low temperatures. A first refinement to Eqs. 7 and 8 can
be obtained using a perturbative expansion [46], which we
provide in Appendix B. As we show in Appendix B, despite
clear improvements over the naive parametrization Eqs. 7
and 8, this approach is still not sufficient to determine the
phase diagram given the system sizes available to us.

Nevertheless, an action of the form of Eq.(2) is expected
to capture the physics of H, especially in the vicinity of the
phase transition where irrelevant terms can be neglected.

With this motivation, we renormalize the parameters in
the action, replacing the coefficient multiplying the space-
time part with a scaling function of TNt/U to be deter-
mined, i.e.

S[ϕ] = − K

TNt

∑
n,µ<ν

cos Θµν − f

Å
TNt

U

ã∑
n,µ

cos Θµ0 . (9)
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FIG. 2. Values of β0(ξ) = limNt→∞ β(Nt, ξ) for each value of ξ
approximated using the largest value of Nt available.
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FIG. 3. Function f̃−1(z) obtained by fitting a curve to z =
ξβ0 (ξ) and f̃−1 = ξ/β0(ξ), according to Eq. 12 and using the
values of β0 determined for each value of ξ, as shown in Fig 2

Identifying the terms with those in Eq.(2) and solving in
order to K/U and T/U we find

K

U
= β

ξ
f−1 (βξ) , (10)

T

U
= 1

Nt
f−1 (βξ) . (11)

To determine f(z) numerically we first approximate the
quantity β0(ξ) = limNt→∞ β(Nt, ξ) by β(Nt, ξ) computed
with the largest available value of Nt and confirm that ap-
propriate convergence with Nt was achieved.

The critical value of K = K0 at T = 0 thus given by
Eq.(10) evaluated at β0(ξ)

K0

U
= β0(ξ)

ξ
f−1 [β0(ξ)ξ] . (12)

Since the left hand side of this equality is independent of ξ
and since β0(ξ) was obtained previously, this relation can be
used to determine f−1(z) up to a multiplicative constant,
i.e. the function f̃−1(z) = Uf−1(z)/K0. The quantities
β0(ξ) and f̃−1(z) are shown in Figs. 2 and 3, respectively.

Given f̃ , the mapping between the action and the Hamil-
tonian is completely determined by

K

K0
= β

ξ
f̃−1 (βξ) , (13)

T

K0
= 1

Nt
f̃−1 (βξ) . (14)
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A drawback of this procedure is that it only determines
the mapping between Hamiltonian and action coupling con-
stant up to a constant, K0, that has to be determined in-
dependently.

Confined

Coulomb
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2nd order

1st order

Consistent with 2nd order
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FIG. 4. Phase diagram using the parameters in Eqs. 13 and
14. Different markers represent different extents of the temporal
lattice, Nt. The error bars were computed and are smaller than
the markers. The calculated values of T/K0 and K/K0 for each
value of ξ and Nt are presented in appendix C, in table I. TP
indicates the tricritical point at which the transition changes
between first and second order. TP’ instead refers to the point
below which the transition is consistent with second order.

III. RESULTS

A. Phase diagram

Fig. 4 shows the phase diagram of the U(1) gauge Hamil-
tonian (6), obtained via the approach outlined in the pre-
vious section. Using our parameter matching procedure,
the critical values of β(Nt, ξ), obtained by simulating the
lattice action for many different (Nt, ξ) couplings, collapse
into a single curve.

The quality of the data collapse is remarkable. As ex-
pected, we find that for large T the transition is second
order and passes to first order at a tricritical point, TP,
as T decreases. Interestingly, for even lower temperature,
we find that the discontinuity becomes weaker. In fact, our
data is compatible with a second order transition for T = 0.
These findings are substantiated in the next section.

B. Order of the Phase Transition

We now turn to the discussion of the order of the phase
transition along the entire phase boundary. To identify
the order of the transition, we examine the histograms of
the absolute value of the Polyakov loop on both sides of
the transition. The first order nature of the transition is
determined from phase co-existence signalled by a double
peak structure in the histogram [47].

Histograms are obtain using the field configurations of
Niter = 200000 consecutive Markov Chain iterations and
discarding the first 5000 in order to remove the pre-
thermalization regime. Simulations were carried out with
spatial extents Ns = 24, and Ns = 36.

Fig. 5 illustrates the two peak structure clearly observed
at the phase transition for T/K0 = 0.12. Fig. 6 shows how
the Polyakov loop histogram evolves across the phase tran-
sition from the confined to the decofined phases, for fixed
T/K0 and various K/K0. In the confined phase the his-
togram is single-peaked. The two peak structure appears
around the phase transition and vanishes again deeper in-
side the deconfined phase.

We identify a two-peak structure for temperatures 0.05 <
T/K0 ≤ 0.175 consistent with a discontinuous change of the
Polyakov loop as the system transitions from the confined
to the Coulomb phase. Accordingly we label transitions in
this region as first order.

FIG. 5. Histogram of the Polyakov loop at the phase transition
for T/K0 = 0.12. The two peaks identify phase coexistence at
a first order transition.

Fig. 7 shows the evolution of the histogram across the
phase transition for a temperature T/K0 ≥ 0.19. Here, only
one peak can be identified in the histogram that is progres-
sively centred at higher values of the Polyakov loop. This
continuous change of the average values of the Polyakov
loop is compatible with a second order phase transition.

From the analysis of the histogram across the transition,
our data is consistent is the existence of a temperature point
between T/K0 = 0.175 and T/K0 = 0.19 at which the
transition changes from first to second order. This high
temperature change in the order of the phase transition
had already been explored using isotropic lattices as we
now briefly summarize.

In [23], the authors analysed time histories of the pla-
quette mean values and found signs of metastability on
isotropic lattices with Nt = 6 and Nt = 8, indicating that
the transition is of first order for lattices with these extents
in the temporal direction. For a smaller lattice (higher tem-
perature) their results seem to indicate that the transition
could be second order for Nt = 4. More recently, in [25], the
authors conclude that the transition is first order for lat-
tices with Nt ≥ 6 and second order for lattices with Nt ≤ 5
by studying the scaling of the plaquette and Polyakov loop
susceptibilities with Ns, using isotropic lattices with fixed
values of Nt.

The results we report above are in accordance with these
previous studies. Moreover, by considering the anisotropic
lattice regularization, we are able to explore a wider pa-
rameter region, and obtain a comprehensive coupling-
temperature phase diagram that reveals the tricritical point
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FIG. 6. Histograms of the Polyakov loop for T/K0 = 0.12 and
varying K/K0. Close to the phase transition, we can identify
two peaks in the histogram.

FIG. 7. Histograms of the Polyakov loop at T/K0 = 0.32 and
varying K/K0.

connecting the highest temperature regime (T/K0 > TTP)
to intermediate temperatures (0.05 < T/K0 < TTP). Our
numerical analysis of the double-peak structure places the
tricritical temperature, TTP, within the interval 0.175 <
TTP < 0.19. In addition, our method is also able to access
the previously unexplored lower temperature regime that
we discuss below.

Fig. 8 shows the position of the peaks in the Polyakov
loop histogram versus temperature for various values of
T/K0. The distance between peaks is plotted in Fig. 9. As
expected, from moderate to high temperatures, the peak-
to-peak distance vanishes (up to error bars) concomitantly
with transition change from first to second order. Sur-
prisingly, for low temperatures, the distance between the
peaks also vanishes as the temperature decreases. Indeed,
for T/K0 ≤ 0.05, the peak-to-peak distances vanish within
error bars. Although it is impossible to exclude a very
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FIG. 8. Position of the peaks in the Polyakov loop histogram for
the values of T/K0 considered. For the cases where two peaks
were identified, both peak positions are plotted in blue and red.
For the cases where only one peak was identified, the position
of the peak at the phase transition is plotted in purple.
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FIG. 9. Distance between the peaks in the Polyakov loop his-
togram. In the cases where only one peak was identified, the
peak distance is plotted at zero and the error bars correspond
to the error in the peak position.

weak first order transition, these results strongly indicate
the existence of a low-temperature tricritical point, TP’,
where the transition apparently becomes second order from
TTP’/K0 ≃ 0.05 down to T = 0.

As previously mentioned, there has been some debate
about the order of the phase transition of the U(1) LGT
in the zero temperature limit. This question has been ad-
dressed using isotropic lattices [6, 10, 19, 21, 22] with an
apparent consensus that the transition is first order in the
limit of zero temperature. However, isotropic lattice regu-
larization is constrained to specific values of temperature,
whereas anisotropic lattices allow one to explore a much
wider range of temperatures. In particular, the lattice sizes
used in these previous studies [6, 10, 19, 21, 22] correspond
to temperatures greater than T/K0 = 0.05, for which our
method also predicts a first order transition. It is only for
values of the temperature below those considered in previ-
ous studies that we find the possibility that the two peaks in
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FIG. 10. Binder cumulant (top) and Polyakov loop susceptibil-
ity (bottom) at T/K0 = 0.25 and varying K/K0, for Nt = 8
and several values of Ns. The curves of the Binder cumulant for
different Ns cross at (K/K0)crit = 0.9715 ± 0.0005, indicating
the critical value of K/K0 at infinite spatial volume.

the Polyakov loop histogram merge implying a continuous
transition below TP ′ and down to zero temperature.

In Fig. 4, we present the complete phase diagram with
the order of the transition indicated.

C. Critical exponents

In order to examine the nature of the phase transition in
the regions T/K0 ≥ 0.19 and T/K0 ≤ 0.05, we investigated
the critical exponents for points in each of these regions.

We calculated the Binder cumulant,

B = 1 − ⟨P 4⟩
3⟨P 2⟩2 (15)

and the Polyakov loop susceptibility, χP , for fixed values of
T/K0 and varying K/K0, for several values of the spatial
volume, while keeping the temporal size, Nt, fixed. Near
the phase transition, these quantities scale as

χP ∼ Ns

γ
ν f(∆K · Ns

1
ν )

B ∼ f(∆K · Ns
1
ν ) ,

(16)

where ∆K = (K − K|crit)/K0, with (K/K0)crit the critical
value of K/K0 at infinite spatial volume, and γ and ν are
the critical exponents.

Fig. 10 shows the Polyakov loop susceptibility and the
Binder cumulant obtained at T/K0 = 0.25. We estimated

-2 -1 0 1 2
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0.8

ΔK Ns
1
ν

χ
P

γ ν

Ns = 24

Ns = 32

Ns = 36

0.3

0.4

0.5

0.6

0.7

B

FIG. 11. Data collapse of the Binder cumulant (top) and
the Polyakov loop susceptibility (bottom) at T/K0 = 0.25
for different spatial sizes obtained for ν = 0.67171 and with
(K/K0)crit = 0.9715.

the critical value (K/K0)crit from the crossing of B for dif-
ferent system sizes. Fig. 11 depicts the same data scaled
with the critical exponents for the 3D XY universality class,
ν = 0.67171 and γ = 0.13178 [25]. The data collapse in-
dicates that the high temperature phase transition of the
U(1) lattice gauge theory is of the 3D XY universality class
as one would expect as the model maps to the 3D XY model
in the K/K0 = 0 limit.

Motivated by the fact that the peak distance in the
Polyakov loop histogram goes to zero, we examine the
Binder cumulant in order to address the possibility of a sec-
ond order transition at low temperatures (T/K0 < 0.05).
The transition is harder to probe at low temperatures as
the onset of the Binder cumulant is more shallow. We stud-
ied T/K0 = 0.03 where the discontinuity in the Binder
cumulant is negligible and where the histogram reveals a
single peak. Taking large values of the spatial lattice ex-
tent (Ns = 36, 40, 46), and with Niter = 1.6×107 we obtain
Fig. 13 that shows the Binder cumulant varying smoothly
across the phase transition which is consistent with a sec-
ond order phase transition.

The collapse of the Binder cumulant data strongly de-
pends on the value of (K/K0)crit found. With the data
shown in Fig. 13, it is difficult to specify precisely the point
at which the curves for different spatial system sizes cross,
and values of (K/K0)crit ∈ [0.96, 1] are compatible with the
data obtained. Motivated by the values of (K/K0)crit ob-
tained for higher temperatures, we take (K/K0)crit = 0.97
for T/K0 = 0.03, and explore the values of the critical ex-
ponent ν that allow for the data to be collapsed.
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● T/K0 = 0.05 ● T/K0 = 0.065
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FIG. 12. Binder cumulant for several values of T/K0 calculated
at the highest value of NS considered for each temperature. The
discontinuity decreases with decreasing temperature, indicating
that the transition becomes weakly first order.
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FIG. 13. Binder cumulant at T/K0 = 0.03 for different spatial
sizes. No discontinuity is observed at the phase transition, which
is consistent with a second order transition.

To illustrate this, let us suppose that the transition is
in the XY universality class. In four dimensions, the XY
model is at its upper critical dimension so, for this scenario,
we would expect mean field exponents with logarithmic cor-
rections. Fig. 14 shows an instance of a collapse for mean
field exponent ν = 1/2. Similar such plots are obtained for
ν in the range 0.3 − 0.7 illustrating that the Monte Carlo
data are consistent with a continuous transition below a
temperature of T/K0 = 0.05 with ν in the range 0.3 − 0.7
that includes the mean field exponent.

IV. CONCLUSION

In this paper we have revisited the phase diagram of the
4D U(1) LGT using GPU accelerated Monte Carlo simu-
lations on anisotropic lattices. Previous simulations had
hinted at the presence of a tricritical point along the phase
boundary separating the confined and deconfined phases.

We explored a range of lattice anisotropies with a rescal-
ing of the couplings in the action to obtain phase diagram
parameterized by the Hamiltonian couplings. This allows
one to explore the phase diagram as a function of coupling β
and temperature with considerable resolution in both cou-
plings. We determined that there is a first order region
at 0.05 < T/K0 ≤ 0.175, and a second order region for

Ns = 40

Ns = 46

Ns = 50

-50 0 50 100 150 200 250

0.330

0.335

0.340

0.345

0.350

0.355

ΔK Ns
1
ν

B

FIG. 14. Collapse of the Binder cumulant data at T/K0 = 0.03
obtained for ν = 0.5 and (K/K0)crit = 0.97.

T/K0 ≥ 0.19 with critical exponents consistent with those
of the 3D XY universality class. These simulations clearly
identify a tricritical point at intermediate temperatures be-
tween T/K0 = 0.175 and T/K0 = 0.19. For the region
T/K0 ≤ 0.05 we find that the transition becomes more and
more weakly first order as the temperature is lowered. Our
simulations are compatible both with a continuous tran-
sition and a very weakly first order transition in the zero
temperature limit.

This paper reveals rich structure of the phase diagram in
the pure gauge theory in four dimensions. If one switches
on a coupling to scalar matter in the fundamental repre-
sentation [3] the deconfined phase extends to finite matter
coupling terminating in a tricritical point at the intersection
of a first order line, the Higgs transition and the confine-
ment/deconfinement transition. It is of interest to explore
the evolution of this phase diagram as a function of tem-
perature in the light of the finite temperature tricriticality
demonstrated in this work.
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Appendix A: Derivation of the action

In this appendix we derive the action for the U(1) lattice gauge theory, from the Hamiltonian, given by

H = U

2
∑
r,µ

(nµ(r))2 − K
∑

r,µ<ν

cos [Θµν(r)] . (A1)

The Hilbert space is spanned by the states |ϕ⟩ = ⊗r,µ |ϕµ(r)⟩ or |n⟩ = ⊗r,µ |nµ(r)⟩ such that eiϕ̂µ(r)|ϕ⟩ = eiϕµ(r)|ϕ⟩ and
n̂µ(r)|n⟩ = nµ(r)|n⟩.

As the operator n̂µ(r) corresponds to the lattice version of the electric field flux through the link r + µ̂, the counterpart
of the Gauss law on the lattice is that the charge, q, on a lattice site r is given by the sum of the electric flux through the
links connected to site r, given by the n̂µ(r) operators as

Q̂r =
∑

µ

[n̂µ(r) + n̂µ(r − µ̂)] = q . (A2)

We are interested in studying the U(1) LGT without charges, so we consider the projector to this subspace of the Hilbert
space, written as

P =
∏

r

δQ̂r,0 =
∫ ∏

r

dθ(r)
2π

ei
∑

r
Q̂rθ(r) , (A3)
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which has the properties P 2 = P and [P, H] = 0. Thus, the partition function is given by Z = tr[e−βHP ].
In order to numerically simulate this theory, we perform a Trotter decomposition, by separating the partition function

Z into N time intervals, with a temporal extent ∆τ = β/N , thus obtaining a partition function of the form Z =∫
DϕDθ

∑
n e−S[ϕ,θ,n] with

S[ϕ, θ, n] = − ∆τK
∑

τ,r,µ<ν

cos [ϕµ(τ, r) − ϕν(τ, r + µ̂) + ϕµ (τ, r + ν̂) − ϕν(τ, r)]

− i
∑
τ,r,µ

[ϕµ(τ, r) − ϕµ(τ + 1, r) + θ(τ, r) + θ(τ, r + µ̂)] nµ(τ, r)

+ ∆τ
U

2
∑
τ,r,µ

[nµ(τ, r)]2 .

(A4)

In order to identify this action with a theory on a (3 + 1)D lattice, we identify θ̂(τ, r) with the phase of a link variable
in the temporal direction, ϕ0(τ, r), so that the the second term in equation A4 corresponds to the phase of a space-time
plaquette.

We can then approximate the sum over n in the partition function in equation A4 for ∆τU ≫ 1 using the Villain
approximation [48], given by

ez cos(Φ) =
∑

n

In(z)einΦ ≃
∑

n

e− 1
2z n2+iΦn , (A5)

which is valid for z ≫ 1. Then, we obtain the approximated partition function, given by Z =
∫

Dϕe−S[ϕ] with the action
S[ϕ] given in equation 9, where we relabelled the spacetime coordinates as n = (τ, r) with directions µ, ν = (0, 1, 2, 3) with
µ = 0 for the temporal direction.

Appendix B

In this appendix, we describe a systematic perturbative approach to matching the parameters in the action and Hamil-
tonian formulations of the lattice gauge theory.

A naive matching of the coefficients multiplying the spatial and space-time parts of the action in Eq. 2 and Hamiltonian
6 is as follows. We first note that the interval ∆τ used in the Trotter decomposition coincides with the lattice spacing in
the temporal direction. Then we may write the temperature as T = 1

Nt∆τ and find the following relations between the
simulation parameters and the Hamiltonian parameters

K

U
= β2 ,

T

U
= βξ

Nt
. (B1)

We determine the critical value of the coupling, βc, for different values of Nt and for each value of the anisotropy
parameter. Figure 15 shows these points parameterized using the relations in Eq. B1.

ξ=0.75

ξ=1

ξ=1.5

ξ=2

ξ=2.5
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0.0

0.2
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0.6

0.8

1.0

K

U
=β ²

T U
=
β
ξ

N
T

FIG. 15. Position of the peaks in the Polyakov loop susceptibility in terms of the quantities in equation B1
.

Evidently the points for different ξ in Figure 15 do not collapse to a single phase transition line. This is a consequence
of effectively parameterizing the Hamiltonian from the action at weak coupling (large β). In particular, as discussed
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in Appendix A, where we derived the action in equation A4 from the Hamiltonian, we took z = 1
∆τU . However, this

approximation is valid only in the limit of large z [46]. One may systematically improve the correspondence between the
two formulations by revisiting the Villain approximation (Eq. A5) used to derive one from the other.

So instead we take

ez cos(Φ) =
∑

n

In(z)einΦ ≃
∑

n

e
− 1

2zV
n2+iΦn

, (B2)

with zV = − 1
2 log

Ä
I1(z)
I0(z)

ä . In the limit z → ∞, we have zV ≈ z and we recover equation A5. Using now the approximation

in equation B2 in the action in equation A4 with zV = 1
∆τU we obtain

S[ϕ] = − ∆τK
∑

n,µ<ν

cos [ϕµ(n) + ϕν(n + µ̂) − ϕµ(n + ν̂) − ϕν(n)]

− z
∑
n,µ

cos [ϕµ(n) + ϕ0(n + µ̂) − ϕµ(n + e0) − ϕ0(n)] ,
(B3)

with z such that 1
∆τU = − 1

2 log
Ä

I1(z)
I0(z)

ä . We match the coefficients multiplying the spatial and space-time parts of the action

in equation B3 with the ones in the simulated action, in equation 2. This leads to

K

U
= −β

ξ

1
2 log

Ä
I1(βξ)
I0(βξ)

ä ,
T

U
= − 1

Nt

1
2 log

Ä
I1(βξ)
I0(βξ)

ä . (B4)

We can now plot the critical points at which the phase transition occurs for each value of Nt and ξ in terms of the
quantities defined in equation B4 and obtain the phase diagram shown in figure 16.

ξ=0.75
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ξ=4
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0.0
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K

U
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β

ξ

1

2 log
I1 (βξ)

I0 (βξ)

T U
=
1 N
T

1

2
lo
g

I 1
(β
ξ
)

I 0
(β
ξ
)

FIG. 16. Phase diagram using the relations in equation B4.

With this approach, the points for different ξ collapse reasonably well over much of the phase transition line with notable
lack of collapse only for large K

U . Having understood how to improve the matching conditions directly from the Villain
approximation, in the main text we write a general Ansatz for the action that achieves a perfect collapse over the entire
phase transition line.
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Appendix C

ξ Nt
K

K0
T

K0
0.75 4 0.9956 ± 0.0001 0.18498 ± 0.00001
0.75 6 0.9996 ± 0.0001 0.12356 ± 0.00001
0.75 8 1.0002 ± 0.0002 0.09270 ± 0.00001
0.75 10 1.0000 ± 0.0002 0.07415 ± 0.00001
0.75 12 1.0001 ± 0.0003 0.01797 ± 0.00001

1 4 0.9844 ± 0.0001 0.2454 ± 0.00001
1 6 0.9978 ± 0.0001 0.16473 ± 0.00001
1 8 0.9999 ± 0.00012 0.1237 ± 0.0001
1 10 0.9999 ± 0.0005 0.09895 ± 0.00004
1 12 1.0000 ± 0.0001 0.08245 ± 0.00001

1.5 4 0.9009 ± 0.0001 0.3554 ± 0.0001
1.5 6 0.9776 ± 0.0001 0.24730 ± 0.00003
1.5 8 0.9944 ± 0.0001 0.18711 ± 0.00002
1.5 10 0.9999 ± 0.0002 0.15012 ± 0.00002
1.5 12 1.0009 ± 0.0015 0.12516 ± 0.00002
1.5 14 1.0014 ± 0.0005 0.1073 ± 0.0001
2 4 0.7209 ± 0.0005 0.4280 ± 0.0003
2 6 0.9107 ± 0.0005 0.3234 ± 0.0001
2 8 0.9646 ± 0.0005 0.2503 ± 0.0001
2 10 0.9831 ± 0.0001 0.2023 ± 0.00003
2 12 0.9923 ± 0.0006 0.1694 ± 0.0001
2 14 0.9947 ± 0.0003 0.14541 ± 0.00004
2 16 0.9966 ± 0.0003 0.12736 ± 0.00004
2 18 0.9975 ± 0.0010 0.1133 ± 0.0001

2.5 4 0.5353 ± 0.0006 0.4634 ± 0.0005
2.5 6 0.7961 ± 0.0010 0.3834 ± 0.0004
2.5 8 0.9113 ± 0.0008 0.3098 ± 0.0003
2.5 10 0.9570 ± 0.0009 0.2547 ± 0.0002
2.5 12 0.9790 ± 0.0024 0.2149 ± 0.0005
2.5 14 0.9854 ± 0.0003 0.1849 ± 0.0001
2.5 16 0.9905 ± 0.0002 0.16225 ± 0.00002
2.5 18 0.9945 ± 0.0004 0.1445 ± 0.0001
2.5 20 0.9958 ± 0.0007 0.1302 ± 0.0001
2.5 22 0.9946 ± 0.0005 0.1183 ± 0.0006
2.5 24 0.9978 ± 0.0040 0.1086 ± 0.004

ξ Nt
K

K0
T

K0
3 4 0.3968 ± 0.0009 0.4800 ± 0.0009
3 6 0.6598 ± 0.0011 0.4227 ± 0.0006
3 8 0.8316 ± 0.0016 0.3607 ± 0.0007
3 10 0.9149 ± 0.0014 0.3044 ± 0.0005
3 12 0.9566 ± 0.0018 0.2600 ± 0.0005
3 14 0.9745 ± 0.0010 0.2252 ± 0.0002
3 16 0.9841 ± 0.0014 0.1981 ± 0.0003
3 18 0.9926 ± 0.0040 0.1770 ± 0.0007
3 20 0.9944 ± 0.0050 0.1594 ± 0.0008
3 22 1.0012 ± 0.0028 0.1455 ± 0.0004

3.5 4 0.3006 ± 0.0005 0.4880 ± 0.0007
3.5 6 0.5330 ± 0.0013 0.4457 ± 0.0010
3.5 8 0.7360 ± 0.0040 0.4003 ± 0.0022
3.5 10 0.8518 ± 0.0021 0.3475 ± 0.0008
3.5 12 0.9184 ± 0.0027 0.3020 ± 0.0009
3.5 14 0.9541 ± 0.0018 0.2644 ± 0.0005
3.5 16 0.9740 ± 0.0022 0.2340 ± 0.0005
3.5 18 0.9830 ± 0.0060 0.2091 ± 0.0012
3.5 20 0.9978 ± 0.0080 0.1897 ± 0.0015
3.5 22 0.9983 ± 0.0014 0.1725 ± 0.0002
3.5 24 1.0026 ± 0.0035 0.1585 ± 0.0005
4 4 0.2345 ± 0.0005 0.4929 ± 0.0010
4 6 0.4368 ± 0.0015 0.4629 ± 0.0015
4 8 0.6257 ± 0.0024 0.4244 ± 0.0016
4 10 0.7735 ± 0.0028 0.3821 ± 0.0014
4 12 0.8666 ± 0.0031 0.3389 ± 0.0012
4 14 0.9201 ± 0.0033 0.3002 ± 0.0010
4 16 0.9513 ± 0.0060 0.2674 ± 0.0018
4 18 0.9711 ± 0.0034 0.2404 ± 0.0008
4 20 0.9830 ± 0.0040 0.2178 ± 0.0008
4 22 0.9914 ± 0.0080 0.1989 ± 0.0016
4 24 0.9940 ± 0.0080 0.1826 ± 0.0015

TABLE I. Values of the phase diagram parameters T
K0

and K
K0

, calculated for each value of ξ and Nt, used in the plot of the phase
diagram in figure 4.
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