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Abstract

We discuss matters related to the point that topological quantization in the
strong interaction is a consequence of an infinite spacetime volume. Because of
the ensuing order of limits, i.e. infinite volume prior to summing over topological
sectors, CP is conserved. Here, we show that this reasoning is consistent with
the construction of the path integral from steepest-descent contours. We reply
to some objections that aim to support the case for CP violation in the strong
interactions that are based on the role of the CP -odd theta-parameter in three-
form effective theories, the correct sampling of all configurations in the dilute
instanton gas approximation and the volume dependence of the partition function.
We also show that the chiral effective field theory derived from taking the volume
to infinity first is in no contradiction with analyses based on partially conserved
axial currents.
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1 Introduction

The strong interactions conserve charge–parity (CP ). This has been established through
many observations, to the greatest precision in searches for the permanent electric dipole
moment (EDM) of the neutron [1, 2], and calls for an explanation of certain theoretical
aspects.

Since only a few years after the discovery of quantum chromodynamics (QCD) being
the theory of the strong interactions [3] it has been suggested that due to the generic
presence of a topological term in the action, the charge–parity symmetry CP should be
violated [4–6]. To the present day, there has been no such observation, so arguably the
coefficient θ of the topological term (more precisely θ̄ as we introduce below) would need
to be zero, corresponding to unnatural tuning and therefore a problem.

The present paper adds to the discussion following Ref. [7]. There, it has been
brought up that the effective decomposition (quantization) of gauge field configurations
of finite action into topological sectors of integer winding number without imposing
ad hoc boundary conditions can only be derived when taking the volume of Euclidean
spacetime to infinity. In contrast, there is no physical motivation for fixed boundary
conditions on a finite surface in Euclidean space. As a consequence, the limit of infinite
spacetime volume must be taken before summing over topological sectors, and it turns
out that CP remains conserved this way.
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One of the main points of the present paper is to extend this line of reasoning by
demonstrating that this order of limits corresponds to a well-defined integration contour
in the path integral constructed from the steepest-descent flows. In contrast, the opposite
conventional order of limits results in an integration that is inequivalent in the sense of the
Cauchy theorem. Another purpose of this article is to address some criticisms regarding
Ref. [7]. This article also partly serves as a review of the related topics, though without
including a complete list of references. For some other reviews, see e.g. Refs. [8–10].

Without going into extensive technical detail, the basic reasons for CP conservation
in the strong interaction are given in the summary of Section 2. There, we refer to the
sections in the remainder of the paper where the statements of Section 2 are supported
at a more technical level.

2 Summary and outline

Strong interactions are described by a Yang–Mills theory which generally involves CP -
odd parameters through the masses of the quarks as well as through the topological
term. The Lagrangian in the Euclidean spacetime is

L =
1

2g2
trFµνFµν + ψ̄

(
γ̂µDµ +meiαγ5

)
ψ − i

16π2
θ trFµνF̃µν , (1)

where we use the convention Tr(T aT b) = δab/2, [T a, T b] = ifabcT c for the Lie algebra
generators T a and the structure constants fabc. Above, Fµν = F a

µνT
a with F a

µν ≡ ∂µA
a
ν−

∂νA
a
µ + fabcAbµA

c
ν being the field strength tensors. F̃ a

µν ≡ 1
2
εµναβF

a
αβ (ε1234 = 1) is the

Hodge dual of F a
µν . The covariant derivative takes the form

Dµψi =
(
∂µ − iAaµT

a
)
ψi (2)

when ψi lives in the fundamental representation of the gauge group and

Dµψi = ∂µψi − iAaµ[T
a, ψi] (3)

when ψi lives in the adjoint representation.
The Euclidean gamma matrices γ̂µ are obtained from the Minkowskian counterparts

γµ =

(
0 σµ

σ̄µ 0

)
, (4)

(where σµ = (12, σ⃗) and σ̄
µ = (12,−σ⃗) with σ⃗i the Pauli matrices) via

γ̂4 = γ0 = γ0 , γ̂i = iγi = −iγi . (5)

These matrices satisfy the Clifford algebras

{γµ, γν} = 2gµν14 , {γ̂µ, γ̂ν} = 2δµν14 . (6)
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Following Ref. [7], we use the same γ5 in Euclidean spacetime as for Minkowski space-
time1

γ5 ≡ iγ0γ1γ2γ3 = −γ̂1γ̂2γ̂3γ̂4 . (7)

Since in this paper we mostly work in Euclidean space, from now on we remove the hat
on the Euclidean gamma matrices. Note that the γ5 in the Euclidean spacetime used
here may differ from that used in some other papers, e.g. Ref. [11], by a minus sign. The
chirality in Euclidean spacetime in these two notations is thus defined oppositely. The
only effect of this appears in applying the Atiyah–Singer index theorem [12] when e.g.
deriving the anomalous axial current by counting the zero modes of the massless Dirac
operator.

We note that the terms trFµνF̃µν and ψ̄iγ
5ψ are both parity-odd and charge-conjugation

even [13]. The CP -odd parameters are therefore α, the phase pertaining to the mass m
of the fermion ψ, and θ, the coefficient of the topological term. The fermion ψ in the
fundamental representation is referred to as quark. To focus on the principal aspects,
for the most part of the discussion we take here just one quark flavour and the gauge
group to be SU(2). This is the minimal setup that allows to study the interplay of the
CP -odd parameters α and θ. In particular, we are interested in how α and θ appear
in the effective interaction (known as ‘t Hooft operator) that captures nonperturbative
effects associated with the chiral anomaly. In the single-flavour model, this operator
has the same form as a quark mass term, and therefore both would be hard to discern.
Nonetheless, the main question of whether and how α and θ appear in the effective
‘t Hooft operator can be answered within this setup. The generalization to the phe-
nomenologically relevant case of several flavours is presented in Ref. [7]. In the strong
interactions, the group SU(2) can be viewed as embedded within the SU(3) colour group.
The technical details of this construction are reviewed in Ref. [14].

It is well known that the presence of a CP -odd Lagrangian term does not readily
imply CP -violating physical effects. A necessary condition is the existence of a CP -odd
combination of the Lagrangian terms that is invariant under field redefinitions. In the
present case, this condition is met as the parameter

θ̄ = θ + α (8)

is invariant under redefinitions of the quark fields, in particular through anomalous chiral
transformations. The chiral anomaly [15, 16] also implies that θ is an angular variable,

i.e. all observables must be 2π-periodic in θ. Therefore, the integral 1/(16π2)
∫
d4x trFF̃

that multiplies θ must be an integer in order to contribute to the action and thereby to
the partition function.

Here, we ask the question of whether a nonvanishing θ̄ is also a sufficient condition
for CP violation in strong interactions. Does θ̄ have physical effects, in particular, is
there a neutron EDM depending on its value? Evidently, θ̄ has no impact on the classical

1In Ref. [7], it is mistakenly stated that γ5 = γ̂1γ̂2γ̂3γ̂4.
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equations of motion since the topological term is a total derivative. Nonetheless, under
certain assumptions, based on the fact that the third homotopy group of the gauge group
or one of its SU(2) subgroups is π3(SU(2)) = Z, the energy functional is periodic under
so-called large gauge transformations. The situation is therefore reminiscent of a periodic
quantum mechanical potential in a crystal, and θ̄ would then correspond to the crystal
momentum [4–6, 11].

One way to see how far the analogy goes is to study canonical quantization of the
gauge theory [4]. Since non-Abelian gauge theories are typically handled through func-
tional quantization this possibility has not yet been investigated in all aspects pertinent
to the present questions. We briefly comment on canonical quantization in Section 4 and
in more detail in a separate paper [17].

For the time being, we focus on functional quantization since it has been the principal
method to carry out calculations on CP violation in the strong interactions ever since the
matter was brought up [5, 6, 11, 18]. In the functional approach, we take the partition
function

Z[η, η̄] =

∫
Dψ̄DψDA e

− lim
Ω→∞

∫
Ω d4x (L−η̄ψ−ψ̄η)

(9)

as the defining point of the quantum field theory, where A is the gauge potential. We
write this as a functional of external fermionic sources η(x), η̄(x) as a provision in
order to derive quark correlation functions that may or may not exhibit CP invariance.
Furthermore, we make explicit that the integral over Euclidean spacetime is understood
as a limiting procedure, taking the spacetime volume Ω to infinity. It is this limit that
allows us to state Eq. (9) without specifying boundary conditions on the path integral and
that, moreover, this way we obtain the vacuum correlation functions of the theory [19].
We shall review this point in Section 3.

Now, as argued in Ref. [11], the partition function (9) in infinite spacetime volume
Ω → ∞ receives its nonvanishing contributions from saddle points of finite action and
fluctuations about these. For these field configurations, the winding number ∆n is an
integer that labels the topological sector:

∆n = lim
Ω→∞

∫
Ω

d4x
1

16π2
trFF̃ ∈ Z for nonvanishing contributions to Z . (10)

This is the desired outcome because it is consistent with θ being an angular variable,
as required by the chiral anomaly. As topological quantization, i.e. integer ∆n, is a
consequence of Ω → ∞, we must carry out this limit before summing over topological
sectors.

Suppose now that it is valid to organize the calculation of the path integral by adding
contributions from the individual topological sectors. Then, Eq. (9) implies that the
partition function should be evaluated as

Z[η, η̄] =
∑
∆n

∫
Dψ̄DψDA∆ne

− lim
Ω→∞

∫
Ω d4x (L−η̄ψ−ψ̄η)

. (11)
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The subscript ∆n on DA∆n indicates that the path integral is supposed to cover the
configurations with given ∆n, i.e. to sweep over the given topological sector. The
contributions of the topological sectors are evaluated with the limit Ω → ∞ before they
are added together. A rearrangement of the limits will in general lead to different results
and is therefore not justified.

In Section 3, we expand on this argument and put it on a more formal footing.
The path integrals within individual topological sectors correspond to steepest-descent
contours for the exponent of the Euclidean path integral. For different ∆n, these contours
can only be connected by configurations of infinite action. It thus follows that the
arrangement of limits in Eq. (11) indeed corresponds to a good contour for the path
integral in Eq. (9). Further, this formally establishes that the decomposition of the path
integral into topological sectors is valid in the first place.

This brings us to the salient point: In Ref. [7], it has been shown that the limit
Ω → ∞ does not commute with the sum over ∆n in Eq. (11), with the consequence
that the quark correlations do not exhibit CP violation. While we review this technical
argument in Section 5, the basic reason is that lim∆n→±∞ limΩ→∞ ∆n/Ω = 0, see also
Section 3. As explained in Section 7, one can thus conclude that there is no EDM for
the neutron, no matter what the value of θ̄ is. Since in the sum over ∆n all integer
values are taken, this is where the analogy with the quantum-mechanical crystal breaks
down as for the latter the number of potential minima may be large but remains finite.
Therefore, the order of the path integral and the limit of an infinite spacetime volume
is not an issue in that case.

After all, the strong interactions are complete without the necessity of tuning the
parameter θ̄ to be small or extending the theory by additional scalar fields and nonrenor-
malizable operators. While this is a gratifying conclusion, a scrutiny of the argument
is warranted, not least because the prevalent line of reasoning arrives at the contrary
verdict: In order to deduce CP -violation in the strong interactions, one would have to
impose that the limit Ω → ∞ is taken last, i.e.

Z[η, η̄†]
?
= lim

Ω→∞

∫
Dψ̄DψDA e−

∫
Ω d4x (L−η̄ψ−ψ̄η) , (12)

and at the same time specify boundary conditions on the finite surfaces ∂Ω such as

Aµ = iω∂µω
−1 on some finite ∂Ω , (13)

where ω(x) ∈ SU(2), which corresponds to a pure gauge and implies topological quan-
tization, i.e. ∆n ∈ Z. Equations (12) and (13) together are either directly or indi-
rectly implied in the bulk of the existing literature, including the initial papers on the
topic [5, 6, 11, 18]. Although Eq. (13) may be motivated by considering fields in the
classical ground state, i.e. of vanishing classical energy, on the initial and final spatial
hypersurfaces, the quantum ground state also receives contributions from other field
configurations. Therefore, the boundary condition (13) does not follow from the parti-
tion function (12) (note that Eq. (13) moreover assumes that three-dimensional space
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is finite), unlike the topological quantization (10) that is implied by the partition func-
tion (9), see Section 3 for more detail.

To our knowledge, the published papers do not provide a conclusive reason for how
the procedure given by Eqs. (12) and (13) might be deduced from the functional (9)
that defines the theory. Given that the limits do not commute, i.e., that Eq. (11) is not
equivalent with Eqs. (12) and (13), as shown explicitly in Section 5, there also cannot
be such a derivation. (Note that while in Ref. [11] it is shown that the correlators in a
large but finite box depend only on the boundary conditions through the Chern–Simons
flux, the issue that the limits do not commute is not addressed in that work.) Neither
are we aware of an argument why Eq. (9), which is the standard textbook expression
(up to the fact that we write the infinite-spacetime limit explicitly, which is a purely
notational matter), might be incorrect to start with. Unless taking Ω → ∞ there is also
no apparent reason why the boundary condition (13) should be physical.

In the simplest terms, the reason for CP -conservation in the strong
interactions can thus be stated as follows:

• For θ to be physical, we must have ∆n ∈ Z since θ is an angular
variable. Since fixed boundary conditions on a finite surface are not
physical, this topological quantization can only follow from Ω → ∞.

• Given the order of limits that is thus implied, there is no
CP -violation for Ω → ∞ since lim∆n→±∞ limΩ→∞ ∆n/Ω = 0.

While the main conclusions and technicalities on the absence of CP violation in the
strong interactions have been presented in Ref. [7], one objective of the present paper is
to add a more formal interpretation of the difference between Eqs. (9) and (11) versus
Eqs. (12) and (13). In Section 3, we recall to that end the reason for taking Euclidean
time to infinity in the first place. Then, we show that Eq. (11) corresponds to a contour
integration that can be derived and assembled from steepest-descent flows, while the
prescription of Eqs. (12) and (13) does not correspond to a connected integration contour.
Since the reasoning in the present work is based on infinite Euclidean spacetime as the
analytic continuation of Minkowski spacetime, we briefly comment in Section 4 on how
calculations in finite Euclidean spacetimes with and without boundaries can be made
meaningful, but we leave a detailed discussion to a separate paper. Next, as it allows
for an explicit demonstration of CP conservation as a consequence of Eq. (11) and for
an intuitive interpretation of the matter, we review in Section 5 the dilute instanton
gas calculation of Ref. [7]. This lays the ground to address objections concerning the
volume dependence of the partition function in Section 6. Since there is no physical
interpretation of fixed boundary conditions on finite Euclidean surfaces, we show that
the partition function in fact shows the expected behaviour when evaluated in finite
volumes with open boundary conditions. Further objections are based on effective field
theory (EFT) descriptions, which is why we review the role of the θ parameter in the
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effective ‘t Hooft vertex as well as in chiral perturbation theory in Section 7. With this
preparation, we can reply in Section 8 to an objection using the topological term in
hadronic matrix elements and the role of θ in the effective description of the dynamics of
the topological current. After some additional comments on the sampling of topological
configurations in the different orders of limits and the recent literature, we wrap up and
conclude in Section 9. Except for Section 7 where we work in Minkowski spacetime, we
work in Euclidean spacetime throughout all other sections.

3 Path integral and topological quantization

Euclidean partition function for infinite volume As a defining point of the quan-
tum field theory, one may take the partition function (9). Such a partition function
based on an infinite Euclidean volume is a common starting point for a wide range of
calculations. Here, we go for variations with respect to the sources η(x) and η̄(x) that
yield Euclidean correlation functions for the quarks. Eventually, these can be analytically
continued to Minkowski spacetime and interpreted as vacuum correlations.

Nonetheless, as some of these matters are contested in the context of CP conservation
in the strong interactions, we shall briefly revisit here the reasons for taking an infinite
Euclidean spacetime volume, or, more precisely, why we take imaginary time to infinity.
For more discussion, see Ref. [19]. In short, it allows one to obtain vacuum correlation
functions without specifying the vacuum in terms of a wave functional (which appears
to be practically impossible in quantum field theory at the nonlinear level).

Imaginary time arises from the analytic continuation of real time. The corresponding
Wick rotation is straightforward for any spacetime that is stationary in real time. Note
that taking the spacetime volume Ω to infinity comes as a consequence of the limit of
infinite Euclidean time. The spatial geometry is not the decisive reason for this even
though we take here unbounded Cartesian space R3, for definiteness. The reason for
taking time to infinity is as follows: By Wick rotation, the correlations derived from Z
for infinite imaginary time correspond to the analytically continued expectation values
for the state of the lowest energy that is accessible given the conservation laws. This
remains true also for clockwise rotations of the real time axis by an angle 0 < ϑ ≤ π/2
in the complex plane provided the infinite time limit is applied prior to taking ϑ to
zero. (Do not confuse ϑ here with the angle θ as the coefficient of the topological term.)
That is, for given initial and final states |i, f⟩ (which here may be taken as the usual
linear combinations of field eigenstates of integer Chern–Simons number to comply with
gauge invariance under large gauge transformations, i.e. the so-called θ-vacua) the path
integral corresponds to

Zϑ = lim
t→∞

⟨f |e−iHt exp(−iϑ)|i⟩ , (14)

where H is the Hamiltonian. It therefore projects on the lowest energy eigenstate that
is accessible. For ϑ = π/2, one gets the Euclidean path integral. In this sense, the
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Minkowskian vacuum correlation functions are analytic continuations of the Euclidean
ones with a discontinuity on the real time axis.

If instead we were keeping time purely real or still complex in general but finite,
then we would have to weigh each path contributing to the partition function by the
ground state wave functional Ψ evaluated at the endpoints of these paths, as we discuss
in Section 4. The main reason for taking complex time to infinity is therefore to avoid
this complication because then we can evaluate the path integral without explicit use
of the vacuum state. In particular, since the ground state wave functional in Yang–
Mills theory is not known to an approximation that addresses the present purpose,
taking the imaginary part of time to infinity is the main method of making the analytic
approximation of vacuum correlators feasible.

Evaluation of the partition function and topological quantization Having spec-
ified the problem through the partition function (9), we now turn to its evaluation. In
the following, we show that Eq. (9) implies an integration contour that joins together the
steepest-descent paths for each topological sector ∆n. The field configurations on these
steepest-descent contours are not bound by any finite spacetime volume, i.e. there is no
value R so that Fµν(x)Fµν(x) = 0 (at least to some approximation) for |x| > R for all
field configurations on a given steepest descent. Therefore, we must evaluate the path
integrals for the different topological sectors ∆n in the limit Ω → ∞ before interfering
these [7]. This also implies that organizing the evaluation of the path integral in terms
of a sum over contributions from the individual topological sectors is valid in the first
place. Further, we argue that the order of limits in Eqs. (12) and (13) is opposite to
what is implied by the form of the correct integration contour.

To start, we state why it is necessary to specify an appropriate integration contour.
Since the integrand in Eq. (9) for θ̄ ̸= 0 mod 2π is not positive definite, explicitly
because of the topological term and implicitly because of fermion determinants, we must
determine the integration contours to leave the integral well defined. These specify the
order in which the integral

∫
DA must be carried out so that we can derive how to

sum over the topological sectors. In particular, it will allow us to discern whether it is
Eq. (11) or Eqs. (12) and (13) that correspond to the correct procedure.

To determine the contours, we first note that in general, the real part of the Euclidean
Yang–Mills action

S ⊃ SYM =
1

2g2

∫
Ω

d4x trFµνFµν (15)

should be bounded from below on its domain and thus have global or local minima
that may or may not exhibit degeneracies. If Ω is infinite, this implies that the vector
potential at such minima reduces to pure gauge configurations at infinity, i.e.

Aµ(x) → iω(x)∂µω
−1(x) for |x| → ∞ for local minima of Re[S] , (16)

where ω(x) ∈ SU(2). Because the surface at infinity is homeomorphic to S3, and the
third homotopy group of the gauge symmetry is π3(SU(2)) = Z, this immediately implies
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−S

−∞

A

−S

−∞
μ

increasing  Ω

Figure 1: Upper panel: The integration contour given by the steepest-descent trajec-
tories for the partition function (9) may be followed by successive full integrations (i.e.
over all field configurations in the infinite spacetime), along the particular thimbles. This
corresponds to Eq. (11). The thimbles can be thought of as being connected via con-
figurations of infinite action, leading to a connected integrated contour represented by
the blue line. Lower panel: Equations (12) and (13) amount to a contour (represented
again by the blue lines) that is not connected because there is no continuous deformation
from one topological sector into another in finite Ω. The upper and lower contours are
therefore not equivalent in the sense of the Cauchy theorem.

topological quantization as in Eq. (10) for these minima, i.e. integer winding number ∆n.
In addition, for each of these minima, there are degeneracies, i.e. flat directions of the
action, parameterized by moduli [20]. Note that this reasoning applies without imposing
boundary conditions ad hoc (as in Eq. (13)) because the limit Ω → ∞ appears inside the
path integral (9). This is in line with standard introductions of path integrals in infinite
spacetimes that do not impose particular boundary conditions, see e.g. Ref. [21] where
this point is mentioned explicitly.

Given the minima of the real part of the classical Euclidean action with integer
winding number, the contributions to the path integral for the individual topological
sectors ∆n can then be evaluated on steepest-descent contours (of the negative action
−S) passing through these minima. The contours are Lefschetz thimbles and are deter-
mined through flow equations [22–25]. By this reasoning of steepest-descent contours,
upon dealing with the usual ultraviolet divergences and the vacuum contributions in the
infinite spacetime volume, the path integrals in the individual topological sectors are
convergent. The steepest-descent contours for different ∆n do not intersect for finite
S because, in the infinite spacetime volume, solutions of different winding number are
separated by infinite action barriers. The integration contours over the different sectors
∆n can therefore only be connected via configurations of infinite action S that give no
contribution to the partition function (9). Note that these infinite action configurations
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connecting the sectors are allowed precisely because we do not impose boundary con-
ditions when evaluating the partition function. For comparison, in finite volumes with
fixed boundary conditions (13) the field configurations in different topological sectors
are not continuously connected, not even via a path through configurations of infinite
action since paths with a noninteger winding number are forbidden by the boundary
conditions (13), no matter whether S is finite or infinite. In Figure 1, we schematically
illustrate these integration paths and their crucial differences.

Therefore, we first carry out the integration over the entire infinite spacetime in a
given topological sector ∆n individually. Then, we can connect this integration with
the steepest-descent contour for a different ∆n via configurations of infinite action that
do not contribute to the path integral. This determines the integration contour that
should be used in order to evaluate Eq. (9) and that is given by the order of limits
specified in Eq. (11). Any alternative contour must be a continuous deformation in
compliance with the prerequisites of the Cauchy theorem, a criterion that is not met
with Eqs. (12) and (13), which consequently lead to a different result. In practice, this
means that, without specifying ad hoc boundary conditions, we must not interfere the
different sectors before taking Ω → ∞. Otherwise, we would partition and rearrange the
full integration contour in a non-continuous way that in general leads to an inequivalent
result because the integrand, or more specifically, the sum over the topological sectors,
is not positive definite and not absolutely convergent.

We can therefore write the path integral as in Eq. (11) and as indicated in Figure 1.
We emphasize that the decomposition into topological sectors follows from Ω → ∞ and
is not a consequence of the saddle point approximation (which only comes into play in
the dilute instanton gas approximation in Section 5). In turn, finite surfaces ∂Ω imply
that topological charge is not quantized, i.e. it can flow in and out of the volume Ω,
unless imposing unphysical constraints.

Since the winding number density ∆n/Ω apparently is a measure of CP violation, it is
already clear that for each term of the series (11), there is no CP -violating contribution,
as limΩ→∞ ∆n/Ω = 0. For the quark system, the corresponding calculation is explicitly
presented in Section 5.

Commuting the order of limits The decisive point in the present discussion re-
garding the CP symmetry of the strong interactions is whether Eqs. (12) and (13) are
consistent with Eq. (9) and the integration contour that it implies. As we shall review
in Section 5, the conclusion that the CP symmetry is violated when α + θ ̸= 0 mod π
relies on a partition function as in Eq. (12) in conjunction with the ad hoc boundary
conditions (13). In Eq. (12) the order of limits is therefore opposite to Eq. (11) that we
have derived from the starting point given by Eq. (9).

Now to further (beyond the apparent contradiction with Eq. (9) regarding CP ) assess
the validity of Eqs. (12) and (13), we take Ω to be finite and first assume that the
boundary conditions from Eq. (13) are not imposed. In particular, one can then move
topological charge (i.e. instantons in the weak coupling limit) across the boundary ∂Ω
so that there is no topological quantization into sectors with integer winding number
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∆n and also no conservation of topological charge within Ω. Without these, nontrivial
minima of the action do not exist also. To bring topology back into the picture, one
might therefore impose the boundary conditions given in Eq. (13). These boundary
conditions can be derived as a consequence of the infinite spacetime volume Ω → ∞
in the partition function (9) [11]. However, imposing these boundary conditions and
computing the partition function according to Eqs. (12) and (13) requires commuting
the limit of infinite spacetime volume with the sum over infinitely many topological
sectors which is however not justified.

Equations (12) and (13) therefore do not follow from Eq. (9) so that one may keep
looking for alternative arguments. However, while topological quantization also emerges
for fixed boundary conditions on a given compact ∂Ω as in Eq. (13), there does not
appear to be a valid reason for imposing such configurations. In fact, the vacuum wave
functional has nonvanishing support on configurations that do not observe Eq. (13) and
thus have a nonvanishing classical energy. Since the field operators do not commute
with the Hamiltonian, the configurations obeying Eq. (13) are as good or as bad as
any other field configuration subject to a different boundary condition on ∂Ω. (For
the boundary conditions given in Eq. (13), ∆n are integers whereas, for more general
boundary conditions specified up to gauge transformations, ∆n are given by a fixed
real number plus any integer.) So there is no preference for choosing pure gauges as a
boundary condition on a sequence of finite surfaces, even as these surfaces are taken to
infinity. For example, if ∂Ω is spherical, instantons could be placed at certain angles
and close to the radius of ∂Ω, what defines boundary conditions with noninteger ∆n.
Except that there is not a valid reason to impose Eqs. (12) and (13), whose consequence
for the outcome of the calculation is material, there also is no a priori justification why
Ω should be taken to infinity at the same rate for all topological sectors in Eq. (12).

Finally, note that for examples that do not involve noncommuting limits, correlations
from fixed boundary conditions on finite ∂Ω converge in imaginary time to the vacuum
correlators as Ω → ∞. However, this does not imply by analogy that in the present case,
where we must sum over infinitely many topological sectors, Eqs. (12) and (13) yield the
correct vacuum correlation functions.

4 Finite Euclidean spacetimes

Above, we have reviewed the reasoning for computing the path integral without speci-
fying boundary conditions in favour of taking complex time to infinity. While yielding
the physical correlation functions, taking time to infinity clearly is a mathematical trick.
However, as we have discussed in Section 3, simply using Eqs. (12) and (13) is not a
valid procedure. Nonetheless, it should still be possible, at least in principle, to carry
out the calculation in a finite spacetime volume.

To this end, we see three ways of doing this. All of these turn out to require the
replacement of the fixed boundary conditions (13) with different configurations that
again lead to the same conclusion of CP conservation. These particular possibilities are:
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• We can take a finite time interval at the price of having to project on a vacuum
wave functional (see the present section).

• In order to avoid the projection on the wave functional, we can stay within func-
tional quantization and consider a finite subvolume of infinite Euclidean space.
Then, we have to integrate over all possible boundary configurations on the sub-
volume (see Section 6).

• We can take compact spacetimes without boundaries. For definiteness, consider
here a four-torus with a finite Euclidean time interval of length β = 1/T , where T
is the temperature. The relation with Minkowski-spacetime is given by its corre-
spondence with the canonical thermodynamic partition function. This once again
requires canonical quantization that restricts the form of the wave functionals (see
the present section).

Projecting on the wave functional Regarding the first option, unless taking com-
plex time to infinity or assuming finite temperature, we need to specify the ground state
in order to get the correct boundary conditions for the path integral. That is, when
restricting to a real time interval from t′ to t, we must weigh each path contributing to
the partition function

ZM(t2, t1) =

∫
Dψ̄DψDAΨ∗[Aµ(t2,x), ψ(t2,x)] Ψ[Aµ(t1,x), ψ̄(t1,x)]

×e
i
∫
Ω12

d4x (LM−η̄ψ−ψ̄η) , (17)

by the unknown ground state wave functional

|Ψ, t⟩ = Ψ[Aµ(x, t), ψ̄(x, t))] |Aµ(x, t)⟩ ⊗ |ψ(x, t)⟩ (18)

evaluated at the endpoints of these paths. Here, LM is the Minkowskian Lagrangian,
|Aµ(x, t)⟩, and |ψ(x, t)⟩ are field eigenstates and Ω12 is the four-volume bounded by the
three-volumes at the times t1 and t2.

In turn, for physical boundary conditions that do account for fluctuations about the
classical minimal-energy states, topological quantization cannot be assumed. Note while
this means that the action generally receives contributions from field configurations of
noninteger ∆n, this does not preclude the wave functional from transforming with a
phase factor under large gauge transformations. However one may wonder whether one
can still assume topological quantization in an approximate sense, so that one might
still obtain a good result from the sum over path integrals with boundary conditions
corresponding to pure gauges imposed on some finite volume. To settle this question, we
would have to find the ground state wave functional in canonical quantization of Yang–
Mills theory [26], which does not appear to be practically possible. Finite temperature
field theory also relies on canonical quantization, but tangible conclusions may be drawn
in that context, as we discuss next.
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Compact spacetimes without boundary As for introducing finite spacetime vol-
ume through temperature, a notable example is de Sitter space, where the Euclidean
counterpart is a sphere, and hence Ω is finite for this spacetime. The latter can be
interpreted as the representation of a canonical ensemble of states over a static patch
of de Sitter space with a Lorentzian signature. Another important situation where Ω is
finite is when space is a three torus and we consider a canonical ensemble as well. Then,
the Euclidean representation is a four-torus and corresponds to the continuum limit of
computations in lattice QCD. Both of these very relevant examples of finite Euclidean
volume therefore require first the canonical quantization in the respective background
geometries in order to connect these with physical observables in Lorentzian spacetimes.
This is mandatory in order to evaluate the trace of the canonical density matrix from
which the path integral representation can then be derived.

In canonical quantization of gauge theory, large gauge transformations on the spatial
section can play a special role. These are gauge transformations that are not continuously
connected with the identity but give rise to equivalence classes that are a representation
of the homotopy group. This also happens for infinite volumes (provided that the gauge
field configurations approach a unique value at spatial infinity) and leads to the well-
known θ-vacua [4–6]. However, the infinite volume limit taken inside the path integral
readily implies CP conservation so that it is interesting to further focus on finite spatial
volumes.

On finite spatial volumes, large gauge transformations are only singled out when fixing
the gauge corresponding to periodic (i.e. single-valued) gauge potentials on the torus or
single-valued gauge potentials on the sphere. Imposing single-valuedness, we find that
the canonical quantization on these finite spatial volumes only admits states that are
invariant under large gauge transformations, i.e. without any phase incurred, and that
there hence can be no CP violation. This also resolves the matter of renormalizability
of the states raised in Refs. [27, 28]. On the other hand, without imposing single-
valuedness, all gauge transformations on the spatial sections are continuously connected
with the identity transformation, and again no CP -violating effects can be deduced. The
details of this argument shall be published elsewhere [17].

5 Dilute instanton gas approximation

The most sensitive probe of possible CP violation associated with the strong interac-
tions is the EDM of the neutron. At the relevant energy scale, QCD is deeply in the
nonperturbative regime. This is a well-known and obvious drawback for any analytical
approximation. Yet, one can observe from semiclassical calculations that instantons play
a central role in the spontaneous breaking of chiral symmetry as well as in mediating the
effects from the anomalous axial U(1)A symmetry that notably explains the large mass
of the η′ meson [29, 30]. It is therefore also strongly indicated that the role of the topo-
logical term can be understood from a semiclassical evaluation of the effective fermion
interaction mediated by instantons, i.e. the ‘t Hooft operator [29, 30]. This corresponds
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to the expectation that the presence or absence of CP violation should prevail when
crossing between the strongly and weakly coupled regimes at low and high energies, re-
spectively. Moreover, the generic arguments in Section 3 as well as in Refs. [7, 19], where
cluster decomposition and the index theorem are used, do not refer to the semiclassical
approximation.

The semiclassical approximation therefore remains of substantial interest, being the
only analytic procedure to make quantitative statements about CP violation in the
strong interactions. Also, it offers a very useful perspective on the central issues with
this topic.

In the present context, the semiclassical approach is given by the dilute instanton
gas approximation. Stationary and quasi-stationary points of the action are described
in terms of instantons and their individual collective coordinates [10, 11, 29, 30]. Sta-
tionary points are the classical solutions. These are the minima of the action for each
topological sector characterized by winding number ∆n. For ∆n = ±1, they are given
by Belavin–Polyakov–Schwarz–Tyupkin (BPST) (anti-)instanton solutions [31] whose
classical Yang–Mills action is

SBPST =
8π2

g2
. (19)

Explicitly, the BPST instanton reads in the regular gauge

Aaµ = 2ηaµν
(x− x0)ν

(x− x0)2 + ρ2
, (20)

where x0 and ρ are free parameters corresponding to the center location of the instanton
and its size, respectively. Here ηaµν are the ‘t Hooft symbols [30]

ηaµν =


εaµν , µ, ν = 1, 2, 3

−δaν , µ = 4

δaµ, ν = 4

0, µ = ν = 4

. (21)

Similarly one can define η̄aµν by a change in the sign of δ in the above equation. For the
anti-instanton, we should replace ηaµν by η̄aµν in Eq. (20).

To visualize the BPST instanton (in analogy to Ref. [32] for one-dimensional instan-
tons), we consider some explicit expressions with x0 = 0, i.e., with the center set at the
origin. For example,

A3
1(x) =

2x2
x2 + ρ2

, (22)

A3
2(x) = − 2x1

x2 + ρ2
. (23)
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Figure 2: Visualization of the gauge potential components A3
1 and A3

2 in the BPST
instanton solution on the {x1, x2} plane (ρ = 1) .

A3
1(x) is symmetric in the hyperplane {x1, x3, x4} and A3

2 symmetric in the hyperplane
{x2, x3, x4}. Without loss of generality, in Figure 2, we show these as a function of x1, x2
by taking x3 = x4 = 0 in arbitrary units. The field strength components read

F a
µν = −4ηaµν

ρ2

x2 + ρ2
. (24)

As an example, we plot F 3
21 as a function of x1 and x2 in Figure 3. These quantities are

gauge dependent. The gauge-independent quantities are

trFµνF
µν = trFµνF̃

µν = − 96ρ4

[x2 + ρ2]4
. (25)

For the anti-instanton, one would have trFµνF
µν = −trFµνF̃

µν . We plot these in Fig-
ure 4. From the graph, one can see that the instanton indeed has a radius characterized
by the value of ρ (ρ = 1 in the plot).

For |∆n| > 1, they should be obtained from the Atiyah–Drinfeld–Hitchin–Manin
(ADHM) construction [33]. In the dilute gas picture, they correspond to ∆n instantons,
no anti-instantons for ∆n > 0 and −∆n anti-instantons, no instantons for ∆n < 0.
The collective coordinates for the individual instantons describe their size, their gauge
orientation as well as their position in Euclidean spacetime. As we follow the steepest-
descent contours, the action S evolves towards larger values, and we can encounter quasi-
stationary points. These can be described in terms of the number n of instantons and
n̄ of anti-instantons, where both of these objects can coexist within such configurations.
In the sector (i.e. on the thimble) characterized by ∆n, it must hold that n− n̄ = ∆n.
Each of these individual instantons and anti-instantons is again parametrized in terms of
the aforementioned collective coordinates. In Figure 5, we illustrate the typical structure
of the thimbles in the semiclassical approximation.

Now, we aim to integrate out the gluon fields in order to see explicitly what quark
correlations breaking the anomalous chiral symmetry U(1)A they leave behind. We follow
Ref. [7], but here we work with Euclidean time for simplicity.
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Figure 3: The field strength component F 3
21 for the BPST instanton solution as a function

of x1 and x2 with x3 = x4 = 0, ρ = 1.
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0

Figure 4: trFµνF
µν = trFµνF̃

µν as a function of |x| with ρ = 1 for the BPST instanton.

Aμ

...

... ...

−S

−∞

Figure 5: Some projection of steepest-descent contours (thimbles) in the semiclassical
approximation. Within each topological sector, there is a set of points with minimal
action. This is continuously connected via steps of height 2SBPST, corresponding to the
addition of pairs of instantons and anti-instantons, to additional plateaus. Double lines
indicate that these plateaus extend over infinite sets in field space, in the direction of
the (approximate) collective coordinates.
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The relevant quark correlation function is given by

⟨ψ(x)ψ̄(x′)⟩ = − δ2 logZ[η, η̄]

δη̄(x)δη(x′)

∣∣∣∣
η=η̄=0

=

∫
Dψ̄DψDAψ(x)ψ̄(x′)e− lim

Ω→∞

∫
Ω d4xL∫

Dψ̄DψDA e
− lim

Ω→∞

∫
Ω d4xL . (26)

While this is a standard expression one should note that the numerator and denominator
in this equation are not well defined in the thermodynamic limit Ω → ∞, even when
ultraviolet divergences have been renormalized. However, this does not force us to keep Ω
finite. Rather, divergent extensive contributions in the numerator and denominator from
spacetime regions far away from x and x′ cancel. In standard perturbation theory, these
contributions are represented by vacuum diagrams where the divergence results from
their overall invariance under spacetime translations. We go into more detail regarding
this point in Section 6. In the present semiclassical evaluation, we shall see how to deal
with these extensive contributions a bit further down the line of argument.

To proceed with the evaluation of Eq. (26), we approximate the Green’s function of
the quarks in the background of one anti-instanton (∆n = −1 as)

S(x, x′) =
∑∫ ψ̂λ̄(x)ψ̂

†
λ̄
(x′)

λ̄
≈ ψ̂0L(x)ψ̂

†
0L(x

′)

m e−iα
+
∑∫
λ ̸=0

ψ̂λ(x)ψ̂
†
λ(x

′)

λ
. (27)

The middle expression is the exact spectral sum representation in terms of the eigenvalues
λ̄ of the Dirac operator of massive quarks in the anti-instanton background, and ψ̂λ̄ are
the corresponding eigenfunctions. As for the approximation on the right, by ψ̂0L,R we
denote the ‘t Hooft zero modes of the massless Dirac operator in the corresponding one
anti-instanton or instanton background [29, 30], which are purely chiral and where their
handedness is indicated by L,R. The nonzero eigenvalues of the massless Dirac operator
are given by λ and the pertaining eigenmodes by ψλ. Note that the contribution breaking
chiral symmetry, i.e. the first term in the approximate expression, aligns with the CP
phase α pertaining to the quark mass and not with the angle θ. For real masses, this
approximation has been used in Refs. [34, 35].

In the semiclassical approximation, we carry out the path integral by taking the
quasistationary configurations of the action, i.e. with n instantons and n̄ anti-instantons
and evaluate the leading fluctuations, i.e. the functional determinants corresponding
to one-loop order. For such a quasistationary background, the Green’s function for the
quarks should be well approximated by [35]

Sn,n̄(x, x
′) ≈ S0(x, x

′)+
n̄∑
ν̄=1

ψ̂0L(x− x0,ν̄)ψ̂
†
0L(x

′ − x0,ν̄)

m e−iα

+
n∑
ν=1

ψ̂0R(x− x0,ν)ψ̂
†
0R(x

′ − x0,ν)

m eiα
. (28)

Here x0,ν and x0,ν̄ are the locations of instantons and anti-instantons, respectively, S0 is
the Green’s function of a Dirac fermion with mass m exp(iαγ5) in a translation-invariant
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(i.e., void of instantons) background. This approximation neglects contributions from
overlapping instantons which are more suppressed as the instanton gas becomes more
dilute. While the Green’s function close to the individual instantons and anti-instantons
is dominated and therefore approximated by the ‘t Hooft zero modes, sufficiently far
away from the points x0,ν and x0,ν̄ the Green’s function is given by the form in the
background without instantons, i.e.

S0(x, x
′) = (−γµ∂µ +m e−iαγ5)

∫
d4p

(2π)4
e−ip(x−x′) 1

p2 +m2
. (29)

In Eq. (28), we note the alignment of the instanton-induced breaking of chiral symmetry
with the quark masses so that there is no indication of CP violation at this level but
also note that θ has not yet entered into the calculation.

Given the Green’s functions (28), we can proceed with evaluating the fermion corre-
lation on the thimble (or equivalently in a fixed topological sector) characterized by the
winding number ∆n:

⟨ψ(x)ψ̄(x′)⟩∆n

=
∑
n̄,n≥0

n−n̄=∆n

∫
DAn̄,nDψ̄Dψ ψ(x)ψ̄(x′)e−S[A,ψ̄,ψ]

=
∑
n̄,n≥0

n−n̄=∆n

1

n̄!n!

(
n̄∏
ν̄=1

∫
Ω

d4x0,ν̄dΣν̄Jν̄

)(
n∏
ν=1

∫
Ω

d4x0,νdΣνJν

)
Sn̄,n(x, x

′)

× e−SBPST (n̄+n)e−i(n̄−n)(α+θ)(−Θϖ)(n̄+n) . (30)

The symbol DAn̄,n implies that the path integral is evaluated in terms of fluctuations
and moduli about the classical background, i.e. (quasi-)stationary point, made up from
n instantons and n̄ anti-instantons. The integration over collective coordinates other
than the locations of the instantons and anti-instantons are denoted by dΣν,ν̄ , and the
Jacobians from the transformation of the zero modes in the path integral in favour of the
collective coordinates are denoted by Jν,ν̄ . The one-loop determinant of the gauge field
about a single instanton or anti-instanton (denoted by Ā below) with the zero modes
omitted and divided by the gauge field determinant in the background A = 0 is given by

ϖ ≡ 1√
det′Ā/detA=0

, (31)

where the prime on the determinant indicates the omission of zero eigenvalues. In an
analogous manner, Θ represents the modulus of the ratio of the fermionic determinants
in the one-(anti)instanton and A = 0 backgrounds,

Θ ≡

∣∣∣∣∣det(− /D −meiαγ
5
)

det(−/∂ −meiαγ5)

∣∣∣∣∣ . (32)
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As usual, the partition function diverges in the thermodynamic limit so that we keep
the spacetime volume Ω finite for now. Nonetheless, we need to take Ω → ∞ before
eventually summing over the topological sectors ∆n as the latter are only a consequence
of infinite spacetime volume and to remain true to the integration contour implied by
Eq. (9), cf. the discussion in Section 3.

In order to normalize, i.e., to divide out vacuum contributions, we also need the
partition function in a fixed topological sector. Proceeding as for the fermion correlation,
we obtain

Z∆n =
∑
n̄,n≥0

n−n̄=∆n

∫
DAn̄,nDψ̄Dψ e−S[A,ψ̄,ψ]

=
∑
n̄,n≥0

n−n̄=∆n

1

n̄!n!

(
−ΩJ Θϖ e−SBPST

∫
dΣ
)(n̄+n)

e−i(n̄−n)(α+θ) .

(33)

Next, we turn to the collective coordinates and integrate out the location of a single
anti-instanton as ∫

Ω

d4x0,ν̄ S(x, x
′)

≈
∫
Ω

d4x0,ν̄

[
S0(x, x

′)+
ψ̂0L(x− x0,ν̄)ψ̂

†
0L(x

′ − x0,ν̄)

me−iα
+ · · ·

]
=Ω(S0(x, x

′) + · · · )+m−1eiαh(x, x′)PL .

(34)

The dots above represent contributions from the zero modes of the (anti)-instantons
whose centers were not integrated over. This expression defines the overlap function
h(x, x′)—a rank-two tensor in spinor space:

h(x, x′)PL =

∫
Ω

d4x0,ν̄ ψ̂0L(x− x0,ν̄)ψ̂
†
0L(x

′ − x0,ν̄) , (35)

h(x, x′)PR =

∫
Ω

d4x0,ν ψ̂0R(x− x0,ν)ψ̂
†
0R(x

′ − x0,ν) . (36)

Further, we integrate over the remaining collective coordinates as

h̄(x, x′) ≡
∫
dΣh(x, x′)∫

dΣ
. (37)

Notice that we ignore here the fact that for the classical instanton, the integral over the
dilatational mode is divergent. The running coupling will however render the correlations
finite in a more complete calculation.

Strictly speaking, the dilute instanton gas approximation is only applicable when
the integral over the dilatational mode converges, i.e. when contributions from both,
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large and small instantons are cut off. This is naturally the case in the ultraviolet,
where small instantons are suppressed for asymptotically free theories as g → 0. In the
infrared, one may attempt to keep g perturbatively small by a bespoke particle content
that controls the running coupling. As a matter of principle, an infrared cutoff can
also be enforced when the gauge symmetry is spontaneously broken so that the size of
the instantons is limited by the inverse gauge boson mass [29, 30]. While none of this
applies to the strong interactions, such considerations show that the dilute instanton
gas is a meaningful concept. Note that an infrared cutoff for the instanton size has
no implications for the integration over the locations x0,ν , x0,ν̄ of the instanton centers.
The preservation of Poincaré symmetry, and in particular Lorentz invariance, demands
that the values of x0,ν , x0,ν̄ should remain unconstrained. Hence, the dependence of the
results on the spacetime volume is unchanged in the presence of a cutoff for the instanton
size. As a consequence, the former has no consequence for the order of limits of infinite
spacetime volume and infinite maximal absolute value of the topological charge. Note
that even with the aforementioned size cutoff it is clear that either expression (11)
or (12) can be technically evaluated. Further, the presence or absence of divergences
from infrared instantons does not decide which order of limits must be taken because
the presence of sectors of integer ∆n is a topological argument that does not depend
on the validity of the semiclassical expansion. We eventually note here that the validity
of the dilute instanton gas and its generalization toward the inclusion of interactions
between instantons has been addressed in Refs. [9, 10].

The present point of view is that the saddle point approximation in the dilute instan-
ton gas approach, while not quantitatively applicable to the strong interactions, yields
information about the symmetries that are respected by the theory. This does not only
apply to the present work that argues in favour of the evaluation of the partition func-
tion according to Eq. (11) but also to Refs. [5, 18] that assume Eqs. (12) and (13). To
our knowledge, Ref. [18] is the only paper that explicitly evaluates the ’t Hooft operator
for nonzero θ̄. While the saddle point approximation is an important cross-check, we
note that the conclusion about the absence of CP violation does not rely on it, cf. the
boxed argument in Section 2 and in the part of Section 3 on the evaluation of the parti-
tion function and topological quantization as well as Refs. [7, 19]. Furthermore, as will
be reviewed at the end of Section 6, the results obtained with the dilute instanton gas
can be recovered from general arguments based on cluster decomposition and the index
theorem, without making use of the dilute gas approximation.

Integrating now over all locations of instantons and anti-instantons, we obtain the
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correlation function for fixed ∆n:

⟨ψ(x)ψ̄(x′)⟩∆n

=
∑
n̄,n≥0

n−n̄=∆n

1

n̄!n!

[
h̄(x, x′)

( n̄

me−iα
PL +

n

meiα
PR

)
Ωn̄+n−1 + S0(x, x

′)Ωn̄+n
]

× κn̄+n(−1)n+n̄ei∆n(α+θ)

=
[(
eiαI∆n+1(2κΩ)PL + e−iαI∆n−1(2κΩ)PR

) κ
m
h̄(x, x′) + I∆n(2κΩ)S0(x, x

′)
]

× (−1)∆nei∆n(α+θ) , (38)

where κ =
∫
dΣ J Θϖ e−SBPST is the instanton density per spacetime volume2 and Iν(x)

is the modified Bessel function.
The terms involving the overlap function h̄ are due to the instanton effects on the

quarks and break chiral symmetry. While we should expect that these scale in the same
way with the spacetime volume Ω as the term with S0, i.e. the contribution from regions
between instantons, the explicit dependence on Ω in Eq. (38) is different. However, we
see that the scaling after all is the same. Relax for the moment the constraint of fixed
∆n and use that κ may be interpreted as the likelihood for finding an instanton in a unit
four-volume. Then, for large Ω the sum is dominated by particular value of n ≈ n̄:

⟨n⟩ =
∑∞

n=0 n
(κΩ)n

n!∑∞
n=0

(κΩ)n

n!

= κΩ . (39)

Moreover, the relative fluctuation vanishes in the infinite-volume limit [7]:√
⟨(n− ⟨n⟩)2⟩

⟨n⟩
=

1√
κΩ

. (40)

This means that in the coefficients in front of the chiral projection operators within the
middle expression in Eq. (38), we can replace n, n̄ → κΩ. This basic behaviour, i.e.
that the central value for the number of instantons is given by κΩ, is also reflected by
the fact that for large arguments, the modified Bessel functions become independent
of their index, i.e. limx→∞ I∆n(x)/I∆n′(x) = 1. Since all the modified Bessel functions
in Eq. (38) tend to the same value, we see directly from this expression that there is
no relative CP phase between the terms from the quark masses and instanton-induced
breaking of chiral symmetry in the infinite-volume limit. Correspondingly, the partition
function for fixed ∆n turns out as [36]

Z∆n = I∆n(2κΩ) (−1)∆nei∆n(α+θ) . (41)

2Note that in Minkowskian spacetime, we define iκ =
∫
dΣ JΘϖe−SBPST in Ref. [7]. The κ in both

cases is the same and is real due to the fact that the Jacobian J in Minkowski spacetime contains an
additional factor of i compared to its Euclidean counterpart.
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Now, when calculating the correlation function as the sum over the topological sec-
tors, we have to take the limit Ω → ∞ first for the reasons explained in Section 3.
Because of the divergence in the thermodynamic limit, the numerator and denominator
have to be treated together, and we obtain

⟨ψ(x)ψ̄(x′)⟩ = lim
N→∞
N∈N

lim
Ω→∞

∑N
∆n=−N⟨ψ(x)ψ̄(x′)⟩∆n∑N

∆n=−N Z∆n

=S0inst(x, x
′) + κh̄(x, x′)m−1e−iαγ5 . (42)

In Section 6, we show that this procedure amounts to dropping the divergent extensive
contributions that correspond to the vacuum diagrams in standard perturbation theory.
In this final result, the phase from the quark mass in S0inst, cf. Eq. (29), is aligned with
the phase from the instanton-induced effects in the term with the overlap function h̄, so
that there are no CP -violating effects.

One may wonder about Eq. (42) why we take the limit N → ∞ in front of the frac-
tion whereas by Eq. (9), it appears that it should hold for numerator and denominator
separately in the first place. As we have noted though, without normalization by vacuum
contributions, the partition function is not well defined in the thermodynamic limit. The
present procedure is necessary to divide out the extensive contributions causing the diver-
gence. It is unique in the sense that we carry out the integrals over each steepest-descent
contour before interfering them. Doing otherwise would correspond to a partitioning and
reordering of the full integration contour that consists of the steepest-descent contours
connected via configurations of infinite action, see Figure 1 for illustration. This amounts
to an incorrect manipulation of a path integral that is not absolutely convergent.

Now we consider what happens when the limits are ordered the other way around, i.e.
sum over the topological sectors before taking Ω → ∞, according to Eqs. (12) and (13).
We reiterate though that this procedure is not valid because topological quantization
can only be deduced in infinite spacetime volume. As for the fermion correlation, one
obtains ∑

n̄,n≥0

1

n̄!n!

[
h̄(x, x′)(n̄m−1eiαPL + nm−1e−iαPR) (Ω)

n̄+n−1+ S0(x, x
′) (Ω)n̄+n

]
× (−κ)n̄+nei∆n(α+θ)

=
[
−
(
e−iθPL + eiθPR

) κ
m
h̄(x, x′) + S0(x, x

′)
]
e−2κΩcos(α+θ) , (43)

and for the partition function∑
n,n̄

1

n!n̄!
(−κΩ)n̄+ne−i(n̄−n)(α+θ) = e−2κΩcos(α+θ) . (44)

Taking the ratio, the overall exponential factors cancel but now there is a misalignment
between the phases in S0inst and in the instanton-induced term. This means that as
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Ω → ∞, there is an infinite amount of destructive interference that suppresses the
statistically more likely contributions with approximately equal numbers of n and n̄ (see
Eq. (39)) in favour of outliers for which ∆n/Ω does not go to zero. Equations (43)
and (44), if they were correct, would signal CP -violating effects. Note that in either
result, terms that break the U(1)A symmetry from both, instanton-mediated effects and
the quark mass m are present. When we turn to the phenomenology of the strong
interactions and generalization to several flavours in Section 7, we shall recall that both,
the breaking of chiral symmetry through the quark masses and from instantons are
necessary in order to explain the spectrum of mesons, in particular why the η′-meson is
much heavier than the pions [18, 29, 30]. In either order of limits, this phenomenology
is explained. So the meson spectrum alone cannot be used in order to conclude the the
correct order of limits.

6 Thermodynamic limit and cluster decomposition

We establish here that with the limiting procedure in Eq. (42), contributions that are
divergent due to the infinite spacetime volume cancel between numerator and denomi-
nator. This corresponds to the usual cancellation of vacuum diagrams when evaluating
connected correlation functions in standard perturbation theory (i.e. without expanding
around nontrivial classical solutions).

The present argument is also interesting for what concerns Eq. (9). The partition
function is defined in the limit Ω → ∞ in the first place. This appears as an obstacle
to using logZ as an extensive, volume-dependent quantity in line with what is familiar
from thermodynamics. We shall see here that an expression with such a property can
nonetheless be defined when restricting Z to some subvolume of Ω. Note that as such a
restriction is arbitrary, no boundary conditions on the subvolume can be placed.

While we are working here at zero temperature, we note that one can use the Polyakov
line at finite temperature in order to control and study the deconfinement phase transi-
tion, including contributions from the gradient expansion of the quark determinant [37].

We use a well known line of reasoning [38] and consider the expectation value of an
operator O in an infinite spacetime volume Ω, and interfere different topological sectors
∆n as

⟨O⟩ = lim
N→∞
N∈N

lim
Ω→∞

N∑
∆n=−N

f(∆n)
∫
∆n

DϕO e−SΩ[ϕ]

N∑
∆n=−N

f(∆n)
∫
∆n

Dϕ e−SΩ[ϕ]

, (45)

where Dϕ is the path integral measure over all fields involved. Now, let O be an oper-
ator corresponding to a correlation function evaluated for some spacetime points. For
example, in Eq. (42), O = ψ(x)ψ̄(x′). For the action, we write SΩ to indicate that it
is obtained from integrating the Lagrangian over the spacetime volume Ω. As for the
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Lagrangian, we take it not to include the topological term −iθtrFF̃/(16π2). Rather, we
have the function f(∆n) taking care of the dependence on the topological sector.

Now, consider partitioning the spacetime volume as Ω = Ω1 ∪ Ω2 so that ∆n(Ω) =
∆n1(Ω1) + ∆n2(Ω2). We further assume that the spacetime arguments of the operator
fall within Ω1, and we write O1 in favour of O to indicate this. We can thus write

⟨O1⟩ = lim
N1,N2→∞
N1,N2∈N

lim
Ω→∞

N1∑
∆n1=−N1

N2∑
∆n2=−N2

f(∆n1 +∆n2)
∫

∆n1

DϕO1 e
−SΩ1

[ϕ]
∫

∆n2

Dϕ e−SΩ2
[ϕ]

N1∑
∆n1=−N1

N2∑
∆n2=−N2

f(∆n1 +∆n2)
∫

∆n1

Dϕ e−SΩ1
[ϕ]
∫

∆n2

Dϕ e−SΩ2
[ϕ]

.

(46)

Since there may be instantons sitting right at the boundaries of the two subvolumes,
∆n1,2 will not be strictly integer. However, if the instanton gas is sufficiently dilute,
integer winding numbers may still correspond to an adequate approximation.

Now, as required by the cluster decomposition principle, provided Ω1 is chosen large
enough, ⟨O1⟩ must not depend on contributions from Ω2 to the path integral. This
is generally the case when the numerator and the denominator decompose into factors
that only depend on ∆n1, Ω1 or ∆n2, Ω2, respectively. Then the contributions from the
volume Ω2 can be reduced from the fractions. This generally happens when

f(∆n1 +∆n2) = f(∆n1)f(∆n2) ⇒ f(∆n) = ei∆nθ . (47)

So the contributions from the topological term, that we have left aside thus far, can
indeed be accounted for through f(∆n). Note that the argument holds for either order
of limits, i.e. the one from Eqs. (9), that implies Eq. (11) which is imposed here, as well
as for the commuted version from Eq. (12).

To carry out the limits, we write Eq. (46) as

⟨O1⟩ = lim
N1,N→∞
N1,N∈N

lim
Ω→∞

N∑
∆n=−N

N1∑
∆n1=−N1

f(∆n)
∫

∆n1

DϕO1 e
−SΩ1

[ϕ]
∫

∆n2=∆n−∆n1

Dϕ e−SΩ2
[ϕ]

N∑
∆n=−N

N1∑
∆n1=−N1

f(∆n)
∫

∆n1

Dϕ e−SΩ1
[ϕ]

∫
∆n2=∆n−∆n1

Dϕ e−SΩ2
[ϕ]

.

(48)

Corresponding to Eq. (41), the integrations over the volume Ω2 lead to

⟨O1⟩ = lim
N1,N→∞
N1,N∈N

lim
Ω2→∞

N∑
∆n=−N

N1∑
∆n1=−N1

f(∆n) I∆n−∆n1(2κΩ2)(−1)Nf (∆n−∆n1)eiα(∆n−∆n1)
∫

∆n1

DϕO1 e
−SΩ1

[ϕ]

N∑
∆n=−N

N1∑
∆n1=−N1

f(∆n) I∆n−∆n1(2κΩ2)(−1)Nf (∆n−∆n1)eiα(∆n−∆n1)
∫

∆n1

Dϕ e−SΩ1
[ϕ]

.

(49)
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The explicit exponential factors here are phases from the fermion determinants. Note
that these have not been absorbed in κ, which we have defined to be real.

Now we are aiming for an expression for ⟨O1⟩ with finite Ω1, without making reference
to Ω2. This proves to be possible because the contributions from Ω2 can be interpreted
as vacuum factors that reduce out from the normalized expectation value.

Since we must take Ω → ∞ to have well-defined integer ∆n, we also have to take
here Ω2 → ∞. The Bessel functions with a factor Ω2 in their argument then go to a
common limit so that we can factorize out the sum over ∆n. We are left with

⟨O1⟩ =

∞∑
∆n1=−∞

∫
∆n1

Dϕ (−1)−Nf∆n1e−iα∆n1O1 e
−SΩ1

[ϕ]

∞∑
∆n1=−∞

∫
∆n1

Dϕ (−1)−Nf∆n1e−iα∆n1e−SΩ1
[ϕ]

. (50)

We therefore see that taking the limits as in Eq. (42) leads to the correct cancellation
of “disconnected” terms, in particular those that originate from regions that are far
separated from the spacetime arguments of the observable O1.

Moreover, in Eq. (50) the θ-angle from the function f(∆n) does not occur anymore.
We can see this as a consequence of phases incurred in Ω1 being canceled against com-
plementary phases from Ω \ Ω1. The remaining explicit dependence on the unphysical
phase α cancels when the fermionic part of the path integral Dϕ is carried out. Since the
path integral here is restricted to Ω1, which is finite, we can compute the expectation
values in finite volumes after all from a partition function in the form of Eq. (12) but
with the parameter θ̄ set to zero. This way, the logarithm of the partition function can
be taken as an extensive quantity.

In the previous derivation, when going from Eq. (48) to (49) we made use of the result
for the partition function in the dilute instanton gas approximation, Eq. (41). However, it
is worth pointing out that the latter result can be derived from the cluster decomposition
principle alone, without making use of the dilute instanton gas approximation. One can
start by noting that the factorization of the path integrals in the denominator in Eq. (46)
can be written in terms of the following relations between the partition functions Z∆n(Ω)
in the full volume and their counterparts Z∆n1(Ω1), Z∆n2(Ω2) for the subvolumes Ω1,Ω2,

Z∆n(Ω) =
∑
∆n1

Z∆n1(Ω1)Z∆n−∆n1(Ω2) . (51)

Equation (51) is an infinite set of identities that can be used to solve for Z∆n(Ω) from
a set of minimal assumptions. First, we note that Z∆n(Ω) are complex. For starters,
they receive a phase eiθ∆n due to the-θ term. Further complex phases in Z∆n(Ω) can
only come from the phases αi of the fermion masses. At least at the leading order,
the fermionic path integration yields determinants of the massive Dirac operator in a
background of topological charge ∆n, which can be fully general and is not assumed to
be precisely captured by the dilute instanton gas approximation. The phase of the total
fermionic determinant is then fixed by the Atiyah-Singer index theorem [12], and for a
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single fermion is given by eiα∆n. As a consequence, one can write

Z∆n(Ω) = ei(θ+α)∆ng̃∆n(Ω) , g̃∆n(Ω) ∈ R . (52)

Parity considerations and appropriate limits of the cluster-decomposition relation (51)
can be used to motivate the simple ansatz [7]

g̃∆n(Ω) = Ω|∆n|f∆n(Ω
2), f∆n(0) ̸= 0 . (53)

Notably, the previous ansatz together with the assumption of analyticity in Ω give rise
to a unique solution for the infinite tower of identities in Eq. (51), which can be written
as

Z∆n(Ω) = ei(θ+α)I∆n(2βΩ) , β ≡ f∆n=1(0) ∈ R . (54)

As advertised, this recovers the result of Eq. (41) without making use of the dilute
instanton gas approximation.

Equation (54) can be taken even further, as it allows one to rederive the phases of
fermionic correlators and confirm the conclusions of this section without using the dilute
instanton gas approximation. Defining a complex mass parameter m as

m ≡ meiα , (55)

the mass terms in the Lagrangian of Eq. (1) can be written as

L ⊃ mψ̄PRψ +m∗ψ̄PLψ . (56)

Then, one can view the complex mass parameters as sources for integrated correlators,

∂

∂m
Z∆n = −

∫
d4x ⟨ψ̄PRψ⟩∆n ,

∂

∂m∗Z∆n = −
∫

d4x ⟨ψ̄PLψ⟩∆n . (57)

As the partition functions of Eq. (54) have been derived on general grounds, the pre-
vious correlators are meant to include nonperturbative effects. Noting that the real-
ity condition in the β parameter of Eq. (54) implies β = β(mm∗) and writing α =
−(i/2) log(m/m∗) yields the following spacetime averaged correlators [7]

1

Ω

∫
d4x ⟨ψ̄PRψ⟩ = lim

N→∞
lim
Ω→∞

∑
|∆n|<N

∫
d4x ⟨ψ̄PRψ⟩∆n

Ω
∑

|∆m|<N Z∆m

= −2m∗ ∂mm∗β(mm∗) ,

1

Ω

∫
d4x ⟨ψ̄PLψ⟩ = lim

N→∞
lim
Ω→∞

∑
|∆n|<N

∫
d4x ⟨ψ̄PLψ⟩∆n

Ω
∑

|∆m|<N Z∆m

= −2m ∂mm∗β(mm∗) .

(58)

It is readily seen that the total phase of the fermionic correlators, including nonpertur-
bative effects, is aligned with the phases of the tree-level masses in the Lagrangian. This
generalizes the result of Eq. (42) and leads again to the conclusion of no CP violation.
Again, the order of limits plays a crucial role in Eq. (58).
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Integrate out all
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dynamics
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analysis of input parameters; match 

operator coefficients

Chiral perturbation 
theory

Figure 6: Schematic representation of the different effective field theories (EFTs) dis-
cussed in the present article and their relation with QCD. Note that the nonlocal oper-
ators due to gluon dynamics are all but under calculational control.

7 Effective theories and effective operators

We shall now draw the connection from the results of the semiclassical approximation
corresponding to integrating out gluons from Section 5 with observables probing CP
conservation or violation in the strong interactions. The main object of interest in that
context is the ‘t Hooft vertex, which can be inferred from the correlation function (42)
as the Lagrangian term

−ψ̄(x)Γeiαγ5ψ(x) . (59)

This vertex generates the same correlation functions as in Eq. (42) for the EFT where
gluons have been integrated out. Figure 6 illustrates how such a model fits into the
picture of the different EFTs discussed in the present context. In addition, there will
also be in general nonlocal operators from the long-range interactions of the gluons,
because with quark degrees of freedom still in the theory, there is no cutoff parameter
that allows for a local expansion. The new operators appear in favour of the gluon kinetic
term FµνFµν as well as the topological term FµνF̃µν which disappear together with the
gluons.

In the dilute instanton gas approximation in Section 5, one has integrated out gluons
in the semiclassical approximation. For this to be valid, the theory should be perturbative
throughout, which can be achieved in principle by adding a bespoke matter content that
controls the renormalization group evolution in this peculiar way. Certainly, however,
this is neither the case for the theory specified in Eq. (1) with the gauge group SU(2)
and one quark flavour nor for QCD with SU(3) and three flavours of light quarks. As a
consequence, one should expect substantial deviations from the correlation function given
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in Eq. (42), in particular for large distances between x and x′. Nonetheless, there should
still be a small distance, high energy contribution of this form. When drawing conclusions
about CP conservation or violation, one therefore must make the assumption that the
CP -odd coefficient of the ‘t Hooft vertex appears in the same way within the extra
operators that have to be added in principle to account for the low-energy behaviour.
Note however that this shortcoming applies to the conclusions based on either order of
limits when the calculation is carried out semiclassically.

To some extent, the above matter is addressed by the concluding argument from Sec-
tion 5, where the leading fermion correlations are constrained without the dilute instan-
ton gas approximation but using instead cluster decomposition and the index theorem.
There, no assumption about the fermion correlation is made but for its U(1)A-violating
form. While the resulting fermion correlation then can only be stated in the coincident
limit, the conclusions about CP conservation based on the order of the infinite volume
limit and the sum over topological sectors should therefore extend to the nonperturbative
low-energy regime as well.

The underlying theory that we are concerned with after all is QCD, which is spec-
ified (now with the gauge group SU(3), Nf flavours of light quarks and in Minkowski
spacetime) as (we choose ε1230 = +1 in Minkowski spacetime)

LM ⊃ − 1

2g2
trFµνF

µν +

Nf∑
i,j=1

ψ̄i

(
iγµDµδij −MijPR −M †

ijPL

)
ψj +

1

16π2
θ trFµνF̃

µν ,

(60)

where in the mass-diagonal basis

Mij = δijmj (no sum over j) . (61)

For the model as in Eq. (60), the vertex corresponding to Eq. (59) is

−ΓNf
e−iᾱ

Nf∏
j=1

(ψ̄jPLψj)− ΓNf
eiᾱ

Nf∏
j=1

(ψ̄jPRψj) , (62)

where

ᾱ =

Nf∑
i

αi = arg detM . (63)

We need to sort in what way (cf. Figure 6) this is connected to the EFT of hadrons
that is valid at low energies and should describe those possible CP -violating effects that
are accessible by current precision experiments. A principal obstacle to systematically
deriving quantitative predictions lies of course within the circumstance that perturbation
theory is not valid anymore at low energies.

Yet, the symmetries, even when realized approximately only, offer a standard method
of constraining the EFT. In the fundamental theory as well as on the EFT side one can
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introduce operators of the physical fields coupled to external sources (sometimes called
spurions) so that these operators are invariant under local symmetry transformations.
On the side of the EFT, the coefficient of these operators has to be obtained through
computational or experimental matching. Variation with respect to these sources then
allows one to express matrix elements of the fundamental theory in terms of parameters
of the EFT.

In the present case, we can apply this method by perceiving the quark masses that
break the chiral flavour symmetries SU(Nf )A as well as the operators breaking U(1)A as
external sources that transform according to these explicitly broken symmetries. In the
following discussion, we occasionally let Nf = 2, meaning that only up and down quarks
are considered, for simplicity. But for expressions explicitly depending on Nf , we keep
Nf general. First, we parametrize a chiral transformation as

ψ → LPLψ +RPRψ , (64)

where PL,R = (1 ∓ γ5)/2 and L,R are independent unitary matrices. For an axial
transformation, R = L−1 so that the SU(2)A transformations are given by

ψi → [eiγ⃗·σ⃗γ
5

]ijψj . (65)

The Lagrangian (60) would remain invariant if the mass matrix transformed as

M → LMR† = e−iγ⃗·σ⃗Me−iγ⃗·σ⃗ . (66)

In this transformation, M corresponds to a spurion field.
The corresponding EFT Lagrangian (cf. Figure 6) with the lowest-order terms is

(see, e.g., Refs. [39, 40] and Ref. [8] where the effective theory is derived from integrating
out quark fields)

LEFT
M =

f 2
π

4
Tr ∂µU∂

µU † +
f 2
πB0

2
Tr(MU + U †M †) + |λ|e−iξf 4

π detU + |λ|eiξf 4
π detU

† ,

(67)

where

U = U0e
i

fπ
Φ = U0Ũ , U0 = ⟨U⟩ =

(
eiφu 0

0 eiφd

)
, Φ =

[
π0 + η′

√
2 π+

√
2π− −π0 + η′

]
. (68)

In the equations above, fπ is the pion decay constant and λ, B0 are EFT coefficients
to be determined experimentally or computationally and B0 is directly related to the
magnitude of the chiral quark condensate. The phases of the latter correspond to φu, φd,
and we have assumed a diagonal mass matrix M . The squared pion and η′ masses are
then given by

m2
π =B0(mu cos(αu + φu) +md cos(αd + φd)) ,

m2
η′ ≈ 16|λ|f 2

π cos(ξ − φu − φd) ,
(69)
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where we have made the phenomenologically valid approximation that m2
π ≪ m2

η′ . We
leave the terms with the parameter λ aside just yet as detU is invariant under SU(2)A
but transforms with U(1)A in a way that we shall get to shortly. In correspondence with
Eq. (65), the meson fields behave under axial transformations as

U → RUL† = eiγ⃗·σ⃗Ueiγ⃗·σ⃗ (70)

The term with the parameter B0 should be matched so that the correct correlation
functions are produced. Corresponding to the invariance of the underlying theory (60),
the Lagrangian (67) is invariant under the simultaneous SU(2)A transformations (70)
and (66).

Now, after all, the (up and down) quark masses do not transform under SU(2)A, they
rather break this symmetry explicitly. We can still perceive these as local sources though,
that perturb the correlators of the theory about the case with full SU(2)A symmetry.
For the local source, we can then take the fixed physical values of M so that Eq. (67)
accounts for the perturbation through the quark masses to linear order. In the EFT,
one can continue this to higher orders pending on the precision that is aimed for.

Now, consider U(1)A transformations

ψi → eiβγ
5

ψi (71)

and recall the expression for ᾱ from Eq. (63). The fundamental theory (60) would remain
invariant if the quark mass transformed as

M → e−2iβM , so that ᾱ → ᾱ− 2βNf . (72)

The chiral anomaly requires that the coefficient θ of the topological term goes as

θ → θ + 2Nfβ (73)

in order to keep the Lagrangian invariant. Note that this implies that the combination

θ̄ = θ + ᾱ (74)

is invariant under chiral rephasings and in general is nonzero. The presence of such an
invariant does however not yet guarantee that it leads to physical effects.

We thus see that there are two local sources that transform under the symmetry
U(1)A: θ and −α. Noting that under this symmetry

detU → e2iNfβ detU , (75)

the EFT Lagrangian (67) remains invariant if either

ξ =

{
−ᾱ
θ

. (76)
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In principle, one may also allow linear combinations of the parameters −ᾱ and θ. As
this does not follow from either order of limits for the sum over topological sectors and
spacetime volume that we discuss here, we do not consider this combination option
further.

We also note that the operator with the coefficient B0 breaks U(1)A. So instead of the
quark mass phase in M , one could also use θ to write this as an invariant operator with
the help of chiral-variant source fields. However, the symmetric theory should respond
to U(1)A-breaking perturbations through a quark mass term in the same way as it does
for SU(2)A-breaking. In this sense, the term with B0 is unique to linear order in M .
The explicit breaking of U(1)A through instantons is independent of the quark masses,
cf. Eq. (42) together with the fact that κ = O(|M |), and therefore M does not appear
in the terms with detU .

Now recall that Eq. (42) leads to the effective vertex (62) in the theory where gluons
have been integrated out. At this level, θ has disappeared so that the only option for
the EFT Lagrangian (67) is

ξ = −ᾱ . (77)

The CP -odd coefficients can then be removed by an overall field redefinition. On the
other hand, if it were ξ = θ, there would be a residual CP -odd term.

Further, note that Eq. (69) shows that the mass of the η′ in general does not vanish
in the limit of mu,d → 0, no matter which of the values ξ takes in Eq. (76). In turn, the
fact that the η′ is heavy compared to the pions as such does not lead to a conclusion
about which is the correct order of limits.

Finally, the parameter ξ in the coefficient of the ‘t Hooft operator enters the calcu-
lation of the nucleon EDM as follows: Given the EFT Lagrangian (67) and choosing a
basis in which M is diagonal, the minimum of the field U is given by U0 as in Eq. (68)
where in the limit of |λ| ≫ B0md/f

4
π , and for ξ + αu + αd in the first quadrant, one

has [41, 42]

mu sin(φu + αu) = md sin(φd + αd) =
sin(ξ + αu + αd)√

1
m2

u
+ 1

m2
d
+ 2 cos(ξ+αu+αd)

mumd

. (78)

Going beyond the assumption |λ| ≫ B0md/f
4
π leads to a mixing of the flavour eigenstates

π0 and η′ within the mass eigenstates.
In order to expand in terms of the meson fields, following Eqs. (68) and (78) leads to

Tr[MU + U †M †] =
1

2
[mu cos(φu + αu) +md cos(φd + αd)] Tr[Ũ + Ũ †]

+
i

2
[mu sin(φu + αu) +md sin(φd + αd)] Tr[Ũ − Ũ †]

+terms mixing π0 with η′ . (79)
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The operators in the second line are CP odd, and we note that

Tr
[
Ũ − Ũ †

]
=

2i

fπ
Tr[Φ]− i

3f 3
π

Tr
[
Φ3
]
=

4i

fπ
η′ − i

f 3
π

(
2

3
η′

3
+ 2η′

[
(π0)2 + 2π+π−]) .

(80)

Substituting this into the term with B0 in Eq. (67) and expanding in the meson
fields, one generally would obtain CP -violating effects if ξ ̸= −ᾱ, the most immediate
consequence of which would be η′ → 2π (recall that the meson fields are CP -odd)
through the interaction term

LEFT
M ⊃ B0 sin(ξ + αu + αd)

fπ
√

1
m2

u
+ 1

m2
d
+ 2 cos(ξ+αu+αd)

mumd

[
(π0)2 + 2π+π−] η′

≈mumd(ξ + αu + αd)

(mu +md)2
m2
π

6fπ
Tr[Φ3] , (81)

The latter expression (which follows when assuming ξ + αu + αd ≪ 1) is shown here
for comparison with Eq. (8) of Ref. [43]. In the latter, the quark masses are taken as
real, (see Eq. (5) in [43]) which means that the parameter θ of that reference should
correspond to ±θ̄ in Eq. (74). Matching the resulting signs for the phases of the quark
masses in Eq. (8) of Ref. [43] leads to an identification with −θ̄. It then follows that up to
the central issue that which value in Eq. (76) is taken by ξ, the results from the present
EFT description and the partially conserved axial currents in Ref. [43] are therefore in
agreement, as they should be. We further compare the two approaches given different
values of ξ in Section 8. Finally, let us note also that the coefficient in Eq. (81) is different
in the approximation of three light flavours where an extra factor of

√
2/3 occurs.

To see what the above CP -odd interactions of the pions and η′ would imply for the
nucleons, one can add their interactions to the EFT Lagrangian as

Lπ,p,nM ⊃ iN̄ /∂N −
(
mNN̄UPLN + icN̄U †/∂UPLN + dN̄M †PLN + eN̄UMUPLN + h.c.

)
,

(82)

where the nucleon doublet transforms as

N → LPLN +RPRN . (83)

Again, promotingM to a source that transforms under the axial symmetries rather than
breaking these, this Lagrangian is invariant. Substituting the expectation value of the
chiral condensate (68), (78) for small ξ + ᾱ, expanding in the meson field and applying
field redefinitions N → N so as to obtain the canonically normalized flavour eigenstates
of the nucleons, one finds the interaction terms [41]

Lneutron
M ⊃ c1∂µπ

aN̄ τa

2
γµγ5N + c2(ξ + ᾱ)N̄πa

τa

2
N . (84)
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The first of these is CP even, as it couples two axial currents, πa being a pseudoscalar
field. The second term is CP odd, as it couples a scalar density with a pseudoscalar field.
At one loop level, if it were ξ ̸= −ᾱ, this would induce an EDM through the famous
diagrams shown in Figure 7. Note that the weak interactions make an additional contri-
bution to the neutron EDM [44, 45], which however is too small and usually neglected
in the discussion of CP in the strong interactions.

n p n

π+π+

γ

+
n p n

π+π+

γ

Figure 7: Leading order contribution to the neutron EDM from the strong interactions
for ξ ̸= −ᾱ. The CP -violating vertex is indicated by a cross. A similar diagram involves
π−.

8 Some objections and answers to these

We review here and reply to some objections that we have been made aware of, mostly
to the extent that these can be related to (partly earlier) articles or to conference talks
that have been published online.

Instanton configurations in the different limits As argued in Section 3 the dif-
ferent orders of limits correspond to a partitioning and rearrangement of the integration
contour that leads to inequivalent results for the path integration. Still, upon taking
the limits, the path integral covers the same field configurations. Yet, arguments have
been put forward that partitioning the contour should be harmless or that the order of
limits as in Eqs. (9) and (11) does not include all relevant contributions as opposed to
Eqs. (12) and (13) [46].

Regarding the partitioning of the contour, one may state that for a given configuration
of finite action, one can find a radius R so that [11]

Aµ(x) = iω(x)∂µω
−1(x) +O(1/R2) (85)

and, consequently,

∆n =
1

16π2

∫
|x|<R

d4x trFF̃ = integer +O(1/R) . (86)
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So in this sense, even for finite volumes one can at least approximately categorize certain
configurations by an integer ∆n. However, R is not universal and not even a function
of ∆n since the individual units of winding number can be separated arbitrarily far for
given ∆n. So we cannot take this as an argument for the calculation in fixed volumes Ω
to be equivalent to the full result.

Concerning Eq. (11) perhaps not accounting for all relevant configurations, one may
attempt to argue as follows: Consider the dilute instanton gas picture and let ρ be
the radius of an instanton. Then, demanding that the instantons and anti-instantons
do not overlap, the maximum number of instantons and anti-instantons n + n̄ satisfies
|∆n| ≤ N ≤ (n + n̄)max ≈ Ω/ρ4. Therefore, there is room to take N → ∞ as Ω → ∞
and it seems not to be appropriate to cap ∆n by some finite value in an infinite volume
as Eq. (11) suggests.

However, such a cap is not forced by Eq. (11) in the following sense: Decompose the
full spacetime into subvolumes, e.g., Ω = Ω1∩Ω2. For each topological sector ∆n, there is
a constraint ∆n1+∆n2 = ∆n where ∆n1,∆n2 are the winding numbers (which may not
be integers precisely) in the subvolumes, but no constraint on ∆n1 and ∆n2 separately.
Therefore, ∆n1 can be arbitrarily large. For an observer in a subvolume, say Ω1, the
path integral (11) therefore includes configurations of arbitrarily large winding number
density ∆n1/Ω1 within Ω1. Hence there is no cap on ∆n1 in the finite subvolume Ω1.
Indeed, this is already clear from Eq. (50) which is derived from the cluster decomposition
principle.

Chiral limit In a theory with at least one massless quark, the parameter ᾱ can be
chosen arbitrarily with no consequence to the Lagrangian. Without further ado, this
implies that θ̄ in Eq. (8) cannot be physical and that there is no CP violation in such a
model. In the dilute instanton gas picture, this behaviour results from the suppression
of single instantons through the zero-mode from the fermion determinant that makes the
factor ϖ in Section 5 and consequently κ vanishes proportionally to the absolute value
of the quark mass determinant.

In this sense, as κ ∼ m, we can take in Eq. (42) m → 0 and obtain a well-defined
limit. Since the gluons and therefore the topological term have been integrated out, the
parameter α in this expression is still arbitrary but unphysical, as it can be removed
by a chiral rotation of the fermion field. The same reasoning applies to the effective
operator (62).

Effective theory for the topological current We respond here to comments con-
cerning Ref. [7] that have been made in Ref. [47], see also Ref. [48]. It is argued there
that finite spacetime volumes Ω lead to an unphysical breaking of the conservation of the
winding number ∆n (or the density ∆n/Ω) so that the absence of CP violation would be
an artifact of such regularization. But apparently, in Eq. (9) and consequently Eq. (11)
that lead us here as well as in Ref. [7] to the conclusion of no CP violation, Ω → ∞
is the first limit that is taken. This is in contrast to Eqs. (12) and (13), which lead
to CP -violating observables but where the topological sectors are fixed prior to taking
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Ω → ∞. So the criticism of producing finite volume artifacts would rather be an issue
for the latter prescription, and in fact it is, as we have discussed in the previous sections.

While this comes as a rather immediate conclusion, it is of interest to see how the EFT
for the topological current, which is introduced in Refs. [47, 49, 50], fits into the present
considerations of imposing boundary conditions and orders of limits. (See Figure 6 for
where it stands in relation to the other EFTs that are discussed here.) The topological
current can be defined as

Kµ =
1

4π2
ϵµναβtr

[
1

2
Aν∂αAβ −

i

3
AνAαAβ

]
, (87)

where we recall tr(T aT bT c) = ifabc/4 for SU(2). The topological charge density and
hence the topological term can be explicitly written as a total divergence

q =
1

16π2
trFµνF̃µν = ∂µKµ . (88)

One of the interesting points concerning the current Kµ is the form of its two-point
correlation. Some information can be extracted from the chiral susceptibility

χΩ =
1

Ω
⟨∆n2⟩

∣∣
θ̄=1/2(1−(−1)

Nf )π

=
1

Ω

〈(∫
Ω

d4x q(x)

)2
〉∣∣∣∣∣

θ̄=1/2(1−(−1)
Nf )π

=

∫
Ω

d4x ⟨q(x)q(0)⟩|
θ̄=1/2(1−(−1)

Nf )π
. (89)

We evaluate this for the CP -even values of θ̄ = 1/2(1− (−1)Nf )π. When summing over
topological sectors in a finite spacetime volume with fixed boundary conditions according
to Eqs. (12) and (13), the vacuum energy is minimized at the chosen value of θ̄ and χ
remains positive. Choosing instead the starting point Eq. (9) and consequently Eq. (11),
the value of θ̄ is irrelevant by the arguments of Sections 5 and 6. We attach a subscript
on χ in order to indicate that it is important which volume is referred to. Significant
differences can arise when Ω corresponds to a subvolume of the spacetime as opposed to
the full spacetime, in particular when boundary conditions control the overall topological
fluctuations. For expressions that apply to all volumes we omit the subscript.

One should also pay attention to the fact that χ will in general have connected and
disconnected parts. If there is CP violation in a certain setup, e.g. imposed by unphysical
boundary conditions, then ⟨∆n⟩/Ω ̸= 0. When one aims to characterize the volume-
scaled variance of the topological charge, one should then subtract the disconnected
contributions, i.e. consider

χΩ − ⟨∆n⟩2

Ω
. (90)

Of course, one may also define χ without the disconnected pieces to start with, which
we do not do here for the sake of simpler expressions.
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Applying the result (50) to Eq. (89) yields

χΩ1 ≡
1

Ω1

〈(∫
Ω1

d4x q(x)

)2
〉

=
1

Ω1

∞∑
∆n1=−∞

∫
DA∆n1Dψ̄Dψ

∫
Ω1

d4z q(z)
∫
Ω1

d4z′ q(z′)e−SΩ1
[Aµ](−1)−Nf∆n1e−i ᾱ∆n1

∞∑
∆n1=−∞

∫
DA∆n1Dψ̄Dψe−SΩ1

[Aµ](−1)−Nf∆n1e−i ᾱ∆n1

=
1

Ω1

∞∑
n1=0

∞∑
n̄1=0

1
n1!n̄1!

(n1 − n̄1)
2(κΩ1)

n1+n̄1

∞∑
n1=0

∞∑
n̄1=0

1
n1!n̄1!

(κΩ1)n1+n̄1

= 2κ . (91)

That is, when calculating the susceptibility from the partition function (9) but evaluating
Eq. (89) in a finite subvolume Ω1 of infinite Euclidean spacetime, χΩ1 is nonzero. On
the other hand, as limΩ→∞∆n/Ω = 0, in infinite volume we have

χΩ→∞ = 0 . (92)

One next introduces the Fourier transforms of the correlation functions, which we
indicate here by a tilde:

⟨̃qq⟩(p) =
∫

d4(x− y) eip(x−y)⟨q(x)q(y)⟩ = pµpν ˜⟨KµKν⟩(p) . (93)

From Eq. (89), one can conclude the following infrared behaviour [51]:

lim
p→0

pµpν ˜⟨KµKν⟩(p) =
∫

d4x ⟨∂µKµ(x)∂νKν(y)⟩ = χ . (94)

The former equation implies e.g. in transverse gauge [51], where ∂µϵµνρσAσ = 0,

⟨K̃µKν⟩(p) =
χ pµpν
p4

+O(p2) (95)

so that one would expect for χ ̸= 0 a simple massless pole in ˜⟨KµKν⟩(p) for pµ → 0.
Here we have further dropped the spacetime volume subscript on χ.

Now per Eq. (87), Kµ can be understood as the Hodge dual of a three-form field. So
it is of interest to compare it with the action for a massless three-form Lµ,

S =

∫
Ω

d4x (∂µLµ)
2 . (96)
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The expression “massless” refers here to the absence of a mass term in the action and is
not supposed to indicate that there is a massless propagating degree of freedom, which
in fact there is not. The variation of this action is given by

δS = −2

∫
Ω

d4x (∂ν∂µLµ) δLν + 2

∫
∂Ω

daν (∂µLµ) δLν , (97)

where aν is a normal surface element on Ω. Discarding the boundary term for the mo-
ment, one would conclude that ∂µLµ = const. But then again, dropping the boundary
term is in general not justified because it in general contributes to the equations of mo-
tion. The situation here is different from the model specified by the Lagrangian (1) in
an infinite spacetime volume Ω: There, solutions of finite action exist while the topo-
logical term does not need to vanish and can be written per Eqs. (10) and (88) as a
boundary term. However, within a given topological sector the boundary term gives a
fixed contribution −iθ∆n to the action. Therefore it has no impact on the equations of
motion.

Back to the action (96), we must therefore make further assumptions about the
boundary term. While there are many different options, we follow Ref. [50] that works
with solutions

∂µLµ = θL , (98)

where θL is an integration constant. While not stated explicitly in Ref. [50], this appears
to require boundary conditions δLµ = 0 on ∂Ω and

θL =
1

Ω

∫
∂Ω

daν Lν . (99)

Interpreting for the moment Lµ as a four-dimensional electric field in the background of a
constant charge density θL, it should be clear that Eq. (98) has solutions that satisfy the
condition (99). Note that for a given θL, Lµ ∼ θLΩ

1/4. To keep the boundary conditions
well defined in terms of finite Lν , we therefore have to impose these on finite Ω or we
have to take θL = 0.

Given the boundary condition δLµ = 0, we can also derive the equation of motion

∂xµ∂
x
ν ⟨Lν(x)Lρ(y)⟩ = −δµρδ4(x− y) (100)

for the correlation function. It further implies

⟨(∂µLµ(x))(∂νLν(y))⟩ = 4δ4(x− y) + const. (101)

To arrive at the above equation, one uses the translation invariance to deduce that the
correlator is a function of (x− y). Then one can take ∂xµ = −∂yµ and contract µ and ρ in
Eq. (100).

Having stated all this, it is interesting to follow Ref. [50] and consider the action (96)
as an EFT of the full model (1), of which all degrees of freedom but Kµ have been
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integrated out. The effective action should generally feature higher order terms in ∂µLµ
beyond Eq. (96) as well as nonlocal expressions that account for the rich phenomenology
of QCD compared to the present simplistic model [50]. Yet, it appears that the following
characteristic features of QCD are recovered.

Equation (101) indicates that the topological fluctuations correspond to white noise.
In that sense, the model (96) without higher order and nonlocal terms captures the in-
frared behaviour on scales where the fluctuations are indeed expected to be uncorrelated.
We may use the δ-function term in relation (101) to identify

Lµ =
2Kµ√
χ
. (102)

Indeed, substituting the above into Eq. (101) (ignoring the constant term for the mo-
ment) and taking a Fourier transform one recovers Eq. (94).

On the basis of these correspondences, the argument of Ref. [50] then goes that
the integration constant θL selects a vacuum state with a nonzero value of the CP -
odd observable ∂µLµ that it is therefore proportional, at least at the linearized level, to
the parameter θ in the microscopic theory, which would thus turn out to be physical.
However, as we shall see next, we disagree with this interpretation. Because of the
different boundary conditions, the EFT for Lµ cannot correspond to either of the QCD
partition functions (12) or (9), due to reasons that will also make clear why θL is not
proportional to an angle.

Translating the boundary condition (99) back to the fundamental theory implies that
one fixes

∆n =

∫
∂Ω

daν Kν =
1

16π2

∫
Ω

d4xFF̃ . (103)

Moreover, these boundary conditions do not imply that the physical fields vanish on ∂Ω,
and in fact per Eq. (98) they do not for θL ̸= 0, because θL ∝ ∂µLµ ∝ ∂µKµ, which is
gauge invariant. The present setup is therefore not an EFT for the partition function
specified through Eqs. (12) and (13). For the latter, one samples over all integer values
of ∆n and the physical fields vanish on ∂Ω.

A consequence of this discrepancy is the fact that from Eqs. (12) and (13), one
concludes that ⟨∆n⟩/Ω = 2i(−1)Nfκ sin θ̄ is purely imaginary [7] whereas in the EFT
and for the boundary conditions that are assumed here, ∆n is given by the fixed real
value (103). The two setups therefore are not only different, but they also predict
distinctly inequivalent results for the observables. There should also be no relation
between θ from the model of Eqs. (12) and (13) and θL, which explains why the EFT
in terms of the latter does not show any periodic behaviour as would be required for an
angular variable.

One should notice that while ∆n is fixed over the full volume Ω, it will nonetheless
fluctuate in any subvolume, cf. Eq. (101). Still, the boundary conditions on ∂Ω are
required, and these are very different from those in Eq. (13). Further, if we interpret Lµ
as an effective infrared field, nonvanishing ∂µLµ on ∂Ω does not conflict with vanishing
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microscopic fields on that surface. But following the above remark concerning real versus
imaginary ⟨∆n⟩, the expectation values for ∆n in Ω still do not agree between the EFT
and the setup specified through Eqs. (12) and (13).

It is also clear now that the present EFT (96) with the boundary condition (99) is also
not equivalent to the partition function (9) that we take as the object to theoretically
define the strong interactions. The EFT corresponds to imposing a fixed flux (99)—not
necessarily an integer—on a finite surface. This in contrast to the case of Eq. (9), for
which we see from Eq. (11) that all integer values of the topological flux at infinity are
accounted for in the action. Imposing a fixed flux on a finite surface cannot yield the
correct vacuum correlations, not least since a general finite Euclidean ∂Ω does not have
a geometrically meaningful continuation to some domain in Minkowski space.

Though as just has been argued the EFT is not compatible with the usual QCD
partition functions, one may nevertheless point out that the topological susceptibility in
the EFT can have a similar infrared behaviour as in the theory (9). To see this, consider
the case θL = 0 for simplicity. The generalization can be carried out by accounting for
disconnected contributions to the correlations in Eq. (89). Since the topological flux
∆n vanishes, this means by Eq. (89) that χΩ = 0. In fact, this requirement fixes the
constant term in Eq. (101). This clearly resembles the behaviour exhibited in Eq. (92).
For either setup, there is no problem with χΩ = 0 on the full volume Ω because there
is no inhibition of topological fluctuations in subvolumes. Note that in the EFT for the
topological current, for θL ̸= 0 it follows that χΩ = ⟨∆n⟩2/Ω is purely disconnected
(because the winding number in Ω is fixed through the flux on ∂Ω) and still does not
correspond to the value that is locally observed in a subvolume and includes connected
contributions.

Now in Ref. [47], it is suggested that the calculations in Ref. [7] (i.e. using the
partition function (11)) are equivalent to choosing boundary conditions on a finite surface
that lift the mass of the three-form, supposedly preventing to capture the true massless
dynamics. However, as discussed above, the vanishing of the chiral susceptibility from
the partition function (11) for the full volume in Eq. (92) also occurs for the EFT
for the topological current, up to disconnected contributions. In either case, this has

the implication that the massless simple pole in ˜⟨KµKν⟩(p) disappears when evaluating
Eq. (94) for the full spacetime. In this sense, both models behave very similarly and
no conclusion can be drawn that the EFT captures dynamics that Eq. (11) does not.
In particular, one cannot support the statement from Ref. [47] that with Eq. (11), one
loses crucial information about CP -violating vacuum states based on some ill-behaved
infrared behaviour of e.g. χ compared to the EFT.

Though also for the three-form EFT, Eq. (94) does not yield a massless simple pole,
it is of interest to give a more direct argument for why the presence of such a pole
is not necessary for consistency with observed topological fluctuations to start with.
First observe that Eq. (94) is only true when the spacetime integral is taken over the
full spacetime; otherwise, the Fourier transform is not simply projected into its zero
momentum limit. To see this, consider a topological susceptibility defined by integrating
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over a finite subvolume Ω1 ⊂ Ω

χΩ1 =

∫
Ω1

d4x ⟨∂µKµ(x)∂νKν(y)⟩ =
∫
Ω1

d4x

∫
d4p

(2π)4
e−ip(x−y)pµpν⟨K̃µKν⟩(p) . (104)

In an infinite spacetime Ω, when Ω1 = Ω is also infinite, the spacetime integral yields
a delta-function and one recovers the result of Eq. (94). For a finite Ω1 ⊂ Ω, however

the topological susceptibility will receive contributions from the correlator ⟨K̃µKν⟩(p)
evaluated at nonzero momentum.

Lattice calculations in frozen topologies (that have χΩ = 0 up to disconnected contri-
butions) still observe nonzero topological susceptibility when sampling over a subvolume
of the full lattice [52]. Hence, there is the logical possibility of a topological susceptibility
that vanishes for the full spacetime, yet is nonzero when defined over subvolumes. This is
exactly what happens with QCD defined as in Eq. (9), as can be seen in Eqs. (91), (92).
Now with χ vanishing in the full spacetime volume, Eq. (94) implies that the correlator
˜⟨KµKν⟩(p) cannot have a massless pole. In Ref. [47] it is stated without proof that this

implies a massive pole instead. Let us adopt this assumption or more loosely introduce
mK as an infrared regulator that may or may not correspond exactly to the effect from
the finite-volume cutoff on the correlation function. We may also have mK stipulate the
absence of the simple pole in Eq. (95). Either way,

⟨K̃µKν⟩(p) =
χ0 gµν
p2 +m2

K

. (105)

Provided such a massive pole is consistent with nonzero χΩ1 , there is then no motivation
for a massless pole for the three-form EFT of Ref. [47]. Hence any conclusion derived
from insisting on a massless pole in the EFT does not apply.

One should therefore demonstrate how one can reconcile the topological susceptibility
being zero at infinite volume while remaining nonzero at finite subvolumes. It turns out
that such behaviour can actually be derived from the massive correlator of Eq. (105).
For estimating the susceptibility defined over a finite region ΩR of radius R, one can
consider an integration with a cutoff function e−R

2/r2 which suppresses the fluctuations
for r > R,

χΩΛ
≡
∫

d4p

(2π)4

∫
R4

d4x e−R
2/r2e−ip(x−y)pµpν⟨K̃µKν⟩(p) . (106)

Substituting Eq. (105) and considering y = 0, the result is

χΩR
= χ0

(
1− R4m4

16
e

R2m2
K

4 Ei

(
−1

4
m2
KR

2

)
− 1

4
R2m2

K

)
∼

{
χ0, R ≪ 1

mK
,

0, R ≫ 1
mK

.
(107)

Above, Ei(z) = −
∫∞
−z e

−t/t dt is the exponential integral function.
As advertised, one gets a zero topological susceptibility in the full volume, but also

constant susceptibility for subvolumes with associated length scales L ≪ 1/mK . This
behaviour is compatible with lattice results [52] and matches the result of Eqs. (91), (92),
which are based on the dilute instanton gas approximation.
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Taking θ as a perturbation and PCAC Sometimes it is argued that θ can be seen
to be physical without making topological considerations by referring to calculations
of possible CP -violating effects using identities for partially conserved axial currents
(PCAC), e.g. in the discussion of Section 3 of Ref. [53] or in Ref. [43]. (Note though
that these papers do not state explicitly that their calculations would allow them to come
to this result without making topological arguments.) However, we show here that such
conclusions ultimately rely on the assumption ξ = θ for Eq. (76). The answer to the
question of whether ξ = ᾱ or ξ = θ relies however on topology so that PCAC methods
or related arguments cannot be used in order to bypass this step.

To review such points, we express the anomalous divergence of the axial U(1) current
as

∂µ

Nf∑
j=1

⟨ψ†
jγ

5γµψj⟩ =
2Nf

16π2
trFF̃ + 2

Nf∑
j=1

⟨ψ†
jγ

5mje
iαiγ

5

ψj⟩ . (108)

Using this relation, we can therefore see that

⟨A| θ

16π2
trFF̃ |B⟩ = − θ

Nf

⟨A|
Nf∑
j=1

ψ†
jγ

5mje
iαiγ

5

ψj|B⟩ , (109)

where we have dropped the total divergence of the axial current. We have inserted a
factor θ on each side in view of the subsequent discussion which is however arbitrary at
this point.

Now, we first follow Ref. [53] and carry out chiral field redefinitions so that in Eq. (60)
the mass matrices are purely real (and diagonal) and in particular ᾱ = 0 and θ = θ̄.
Moreover, one can take the freedom of non-anomalous SU(2)A chiral field redefinitions
to set αj = 0 individually. Assuming θ to be small one may view the left-hand side of
Eq. (109) as a perturbative insertion of the CP -odd topological term into a hadronic
transition matrix element. When |A⟩ and |B⟩ are eigenstates of CP with opposite
eigenvalues, a nonzero result would then signal CP violation.

Before proceeding, we note that we could just as well have set θ = 0, ᾱ = +θ̄
and treated the axial U(1)A phase of the quark masses as the perturbation. This is an
equivalent point of view that is taken e.g. in Ref. [43] and perhaps more true to the
circumstance that the gluons have been integrated out in the chiral EFT so that the
operator θF F̃ has been removed as well. Either way, the right-hand side of Eq. (109)
turns out as

− θ̄

Nf

⟨A|
Nf∑
j=1

ψ†
jγ

5mjψj|B⟩ . (110)

This way, all explicit phases have been pulled out in terms of a single factor in front
of the matrix element (110). If in addition, the chiral condensate has no phase, i.e. in
Eq. (68) U0 = 1Nf

or, in other words, the condensate points into the real direction, the
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matrix element (110) can be evaluated using standard reduction formulae as presented
e.g. in Ref. [54] leading to a nonzero result.

So taking θ = 0 and ᾱ as a perturbation and under the additional assumption that
the chiral condensate points into the real direction, U0 = 1Nf

, one sees here CP viola-
tion. This extra assumption, however, is exactly what characterizes the choice ξ = θ in
Eq. (76)—as opposed to the correct choice in Eq. (67)—as the ground state implied by
ξ = θ = 0 can always be chosen as U0 = 1Nf

. This can be seen to follow from Eqs. (68),
(78), provided that one uses the freedom to perform field redefinitions without changing
θ = 0 (or equivalently, without changing ᾱ = αu + αd) to set αu, αd as follows,

αu =
md

mu +md

ᾱ,

αd =
mu

mu +md

ᾱ.
(111)

If instead ξ = −ᾱ, U0 can be calculated according to Eqs. (68), (78). Then, U0 will be
complex and aligned with −ᾱ, leading to additional perturbative corrections that will
compensate for Eq. (110). That this cancellation has to happen is just a consequence of
the fact that we can dial ᾱ to zero in the chiral effective Lagrangian (67) by a redefinition
of the field U .

We can illustrate this point explicitly for the example of η′ → 2π discussed in
Refs. [43, 53] as well as in Section 7 of the present paper. Suppose we start with the
theory with θ = 0 and ᾱ = 0. Then, ξ = 0 for either order of limits and there is no CP
violation. Next, we reintroduce ᾱ ̸= 0 with |ᾱ| ≪ 1 through the Lagrangian term

δLθ̄ = −iθ̄
mumd

mu +md

Nf∑
i=1

ψ̄iγ
5ψi , (112)

where here Nf = 2 for simplicity and we have written ᾱ as θ̄ since θ = 0 per the present
assumptions. Equation (112) follows from expanding the mass terms in the Lagrangian
(60) to first order in αi, restricting to two flavours and substituting Eq. (111). We could
have used the approximate SU(2)A symmetry to attribute the phases differently among
the flavours u and d but the present form allows most straightforwardly to connect with
the relations from Refs. [43, 53] and Section 7. In particular, inserting the Lagrangian
of Eq. (112) between the vacuum and |η′π0π0⟩, using PCAC relations, leads to

⟨0|δL|η′π0π0⟩ = mumd

(mu +md)2
m2
π

fπ
θ̄ . (113)

The previous result would give the total contribution to the CP -violating matrix element
under the crucial assumption (which is not made explicit in references such as [43, 53],
neither do these articles contain a derivation of the expectation value ⟨U⟩) that there are
no additional CP -odd phases from the quark condensates when taking matrix elements
on the physical states. Equation (113) matches Eq. (5) of Ref. [53] up to a factor of
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√
2/3 which can be understood from the fact that the former reference included a third

light quark which was not accounted for here. Of course, this result from PCAC relations
also follows directly from the EFT Lagrangian term (81) when assuming ξ = θ = 0, so
that ξ + αu + αd = αu + αd = θ̄.

Rather than relying on assumptions, the values of the phases in the quark condensate
are calculable, as was shown in our effective theory analysis in Section 7, in which the
condensate phases were included in Eq. (68) from the beginning and determined by
solving the tadpole conditions, cf. Eq. (78). Now, when choosing the evaluation of the
partition function according to Eqs. (12) and (13) the chiral condensate U0 aligns with
θ. This follows from the fact that in this order of limits, one should identify ξ = θ in
Eq. (67). Then Eqs. (78) and (111) relate φu, φd to θ. As θ = 0 in the present setup,
one obtains φu = φd = 0, so that the chiral condensate induces no additional phases and
Eq. (113) then is the only contribution to the total matrix element, as mentioned before.
If instead the evaluation is done as in Eq. (11) which corresponds to an evaluation of the
partition function (9) on a connected integration contour, ξ = −ᾱ in Eq. (67), so that
Eqs. (78), (68) give detU0 = e−iᾱ. So this deviation from an orientation of the chiral
condensate in the real direction must be accounted for, which leads to additional complex
phases in matrix elements, and thus extra contributions to Eq. (113). The existence of
additional phases to those leading to the PCAC result of Eq. (113) is captured by our
EFT result (81) in the following manner: The angle ᾱ = αu + α (which gives the part
that can alternatively be evaluated through the PCAC relation (113)) is compensated
by ξ = −ᾱ, leading to a vanishing CP -violating amplitude.

In summary, the arguments from Refs. [43, 53], while technically correct if it were
U0 = 1Nf

for θ = 0, does not demonstrate that this assumption actually holds. To assess
this, one, after all, has to consider topology in order to derive the effective ‘t Hooft vertex
and to sort out the correct limiting procedure, i.e. either Eq. (11) or Eqs. (12) and (13).
As Eq. (11) turns out to be correct, U0 aligns with −ᾱ instead of θ so that there is no
CP violation.

Relation of the present arguments to some recent literature There are other
recent papers that argue for CP conservation in the strong interactions. We do not
discuss these here comprehensively but state why they substantially differ from the line
of reasoning in the present work, or, respectively, if there is some prospect to establish
connections.

In Ref. [55], the starting assumption is a finite toroidal four-dimensional geometry,
where the different topological sectors are weighted as exp(i∆nθ). Because of the finite
volume, this decisively differs from Eq. (11). It is further reported in that work that
for θ ̸= 0 no confinement occurs so that the experimentally observed confinement must
result from θ = 0. We can neither confirm this latter statement nor is it central to the
discussion in the present work.

In Ref. [56], it is stated that topological charge, i.e. winding number is not observable
and that no ‘t Hooft operator can be derived. We neither reproduce this, and the ‘t Hooft
operator (62) here is of physical consequence and central to the present discussion.
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The paper [57] makes the point that coherence between topological sectors must not
lead to observable consequences in the presence of causal horizons, which arguably only
happens when θ = 0. In the present work, it turns out that θ has no material consequence
in infinite Euclidean spacetime and hence neither in Minkowski spacetime. However, the
present result (50) is suggestive in that the partition function in a finite subvolume with
free boundary conditions of Euclidean space, as derived from Eq. (9), does not exhibit
the parameter θ any more. It would therefore be interesting to understand the possible
relation between the Euclidean subvolumes and the domains within a causal horizon of
Refs. [57, 58].

9 Conclusions

Topological quantization appears central to the correct assessment of the CP -odd θ
parameter in QCD. It is therefore important to deduce its origin and to account for
the implications of the setup of the problem. When we take Euclidean spacetime as
the analytic continuation of Minkowski spacetime and do not impose ad hoc boundary
conditions, time must be taken to infinity. Then, integration contours can be deduced
that imply that we are first to evaluate the path integral in the individual topological
sectors in infinite volume and then to sum over these sectors. As a consequence, there
is no CP violation present in QCD, particularly not in the effective ‘t Hooft vertex.
While this corresponds to a stringent reasoning within zero-temperature QCD, beyond
the present work we shall next address finite-temperature QCD as a setup with a clear
physical meaning in a finite spacetime volume.
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